Logo Studenta
Gratis
17 pág.
Unidad I CLASE 2 Imperfecciones Cristalinas

Vista previa | Página 1 de 2

FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
 
IMPERFECCIONES CRISTALINAS 
 
Las propiedades de los materiales están relacionadas directamente por la presencia 
de imperfecciones y/o defectos. 
Por ello es importante conocer los tipos de imperfecciones que afectan las 
propiedades físicas y mecánicas de los materiales en diversas aplicaciones. 
No existe un material ideal, la gran mayoría de materiales presentan defectos e 
imperfecciones, sin embargo, el efecto de las imperfecciones no siempre es negativo. 
 
Las imperfecciones se clasifican según su geometría o las dimensiones de las 
imperfecciones en: 
- Defectos puntuales, asociados a una o dos disposiciones atómicas, 
- Defectos lineales, o unidimensionales 
- Defectos interfaciales, o límite de grano. 
 
DEFECTOS PUNTUALES EN METALES 
 
El más simple defecto puntual es la vacante, vacante de red o interrupciones 
localizadas en arreglos atómicos o iónicos. 
 
Vacancia 
 
Es la falta o pérdida de un átomo en una 
posición determinada, debido a: 
- La solidificación o enfriamiento 
- Perturbaciones locales 
- Crecimiento del cristal 
- Reordenamiento atómicos del cristal 
- Movilidad de los átomos. 
 
Está representado por la siguiente ecuación: 
𝑁𝑉 = 𝑁 ∗ 𝑒
−𝑄𝑣
𝐾𝑇 
Donde: 
Nv Número de vacantes en equilibrio por metro cubico 
N Número total de lugares atómicos por metro cubico 
Qv Energía necesaria para formar una vacante (J/mol o eV/átomo) 
T Temperatura absoluta en grados Kelvin 
K Constante de Boltzmann 
 
 
 
 
 
FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
 
No es posible crear estructuras cristalinas libres de vacantes. 
“Una de cada 10 000 posiciones de una determinada red está vacía.” 
 
Átomo Intersticial 
 
Se forma cuando un átomo del cristal se coloca en un 
lugar intersticial de la red, que es un pequeño espacio 
vacío que ordinariamente no está ocupado. 
 
Vacantes Intrínsecas 
 
Se forman para asegurar la neutralidad eléctrica 
 
 
 
 
Ejercicio 1 
 
Calcular el número de vacantes por metro cubico de hierro a la temperatura de 
850oC. La energía para la formación de vacantes es de 1,08 eV/átomo, la 
densidad y el peso atómico del Fe son 7,65 g/cm3 y 55,85 g/mol 
respectivamente a 850oC. 
Tenemos para la densidad en Metales 𝜌 =
𝑛𝐴
𝑉𝑐𝑁𝐴
 
Solución: 
 
𝑛
𝑉𝑐
=
𝑁𝐴𝜌
𝐴
 
 
𝑁𝑐 =
𝑛
𝑉𝑐
=
6,022 𝑥 1023
𝑎𝑡𝑜𝑚𝑜𝑠
𝑚𝑜𝑙
𝑥 7,65
𝑔
𝑐𝑚3
 
55,85 𝑔 /𝑚𝑜𝑙
 
 
𝑁𝑐 =
𝑛
𝑉𝑐
= 8,25 𝑥 1022 𝑎𝑡𝑜𝑚𝑜𝑠/𝑐𝑚3 
 
Para el número de vacantes, 
𝑁𝑉 = 𝑁𝑐 ∗ 𝑒
−𝑄𝑣
𝐾𝑇 
𝑁𝑉 = 8,25 𝑥10
22
𝑎𝑡𝑜𝑚𝑜𝑠
𝑐𝑚3
∗ 𝑒
−1,08 𝑒𝑉
(8,617 𝑥10−5
𝑒𝑉
𝐾
)(850+273)𝐾 
FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
 
Ejercicio 2 
Se conoce que la energía de activación para la formación de una vacancia de 
cobre es 0,9 eV. 
Calcular la relación de concentración de vacantes de cobre a 800ºC y 500ºC. 
Solución: 
Tenemos la ecuación, 
𝑁𝑉 = 𝑁 ∗ 𝑒
−𝑄𝑣
𝐾𝑇 
 Entonces la relación de concentración de concentración esta dada por 
𝑅𝑎𝑡𝑖𝑜 =
𝑒
−𝑄𝑣
𝐾𝑇1
𝑒
−𝑄𝑣
𝐾𝑇2
 
 
Donde, Qv energía de activación eV 
 K constante de Boltzmann 
 𝑇1 = 800𝑜𝐶 = 1073𝑜𝐾 
 𝑇2 = 500
𝑜𝐶 = 773𝑜𝐾 
 
Sustituyendo datos en el ratio, 
𝑅𝑎𝑡𝑖𝑜 =
𝑒
−0,9 𝑥 1,6 𝑥 10−19𝐽
1,38𝑥10−23𝐽/𝐾 𝑥 1073𝑜𝐾
𝑒
−0,9 𝑥 1,6 𝑥 10−19𝐽
1,38𝑥10−23𝐽/𝐾 𝑥 773𝑜𝐾
≅ 44 
 
Indica que, el cobre a 800ºC presenta 44 veces mas vacantes que a 500ºC. Si 
las vacantes se forman por el movimiento de los átomos a otros lugares 
regulares de enlace en lugar de sitios intersticiales esto da origen a un cristal 
de mayor tamaño, este constituye el mecanismo de expansión térmica. 
 
Ejercicio 3 
Considere una celda unitaria CS de arista igual a, con 
ocho átomos idénticos de radio R en los vértices. 
Existe un lugar intersticial en el centro del cubo. 
Calcular el radio del lugar intersticial 
Solución: 
La disposición de átomos según figura, 
r= radio del lugar intersticial, entonces la 
longitud de la diagonal es d = a√3, 
por lo tanto, 
𝑎√3 = 2𝑅 + 2𝑟 
Sustituyendo a = 2R 
2√3𝑅 = 2𝑅 + 2𝑟 
Resolviendo obtenemos 
𝑟
𝑅
= √3 − 1 = 0,73 
 
 
FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
 
 
DEFECTOS PUNTUALES EN CERAMICOS 
 
Defecto Frenkel 
Es una imperfeccion combinada Vacancia-
Defecto intersticial, ocurre cuando un ion 
salta de un punto normal dentro de la red a 
un sitio intersticial dejando una vacancia. 
 
Los defectos de Frenkel el numero de pares 
de defectos vacante cationica/intersticial 
cationico (Nfr) donde cada efecto Frenkel se asocia dos efectos puntuales ( un 
cation vacante y un cation intersticial) que depende de la temperatura: 
 
𝑁𝑓𝑟 = 𝑁 ∗ 𝑒
−𝑄𝑓𝑟
2𝑘𝑇 
 
Defecto Schottky 
 
Es un par de vancacias en un material con enlaces ionicos, para mantener la 
neutralidad, deben perderse de la red tanto un cation como un anion. 
De manera similar los defectos Schottky, en un compuesto de tipo AX, el 
numero de equilibrio (Ns) es funcion de la temperatura: 
 
𝑁𝑠 = 𝑁 ∗ 𝑒
−𝑄𝑠
2𝑘𝑇 
 
 
 
 
 
 
 
 
 
 
 
 
 
Los numeros de defectos Frenkel y Schottky en equilibrio estan en 
funcion de la temperatura y aumentan en forma similar al numero de 
vacantes en metales. 
 
 
FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
Ejercicio 4 
 
Calcular el numero de defectos Schottky en el KCl por metro cubico a 500oC. La 
energia requerida para formar cada defecto Schottky es de 2,6 eV, 
considerando que la densidad del KCl a 500ºC es de 1,955 g/cm3. 
Dato: 
Utilizar la Ecuacion 𝑁𝑐 =
𝑁𝐴 𝑥 𝜌
𝐴𝐾+ 𝐴𝐶𝑙
 para el calculo del numero de posiciones de la 
red por metro cubico. 
 
Solucion: 
Tenemos el numero de Avogrado 𝑁𝐴 = 6,023 𝑥 1023𝑎𝑡𝑜𝑚𝑜𝑠/𝑚𝑜𝑙 
Remplazamos valores en la Ecuacion, 
 
𝑁𝑐 =
6,023 𝑥1023
𝑎𝑡𝑜𝑚𝑜𝑠
𝑚𝑜𝑙
𝑥 1,955
𝑔
𝑐𝑚3
𝑥
106𝑐𝑚3
𝑚3
39,10 
𝑔
𝑚𝑜𝑙
+ 35,45 
𝑔
𝑚𝑜𝑙
= 1,58 𝑥 1028 𝑝𝑜𝑠𝑖𝑐𝑖𝑜𝑛𝑒𝑠 𝑟𝑒𝑑/𝑚3 
 
Luego en la Ecuacion de Schottky, 
𝑁𝑠 = 1,58 𝑥10
28𝑝𝑜𝑠𝑖𝑐𝑖𝑜𝑛𝑒𝑠 𝑟𝑒𝑑/𝑚3 ∗ 𝑒
− 2,6 𝑒𝑉
2∗8,62∗10−5
𝑒𝑉
𝐾
∗773𝑜𝐾 
 
𝑁𝑠 = 5,31 𝑥10
19𝑑𝑒𝑓𝑒𝑐𝑡𝑜𝑠/𝑚3 
 
Defecto sustitucional 
 
Ocurre cuando un atomo o ion es sustituido por tipo distinto de atomo o ion, 
estos atomos susticionales ocupan el sitio mayor de la red, cuando son mayores 
reducen los espacios interatomicos y cuando son menores aumentan los espacios 
interatomicos. 
 
 
 
Ejemplos: aleaciones Cu – Ni para la aplicación producción de monedas, tubos de 
condensadores y si añade hierro y manganeso mejora la resistencia a la 
corrosión y erosión, se incrementa la resistencia y la temperatura de 
recristialización 
FACULTAD DE INGENIERIA QUIMICA 
 MATERIALES DE INGENIERIA FTC28 
ESP50 
MSc. Ricardo Cuba Torre 
Facultad de Ingeniería Química 
Universidad nacional del Callao 
 
 
 
DEFECTOS LINEALES 
 
Las dislocaciones son imperfecciones lineales en un cristal que de una u otra 
manera seria perfecto, se suele introducir en el cristal durante la solidificación 
del material o cuando el material se deforma permanentemente. 
 
Tornillo o Cuña 
Es un defecto lineal centrado
Página12

Materiales recomendados

Unidad II Propiedades Mecanicas de Metales

Colégio Objetivo

User badge image

CAICAY OTOYA LUIS EDUARDO

SEMANA I Materiales de Ingeniería

Colégio Objetivo

User badge image

CAICAY OTOYA LUIS EDUARDO