Logo Studenta

Física 2BA Unidad 5 Campo magnético Inducción electromagnética

¡Este material tiene más páginas!

Vista previa del material en texto

5 | Campo magnético. 
Inducción electromagnética
El magnetismo es una propiedad de la materia que se 
conoce desde la antigüedad. Los griegos y los chinos 
sabían que los imanes naturales tienen la propiedad de 
atraer objetos metálicos de hierro.
También se sabía que una aguja imantada colgada o 
sustentada por su centro se orienta siempre según una 
dirección determinada, cercana a la dirección Norte-Sur 
geográfica. Esta propiedad se utilizaba como sistema de 
orientación por parte de viajeros y navegantes.
A principios del siglo xix se descubrió la relación del mag-
netismo con la electricidad. Desde entonces, se ha sucedi-
do multitud de descubrimientos sobre esta interrelación.
El descubrimiento y las aplicaciones del electromagne-
tismo han permitido fabricar una gran cantidad de apa-
ratos, máquinas y dispositivos que han cambiado com-
pletamente la sociedad en la que vivimos.
139-184_U5.FIS.2BCH.CAS.indd 139 20/5/09 08:57:54
140
5 | Campo magnético. Inducción electromagnética
Un generador de corriente es una máquina eléctrica que permite producir corriente eléctrica a partir del 
movimiento de círculos conductores en el interior de un campo magnético.
En los motores eléctricos, el campo magnético generado por unos electroimanes hace girar unos circuitos 
eléctricos montados sobre una parte giratoria del motor por los que pasa corriente.
Los transformadores se utilizan para cambiar el voltaje que se aplica a un circuito eléctrico determinado. 
Pueden elevarlo o reducirlo. En los transformadores no hay partes móviles.
Si examinamos las partes que forman un generador de corriente y un motor eléctrico, veremos que se pare-
cen. Ambos tienen una parte fija, que llamamos estator, y una parte móvil que se llama rotor. Tienen unos 
enrollamientos de hilos conductores alrededor de una pieza que funciona como un imán, y otros enrolla-
mientos de hilo que envuelven una pieza metálica.
En los dos dispositivos los efectos de la interacción magnéti-
ca contribuirán notablemente en las corrientes eléctricas. 
De manera similar a lo que sucede en los generadores y 
motores, los transformadores también tienen enrollamientos 
de hilos conductores alrededor de unas piezas metálicas que 
están formadas por láminas aisladas unas de otras. En cam-
bio, los transformadores no presentan una parte móvil. 
En todos los casos, la interacción entre el campo magnético 
y la corriente eléctrica es la base de su funcionamiento. 
Podríamos elaborar una lista muy larga de todos los aparatos 
que utilizan alguno de estos dispositivos. Sólo tenemos que 
pararnos a pensar un poco y nos daremos cuenta de la impor-
tancia que tienen en nuestra vida diaria. 
A lo largo de esta unidad veremos en qué consiste la interac-
ción entre el campo magnético y las corrientes eléctricas, y 
qué efectos y aplicaciones tiene.
INTRODUCCIÓN: GENERADORES, TRANSFORMADORES Y MOTORES
Figura 1. Generador de corriente 
alterna.
Figura 4. Motor con el estator que rodea el rotor 
(cilindro central con el eje que sobresale).
Figura 5. Devanados del primario y del secundario 
de un transformador.
Figura 2. Motor de corriente eléctrica. Figura 3. Transformadores.
139-184_U5.FIS.2BCH.CAS.indd 140 20/5/09 08:58:02
141
Campo magnético. Inducción electromagnética | 5
Los efectos de los imanes son más intensos en los extremos denominados 
polos. Los polos de un imán se denominan norte y sur porque, si colgamos 
el imán del punto central, se orienta sensiblemente en la dirección Norte-
Sur geográfica. En el año 1600 William Gilbert descubrió la razón de este 
comportamiento: la Tierra es un grandioso imán permanente, cuyos polos 
interaccionan con los pequeños imanes y los orientan espontáneamente.
Si probamos a separar los polos de un imán rompiéndolo por la mitad, no 
obtendremos dos polos aislados, sino dos imanes, cada uno con un polo 
norte y un polo sur (Fig. 3). Si de cada trozo hacemos dos más, y así suce-
sivamente, obtendremos tantos imanes completos como trozos hayamos 
hecho. Es imposible obtener un polo único. Podemos considerar que cual-
quier imán está formado por multitud de pequeños imanes orientados 
todos del mismo modo.
Cuando acercamos los polos de dos imanes, observamos que un polo 
norte y un polo sur se atraen; en cambio, dos polos de la misma clase se 
repelen.
Hacia 1750 John Michel estudió cuantitativamente las fuerzas entre los 
polos magnéticos y, de manera independiente, Coulomb, a mediados del 
siglo xviii. Experimentalmente podemos comprobar que las fuerzas entre 
dos polos magnéticos:
a) Dependen del medio que haya entre los dos polos.
b) Tienen la misma línea de acción.
c) Sus sentidos son contrarios.
d) Tienen la misma intensidad, inversamente proporcional al cuadrado de 
la distancia que los separa.
1 | Campo magnético
| Magnetismo. Propiedades de los imanes
En Magnesia, ciudad de Asia Menor, en la antigüedad se encontraba en 
abundancia un mineral llamado magnetita, que tiene la propiedad de atraer 
el hierro (Fig. 1). En la naturaleza, además de la magnetita, otros cuerpos 
tienen esta propiedad. Son los llamados imanes naturales. Otras sustan-
cias, como el hierro, el cobalto y el níquel, pueden adquirir artificialmente 
esta propiedad. Son los imanes artificiales (Fig. 2).
2. Un imán artificial también atrae 
limaduras de hierro.
1. La magnetita atrae los clavos de hierro: 
es un imán natural.
3. Si dividimos un imán por la mitad, los 
dos trozos resultantes los dividimos de 
nuevo por la mitad, y así sucesivamente, 
obtenemos tantos imanes como trozos.
139-184_U5.FIS.2BCH.CAS.indd 141 20/5/09 08:58:19
142
5 | Campo magnético. Inducción electromagnética
| El campo magnético. Vector inducción magnética
Cuando acercamos un imán a un conjunto de pequeñas brújulas, como las 
de la figura 5, el imán ejerce una fuerza sobre cada una de ellas y las orien-
ta (Fig. 6). El imán crea un campo de fuerzas magnéticas en el espacio que 
lo rodea. 
4. Las fuerzas entre dos polos magnéticos tienen la misma dirección, sentidos contrarios 
e igual intensidad.
En una región del espacio hay un campo magnético cuando en cada 
punto de esta región una aguja imantada es sometida a fuerzas 
magnéticas.
El campo magnético es el conjunto de vectores inducción magnética 
aplicados en cada punto de una zona del espacio.
Además, las pequeñas brújulas de la figura 6 indican que el campo no es 
igual en todos los puntos. Cambian la dirección, el sentido y también el 
módulo en cada punto del campo.
Así como en los campos gravitatorio y eléctrico se definían los vectores 
intensidad de campo en un punto, ahora nos interesa definir el vector repre-
sentativo del campo magnético. En cada punto del campo magnético se 
define un vector, llamado vector inducción magnética, simbolizado por 
r
B , 
cuya dirección es la que tiene la aguja de la brújula en aquel punto y el 
sentido es el que le corresponde del polo norte al polo sur de la brújula.
En la práctica, cuando nos referimos al vector inducción magnética, lo lla-
mamos indistintamente vector inducción, inducción magnética o, sencilla-
mente, inducción.
6. Las mismas brújulas sometidas al 
efecto de un imán. Sus orientaciones 
indican la dirección del campo magnético 
en cada punto.
5. Conjunto de pequeñas brújulas. Sin 
ninguna otra influencia, todas señalan, 
aproximadamente, la dirección del campo 
magnético de la Tierra.
139-184_U5.FIS.2BCH.CAS.indd 142 20/5/09 08:58:22
143
Campo magnético. Inducción electromagnética | 5
N
S
| Líneas de inducción. Espectros magnéticos
En los campos gravitatorio y eléctrico habíamos dibujado las líneas del 
campo, de manera que el vector intensidad de campo era tangente en cada 
punto. También en el campo magnético podemos dibujar las líneas de 
inducción de manera que el vector inducción magnética sea tangente en 
cada punto (Fig. 7). El sentido de las líneas de inducción es el del vector 
r
B. 
Exteriormente van del polo norte al polo sur del imán y se cierranen el 
interior de este. Así pues, las líneas de inducción magnética son cerradas, 
a diferencia de las líneas del campo eléctrico, que empiezan en las cargas 
positivas y acaban en las negativas.
9. Espectro magnético de un imán recto. 
Las limaduras de hierro son pequeñas 
agujas imantadas que se orientan 
siguiendo las líneas de inducción del 
campo magnético creado por el imán.
10. Representación de las líneas de 
inducción del campo magnético de la 
Tierra.
8. La dirección de las pequeñas brújulas 
en cada punto es tangente a la línea de 
inducción.
7. Líneas de inducción magnética de un 
imán recto. Exteriormente van del polo 
norte al sur y se cierran a través del imán.
N S
Cuando el vector inducción magnética tiene la dirección, el sentido y el 
módulo idénticos en todos los puntos del campo, decimos que el campo 
magnético es uniforme. En este caso, las líneas de inducción son rectas 
paralelas equidistantes, muy parecidas a las representadas en la parte 
central del interior del imán (Fig. 7).
Es posible imaginar la forma de las líneas de inducción si se explora el 
campo magnético punto por punto con una pequeña brújula (Fig. 8).
Las líneas de inducción de un imán se pueden materializar de una manera 
muy sencilla. Se pone una cartulina sobre el imán y se esparcen unas lima-
duras de hierro. Al dar unos golpecitos con los dedos a la cartulina, las 
limaduras se orientan y se atraen mutuamente, al tiempo que se sitúan a 
lo largo de las líneas de inducción (Fig. 9).
| El magnetismo terrestre
El hecho de que un imán o una aguja magnética, suspendidos o apoyados 
por su centro de gravedad, se orienten hacia el Norte-Sur, demuestra que 
la Tierra crea un campo magnético y que, por lo tanto, actúa como un imán 
muy grande.
El campo magnético terrestre tiene unas líneas de inducción muy similares 
a las de una gran barra imantada (Fig. 10), que tendría el polo sur cerca del 
Norte geográfico y el polo norte cerca del polo Sur geográfico. Este orden 
se ha invertido varias veces en los últimos diez millones de años. El eje 
geográfico y el eje magnético forman, actualmente, un ángulo de unos 14°. 
Por lo tanto, los meridianos geográficos no coinciden con los meridianos 
magnéticos. El ángulo que forman entre los dos en cada punto de la Tierra 
se llama declinación magnética del lugar. Desde la antigüedad, el hombre 
ha utilizado las brújulas de declinación magnética para orientarse sobre la 
superficie de la Tierra.
139-184_U5.FIS.2BCH.CAS.indd 143 20/5/09 08:58:48
144
5 | Campo magnético. Inducción electromagnética
El campo magnético terrestre se extiende mucho más allá de nuestro pla-
neta y retiene muchas partículas cargadas que nos llegan del espacio, 
principalmente del Sol, las cuales podrían ser perjudiciales para la vida si 
llegasen al suelo.
Esta retención de partículas cargadas explica la formación de fenómenos 
tan espectaculares como las auroras boreales (Fig. 11).
2 | Electromagnetismo
Hasta la segunda década del siglo xix, el estudio del magnetismo se limitó 
a los fenómenos originados por los imanes. Los físicos se preguntaban si 
había alguna relación entre la electricidad y el magnetismo. La presencia 
de cargas eléctricas en reposo delante de un imán no modificaba sus pro-
piedades y los imanes tampoco ejercían ninguna acción sobre los electros-
copios cargados.
El año 1819 el físico danés Hans Christian Oersted encontró, casualmente, 
la respuesta a esta pregunta. Un día, haciendo una práctica de electricidad 
en clase, acercó una aguja imantada a un conductor por el que circulaba 
corriente y observó que la aguja magnética se desviaba notablemente y que 
tendía a colocarse en una dirección perpendicular a la del conductor 
(Fig. 12). Oersted había descubierto que la corriente eléctrica ejerce accio-
nes magnéticas, o sea, que se comporta como un imán.
Esta experiencia permitió, por primera vez, relacionar el magnetismo y la 
electricidad.
Las cargas eléctricas crean a su alrededor un campo eléctrico; pero, si se 
mueven, crean, además, un campo magnético. Para que se produzca la 
interacción magnética, es necesario el movimiento de las cargas eléctricas. 
Por otro lado, experimentalmente se puede comprobar que los imanes 
ejercen fuerzas sobre las corrientes eléctricas o los cuerpos cargados en 
movimiento, situados cerca.
Así, por ejemplo, si entre las placas A y B de la figura 13a se establece una 
elevada diferencia de potencial, se genera un haz de electrones que se 
hace visible al chocar contra una placa de material fosforescente. Al acer-
car un imán (Fig. 13b), el haz de electrones es fuertemente desviado.
11. Aurora boreal.
12. Cuando circula la corriente eléctrica 
por el conductor, la aguja se desvía de la 
posición de equilibrio: la corriente eléctrica 
produce efectos magnéticos.
13 a) Haz de electrones generado al aplicar una diferencia de 
potencial elevada entre dos placas.
13. b) Desviación del haz por el campo magnético de un imán.
139-184_U5.FIS.2BCH.CAS.indd 144 20/5/09 08:58:52
145
Campo magnético. Inducción electromagnética | 5
El experimento de Oersted
Oersted descubrió que la corriente eléctrica genera-
ba un campo magnético alrededor de un hilo por el 
que circula esta corriente eléctrica.
Para reproducir el experimento de Oersted necesita-
remos el siguiente material:
— Una fuente de alimentación de corriente continua 
que permita elevadas intensidades de corriente.
— Un hilo de corriente de entre 2 y 5 mm de diáme-
tro.
— Una brújula.
— Bornes de sujeción del hilo de corriente. 
— Cables eléctricos y un interruptor.
Colocaremos el hilo conductor en un plano horizon-
tal, alineado en una dirección aproximadamente 
paralela al campo magnético terrestre. 
Por debajo del cable conductor situaremos la brúju-
la, orientada en la dirección del campo magnético 
terrestre.
Acabaremos de montar el circuito de corriente.
A continuación, conectaremos una corriente que 
haga circular por el hilo una intensidad de corriente 
suficientemente elevada como para producir un 
campo magnético que desvíe la aguja de la brújula. 
Anotaremos la intensidad de corriente, su sentido 
en la dirección del hilo y el efecto producido sobre la 
brújula.
Después, conectaremos al hilo una corriente de 
sentido contrario al del primer caso. Anotaremos 
también la intensidad de corriente y el efecto gene-
rado sobre la brújula.
Para ver la dirección del campo magnético producido 
por la corriente eléctrica que pasa por el hilo con-
ductor, montaremos el hilo de manera que podamos 
situarlo en una dirección cualquiera, en relación a la 
dirección del campo magnético terrestre. Esto nos 
permitirá observar el efecto del campo magnético 
sobre la brújula a través de diferentes situaciones: 
• Hilo alineado con el campo magnético terrestre.
• Hilo formando un ángulo de unos 30º con el 
campo magnético terrestre.
• Hilo formando un ángulo de unos 60º con el 
campo magnético terrestre.
• Hilo formando un ángulo de 90º con el campo 
magnético terrestre.
Para cada una de las situaciones experimentadas, 
anotaremos cuál es el efecto del campo magnético 
creado por la corriente eléctrica sobre la aguja de la 
brújula.
A partir de las observaciones experimentales, inten-
taremos averiguar cuál es el campo magnético gene-
rado por un hilo de corriente: dirección, sentido e 
intensidad.
E
x
P
E
R
IE
N
C
IA
Figura I. Dispositivo para realizar el experimento de Oersted.
Figura II. Esquema del montaje del circuito de corriente para 
observar el efecto magnético de una corriente eléctrica.
Figura III. Esquema del montaje del hilo de corriente alineado 
en una dirección cualquiera respecto al campo magnético 
terrestre.
139-184_U5.FIS.2BCH.CAS.indd 145 20/5/09 08:58:54
146
5 | Campo magnético. Inducción electromagnética
Hacia el año 1831 Michael Faraday y Joseph Henry, independientemente el 
uno del otro, descubrieron que, cuando se acerca o se aleja un imán a un 
circuito conductor, se origina en él unacorriente eléctrica. En 1875, Maxwell 
demostró que un campo eléctrico variable origina un campo magnético.
Ya en 1820, Ampère relacionó el magnetismo que tienen los imanes perma-
nentes con la electricidad. Propuso un modelo según el cual la materia 
estaría recorrida por corrientes eléctricas elementales con orientaciones al 
azar que no producirían ningún efecto magnético apreciable. Ahora bien, en 
los materiales magnéticos –como el hierro– todas estas pequeñas corrien-
tes estarían orientadas y los campos magnéticos creados por cada una de 
ellas sumarían sus efectos y producirían un campo magnético apreciable 
en el exterior del material. En realidad, cuando se imanta un trozo de hierro, 
se produce el efecto de ordenar los pequeños imanes elementales.
A nivel microscópico, se puede considerar que los electrones que rodean 
los átomos, al moverse, se comportan como pequeñas corrientes eléctri-
cas, las cuales producen un efecto magnético, como si se tratase de 
pequeños imanes, desordenados en todas direcciones.
En algunas sustancias los efectos magnéticos de los electrones de un 
átomo no se contrarrestan y dan un efecto magnético permanente; se trata 
de pequeños imanes a nivel atómico. Pero, globalmente, los imanes atómi-
cos se encuentran desordenados y sus efectos se anulan los unos con los 
otros. En ciertos materiales estos pequeños imanes atómicos se influyen 
mutuamente y adoptan orientaciones similares por pequeñas zonas, for-
mando los dominios magnéticos. El material está formado por una gran 
cantidad de pequeños dominios magnéticos con orientaciones diferentes. 
Globalmente sus efectos se contrarrestan y no se observa ningún campo 
magnético originado por estos. Cuando, debido a un campo magnético 
externo, se consigue ordenar todos estos pequeños imanes, sus efectos 
se suman y producen un campo magnético conjunto apreciable a nivel 
macroscópico.
La idea de que las propiedades magnéticas de la materia se deben a 
pequeñas corrientes elementales tiene, además, el mérito de haber sido 
postulada casi un siglo antes de establecerse la estructura del átomo tal y 
como hoy se acepta.
14. Michael Faraday (1791-1867). Físico y 
químico inglés que contribuyó al desarrollo 
y la comprensión del electromagnetismo. 
Descubrió la ley de inducción de la 
corriente eléctrica. También hizo grandes 
aportaciones experimentales a la 
electrólisis, de la que formuló dos leyes 
cuantitativas. Fue auxiliar de Humphry 
Davy en el Royal Institut, donde llegó a ser 
superintendente y director. Asimismo fue 
miembro de la Royal Society y de la 
Académie Française des Sciencies. Con 
sus conferencias popularizó la ciencia 
entre el público; son famosas sus 
«conferencias de los viernes por la tarde». 
Fue, fundamentalmente, un 
experimentador, si bien también se le 
reconocen aportaciones teóricas que lo 
convierten en una de las grandes figuras 
de la Física. Introdujo el concepto de 
campo para explicar las interacciones a 
distancia. En palabras de algunos de sus 
biógrafos y de físicos más recientes, «fue 
uno de los mejores, quizá el mejor, de 
todos los experimentadores». En honor 
suyo, se llama farad (faradio) a la unidad 
de capacidad eléctrica del SI.
Tanto el magnetismo de los imanes como el originado por la corriente 
eléctrica es un efecto de las cargas eléctricas en movimiento.
El estudio del magnetismo no se puede separar del de la electricidad, por-
que constituye uno de sus capítulos que, propiamente, se tiene que llamar 
electromagnetismo. Tiene mucha importancia debido al gran desarrollo de 
sus aplicaciones: generadores industriales de energía eléctrica, motores 
eléctricos, automatismos varios, televisión, radar, telecomunicaciones, 
etc.
139-184_U5.FIS.2BCH.CAS.indd 146 20/5/09 08:58:57
147
Campo magnético. Inducción electromagnética | 5
B
F
v
+
3 | Fuerza que ejerce un campo magnético 
sobre una carga móvil
Comenzaremos estudiando las acciones ejercidas por el campo magnético 
sobre las cargas eléctricas móviles, entre otras razones porque ello nos 
permite definir la unidad de inducción magnética.
Si situamos una carga eléctrica Q en un campo magnético uniforme 
r
B y la 
carga permanece en reposo, el campo magnético no ejerce ninguna fuerza 
sobre esta. Pero, si se mueve a una velocidad 
r
v , actúa una fuerza 
r
F , cuyas 
características –módulo, dirección y sentido– se pueden determinar experi-
mentalmente. Se comprueba que esta fuerza:
a) Es proporcional a la carga, Q.
b) Es proporcional al módulo de la velocidad de la carga,
 
r
v .
c) Es perpendicular al vector velocidad.
d) Es perpendicular al vector de inducción magnética.
e) Tiene un módulo que depende del ángulo que forman el vector velocidad, 
 
r
v , y el campo 
r
B. Si forman un ángulo ϕ, es proporcional al seno de este 
ángulo. El módulo de la fuerza magnética vale lo siguiente: 
r r r
F Q v B= · · · sen .ϕ
Cuando 
r
v y 
r
B tienen la misma dirección, sen ϕ = 0 y 
r
F es nula. Si 
r
v y 
 
r
B son perpendiculares entre sí, sen 90° = 1 y el módulo es máximo: 
 
r
F = Q · 
r
v · 
r
B .
Para determinar el sentido de la fuerza, 
r
F , hay varias reglas. En este caso, 
es muy fácil aplicar la regla de la mano izquierda: si situamos la mano 
izquierda en el campo, de manera que el sentido del vector 
r
B atraviese 
perpendicularmente la palma de la mano y la punta de los dedos señalen el 
sentido del movimiento de la carga, el pulgar señala el sentido de la fuerza 
(Fig. 15).
Esta regla es válida para las cargas positivas (recuerda que las cargas 
eléctricas de referencia se eligen siempre positivas). Si se tratase de car-
gas negativas, solo hay que tener presente que su movimiento es equiva-
lente al de cargas positivas de igual magnitud que se desplacen en sentido 
contrario.
| Unidad de inducción magnética
15. Regla de la mano izquierda para 
determinar la fuerza que ejerce el campo 
magnético sobre una carga eléctrica móvil.
La intensidad de corriente eléctrica se define como la cantidad de carga que atraviesa la sección de un 
conductor por unidad de tiempo. Por lo tanto, la unidad de intensidad de corriente en el SI se relaciona con 
la unidad de carga y la de tiempo según la expresión:
 
1 A = 
1 C
1 s
R E C U E R D A q U E
139-184_U5.FIS.2BCH.CAS.indd 147 20/5/09 08:59:03
148
5 | Campo magnético. Inducción electromagnética
Hemos visto que la fuerza que ejerce el campo magnético sobre una carga 
Q, que se mueve perpendicularmente al campo con una velocidad 
r
v , viene 
dada por la expresión: 
 
r
F = Q · 
r
v · 
r
B
Esta expresión nos permite definir la unidad de inducción magnética, dado 
que ya tenemos definidas las unidades de fuerza, carga eléctrica y veloci-
dad. Aislamos 
 
r
B :
 
r
B = 
r
F
Q · 
r
v
Y sustituimos 
 
r
F , Q y 
 
r
v por sus unidades en el SI:
r
B  =
1 newton
1 culombio 1 metro/segundo
La unidad en el SI de inducción magnética se llama tesla (T) en honor al 
ingeniero croata Nikola Tesla (1856–1943).
La inducción en un punto de un campo magnético es 1 tesla cuando, al 
moverse perpendicularmente al campo la carga de 1 culombio, a la velo-
cidad de 1 m/s, ejerce sobre esta la fuerza de 1 newton:
 	
1 T = 
1 N
1 C 1m/s
 = 
1 N
1 A 1m
En la práctica, esta unidad es bastante grande. Así, por ejemplo, el campo 
magnético de la Tierra es del orden de 10–5 T; el de los imanes permanen-
tes corrientes puede ser del orden de 10–2 T; el de los electroimanes poten-
tes, de unos 2 T. Se han llegado a crear campos que superan los 30 T. En 
el universo, las estrellas de neutrones (púlsares) crean campos magnéti-
cos del orden de mil millones de teslas.
Otra unidad de campo magnético, que aún se utiliza, es el gauss (G). Su 
relación con el tesla es 1 T = 10 4 G
| Movimiento de una carga en un campo magnético
Estudiaremos el caso concreto de una partícula cargada que se mueve en 
un campo magnético uniforme 
r
B a una velocidad inicialr
v 0 , perpendicular a 
 
r
B; por ejemplo, el electrón de la figura 16, que entra en un campo magnéti-
co perpendicular al plano. La dirección y el sentido de la fuerza 
r
F , perpen-
dicular a la trayectoria del electrón, se dibujan en la figura. Hemos estudia-
do que las fuerzas perpendiculares a la trayectoria de un cuerpo, llamadas 
fuerzas deflectoras, no modifican el módulo de la velocidad, únicamente 
modifican la dirección del movimiento. Si, además, el módulo de la fuerza 
es constante –tal como ocurre en el caso que estamos estudiando–, origi-
nan movimientos circulares.
En un campo magnético uniforme en el que 
r
B es perpendicular a 
r
v , una par-
tícula cargada adquiere un movimiento circular uniforme. La fuerza magnéti-
ca perpendicular siempre a 
r
B y a 
r
v es normal a la trayectoria en cada punto.
La experiencia corrobora las consideraciones expuestas. Efectivamente, 
los electrones generados por una fuente F situada en el interior de una 
botella, al chocar contra el gas a baja presión contenido en el 
16. Las cruces, X, señalan que el campo 
magnético es perpendicular al plano, y el 
sentido, de fuera hacia dentro. En los 
puntos M, N y P las direcciones y los 
sentidos de las fuerzas magnéticas son 
las señaladas (puedes comprobarlo 
aplicando la regla de la mano izquierda). El 
electrón describe una trayectoria circular.
V0
V
V
M
N
P
–
–
–
F
B
F
F
139-184_U5.FIS.2BCH.CAS.indd 148 20/5/09 08:59:09
149
Campo magnético. Inducción electromagnética | 5
interior, producen luminiscencia azulada (Fig. 17). Si, mediante un campo 
magnético uniforme, se desvían los electrones, se observa que, cuando 
r
v 
y 
r
B son perpendiculares entre sí, describen un movimiento circular. Pero si 
 
r
v y 
r
B tienen la misma dirección, no son desviados. Si 
r
v y 
r
B forman entre sí 
un ángulo cualquiera, los electrones describen una trayectoria helicoidal.
Cuando una partícula cargada se mueve en un campo magnético uniforme, 
perpendicular a su velocidad, describe una trayectoria circular. El radio de 
esta circunferencia se puede calcular a partir de la fórmula de la fuerza 
centrípeta que el campo ejerce sobre esta.
Cuando una partícula describe un movimiento circular uniforme, la fuerza 
resultante aplicada debe ser una fuerza centrípeta.
 
F
c
 = 
m v 2
r
En el caso de una partícula cargada que se mueve perpendicularmente a 
un campo magnético constante, esta fuerza la hace el campo magnético y 
vale:
Fm = Q · v · B
Igualando estas dos fuerzas y aislando el radio, se obtiene lo siguiente:
 
r = 
m v
Q B
17. Trayectoria circular de los electrones 
en un campo magnético uniforme.
 1. Un protón describe una órbita circular de 1 m de radio por acción de un campo magnético uniforme 
perpendicular a su trayectoria, de 0,1 T.
 Calcula:
a) El módulo de la velocidad del protón.
b) El valor de la fuerza centrípeta que actúa.
c) Su energía cinética.
 Datos: masa del protón: mp = 1,67  10
–27 kg; carga del protón: qp = 1,6  10
–19 C
a) Como la fuerza centrípeta es ejercida por el campo:
 
m v 2
r
 = Q 
r
v 
r
B
 Aislando v
Q B r
m
= =
1,6 10 C 0,1 T 1 m
1,67 10
–19
–2
  
 77
7
Kg
= 10 m/s
b) La fuerza centrípeta vale:
 
F
Q v B
mc
–19 7= = 1,6 10 C 10 m/s 0,1 T = 1   ,,6 10 N–13
c) La energía cinética del protón es:
 	
E
k
 = 
1
2
 m v 2 = 
1
2
 1,67 10–27 kg  (107 m/s)2 = 8,5 10–14 J
E j E M P L O
Si, en lugar de un electrón, fue-
se un protón la partícula que en-
trase en el campo magnético de 
la figura 16, ¿describiría la mis-
ma circunferencia?
139-184_U5.FIS.2BCH.CAS.indd 149 20/5/09 08:59:13
150
5 | Campo magnético. Inducción electromagnética
Aplicaciones de los fenómenos de desviación magnética: 
espectrógrafos de masas y ciclotrones
Las aplicaciones de los fenómenos de desviación de cargas 
eléctricas por fuerzas magnéticas son numerosas y muy 
importantes. Veremos brevemente los espectrógrafos de 
masas y los ciclotrones.
El espectrógrafo de masas permite separar iones de masas 
diferentes (Fig. I). Una cámara de ionización (A) genera iones 
de diferente masa, pero con idéntica carga eléctrica. En una 
cámara de aceleración (B), los iones son acelerados elec-
trostáticamente para ser desviados, más allá, por una cáma-
ra de desviación (C) en la que, al ser sometidos a un campo 
magnético uniforme, describen trayectorias circulares, cuyo 
radio depende de sus masas. De esta manera, se pueden 
separar diferentes isótopos de un elemento químico.
El ciclotrón (Fig. II) se utiliza para acelerar partículas carga-
das (por ejemplo, protones) con el fin de darles energía 
cinética y utilizarlos en experiencias de física nuclear (como 
partículas de bombardeo de núcleos atómicos).
Está formado por dos semicilindros conductores vacíos, 
ligeramente separados, llamados D por la forma que tienen 
(Fig. III). Mediante electroimanes muy potentes, se estable-
ce un intenso campo magnético perpendicular a las D. En el 
espacio que separa las dos D se crea un campo eléctrico 
intenso cuando conectamos cada una a un generador capaz 
de suministrar una elevada tensión (Fig. III).
Sigamos, por ejemplo, el camino de un protón lanzado en A 
con una velocidad inicial v0. Al estar sometido a un campo 
magnético uniforme, sigue una trayectoria circular hasta que 
abandona la D en el punto B. En este instante se invierte la 
tensión aplicada a las D y el protón es acelerado por el campo 
eléctrico y entra a la otra D a una velocidad v1 (v1 > v0). Por el 
hecho de haber incrementado la velocidad, la circunferencia 
que describe es de radio más grande. Al salir por C, cambia 
otra vez la polaridad del campo eléctrico y el protón, entre C 
y E, vuelve a ser acelerado. 
En el ciclotrón, la partícula cargada experimenta una acele-
ración cada media vuelta. La operación se repite hasta que 
el protón o la partícula cargada roza las paredes y sale al 
exterior por una ventana lateral, a una elevada velocidad.
D
O
C
U
M
E
N
T
O
 1
III. Esquema de un ciclotrón.
Cámara
de ionización
Cámara de aceleración
m1
O1
O2
R1
R2
m2
A B
C
I. Esquema de un espectrógrafo de masas.
II. Ciclotrón.
v0 v1A O
D
D
E
S
N
C(v1 )
B(v0 )
Campo eléctrico
Cambiante y sincronizado
Tensión
alterna de
elevada
frecuencia
139-184_U5.FIS.2BCH.CAS.indd 150 20/5/09 08:59:23
151
Campo magnético. Inducción electromagnética | 5
4 | Acción del campo magnético 
sobre una corriente eléctrica
Es evidente que, si el campo magnético ejerce fuerzas sobre las cargas 
eléctricas en movimiento, también las ejercerá sobre las corrientes eléctri-
cas, que son un conjunto de cargas en movimiento.
Consideremos un conductor rectilíneo por el que circula una corriente y que 
se encuentra en un campo magnético uniforme. Las cargas eléctricas se 
desplazan en el conductor en la misma dirección y en el mismo sentido y, 
por lo tanto, las fuerzas que el campo magnético ejerce son paralelas y del 
mismo sentido.
El módulo de la fuerza resultante es la suma de los módulos de las fuerzas 
que actúan sobre cada carga. Si Q es la carga total en el conductor, la fuer-
za magnética es:
r r r
F Q v B= · · · sen .ϕ
Ahora bien, es difícil conocer la carga total que hay en el conductor y aún lo 
es más saber su velocidad de desplazamiento.
Podemos modificar la fórmula anterior, teniendo en cuenta que la velocidad 
media de las cargas en el conductor es el cociente entre su longitud, l, y el 
tiempo que tardan las cargas en recorrerlo:
v
I
t
=
∆
y que la carga Q = Ι ∆t
Sustituyendo estos valores en la primera expresión, resulta lo siguiente:
r
F B= senΙ / ϕ
Experimentalmente, se puede comprobar que el valor de esta fuerza es 
máximo cuando el conductor y el campo magnético son perpendiculares 
entre sí y es nulo cuando tienen la misma dirección.
Las características del vector 
r
F son las siguientes:
Dirección: es perpendicular al conductor y al campo magnético, es decir,es 
perpendicular al plano que determinan y 
r
B.
Sentido: para determinarlo, podemos continuar aplicando la regla de la 
mano izquierda. Pero, en lugar de tener en cuenta el sentido del movimiento 
de la carga, ahora tenemos que considerar el sentido de la corriente 
(Fig. 18). Aplicando esta regla, comprobamos que el sentido de la fuerza es 
el representado en el dibujo. Al producirse una corriente eléctrica en un hilo 
conductor metálico, las partículas que se desplazan son los electrones con 
carga eléctrica negativa. La intensidad de corriente se define en sentido 
opuesto al desplazamiento de los electrones, como si la corriente la forma-
sen partículas con carga eléctrica positiva, equivalente a la de los electro-
nes, moviéndose en sentido contrario.
Módulo. se calcula aplicando la fórmula anterior.
Aplicaciones de los fenómenos de desviación magnética: 
espectrógrafos de masas y ciclotrones
Las aplicaciones de los fenómenos de desviación de cargas 
eléctricas por fuerzas magnéticas son numerosas y muy 
importantes. Veremos brevemente los espectrógrafos de 
masas y los ciclotrones.
El espectrógrafo de masas permite separar iones de masas 
diferentes (Fig. I). Una cámara de ionización (A) genera iones 
de diferente masa, pero con idéntica carga eléctrica. En una 
cámara de aceleración (B), los iones son acelerados elec-
trostáticamente para ser desviados, más allá, por una cáma-
ra de desviación (C) en la que, al ser sometidos a un campo 
magnético uniforme, describen trayectorias circulares, cuyo 
radio depende de sus masas. De esta manera, se pueden 
separar diferentes isótopos de un elemento químico.
El ciclotrón (Fig. II) se utiliza para acelerar partículas carga-
das (por ejemplo, protones) con el fin de darles energía 
cinética y utilizarlos en experiencias de física nuclear (como 
partículas de bombardeo de núcleos atómicos).
Está formado por dos semicilindros conductores vacíos, 
ligeramente separados, llamados D por la forma que tienen 
(Fig. III). Mediante electroimanes muy potentes, se estable-
ce un intenso campo magnético perpendicular a las D. En el 
espacio que separa las dos D se crea un campo eléctrico 
intenso cuando conectamos cada una a un generador capaz 
de suministrar una elevada tensión (Fig. III).
Sigamos, por ejemplo, el camino de un protón lanzado en A 
con una velocidad inicial v0. Al estar sometido a un campo 
magnético uniforme, sigue una trayectoria circular hasta que 
abandona la D en el punto B. En este instante se invierte la 
tensión aplicada a las D y el protón es acelerado por el campo 
eléctrico y entra a la otra D a una velocidad v1 (v1 > v0). Por el 
hecho de haber incrementado la velocidad, la circunferencia 
que describe es de radio más grande. Al salir por C, cambia 
otra vez la polaridad del campo eléctrico y el protón, entre C 
y E, vuelve a ser acelerado. 
En el ciclotrón, la partícula cargada experimenta una acele-
ración cada media vuelta. La operación se repite hasta que 
el protón o la partícula cargada roza las paredes y sale al 
exterior por una ventana lateral, a una elevada velocidad.
18. Regla de la mano izquierda aplicada a 
un hilo de corriente. Recuerda que hemos 
escogido las cargas positivas como cargas 
de referencia.
Sentido de la corriente
+ + + + + + + + +
F
139-184_U5.FIS.2BCH.CAS.indd 151 20/5/09 08:59:29
152
5 | Campo magnético. Inducción electromagnética
 2. El conductor móvil de la figura tiene 10 cm de longitud y una masa de 100 g. Se sitúa perpendicularmen-
te al campo magnético uniforme de un imán de 15 cm de longitud y de 0,1 T de inducción. Determina:
a) La dirección y el sentido de la fuerza magnética que actúa sobre el conductor móvil.
b) La masa, m, que tenemos que colocar en el platillo, P (cuyo peso consideramos despreciable), 
para que el conductor esté en equilibrio cuando circule en este una corriente de 10 A.
c) Si suprimimos el hilo, la polea y las pesas, y dejamos rodar libremente el conductor ab sobre los 
raíles. ¿Cuánto tarda en llegar hasta el final del recorrido? (Recorrido total: 15 cm)
 Considera que el roce del conductor sobre los raíles es despreciable.
a) Si aplicamos la regla de la mano izquierda, deducimos que la fuerza que ejerce el campo magnético 
es perpendicular a este campo y al conductor. Por lo tanto, va dirigida horizontalmente hacia la 
izquierda (observa la figura).
b) Como el ángulo entre y 
r
B es de 90°, la fuerza magnética vale:
 
r
F B= sen = 10 A 0,1 m 0,1 T = 10 A–1Ι /  ϕ mm N
A m
= 10 N–1
 El conductor estará en equilibrio cuando la tensión del hilo, 
r
T , sea igual y opuesta a la fuerza magnética, 
r
F .
 
r
P = 
r
T =
r
F = m 
r
g
 
m = 
r
F
r
g
 = 
10–1 N
9,8 m/s2
 = 10–2 Kg
c) Como, en este caso, sobre el conductor actúa únicamente la fuerza magnética, le comunica un 
movimiento uniformemente acelerado:
 
a = 
r
F
m
 = 
10–1 N
10–1 kg
 = 1 m/s2
 Y, a partir de la fórmula del desplazamiento en un movimiento uniformemente acelerado, tenemos:
 
∆s = 1
2
 a (∆t )2 ⇒ ∆t = 2 ∆s
a
 = 
0,3 m
1 m/s2
 = 0,55 s
E j E M P L O
El dispositivo de la figura se llama raíl de Laplace. Un conductor 
móvil ab está en el campo magnético del imán. Al circular en 
este una corriente eléctrica, el campo ejerce una fuerza que lo 
hace rodar sobre los raíles.
+ –++ –
P
m
a
S
15 cm
N
b
F
T
B
139-184_U5.FIS.2BCH.CAS.indd 152 20/5/09 08:59:38
153
Campo magnético. Inducción electromagnética | 5
Lo que acabamos de ver para una espira es válido para una bobina. Al hacer 
circular una corriente por la espira de la figura 20, esta gira hasta que el 
plano de las espiras se coloca perpendicular al campo magnético.
| Acción del campo magnético sobre una espira 
y sobre una bobina
Situemos una espira, de dimensiones a  b, en el interior de un campo 
magnético uniforme (Fig. 19a). Al circular en esta una corriente eléctrica, 
es sometida a la acción del campo magnético. La dirección y el sentido de 
estas fuerzas, dibujadas en la figura, se puede conocer aplicando la regla 
de la mano izquierda.
Las fuerzas que actúan sobre los lados a y a’ son iguales y opuestas y, por 
lo tanto, se anulan sus efectos. Pero las que actúan sobre los lados b y b’, 
aunque son iguales, no neutralizan sus efectos, sino que son un par de 
fuerzas, por cuya acción la espira adquiere un movimiento de rotación alre-
dedor de su eje MM’. El movimiento de rotación se para en el preciso 
momento en el que el plano de la espira es perpendicular al campo, ya que 
en este instante las fuerzas 
r
F y 
r
F
 
’, se contrarrestan (Fig. 19b).
20. Acción de un campo magnético sobre una bobina por la que circula una corriente 
eléctrica.
F’
F
a
M
a’
F’
F
b
b’
M’
b
F’
F
a
M
a’
F’
F
b
b’
M’
a
19. Las fuerzas 
r
F y 
r
F ’ hacen girar la espira.
139-184_U5.FIS.2BCH.CAS.indd 153 20/5/09 09:00:00
154
5 | Campo magnético. Inducción electromagnética
Estator
O
B
B
B
B
5 | Motores eléctricos
Los motores eléctricos se fundamentan en las acciones ejercidas por el 
campo magnético sobre las corrientes.
Cuando hacemos pasar una corriente por una espira o una bobina situadas 
en un campo magnético uniforme, giran hasta situarse perpendicularmente 
al campo. En este momento, las fuerzas que actúan sobre estas se contra-
rrestan (observa la figura 20b) y se para el movimiento de rotación. En el 
caso de un motor eléctrico, el circuito que alimenta la bobina móvil del motor 
está construido de manera que en el preciso momento de sobrepasar, aun-
que sea ligeramente, la posición de equilibrio, se invierte automáticamente 
el sentido de la corriente, hecho que hace cambiar el sentido del par de fuer-
zas que actúan y que obliga al conjunto a girar media vuelta más. En ese 
momento, vuelve a cambiar el sentido de la corriente, y así sucesivamente.
En la práctica, un motor consta de tres partes bien diferenciadas:
El estator. Es el imán, generalmente electroimán, encargado decrear el 
campo magnético (Fig. 21). El estator se ha construido de manera que el 
campo magnético creado entre las piezas polares sea radial.
El rotor. Es un cilindro de acero capaz de girar alrededor de su eje, en cuya 
superficie lateral hay incrustados, a lo largo de sus generatrices, hilos con-
ductores en forma de espira rectangular, cuyos lados aa’ y bb’ son recorridos 
por corrientes de la misma intensidad, pero de sentidos contrarios (Fig. 22). 
Por lo tanto, se somete esta espira a un par de fuerzas que la obligan a girar. 
Es lo mismo que sucede con cada espira o conjunto de espiras enrolladas en 
el rotor, que producen un movimiento de rotación continuado de esta pieza.
23. Colector. En el momento en el que el 
conjunto de espiras se sitúa 
perpendicularmente al campo, se invierte 
el sentido de la corriente que las recorre, 
por lo que giran media vuelta más, en el 
mismo sentido de giro, y así 
sucesivamente.
21. El campo magnético creado por las 
piezas polares es radial. El vector 
r
B es 
perpendicular a todos los planos paralelos 
al eje del cilindro, centrado en estos.
a
a’
B
b
b’
O
F2
F1
22. Fuerzas magnéticas que se ejercen 
sobre una de las espiras del rotor. Las 
fuerzas 
r
F 1 y 
r
F 2 son un par de fuerzas por 
cuya acción gira el rotor.
El colector. La corriente eléctrica pasa a las espiras a través de un sistema 
formado por un tambor llamado colector y unas piezas metálicas que hacen 
contacto continuo por roce con el colector: son las escobillas (Fig. 23). El 
colector de la figura está dividido en dos semianillos, m y n, separados por 
una sustancia aislante. Uno de los anillos está conectado a un extremo de 
las espiras y el otro, al otro extremo. En el momento en el que el plano de las 
espiras es perpendicular al campo, cada una de las escobillas hace contacto 
con el otro anillo y se invierte, por lo tanto, el sentido de la corriente.
Esta situación se repite de forma idéntica cada media vuelta y las espiras 
adquieren, así, un movimiento de rotación.
139-184_U5.FIS.2BCH.CAS.indd 154 20/5/09 09:00:14
155
Campo magnético. Inducción electromagnética | 5
Otras aplicaciones prácticas de las acciones del campo magnético
Aparatos de medida electromagnéticos
Los amperímetros y los voltímetros de uso corriente, lla-
mados genéricamente galvanómetros, se fundamentan en 
los efectos magnéticos de la corriente. Hay varias clases 
de galvanómetros, si bien nos limitaremos a la explicación 
de un galvanómetro de cuadro móvil como el de la figura.
Un conjunto de espiras rectangulares, el cuadro móvil pro-
piamente dicho, montado sobre un cilindro de hierro dulce 
y que puede girar sobre un eje vertical, se sitúa en el campo 
magnético creado por dos piezas que son los polos norte y 
sur de un imán. Al circular corriente por el cuadro, gira y 
mueve una aguja enganchada con este, cuyo extremo se 
desplaza sobre una escala graduada. 
Un muelle ofrece resistencia a este movimiento de rotación 
del cuadro y, cuando deja de circular corriente en él, lo 
retorna a la posición inicial. El ángulo girado por el cuadro 
es directamente proporcional a la intensidad de corriente 
que circula en este. 
Este aparato puede, por lo tanto, utilizarse para medir 
intensidades de corriente (amperímetro) o asociado a una 
gran resistencia en serie para medir diferencias de poten-
cial (voltímetro).
Altavoces
Los altavoces están construidos con un imán que tiene una 
forma muy característica y una bobina móvil que rodea a 
uno de sus polos.
Cuando circula una corriente por la bobina, el campo magné-
tico del imán ejerce una fuerza sobre esta, dirigida según el 
eje OO’ de la figura y de uno u otro sentido según la corriente 
que circula por la bobina. Una membrana unida solidaria-
mente a la bobina hace los mismos movimientos que esta. 
Cuando una corriente alterna sinusoidal de una determina-
da frecuencia recorre la bobina, la membrana vibra también 
sinusoidalmente y hace vibrar el aire que la rodea. Se origi-
na así un sonido de idéntica frecuencia.
Para dar más calidad de sonido, los equipos de alta fideli-
dad suelen tener dos altavoces diferentes, uno para los 
sonidos agudos (de frecuencia elevada) y otro para los gra-
ves (de baja frecuencia); cada uno de ellos está específica-
mente diseñado para reproducir con fidelidad el sonido 
correspondiente.
D
O
C
U
M
E
N
T
O
 2
Muelle
recuperador
Cuadro móvil
M
N S
+
–
Galvanómetro de cuadro móvil.
Esquema de un altavoz.
O O’
N
S
S
F
B
B
139-184_U5.FIS.2BCH.CAS.indd 155 20/5/09 09:00:20
156
5 | Campo magnético. Inducción electromagnética
6 | Fuentes del campo magnético
Las primeras fuentes magnéticas conocidas fueron los imanes, pero el 
descubrimiento de Oersted en 1820, en el que una aguja imantada se des-
viaba sensiblemente cuando se encontraba cerca de un conductor por el 
que circulaba una corriente continua, hizo que las fuentes magnéticas se 
asociasen con la corriente eléctrica.
Ese mismo año, los físicos franceses Jean Baptiste Biot y Félix Savart esta-
blecieron una expresión matemática que relacionaba la inducción magnéti-
ca en un punto con la corriente que la originaba, expresión que, en su 
honor, se llama ley de Biot-Savart.
Campo magnético creado por corrientes eléctricas en hilos rectilíneos, espiras y solenoides
Dispondremos de una fuente de alimentación de 
corriente continua y de los elementos siguientes, for-
mados por hilo conductor: un trozo de hilo recto, una 
espira y un solenoide, parecidos a los de las figuras. 
También necesitamos unas cuantas pequeñas brúju-
las, que colocaremos en un plano alrededor de los 
elementos anteriores, a través de los cuales haremos 
pasar una corriente de intensidad controlada. 
Para visualizar las líneas de los campos magnéticos 
creados, podemos utilizar limaduras de hierro muy 
finas, que habrá que situar dispersas en una cartulina 
perpendicular a los hilos de corriente eléctrica. Una vez 
establecida la corriente eléctrica en los diferentes ele-
mentos, daremos unos pequeños golpes a la cartulina, 
para que las limaduras de hierro, que quedarán imanta-
das, se orienten en la dirección del campo magnético 
generado por las corrientes eléctricas. Con este proce-
dimiento conseguiremos hacer patentes las líneas del 
campo magnético que creará cada uno de los elemen-
tos de corriente empleados. 
Una vez visualizadas, habrá que hacer un esquema de 
las líneas de los campos magnéticos creados, indican-
do sus características.
E
x
P
E
R
IE
N
C
IA
Figura I. Hilo conductor y espira circular.
Figura II. Solenoide.
139-184_U5.FIS.2BCH.CAS.indd 156 20/5/09 09:00:22
157
Campo magnético. Inducción electromagnética | 5
Campo magnético creado por corrientes eléctricas en hilos rectilíneos, espiras y solenoides
Dispondremos de una fuente de alimentación de 
corriente continua y de los elementos siguientes, for-
mados por hilo conductor: un trozo de hilo recto, una 
espira y un solenoide, parecidos a los de las figuras. 
También necesitamos unas cuantas pequeñas brúju-
las, que colocaremos en un plano alrededor de los 
elementos anteriores, a través de los cuales haremos 
pasar una corriente de intensidad controlada. 
Para visualizar las líneas de los campos magnéticos 
creados, podemos utilizar limaduras de hierro muy 
finas, que habrá que situar dispersas en una cartulina 
perpendicular a los hilos de corriente eléctrica. Una vez 
establecida la corriente eléctrica en los diferentes ele-
mentos, daremos unos pequeños golpes a la cartulina, 
para que las limaduras de hierro, que quedarán imanta-
das, se orienten en la dirección del campo magnético 
generado por las corrientes eléctricas. Con este proce-
dimiento conseguiremos hacer patentes las líneas del 
campo magnético que creará cada uno de los elemen-
tos de corriente empleados. 
Una vez visualizadas, habrá que hacer un esquema de 
las líneas de los campos magnéticos creados, indican-
do sus características.
| Campo creado por una corrienterectilínea
Para conseguir una primera imagen de cómo es el campo magnético creado 
por una corriente rectilínea, atravesamos una cartulina con un conductor recto 
y esparcimos en ella unas limaduras de hierro. Cuando por el conductor circu-
la una corriente eléctrica de intensidad bastante elevada, las limaduras se 
orientan siguiendo las líneas del campo (Fig. 24). Con la ayuda de pequeñas 
brújulas podemos determinar, además, el sentido del campo en cada punto.
Para recordar la dirección y el sentido de las líneas del campo, aplicamos 
la regla de la mano derecha: «Si con la mano derecha rodeamos el hilo por 
el que circula corriente de manera que el pulgar estirado señale el sentido 
de la intensidad, los otros dedos señalan el sentido del campo» (Fig. 25). 
Se puede comprobar que la inducción magnética en un punto a una distan-
cia, d, del conductor es directamente proporcional a la intensidad de la 
corriente, Ι, que circula en este e inversamente proporcional a la distancia 
que separa el punto del conductor:
K es un factor cuyas características dependen del medio.
De manera parecida al tratamiento de la constante de la ley de Coulomb, 
se utiliza una forma racionalizada de K, relacionada con la permeabilidad 
magnética del medio, µ, según la expresión:
 
K = 
µ
2π
El valor de la permeabilidad magnética para el vacío, µ0, es:
µ0 = 4π  10
–7 Tm/A
La expresión que permite calcular el módulo de 
r
B creado por una corriente 
rectilínea indefinida de intensidad Ι, en un punto separado por una distan-
cia d, en un medio de permeabilidad, µ, resulta ser:
La dirección y el sentido de 
r
B se determinan con la regla de la mano 
derecha.
| Campo creado por un solenoide
Un conductor enrollado en forma de hélice constituye un solenoide (Fig. 26). 
No es necesario que la sección del solenoide sea un círculo, pero es conve-
niente que las espiras estén muy juntas, incluso, que se superpongan unas 
cuantas capas. Los solenoides se usan para producir campos magnéticos 
muy intensos y relativamente uniformes en una pequeña región del espacio.
La corriente que circula por cada espira del solenoide se puede comparar a 
una corriente circular. El campo magnético total es la suma de los campos 
creados por cada corriente circular.
24. Espectro del campo magnético creado 
por una corriente rectilínea de 20 A.
Ι
B
25. Regla de la mano derecha. El pulgar 
estirado indica el sentido de la corriente. 
Los otros dedos, al rodear el hilo, señalan 
el sentido de las líneas del campo 
magnético creado por la corriente.
26. Solenoide preparado para visualizar el 
espectro magnético que crea cuando 
circula por él una corriente.
Podemos dar la permeabilidad de un 
material referida a la del vacío. Si de-
finimos la permeabilidad relativa, µr, 
como el cociente entre la permeabili-
dad del material, µ, y la del vacío, µ0:
 
µr = 
µ
µ0
139-184_U5.FIS.2BCH.CAS.indd 157 20/5/09 09:00:26
158
5 | Campo magnético. Inducción electromagnética
Si, vista la espira frontalmente, observamos que el sentido de la corriente 
es el que señalarían unas flechas dibujadas en los extremos de una letra N 
redondeada, entonces la espira se comportará como un polo norte y creará 
un campo magnético, cuyas líneas de inducción emergerán desde la espira 
hacia fuera. Contrariamente, si el sentido de la corriente en la espira es 
como el que señalarían unas flechas dibujadas en los extremos de una 
letra S, entonces su efecto será equivalente a un polo sur magnético y las 
líneas de inducción del campo que crea se introducirán en la espira en una 
dirección perpendicular a su plano transversal.
Ι
B B
Utilizando limaduras de hierro o pequeñas brújulas, se puede comprobar que 
en el interior de las espiras las líneas de inducción son rectas, sensiblemente 
paralelas. En la región central del solenoide, el campo magnético es uniforme 
(Fig. 27). En el exterior, el espectro es análogo al de una barra imantada. El 
solenoide se comporta como un imán. Por esta razón, un solenoide móvil se 
orientaría en la dirección norte-sur del campo magnético de la Tierra.
Si reducimos el estudio al campo creado en su interior, comprobamos que:
1. La dirección es perpendicular al plano de las espiras.
2. El sentido de las líneas de inducción es tal que se puede determinar por 
la siguiente regla: «Rodeando con la mano derecha el solenoide, de 
manera que la punta de los dedos señale el sentido de la corriente, el 
pulgar extendido indica el sentido del campo» (Fig. 28).
3. El módulo de la inducción magnética en el interior del solenoide es:
 a) Directamente proporcional a la intensidad, I, de la corriente que circu-
la en este.
 b) Directamente proporcional al número de espiras, N.
 c) Inversamente proporcional a la longitud, l, del solenoide.
Matemáticamente, se expresa: 
r
B
N I
l
= .µ
La constante de proporcionalidad, µ, es la permeabilidad del medio.
El cociente (N / l) representa el número de espiras por unidad de longitud; 
por esta razón, la fórmula anterior se suele escribir:
donde n es el número de espiras por unidad de longitud: n
N
I
= .
Podemos saber qué tipo de polo magnético formará una espira, según el 
sentido de la corriente eléctrica que circula por ella. Fijémonos en las figu-
ras 29 y 30.
29. Polo magnético norte. 30. Polo magnético sur.
27. Espectro de inducción magnética 
creado por un solenoide, con 20 A.
28. Regla para determinar las líneas de 
inducción creadas por la corriente de un 
solenoide.
B
Ι
B
Ι
139-184_U5.FIS.2BCH.CAS.indd 158 20/5/09 12:16:06
159
Campo magnético. Inducción electromagnética | 5
Diamagnetismo, paramagnetismo y ferromagnetismo
Los materiales se comportan de maneras diferentes cuando se someten a la acción de campos magnéticos.
Este comportamiento permite hacer una clasificación de los materiales en: diamagnéticos, paramagnéti-
cos y ferromagnéticos.
Un material diamagnético es repelido ligeramente por cualquiera de los polos de un imán. Si situamos una 
barra de un material diamagnético en el interior de un solenoide, el campo magnético que creará el solenoide, 
cuando se hace circular por él una corriente eléctrica, será menor que cuando en su interior solo hay aire o el 
vacío. La permeabilidad relativa de un material diamagnético es ligeramente inferior a la unidad (µr < 1).
De manera clásica, este comportamiento se explica por el hecho de que los átomos de estas sustancias no 
presentan polaridad magnética permanente. Cuando se sitúan en el interior de un campo magnético, se 
induce en estos pequeños imanes atómicos de polaridad opuesta al campo exterior; por eso, son repelidos 
por los imanes y reducen el campo magnético en el que se encuentran inmersos. Son ejemplos de este tipo 
de materiales el cobre, el bismuto, el diamante, el oro, la plata, el mercurio, el sodio, el hidrógeno, el dióxi-
do de carbono y el nitrógeno.
Los superconductores son materiales diamagnéticos per fectos. Cuando situamos un superconductor en 
un campo magnético, se inducen en el superconductor unas corrientes superficiales que anulan el campo 
magnético en su interior. Su permeabilidad relativa es cero.
Un material paramagnético es atraído ligeramente por cualquiera de los polos de un imán. Al situar una 
barra de material paramagnético en el interior de un solenoide, el campo magnético que este crea aumenta 
ligeramente. La permeabilidad relativa de un material paramagnético, a temperatura ambiente (20 °C), es 
ligeramente superior a la unidad (µr > 1).
El paramagnetismo se presenta en materiales cuyos átomos son como imanes atómicos permanentes que 
interaccionen de manera muy ligera con los otros átomos. Cuando no hay un campo magnético externo, 
estos imanes atómicos tienen una orientación aleatoria, de modo que sus efectos se contrarrestan. En el 
interior de un campo magnético externo tienden a alinearse con el campo externo, aunque esta tendencia 
es contrarrestada por la agitación térmica que les da orientaciones al azar. La proporción deimanes atómi-
cos alineados con el campo externo depende de la intensidad del campo y la temperatura. En campos 
magnéticos intensos, a temperaturas muy bajas de unos pocos kelvin, casi todos se alinean con el campo 
externo. A temperatura ambiente (de unos 20 °C), la fracción de imanes atómicos alineados con el campo 
externo es muy pequeña. El aluminio, el magnesio, el titanio, el tungsteno y el oxígeno son ejemplos de 
sustancias paramagnéticas.
Los materiales ferromagnéticos son fuertemente atraídos por los polos de un imán. Se utilizan como 
núcleos de los solenoides para crear campos magnéticos muy intensos en su interior. Su permeabilidad 
relativa es muy grande: puede ir desde unos cuantos miles hasta centenares de miles. 
Presentan ferromagnetismo el hierro puro, el cobalto, el níquel y aleaciones compuestas de estos metales. 
También lo presentan elementos como el gadolinio, el disprosio, el neodimio y algunos compuestos de estos. 
En estas sustancias, un pequeño campo magnético externo puede producir un grado muy elevado de alinea-
miento de los imanes atómicos con la dirección del campo externo. En algunos casos, este alineamiento 
puede mantenerse una vez que desaparece el campo magnético externo y dar lugar a imanes artificiales. Esto 
se debe a que los imanes atómicos de estas sustancias ejercen una influencia muy grande sobre los de los 
átomos próximos, de forma que en una pequeña región del material todos los imanes atómicos están alinea-
dos, incluso en ausencia de campos magnéticos externos. Las regiones en las que los imanes atómicos se 
encuentran alineados se llaman dominios magnéticos, y suelen tener dimensiones microscópicas. La direc-
ción de alineamiento varía de un dominio a otro, de manera que el campo magnético neto de una cantidad 
macroscópica de un material ferromagnético es cero en estado no imantado. El valor de la permeabilidad 
relativa de los materiales no es constante, ya que depende del material y del campo exterior aplicado. En la 
tabla siguiente se dan ejemplos de los valores de la permeabilidad relativa de materiales ferromagnéticos.
D
O
C
U
M
E
N
T
O
 3
139-184_U5.FIS.2BCH.CAS.indd 159 20/5/09 09:00:40
160
5 | Campo magnético. Inducción electromagnética
7 | Electroimanes
Si en el interior de un solenoide situamos una barra de hierro dulce, aumen-
tamos mucho la permeabilidad del medio interior del solenoide. Esto pro-
duce un importante campo magnético, que multiplica el valor de la induc-
ción magnética por un factor que puede llegar a ser miles de veces mayor 
que en el aire. Un dispositivo como este se llama electroimán.
En 1825 William Sturgeon (1783–1850) enrolló un carrete de hilo alrede-
dor de una barra de hierro y construyó uno de los primeros electroimanes. 
A diferencia de los imanes permanentes, un electroimán presenta pro-
piedades magnéticas solo cuando se hace circular corriente por el hilo 
conductor. Cuando no hay corriente, el electroimán deja de tener esas 
propiedades.
Los electroimanes se utilizan en muchos aparatos y dispositivos. El timbre 
de martillo y campana, los elevadores de chatarra por atracción magnética 
de metales y aleaciones ferromagnéticas, los micrófonos y los altavoces, 
el motor de arranque de un automóvil, los relés de apertura o cierre de un 
circuito eléctrico, los dispositivos de control de las partículas subatómicas 
en los aceleradores de partículas de los centros de investigación, etc., 
basan su funcionamiento en la acción controlada de electroimanes.
D
O
C
U
M
E
N
T
O
 3 Valores máximos de la permeabilidad relativa para diversos materiales ferromagnéticos
Material µr
Hierro 5 500
Hierro-silicio (96 % Fe, 4 % Si) 7 000
Permalloy (55 % Ni, 45 % Fe) 25 000
Metal-mu (77 % Ni, 16 % Fe, 5 % Cu, 2 % Cr) 100 000
31. Timbre de martillo y campana. El 
electroimán atrae la barra del martillo y 
hace que dé golpes a la campana.
32. Electroimán elevador de coches.
139-184_U5.FIS.2BCH.CAS.indd 160 20/5/09 09:00:43
161
Campo magnético. Inducción electromagnética | 5
8 | Acciones mutuas entre dos corrientes 
paralelas
Por dos conductos rectilíneos y paralelos separados entre sí una distancia, d, 
circulan corrientes Ι1 e Ι2 del mismo sentido (Fig. 33). Cada una de estas 
corrientes crea a su alrededor un campo magnético. En M y N hemos represen-
tado los vectores inducción 
r
B1 y 
r
B2 originados por las corrientes Ι1 e Ι2; Sus 
direcciones y sentidos están determinados por la regla de la mano derecha.
Como los campos magnéticos ejercen acciones sobre las corrientes, 
r
B1 
ejerce una fuerza sobre Ι1 y 
r
B1 una fuerza sobre Ι2. La dirección y el sentido 
de estas fuerzas, determinadas con la ayuda de la regla de la mano izquier-
da, aparecen en la figura 33. Se trata de dos fuerzas mutuas iguales y de 
sentidos contrarios que tenderán a acercar los conductores.
Si por dos conductores rectilíneos y paralelos circulan corrientes Ι1 e Ι2 de 
sentidos contrarios, los campos magnéticos que crean ejercen fuerzas 
sobre los conductores iguales y de sentidos contrarios que tenderán a ale-
jar los dos conductores.
Ahora podemos definir la unidad de intensidad de corriente: el amperio. 
Un amperio es la intensidad de una corriente que, circulando en el mismo 
sentido por dos conductores rectilíneos y paralelos situados en el vacío y 
separados una distancia de 1 m, determina entre estos una fuerza de 
atracción de 2  10–7 N por metro de longitud. Esta definición es de gran 
interés, porque permite reproducir su valor a partir de magnitudes exclusi-
vamente mecánicas (distancias y fuerzas).
9 | Inducción electromagnética
El descubrimiento de la inducción electromagnética por parte de Faraday y 
Henry –cada uno por su lado– cambió el mundo moderno hasta el punto de 
que, a buen seguro, ahora prácticamente no seríamos capaces de vivir sin 
la energía eléctrica y sin todo lo que comportan sus aplicaciones. Este 
descubrimiento permitió progresar enormemente a la humanidad. 
A pesar de ello, los contemporáneos de Faraday y Henry no estaban tan 
convencidos de su uso. Todo lo que había descubierto era que se producía 
una pequeña corriente cuando se movía un hilo de hierro hacia un imán. Se 
explica que, cuando Faraday hizo público su descubrimiento le preguntaron: 
«¿Y esto para qué sirve?». Su respuesta fue: «¿Cuál es la utilidad de un 
recién nacido?». 
Muy probablemente, ni el mismo Faraday imaginaba la revolución que su 
descubrimiento desencadenaría.
33. Esquema de las inducciones 
magnéticas y de las fuerzas mutuas que 
se ejercen sobre dos corrientes rectilíneas 
y paralelas del mismo sentido.
d
Ι1 Ι2
F1 F2
B1
B2
Recuerda que un galvanómetro es un aparato que, conectado a un circuito conductor, detecta el paso de 
corriente eléctrica. Un tipo de galvanómetro es el de cuadro móvil, en el que una aguja se desvía más o menos 
sobre una escala según la cantidad de corriente que pasa por él (se puede ver uno en el Documento 2).
R E C U E R D A q U E
139-184_U5.FIS.2BCH.CAS.indd 161 20/5/09 09:00:45
162
5 | Campo magnético. Inducción electromagnética
En los apartados anteriores hemos estudiado que las corrientes eléctricas 
crean campos magnéticos y que estos campos ejercen fuerzas sobre las 
corrientes eléctricas. El gran desarrollo y las aplicaciones prácticas de la 
electricidad arrancan, precisamente, de los experimentos que hicieron 
Michael Faraday y Joseph Henry en la década de 1830, de manera indepen-
diente el uno del otro, los cuales les llevaron al descubrimiento de la induc-
ción electromagnética, uno de los descubrimientos más importantes del 
siglo xix. Esta afirmación queda plenamente justificada con un único ejem-
plo: la inmensa mayoría de la energía eléctrica que utilizamos proviene de 
la generada en alternadores, cuyo funcionamiento, como veremos en un 
apartado posterior, se basa en la inducción electromagnética.
Podemos reproducir la experiencia de Faraday y de Henry, de manera sinte-
tizada, utilizando un dispositivomuy sencillo: una bobina conectada a un 
galvanómetro y un imán (Fig. 34). Al acercar rápidamente uno de los polos 
de un imán a la bobina, el galvanómetro señala el paso de la corriente. Tan 
pronto como se para el movimiento del imán, la corriente eléctrica se anula. 
Cuando el imán se aleja de la bobina, el galvanómetro también señala el 
paso de una corriente, pero de sentido contrario a la anterior. Al acercar o 
al alejar el otro polo del imán, se observan fenómenos similares, aunque 
ahora las desviaciones de la aguja del galvanómetro son, respectivamente, 
de sentidos contrarios. Si, manteniendo fijo el imán, acercamos o alejamos 
la bobina, se observan los mismos resultados.
Se pueden realizar experimentos similares utilizando dos bobinas, una de 
las cuales se puede insertar en el interior de la otra (Fig. 35a). La interior 
está conectada a un generador y a un interruptor, y el exterior lo está a un 
galvanómetro. En la bobina exterior aparecen corrientes en el momento de 
cerrar o abrir el interruptor (Fig. 35b), al desplazar la bobina interior 
(Fig. 35c) o al variar la intensidad de la corriente que circula por ella.
34. Al acercar o alejar rápidamente uno de 
los polos de un imán de la bobina, el 
galvanómetro señala el paso de corriente.
c) Si hacemos entrar o salir la bobina 
interior, al tiempo que la desplazamos, se 
originan corrientes en la bobina exterior.
35. a) La bobina pequeña se puede 
insertar en el interior de la bobina grande.
b) En el momento de cerrar o abrir el 
interruptor, se originan corrientes 
eléctricas en la bobina exterior.
Las experiencias que acabamos de describir evidencian que se han produ-
cido corrientes, cuya causa se puede atribuir al movimiento del imán, al de 
la bobina o a la variación de la intensidad de la corriente. Este fenómeno se 
denomina inducción electromagnética o, sencillamente, inducción. El cir-
cuito en el que se produce es el inducido, y el imán o la bobina que lo crea 
es el inductor. La corriente eléctrica generada se denomina corriente 
inducida.
139-184_U5.FIS.2BCH.CAS.indd 162 20/5/09 09:00:49
163
Campo magnético. Inducción electromagnética | 5
S
B
10 | Corriente inducida y flujo magnético
Una primera interpretación sobre el origen de las corrientes inducidas per-
mite atribuirlas a las variaciones del campo magnético. Pero debemos tener 
en cuenta que también se producen corrientes inducidas en una bobina que 
gira en un campo magnético uniforme. Así, por ejemplo, se induce una 
corriente eléctrica en la bobina de la figura 36 cuando gira un determinado 
ángulo en el campo magnético uniforme 
r
B.
Se denomina flujo de inducción magnética a través de una superficie plana 
situada en un campo magnético uniforme el producto escalar del vector induc-
ción magnética por el vector superficie. Se representa con la letra griega F:
F = 
r
B · 
r
S = B S cos ϕ
El ángulo ϕ es el ángulo formado por el vector campo magnético con el 
vector superficie. En el caso particular de que la superficie sea perpendi-
cular a las líneas de inducción (Fig. 37), tenemos:
F = B S
Cuando el campo magnético no es uniforme y la superficie a través de la 
cual debemos calcular el flujo no es plana, se divide la superficie total en 
pequeños elementos de superficie, que se simbolizan mediante dS (dife-
rencial de S), en cada uno de los cuales supondremos que el campo mag-
nético tiene un valor característico (Fig. 38). El flujo, dF (diferencial de F), 
que atraviesa cada una de estas superficies elementales, vale:
dF = 
r
B · d 
r
S
36. Cuando gira una bobina situada en un 
campo magnético uniforme, se le induce una 
corriente eléctrica
37. El flujo magnético es máximo cuando 
la superficie de la espira es perpendicular 
al campo magnético.
dS
B
ϕ
38. Representación de los elementos de 
superficie, d 
r
S, cuando no es plana y el 
campo magnético, 
r
B , que la atraviesa no 
es uniforme.
Vector superficie
A veces hay que representar una 
super ficie mediante un vector 
asociado.
En el caso de una superficie plana, 
el vector es perpendicular a la su-
perficie y su módulo es de la misma 
magnitud que el valor de la superfi-
cie a la que está asociado.
Normalmente, el vector asociado a 
una superficie plana se representa 
en el centro de la superficie.
S
Cuando un circuito cerrado y plano está en el interior de un campo magné-
tico, decimos que lo atraviesa un flujo magnético.
139-184_U5.FIS.2BCH.CAS.indd 163 20/5/09 09:01:04
164
5 | Campo magnético. Inducción electromagnética
Si sumamos todos los diferenciales de flujo, obtendremos el flujo total a 
través de la superficie. El cálculo de esta suma es una integral y su aplica-
ción queda fuera del alcance de este curso.
En el SI, el flujo magnético se expresa en weber (Wb), en honor al físico 
alemán Wilhem Weber, estudioso del magnetismo y constructor del primer 
telégrafo eléctrico.
Un weber es el flujo de un campo magnético uniforme de inducción 1 tesla 
a través de una superficie de 1 m2 perpendicular a las líneas de inducción.
Si ahora hacemos un análisis más detallado de la interpretación sobre el ori-
gen de las corrientes inducidas, constatamos que, cuando se acerca un imán 
a una bobina o lo alejamos (Fig. 34), se abre o se cierra el interruptor (Fig. 
35b), se desplaza la bobina (Fig. 35c) o bien gira en un campo magnético 
uniforme (Fig. 36), varia el flujo magnético que atraviesa la bobina conectada 
al galvanómetro; es decir, varía el flujo magnético a través del inducido.
Como acabamos de ver, el flujo magnético es el producto escalar del vector 
 
r
B por el vector 
r
S :
F = 
r
B · 
r
S = B S cos ϕ
Si acercamos un imán a la bobina o lo alejamos de ella, el flujo varía porque 
se incrementa B (Fig. 39). Al cerrar o al abrir el interruptor (Fig. 35b), el 
campo magnético creado por la bobina interior pasa de 0 a B o de B a 0, 
respectivamente. En la bobina que gira (Fig. 36) no varían ni 
r
B ni 
r
S , sino el 
ángulo formado por los dos vectores.
Las experiencias explicadas demuestran que, cuando varía el flujo magné-
tico a través de la bobina, aparece en ella una corriente inducida.
39. a) El flujo magnético a través de la 
bobina es φ = N B1 S (en que N es el 
número de espiras).
b) Al acercar el polo norte del imán, el 
flujo aumenta porque 
r
B es mayor cerca 
del imán.
B1
S
S N
S
B
S N
En general, todas las variaciones del flujo magnético a través de un circuito 
cerrado originan en él una corriente inducida, más intensa cuanto más 
rápidas sean las variaciones de flujo. 
Sabemos que, si por un circuito circula una corriente, es porque hay una 
fuerza electromotriz que la crea. Debemos admitir, por lo tanto, que, al 
variar el flujo magnético que atraviesa un circuito cerrado, se ha originado 
una fuerza electromotriz la cual, a causa de su origen, se denomina fem 
inducida.
139-184_U5.FIS.2BCH.CAS.indd 164 20/5/09 09:01:43
165
Campo magnético. Inducción electromagnética | 5
11 | Origen de la fuerza electromotriz inducida
¿Por qué la variación del flujo magnético que atraviesa un circuito le induce 
una fuerza electromotriz?
Suponemos que un conductor metálico a-b (Fig. 40) en un campo magnético 
es perpendicular al plano del papel y su sentido es de fuera hacia dentro 
(alejándose del lector). Recordemos que en los metales hay electrones 
libres –uno o más por cada átomo de metal– moviéndose desordenadamen-
te, sin ninguna dirección de movimiento privilegiada. Si desplazamos el 
conductor hacia la derecha, por ejemplo, a una velocidad 
r
v y dado que es 
un campo magnético, sobre cada electrón actúa una fuerza 
r
F , cuyas carac-
terísticas son:
a) Módulo: F = e v B (e es la carga del electrón).
b) Dirección: perpendicular al plano delimitado por 
r
v y 
r
B, es decir, la direc-
ción del conductor.
c) Sentido: se puede conocer aplicando la regla de la mano izquierda. Los 
electrones libres del conductor se mueven conjuntamente en el sentido 
señaladopor la flecha roja (Fig. 40). Recordemos, de nuevo, que se ha 
supuesto que por los conductores circulan cargas positivas, por lo que el 
sentido convencional del movimiento de carga eléctrica, intensidad de 
corriente, será precisamente el contrario (flecha negra).
Como consecuencia de las fuerzas magnéticas a las que son sometidas las 
cargas, el extremo superior del conductor queda con un exceso de carga 
positiva, mientras que el extremo inferior queda cargado negativamente.
En resumen, al moverse el conductor en el campo magnético se ha origina-
do una fuerza electromotriz inducida.
Si ahora deslizamos el conductor móvil de la figura 40 sobre un conductor 
en forma de U (Fig. 41), la fuerza electromotriz inducida impulsa las cargas 
por el circuito produciendo una corriente eléctrica inducida, que circula en 
el sentido señalado en la figura 41.
Mientras el conductor móvil se desplaza, actúa como un generador de fuer-
za electromotriz (Fig. 42). Si el conductor se para, no actúa ninguna fuerza 
sobre las cargas eléctricas y cesa, por lo tanto, la corriente inducida.
Al desplazar el conductor móvil de la figura 41, varía el flujo que atraviesa 
el circuito porque varía su superficie. También se puede hacer cambiar el 
flujo a través de un circuito, incrementando el valor de la inducción magné-
tica (Fig. 39b) o variando el ángulo que forman 
r
B y 
r
S (Fig. 36). En todos los 
casos en los que hay una variación de flujo, actúan fuerzas magnéticas 
sobre las cargas de los conductores y, por lo tanto, se originan en ellas 
fuerzas electromotrices que son la causa de las corrientes inducidas. Esta 
es la explicación de los fenómenos observados y estudiados por Faraday y 
Henry, que hemos comentado en el apartado dedicado a la inducción 
magnética.
V
b
a
40. Los electrones libres del conductor se 
mueven en el sentido indicado por la 
flecha roja. Convencionalmente, se elige 
como sentido de la corriente el contrario 
(representado en la figura con una flecha 
negra), como si se tratara del movimiento 
de cargas positivas.
41. Corriente inducida generada por el 
desplazamiento del conductor móvil.
42. Generador de fuerza electromotriz 
igual a la inducida en la figura 41.
V
I
139-184_U5.FIS.2BCH.CAS.indd 165 20/5/09 09:02:01
166
5 | Campo magnético. Inducción electromagnética
12 | Sentido de la corriente inducida: ley de Lenz
El físico ruso Heinrich Lenz, que estudió los fenómenos electromagnéticos 
de manera simultánea, pero independientemente de Faraday, enunció en 
1833 una ley denominada ley de Lenz, que nos permite conocer el sentido 
de la corriente inducida:
Al variar el flujo a través del circuito, la corriente inducida tiene tal senti-
do que el campo magnético que crea se opone a la variación del flujo.
El sentido de la corriente inducida se opone a la causa que lo produce.
Aplicamos la ley de Lenz de la corriente inducida al conductor móvil de la 
figura 41. La causa que lo origina es, precisamente, el movimiento del con-
ductor dentro de un campo magnético. Sobre esta corriente inducida el 
campo ejerce una fuerza, cuya dirección y sentido se pueden hallar con la 
regla de la mano izquierda. Efectivamente, como el sentido de la corriente es 
de a hacia b (Fig. 43), la fuerza ejercida por el campo magnético sobre el 
conductor móvil va dirigida hacia la izquierda; o sea, se opone al movimiento 
del conductor, de acuerdo con lo que postula la ley de Lenz (Fig. 43)
Contrariamente, si el conductor se desplaza hacia la izquierda (Fig. 44), la 
corriente inducida tiene el sentido de b hacia a. La regla de la mano izquier-
da nos indica que la fuerza ejercida por el campo tiene sentido hacia la 
derecha. Por lo tanto, también se opone al movimiento del conductor.
Aplicando el criterio explicado anteriormente, según el cual la fuerza electromo-
triz se produce como consecuencia de la variación del flujo magnético que 
atraviesa un circuito, podemos enunciar la ley de Lenz de la manera siguiente:
Esto quiere decir que, si el flujo a través de un circuito aumenta, se induce 
en él una corriente eléctrica, cuyo campo magnético es de sentido contrario 
al campo magnético inductor. Si, contrariamente, el flujo disminuye, la 
corriente inducida crea un campo magnético cuyo flujo se suma al inicial.
La figura 45 muestra una experiencia que corrobora lo que acabamos de 
explicar. Al cerrar el interruptor, circula una corriente por la bobina C que crea 
un campo magnético muy reforzado por la presencia de un núcleo de hierro. 
Al variar el flujo que atraviesa el anillo A, se induce en él una corriente que se 
opone al aumento del flujo. Esto se consigue cuando los campos magnéticos 
creados por las dos corrientes enfrentan polos del mismo tipo: por lo tanto, 
el anillo es repelido hacia fuera (a).
Al abrir el circuito, el flujo a través del anillo disminuye y la corriente induci-
da es de sentido contrario a la que se produce al cerrar el circuito; por lo 
tanto, se enfrentan polos de diferente tipo: el anillo es atraído (b).
45. a) 45. b)
Fm
a
b
F
Bv 
43. Al desplazar el conductor a-b por la 
acción de la fuerza F, se induce en él una 
corriente eléctrica en el sentido 
representado en la figura. El campo 
magnético ejerce en él una fuerza Fm, que 
se opone a su movimiento, de acuerdo con 
la ley de Lenz.
v 
Fm
a
b
F
B
44. Al desplazar el conductor a-b hacia la 
izquierda por acción de la fuerza F, el 
campo magnético ejerce sobre la corriente 
inducida una fuerza Fm que se opone a su 
movimiento, de acuerdo con la ley de Lenz.
C A C A
139-184_U5.FIS.2BCH.CAS.indd 166 20/5/09 09:02:15
167
Campo magnético. Inducción electromagnética | 5
13 | Valor de la fem inducida
Volvamos a la figura 34. La corriente inducida en la bobina, al acercarla al 
imán, de acuerdo con la ley de Lenz, enfrenta dos polos de la misma clase. El 
imán está sometido a una fuerza de repulsión magnética y, por lo tanto, para 
acercarlo a la bobina debemos hacer un trabajo motor. Para alejarlo de la 
bobina también debemos vencer una fuerza de atracción magnética entre los 
dos, porque ahora la corriente inducida enfrenta polos de diferente clase.
Asimismo, al inducir una corriente en el conductor a-b de las figuras 43 y 
44, el campo magnético ejerce sobre él una fuerza Fm, cuyo valor es igual y 
de sentido contrario a la fuerza F, aplicada para desplazar el conductor. Por 
lo tanto, para desplazar el conductor en el campo magnético con movimien-
to uniforme se debe aplicar una fuerza motriz constante, F, que, al despla-
zarse, hace un trabajo. Este trabajo comunica energía a las cargas eléctri-
cas libres que tiene.
En los fenómenos de inducción electromagnética tiene lugar una transfor-
mación de energía mecánica en energía eléctrica.
Esta transformación es muy interesante, porque podemos obtener energía 
eléctrica a partir de otras formas de energía que no son fácilmente utilizables 
ni transportables. La energía eléctrica es, además, limpia; no contamina.
Veamos cómo podemos calcular el valor de la fuerza electromotriz inducida, 
si se desplaza un conductor en un campo magnético uniforme. El trabajo 
mecánico necesario para mover este conductor vale:
W = F ∆x
Y, ya que la fuerza mecánica necesaria para desplazarlo es igual a la fuerza 
magnética, tenemos:
F = Ι l B
Si el conductor se desplaza con movimiento uniforme:
∆x = v ∆t
Sustituyendo en la expresión del trabajo:
W = Ι l B v ∆t
Y, ya que Ι ∆t = Q , es decir, la carga que atraviesa la sección del conductor 
en un tiempo ∆t:
W = Q B l v
Ahora bien, el cociente (W /Q) es la energía comunicada a la unidad de carga, 
que es, precisamente, el valor de la fuerza electromotriz inducida, ε.
Dividiendo los dos miembros de la expresión anterior entre Q, obtenemos:
ε = B l v
ε se mide en voltios cuando Ι, B y v se miden en las unidades correspon-
dientes del SI.
La fuerza que hace un campo magnético uniforme, B, sobre un hilo de corriente de longitud l, perpendicular 
al campo, por el que circula una

Continuar navegando