Logo Studenta

estadist_4

¡Este material tiene más páginas!

Vista previa del material en texto

Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Gráfico de caja y bigotes o Box-plot 
 
Antes de realizar un análisis de los datos, debemos preocuparnos que estos se 
encuentren libres de error, puesto que de existir, afectarían nuestros resultados y 
de esta forma también la toma de decisiones. 
Una aplicación importante de los cuartiles es construir un gráfico, llamado gráfico 
de caja y bigote, en el que se puede observar estadísticamente si la totalidad de 
los datos que entran a un proceso son válidos o si, se presentan valores anómalos 
o atípicos (outliers). 
El gráfico, también nos da una idea acerca de la simetría de la distribución, como 
también nos permite observar la dispersión de la variable en estudio. 
 
Para dibujar el box plot se siguen los siguientes pasos: 
 
i) Calcular los valores Q1, Q2, Q3, RI, Lo, L1, L2 y L3 donde: 
RI= Q3 - Q1 (rango intercuartilico). 
L0 = Q1 – 3RI L1 = Q1 – 1,5RI 
L2 = Q3 +1,5RI L3 = Q3 + 3RI 
ii) Dibujar una caja de ancho arbitrario que va desde Q1 hasta Q3 con una 
línea de división en Q2. 
iii) Dibuje el bigote. Ubique la observación más cercana a L2 dentro del 
intervalo (Q3 , L2), marque la observación con x y una a la caja mediante 
una línea. 
Ubique la observación más cercana a L1 dentro del intervalo (L1 , Q1), 
marque la observación con x y una a la caja mediante una línea. 
IV) Ubique observaciones dentro del intervalo (L0 , L1) o (L2 , L3). Marque estas 
observaciones con *. Estas serán llamadas posibles datos atípicos. 
V) Ubique observaciones sobre el valor L3 o bajo el valor L0. Marque estas 
observaciones con o. Estas serán llamadas datos atípicos. 
 
q1 q2 q3L0 L1 L2 L3
xx *** ooo 
 
 
 
Observaciones: 
1.- En muchos gráficos el bigote coincide con los valores extremos. 
2.- En algunos gráficos Q1 y Q2 son iguales o Q2 y Q3 son iguales. 
3.- Si existen valores atípicos debe agotarse toda posibilidad para corregirlos, en 
caso contrario se recomienda que sean sacados del análisis ya que pueden 
causar ruido en las conclusiones. 
4.- El Box-plot también es usado para comparar grupos. 
 
 
 
 
 
 22
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
Ejemplo: 
Se realizó un experimento para comparar las cualidades de desgaste de tres tipos 
de pintura sometida a la acción abrasiva de una rueda forrada con tela que gira 
lentamente. Se probaron 10 muestras de cada tipo de pintura y se registró el 
número de horas transcurridas antes de la aparición de una abrasión visible en 
cada uno. Los datos se muestran en la tabla siguiente. 
 
Tipo pintura 
1 2 3 
148 
76 
393 
520 
236 
134 
55 
166 
415 
153 
513 
264 
433 
94 
535 
327 
214 
135 
280 
304 
335 
643 
216 
536 
128 
723 
258 
380 
594 
465 
 
Realizar un gráfico de Box-plot. 
 
 
 
P in t 1 P in t 2 P in t 3
P in t
2 1 .6 0
2 0 5 .3 0
3 8 9 .0 0
5 7 2 .7 0
7 5 6 .4 0
H
or
as
B o x - p lo t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comente 
 
 
 23
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
Variables Bidimensionales. 
 
Anteriormente aprendimos cómo a partir de una gran cantidad de datos que 
describen una única variable X, estos pueden ser resumidos en una tabla de 
distribución de frecuencias para así entender la forma de su distribución, también 
representamos gráficamente los mismos de modo que resulta más intuitivo 
hacerse una idea de como se distribuyen las observaciones. 
Otros conceptos que hemos visto, que también nos ayudan en el análisis, son los 
estadísticos de tendencia central, que nos indican hacia donde tienden a 
agruparse los datos (en el caso en que lo hagan), y los estadísticos de dispersión, 
que nos indican si las diferentes modalidades que presenta la variable están muy 
agrupadas alrededor de cierto valor central, o si por el contrario las variaciones 
que presentan las modalidades con respecto al valor central son grandes. 
También sabemos determinar ya si los datos se distribuyen de forma simétrica o 
presentan algún sesgo. 
En esta unidad estudiaremos una situación muy general y por tanto de gran 
interés en la práctica: 
Sea Y otra variable definida sobre la misma población que X, ¿será posible 
determinar si existe alguna relación entre las modalidades de X e Y? 
Por ejemplo, sea X una variable que representa la cantidad de unidades vendidas 
e Y el precio de un cierto producto. 
 
La relación más simple que podemos encontrar entre X e Y es una relación 
determinística del tipo Y=a+bX, sin embargo en casos reales este modelo no es 
realista y por lo general el modelo es del tipo Y=a+bX+ε , donde ε es un error. 
 
Otra forma de estudiar la relación entre las variables X e Y es registrando sus 
valores en una tabla de doble entrada o tabla de contingencia. 
 
Consideremos un conjunto de n objetos donde cada uno de ellos presenta dos 
características de interés X e Y. Sean x1, x2, ..., xr los r valores de una variable X e 
y1, y2, ..., yc los c valores de una variable Y. 
La información conjunta puede ser reunida en una tabla con la siguiente 
estructura: 
 
Y
X
\ 
y1 y2 ... yj ... yc Total 
fila 
x1 n11 n12 n1j n1c n1.
x2 n21 n22 n2j n2c n2.
M 
xi ni1 ni2 nij nic ni.
M 
xr nr1 nr2 nrj nrc nr.
Total columna n.1 n.2 n.j n.c n..
 24
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
 
Donde nij es la frecuencia absoluta para los individuos que presentan la modalidad 
conjunta xi de X e yj de Y. 
ni. es la frecuencia absoluta marginal de la modalidad xi de X. 
n.j es la frecuencia absoluta marginal de la modalidad yj de Y. 
 
Así, 
 ni. = n∑
=
c
j
ijn
1
.j = n.. = ∑
=
r
i
ijn
1
∑∑
= =
r
i
c
j
ijn
1 1
además las tablas: 
 
 x1 x2 K xr
ni. n1. n2. K nr.
Y y1 y2 K yc
n.j n.1 n.2 K n.c
 
Se conocen con el nombre de frecuencia absoluta marginal de las variables X e Y 
respectivamente. 
Todo lo anterior puede también ser expresado como frecuencias relativas: 
 
Y
X
\ 
y1 y2 ... yj ... yc Total 
fila 
x1 f11 f12 f1j f1c f1.
x2 f21 f22 f2j f2c f2.
M 
xi fi1 fi2 fij fic fi.
M 
xr fr1 fr2 frj frc fr.
Total columna f.1 f.2 f.j f.c 1 
 
 
Donde fij es la frecuencia relativa para los individuos que presentan la modalidad 
conjunta xi de X e yj de Y. 
fi. es la frecuencia relativa marginal de la modalidad xi de X. 
f.j es la frecuencia relativa marginal de la modalidad yj de Y. 
 
Así, 
 fi. = f∑
=
c
j
ijf
1
.j = =1 ∑
=
r
i
ijf
1
∑∑
= =
r
i
c
j
ijf
1 1
además las tablas 
 
X x1 x2 K xr
fi. f1. f2. K fr.
 
 
Y y1 y2 K yc
f.j f.1 f2 K f.c
 25
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
Se conocen con el nombre de frecuencia relativas marginal de las variables X e Y. 
 
Asociados a las distribuciones marginales podemos definir algunos estadísticos de 
tendencia central o dispersión. Las medias marginales de la variable X e Y se 
definen del siguiente modo: 
 
 ∑∑
==
==
r
i
ii
r
i
ii xfxnn
X
11
1 ..
.. ∑∑ ==
==
c
j
jj
c
j
jj yfynn
Y
11
1 ..
.. 
 
Las varianzas marginales respectivas son: 
 
 ∑
=
−=
r
i
iix Xxnn
S
1
22 1 )(.
.. ∑=
−=
c
j
jjy Yynn
S
1
22 1 )(.
.. 
 
Una medida del grado de relación lineal entre las variables X e Y es la covarianza 
dada por Sxy, donde 
 ∑∑
= =
−−=
r
i
jii
c
j
xy YyXxnn
S
1 1
1 ))((.
.. 
 
Una formula alternativa de cálculo para la covarianza es 
 
 ∑∑∑∑
= == =
−=−=
r
i
c
j
jiij
r
i
c
j
jiijxy YXyxfYXyxnn
S
1 11 1
1
.. 
 
Un problema de la covarianza es que depende de las unidades de medida por lo 
que no logramos cuantificarel grado de relación lineal entre dos variables. Una 
medida adimensional del grado de relación lineal entre las variables X e Y lo da el 
coeficiente de correlación de Pearson dado por: 
 
 
yx
xy
SS
S
r = 
Observe que 11 ≤≤− r
Empíricamente, Si 750.≥r decimos que la relación lineal entre X e Y es 
adecuada, en cambio si r 0 decimos que no existe relación lineal entre X e Y. ≈
Mientras más cercano a 1 o a –1 es el coeficiente de correlación lineal mejor es la 
dependencia lineal entre ambas variables. 
 
 
 
 
 26
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
De todos los elementos de la población, podemos estar interesados en un 
conjunto más pequeño y que está formado por aquellos elementos que han 
presentado la modalidad yj para algún j=1,2,...,c. El número de elementos de este 
conjunto sabemos que es n.j La variable X definida sobre este conjunto se 
denomina variable condicionada y se suele denotar mediante X/Y=yj. La 
distribución de frecuencias absolutas de esta nueva variable n.j. Por tanto sus 
frecuencias relativas, que denominaremos frecuencias relativas condicionadas 
son: 
 
 
j
ij
ji n
n
f
./
= 
Análogamente podemos definir la frecuencia relativa condicionada para la variable 
condicionada Y/X=xj . 
Las frecuencias relativas condicionadas son: 
 
 ./ i
ij
ij n
n
f = 
 
Probabilidades 
 
El concepto de probabilidad ocupa un lugar importante en el proceso de toma de 
decisión bajo incertidumbre, no importa el campo de la ciencia en que el problema 
es enfrentado. En muy pocas situaciones de toma de decisión la información 
perfecta está disponible, es decir, todos los factores u hechos necesarios. La 
probabilidad entra en el proceso desempeñando el papel de substituto para la 
certeza, substituto para el completo conocimiento. 
La probabilidad es especialmente significativa en el área de la inferencia 
estadística. Aquí la preocupación principal es obtener conclusiones o hacer 
inferencias provenientes de experimentos que implican incertidumbre. El concepto 
de la probabilidad permite generalizar de la información obtenida de lo sabido 
(muestra) a lo desconocido (población), y agregar un alto grado de confianza en 
estas generalizaciones. Por lo tanto, la probabilidad es una de las 
herramientas más importantes de la inferencia estadística. 
 La probabilidad es un número entre 0 y 1 y corresponde a una especificación de 
que tan frecuente es probable que ocurra un evento de interés particular entre un 
gran número de ensayos (situaciones en las que el evento puede suceder). 
 
Antes de dar una definición más formal de probabilidad definiremos algunos 
términos de interés: 
 
 27
http://www.mirrorservice.org/sites/home.ubalt.edu/ntsbarsh/Business-stat/opre504S.htm#rstatInferentia
http://www.mirrorservice.org/sites/home.ubalt.edu/ntsbarsh/Business-stat/opre504S.htm#rstatInferentia
http://www.mirrorservice.org/sites/home.ubalt.edu/ntsbarsh/Business-stat/opre504S.htm#rInferentiaStatist
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Experimento: es cualquier proceso o actividad que genera observaciones. Según 
la naturaleza del experimento estos se clasifican en determinísticos y no 
determinísticos o aleatorios. Estos últimos serán la naturaleza de nuestro estudio. 
 
Ejemplo: Suponga un experimento sencillo que consiste en soltar un plumón 
usado para escribir en el pizarrón. 
Si el interés es observar si este cae o no, cada uno de nosotros, incluso sin 
necesidad de realizar el experimento, sabemos que va a caer. Hay un resultado 
totalmente determinístico. Sin embargo si nuestra observación se centra en ver 
hacia que parte va a quedar apuntando la tapa, tenemos muchos resultados 
posibles y obviamente uno y sólo uno va a ocurrir. Su resultado es no 
determinístico. 
 
Espacio muestral: Sea E un experimento aleatorio, al conjunto de todos los 
resultados posibles de E le llamamos espacio muestral y le denotaremos por Ω . 
 
Ejemplo 1: Suponga el experimento que consiste en observar a las 9:30 hrs., el 
número de bombas en servicio en una gasolinera con seis bombas. 
 
Solución: { }6543210 ,,,,,,=Ω 
 
 
 
Ejemplo 2: Suponga que en una fábrica que produce máquinas para sellar al 
vacío, en un momento dado, seleccionan tres de manera aleatoria para hacer 
secuencialmente, pruebas de calidad. Si denotamos por C si cumple y por N si no 
cumple, escriba el espacio muestral. 
 
Observación: Como Ud. se habrá dado cuenta el espacio muestral hace el papel 
de conjunto universo, de aquí que las siguientes definiciones estén relacionadas 
con teoría de conjuntos. 
 
Evento o suceso: Es cualquier subconjunto del espacio muestral. Estos son 
denotados por letras mayúsculas tales como A, B, C, A1, A2, ... 
 
Ejemplo 3: Del ejemplo 1, escriba los siguientes eventos: 
i) El número de bombas en servicio es a lo menos 2. 
ii) El número de bombas en servicio es a lo sumo 3. 
iii) Hay un número par de bombas en servicio. 
iv) Hay más de cuatro bombas en servicio. 
Solución 
i) { }654321 ,,,,=A
ii) { }32102 ,,,=A
iii) { }6423 ,,=A
iv) { }654 ,=A
 28
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
Observación: De acuerdo a la definición de evento y de acuerdo a la teoría de 
conjuntos, y son eventos, llamados evento seguro y evento imposible 
respectivamente. 
Ω Φ
 
Definición: Dos eventos A y B, cualesquiera de Ω son disjuntos si y sólo si no 
tienen elementos comunes, es decir su intersección es vacía. 
 
 φ=∩⇔ BAdisjuntosByA 
 
Definición: Diremos que un evento ocurre si uno cualesquiera de sus elementos 
es el resultado del experimento. 
 
De acuerdo a esta definición basta con conocer la cardinalidad de un evento para 
saber de cuantas maneras puede ocurrir un evento. Así del ejemplo 3, el evento 
A1 ocurre de 5 formas en cambio el evento A3 puede ocurrir de 3 formas. 
Un problema interesante que se presenta ahora es poder contar el número de 
elementos que tiene un conjunto. Este problema es totalmente resuelto cuando 
tenemos los elementos a la vista. Sin embargo esto no siempre es así, por 
ejemplo, suponga que un cliente va a comprar una caja de ampolletas, pero el 
quiere asegurarse que están estén todas buenas. Suponga además, que por 
alguna razón no podemos probar todas las ampolletas entonces se decide un plan 
de muestreo y una regla de decisión. Se va a revisar sólo 5 ampolletas 
seleccionadas al azar y si se encuentra 2 o más que no funcionen, no se hace la 
compra. Agreguemos a esto, que se sabe que en la caja que tiene 48 ampolletas 
vienen 3 falladas ¿Cuántos grupos de cinco ampolletas son posibles formar? 
¿Cuántos de estos tendrán a lo más 1 ampolleta fallada? 
 
Técnicas de conteo: 
 
Definición: (Principio de suma) 
Suponga que una operación O1 puede realizarse de n formas y otra operación O2 
puede realizarse de m formas, entonces, la operación “O1 o O2” puede efectuarse 
de n+m formas. 
En la aplicación del principio de suma hay que cuidar que ninguna forma en O1 se 
repita en O2. De ocurrir esto la operación “O1 o O2” puede efectuarse de n+m-k 
formas, siendo k el número de coincidencias. 
 
Definición : (Principio de multiplicación o regla del producto) 
Suponga que una operación O1 se puede realizar de n formas y una segunda 
operación O2 (O2 siguiendo inmediatamente a O1) puede realizarse de m formas, 
entonces, ambas operaciones “O1 y O2” pueden efectuarse de nm formas. 
En la aplicación del diagrama del producto es posible aplicar una representación 
conocida como diagrama del árbol, que consiste en representar todas las 
posibilidades mediante ramas que nacen desde un vértice. 
 29
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Por ejemplo si una operación O1 se puede realizar de 4 formas y una operación O2 
se puede realizar de 3 formas entonces la operación “O1 y O2” se puede realizar 
de 12 formas,gráficamente: 
 
 
 
 
 
 
 
 
 
 
 
Observación: Una extensión de estos principios a más operaciones se hace de 
manera natural. 
 
Análisis combinatorio. 
Definición: Cada una de las ordenaciones que pueden formarse tomando 
algunos o todos los elementos de un número de objetos se llama arreglo o 
variación. 
Definición: Las variaciones en las que entran todos los objetos, es decir, las 
diversas ordenaciones de todos los elementos, se llaman permutaciones. 
 
Definición: Dos permutaciones cualesquiera contienen los mismos elementos, sólo 
difieren en el orden en que los elementos están colocados. 
 
Definición : Cada uno de los grupos que pueden formarse tomando algunos o 
todos los elementos de un número de objetos de modo que dos cualquiera de 
ellos difieran en algún objeto se llama combinación. 
 
Para entender la diferencia entre permutación y combinación, consideremos el 
siguiente ejercicio. Escribir todas las permutaciones y combinaciones que 
podemos obtener con tres objetos seleccionado de un conjunto de cuatro. 
Si denotamos por a, b, c y d los cuatro objetos se tiene: 
 
Combinaciones 
Permutaciones 
abc 
abd 
acd 
bcd 
 abc acb cab cba bca bac 
 abd adb dab dba bda bad 
 acd adc dac dca cda cad 
 bcd bdc dbc dcb cdb cbd 
 
 30
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Observe que sólo tenemos cuatro combinaciones de tres objetos seleccionado 
de un conjunto de cuatro, en cambio, hay 24 permutaciones. Observe además 
que cada combinación da origen a 6 permutaciones. 
Definición: El número de permutaciones de n objetos distintos es n!. 
 n! = n(n-1)(n-2) ... 2*1 (producto de los n primeros número naturales). 
 0! =1 
 
Definición: El número de permutaciones de n objetos distintos, tomados de r a la 
vez, nPr, es: 
 
)!(
!Pr
rn
nn
−
= 
Definición: El número de permutaciones de n objetos de los cuales n1 son de una 
clase 1, n2 son de una clase 2, ..., nk son de una clase k, con n1+n2+...+nk = n, 
denotado por nPn1,n2,...,nk, es 
 
 
!!...!
!,...,,
k
k nnn
nnnnPn
21
21 = 
Definición: El número de combinaciones diferentes de n objetos tomados de r a 
la vez, nCr, es 
 
!)!(
!
rrn
nnCr
−
= 
 
 
Ahora que sabemos contar, volvamos al ejemplo de la caja de ampolletas. 
 
Una primera pregunta que debemos hacernos es, ¿interesa el orden en que las 5 
ampolletas van a ser seleccionadas?. Como el orden no es relevante para lo que 
deseamos observar, la respuesta es no. Luego el número de quíntuplas posibles 
que pueden ser formadas es 48C5 = 1.712.304, y de estas, el número de 
quíntuplas que contienen a lo más una con falla es: 3C0 x 45C5 + 3C1 x 45C4 es 
decir 1.668.744. 
 
Ejemplo: ¿Cuántos números diferentes de seis cifras pueden formarse con los 
nueve dígitos 1, 2, 3, …,9? 
 
Antes de responder observemos que ahora interesa el orden en que aparecen las 
cifras, luego la respuesta es 
 9P6 = 60.480 números 
 
¿Cuántos comienzan con un número impar?. 
 
Un ejercicio para razonar: Con 7 consonantes y 4 vocales ¿cuántas palabras (con 
o sin sentido) pueden formarse, conteniendo cada una 3 consonantes y 2 
vocales?. 
 
 31
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Habiendo definido algunos elementos importantes daremos una definición formal 
de probabilidad. 
 
Como dijimos anteriormente, la probabilidad es un número entre 0 y 1, que se 
asigna a un fenómeno como su posibilidad de ocurrir. 
Casi todos conocemos las leyes del azar relacionados con el lanzamiento de una 
moneda. Si alguien nos pregunta cuál es la probabilidad que una moneda muestre 
cara cuando esta es lanzada, la respuesta será 
2
1 . Esta respuesta se basa en la 
experiencia común que se tiene con las monedas, en que se supone que la 
moneda es legítima y que se lanza de manera legítima. Este es un ejemplo de 
probabilidad objetiva la cual tiene dos interpretaciones. La primera se basa en la 
simetría de los resultados que implica que resultados idénticos en los aspectos 
esenciales deben tener la misma probabilidad, por ejemplo en el lanzamiento de 
un dado, la probabilidad que caiga cualquiera de los números es 
6
1 . 
La segunda interpretación es la probabilidad como frecuencia relativa la que se 
basa en la experiencia histórica en situaciones idénticas. 
Cuando la probabilidad se basa en la experiencia personal o en el grado de 
creencia que se tenga respecto de la ocurrencia de un evento, esta se denomina 
probabilidad subjetiva. 
 
 
 
Probabilidad como frecuencia relativa. 
Suponga que un experimento es repetido N veces bajo las mismas condiciones. Si 
A es un evento de este experimento, el que ocurre n(A) veces en estas N 
repeticiones del experimento, se define la probabilidad del evento A, P(A), 
mediante 
 
N
AnAP )()( = 
 
Del ejemplo de las ampolletas, ¿cuál es la probabilidad que la caja sea 
comprada?. 
De acuerdo al criterio de decisión, compraremos la caja sólo, si a lo más hay una 
con falla entre las cinco que son revisadas. 
Ω en este caso está compuesto por todas las quíntuplas que son posibles de 
seleccionar desde las 48 unidades que tiene la caja y el número de elementos que 
tiene , n( ) es 1.712.304 Ω Ω
Sea A el evento que contiene todas las quíntuplas que tienen 0 o 1 ampolleta con 
falla, así n(A)= 1.668.744 y luego P(A) = 0,97 
 
Un concepto más formal de probabilidad es a través de un desarrollo más 
axiomático. 
 
 32
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Definición: Se llama probabilidad a una función de conjunto, real valuada, definida 
sobre la clase de todos los subconjuntos del espacio muestral , tal que, a un 
subconjunto cualquiera A de 
Ω
Ω asocia un número, denotado por P(A), llamado 
probabilidad de A y que debe satisfacer los siguientes axiomas: 
 
Ax1.- P( ) = 1 Ω
Ax2.- P(A) ≥ 0 
Ax3.- P(UAi ) = ∑ P(A
=1i
i) para toda sucesión disjunta de eventos A1, A2, ….. 
 
Dado los tres axiomas podemos dar las siguientes propiedades: 
Sean A y B dos eventos cualesquiera de Ω 
a) P(Φ ) =0 
b) P(Ac)= 1 – P(A) donde Ac es el complemento del evento A bajo Ω . 
c) P(Ac B) = P(B) – P(A ∩ ∩B) 
d) P(A U B)= P(A) + P(B) – P(A ∩B) 
e) Si A ⊆ B entonces P(A) ≤ P(B) 
f) P(A) = P(A1) + P(A2) +…+ P(Ak) donde A1, A2,…, Ak forman una partición 
del conjunto A, es decir: 
- A= i
k
i
AU
1=
- Ai ∩ Aj = Φ ji ≠∀ 
 
 
 
Ejercicios: 
Problema 1: Tres caballos A, B, y C intervienen en una carrera; A tiene el doble 
de posibilidad de ganar que B, y B, el doble de ganar que C. ¿Cuáles son las 
respectivas probabilidades de ganar? 
¿Cuál es la probabilidad que el caballo B o C ganen? 
Problema 2: Sean dos artículos escogidos al azar de un grupo de 12 de los 
cuales 4 son defectuosos. Sea A evento, dos artículos son defectuosos y sea B 
evento, dos artículos no defectuosos. Obtener P(A) y P(B). 
Problema 3: Se escogen tres lámparas entre 15 de las cuales 5 son defectuosas. 
Halle la probabilidad que: 
 i) ninguna sea defectuosa. 
 ii) Exactamente una sea defectuosa. 
iii) Una por lo menos sea defectuosa. 
Problema 4: Una clase consta de 10 hombres y 20 mujeres de los cuales la mitad 
de los hombres y la mitad de las mujeres tienen los ojos claros. Hallar la 
probabilidad que una persona escogida al azar sea un hombre o tenga los ojos 
claros. 
 33
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Problema 5: Sean A y B eventos con P(A) = 
8
3 , P(B)=
2
1 Y P(A∩B)=
4
1 . Hallar 
P(AUB), P(AC), P(BC), P(AC∩ BC), P(ACU BC), P(A∩ BC) y P(B∩AC). 
Nota: (AUB)C = AC∩ BC y (A∩ B)C = ACUBc (leyes de De Morgan) 
Problema 6: Tomemos tres cajas según se indica: 
Caja 1: Contiene 10 lámparas de las cuales cuatro son defectuosas. 
Caja 2: Contiene 6 lámparas con una defectuosa. 
Caja 3: Contiene 8 lámparas con 3 defectuosas. 
Escogemos al azaruna caja y luego sacamos al azar una lámpara ¿Cuál es la 
probabilidad que la lámpara sea defectuosa? 
Problema 7: En cierta facultad, 25% de los estudiantes perdieron matemáticas, 
15% perdieron química y 10% perdieron las dos. Se selecciona un estudiante al 
azar: 
i) Si perdió química ¿cuál es la probabilidad que perdió matemática?. 
ii) Si perdió matemáticas ¿cuál es la probabilidad que perdió química? 
iii) ¿Cuál es la probabilidad que perdió matemática o química? 
Problema 8: Suponga dos cajas A y B, en que la caja A contiene 8 artículos de los 
cuales 3 son defectuosos, y la caja B contiene 5 artículos de los cuales 2 son 
defectuosos. Si se escoge al azar un artículo de cada caja. 
 i) ¿Cuál es la probabilidad que ambos artículos sean defectuosos? 
 ii) ¿Cuál es la probabilidad que un artículo sea defectuosos y el otro no? 
 iii) Si un artículo es defectuoso y otro no ¿cuál es la probabilidad que el 
articulo defectuoso proceda de la caja A? 
Problema 9: Suponga que tenemos dos urnas como sigue: 
La urna A contiene 5 fichas rojas y tres blancas. La urna B contiene una ficha roja 
y dos blancas. 
Se lanza un dado balanceado. Si aparece un 3 o un 6 se saca una ficha B y se 
pone en la urna A y luego se saca una ficha de la urna A, de lo contrario se saca 
una ficha de la urna A y se coloca en B para luego sacar una ficha de B. 
 i) ¿Cuál es la probabilidad que ambas fichas sean rojas? 
 ii) ¿Cuál es la probabilidad que las dos fichas sean blancas? 
 iii)¿Cuál es la probabilidad que ambas fichas sean de distinto color? 
 
Problema 10: Suponga que observamos un conjunto de 1100 individuos los que 
pueden ser clasificados de acuerdo a dos proveedores y a tres características; c1, 
c2 y c3. Suponga además que estos pueden ser ordenados en la siguiente tabla 
de doble entrada: 
 34
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
 Característica 
Proveedor c1 c2 c3 
P1 132 85 300 
P2 220 198 165 
 
a) Si seleccionamos un individuo al azar de esta población ¿cuál es la 
probabilidad: 
i) qué tenga la característica c3? 
ii) qué provenga del proveedor 1? 
iii) qué provenga del proveedor 2 o tenga la característica c2? 
iv) qué provenga del proveedor 2 y tenga la característica c1? 
b) Si seleccionamos un individuo al azar y proviene del proveedor 2 ¿Cuál es la 
probabilidad que tenga la característica c1? 
c) Si seleccionamos un individuo al azar y tiene la característica c2 ¿Cuál es la 
probabilidad que provenga del proveedor 2? 
 
Observemos que en la letra (b) y (c) el espacio muestral ha sido reducido a un 
conjunto más pequeño de interés como es en el primer caso, que el articulo 
seleccionado proviene del proveedor 2, o en el segundo caso que se sabe que el 
articulo seleccionado tiene la característica c2, es decir, en ambos casos la 
probabilidad pedida está condicionada a la ocurrencia ya de un evento. 
Definición: Sean A y B dos eventos cualesquiera de Ω , se define la probabilidad 
condicional del evento A dado que el evento B ha ocurrido, P(A/B) mediante la 
expresión: 
 (c.1) )(
)()/(
BP
BAPBAP ∩= si P(B) ≠ 0 
Observe que en la expresión (c.1) participan tres términos, la probabilidad 
condicional P(A/B), la probabilidad conjunta de dos eventos y la 
probabilidad marginal P(B). 
)( BAP ∩
De (c.1) = P(A/B)P(B) (c.2) )( BAP ∩
Así, es decir, la probabilidad conjunta de dos eventos es el producto de una 
 35
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
probabilidad condicional y una probabilidad marginal. 
Análogamente se tiene que )( BAP ∩ = P(B/A)P(A) (c.3). 
Las expresiones (c.2) y (c.3) se conocen como regla del producto para )( BAP ∩
Del ejemplo anterior (pag 43): 
Letra b: 
Sea A: evento que el artículo seleccionado al azar tiene la característica c1 
Sea B: evento que el artículo seleccionado al azar proviene del proveedor 2 
Entonces de (c.1), P(A/B) = 
583
220 = 0.38 
Respuesta: Hay un 38% de probabilidad que un artículo que proviene del 
proveedor 2 posea la característica c1. 
Letra c: 
Sea C: evento que el artículo seleccionado al azar proviene del proveedor 2. 
Sea D: evento que el artículo seleccionado al azar tiene la característica 2. 
Entonces de (c.1), P(C/D) = 
283
198 = 0.70 
Respuesta: Hay un 70% de probabilidad que un artículo que tiene la característica 
c2 provenga del operador 2. 
Ahora bien, si en la expresión (c.2), P(A/B) = P(A), entonces podemos ver que el 
evento B no influye en la ocurrencia del evento A, es decir, los eventos A y B son 
independientes. 
Definición: Sean A y B dos eventos cualesquiera de Ω . Se dice que los eventos 
A y B son independientes si y sólo si 
 = P(A) P(B) )( BAP ∩
Observación: Si A y B son eventos independientes entonces: 
i) A y Bc son eventos independientes 
ii) Ac y B son eventos independientes 
iii) Ac y Bc son eventos independientes 
En resumen, para calcular la probabilidad conjunta entre los eventos A y B, 
existen tres formas: 
 36
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
 
)( BAP ∩ = 
⎪
⎪
⎩
⎪
⎪
⎨
⎧
⎭
⎬
⎫
∩
ciaindependendecondiciónbajoBPAP
adependencidecondiciónbajo
APABP
BPBAP
relativafrecuenciaComoN
BAn
)()(
)()/(
)()/(
)(
 (c.4) 
Ejemplo: Suponga que dos estudiantes, Juan y José, del curso de inferencia van 
a estudiar a la biblioteca, llegan a distintas horas pero ambos solicitan el mismo 
libro de entre los disponibles para estudiar probabilidades, ninguno sabe que el 
otro se encuentra ahí. Más aún, a ambos le llama la atención un ejercicio que 
creen que puede aparecer en un certamen. Juan de acuerdo a lo aprendido en 
clases tiene un 35% de probabilidad de resolver el ejercicio y José un 45%. ¿Cuál 
es la probabilidad qué el ejercicio sea resuelto?. 
Solución 1: 
El ejercicio será resuelto si lo resuelve sólo Juan, sólo José o es resuelto por 
ambos. 
Sea A evento el problema es resuelto por Juan 
Sea B evento el problema es resuelto por José 
Sea S evento el problema es resuelto. 
P(S) = P(A B∩ c) + P(Ac∩B) + P(A∩B) 
De acuerdo al enunciado los eventos A y B son independientes, luego: 
P(S) = P(A)P(Bc) + P(Ac)P(B) + P(A)P(B) 
 = 0.35(1-0.45)+(1-0.35)0.45 + 0.35*0.45 
 = 0.643 
Respuesta: Hay una probabilidad de un 64.3% que el problema sea resuelto. 
Solución 2: Busque una segunda forma de resolver el ejercicio. 
Suponga ahora que el espacio muestral puede ser particionado por un conjunto de 
k eventos disjuntos A1, A2, …, Ak es decir: 
 Ω = A1U A2U …U Ak
 Φ=∩ ji AA ji ≠∀ 
Suponga además que estamos interesado en determinar la probabilidad de 
ocurrencia de un evento B cualquiera de Ω . 
 37
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
Esquemáticamente: 
 
B
A1
A2
A3
A5
A4
A6
Ak
B
A1
A2
A3
A5
A4
A6
Ak
 
 
 
 
 
De la figura observemos que el conjunto B puede ser reescrito como unión de los 
trocitos en que B se interfecta con algún Aj, así 
 B= (B∩A1)U(B∩A2)U…U(B∩Ak) 
Obviamente algunas intersecciones son vacías, luego 
 P(B)= P((B A∩ 1)U(B A∩ 2)U…U(B∩Ak)) 
 = P((B A∩ 1))+P((B∩A2))+…+P((B∩Ak)) 
 = P(B/A1)P(A1) + P(B/A2)P(A2) + …+ P(B/Ak)P(Ak) por (c.4) 
Expresión conocida como teorema de la probabilidad total para el evento B. 
Una pregunta interesante que surge aquí es, si sabemos que el evento B ha 
ocurrido ¿cuál es la probabilidad que el responsable de esta ocurrencia sea el 
evento Aj ? 
Esto es P(Aj / B) = )(
)(
BP
BAP j ∩ = 
∑
=
k
i
ii
jj
APABP
APABP
1
)()/(
)()/(
 
Expresión conocida como regla de Bayes. 
Ejercicios: 
1.- Una planta de ensamblado recibe sus reguladores de voltaje de tres 
proveedores diferentes; el 60% lo recibe del proveedor 1,30% del proveedor 2 y 
10% del proveedor 3. Se sabe además que el 95% de los regulares de voltaje del 
proveedor 1, 80% de los del proveedor 2 y 65% de los del proveedor 3 se 
desempeñan de acuerdo con las especificaciones. 
a) Si revisamos al azar un regulador de voltaje de esta planta ¿cuál es la 
probabilidad que se desempeñe de acuerdo con las especificaciones? 
b) Si seleccionamos al azar un regulador de voltaje y no se desempeña de 
 38
Apuntes preparados por el profesor Sr. Rosamel Sáez Estadística con fines de docencia 
acuerdo con las especificaciones ¿cuál es la probabilidad que haya sido 
suministrado por el proveedor 1?. 
c) Si seleccionamos al azar un regulador de voltaje y se desempeña de acuerdo 
con las especificaciones ¿cuál es la probabilidad que haya sido suministrado por 
el proveedor 3?. 
d) Si seleccionamos al azar un regulador de voltaje ¿cuál es la probabilidad que 
no se desempeñe de acuerdo con las especificaciones y haya sido suministrado 
por el proveedor 2? 
2.- Suponga que una máquina usada en la fabricación de piezas puede estar 
ajustada o desajustada. Cuando está ajustada produce un 1% de piezas 
defectuosas y cuando está desajustada un 10%. Se sabe que la probabilidad de 
desajuste de la máquina es de un 30%. 
a) Si se selecciona al azar una pieza producida por esta máquina y es buena 
¿cuál es la probabilidad que la máquina haya estado desajustada?. 
b) Supongamos ahora que se eligen al azar 10 piezas independientes y todas son 
buenas ¿calcular la probabilidad que la máquina haya estado desajustada? 
 
 
 
 
 39
	Comente 
	Una formula alternativa de cálculo para la covarianza es 
	Probabilidades 
	Permutaciones

Continuar navegando

Materiales relacionados

510 pag.
Luis Rincon - PROBABILIDAD

User badge image

Sebastian Laopa Alarcon

222 pag.
530 pag.
Prob1-2016

User badge image

Aprenda aquí