Logo Studenta

GENETICA HUMANA - Diana Solorzano

¡Este material tiene más páginas!

Vista previa del material en texto

Texto multimedia
Incluye CD-ROM
Genética Humana
Conceptos, mecanismos y aplicaciones de
la Genética en el campo de la Biomedicina
Francisco Javier Novo Villaverde
genetica humana 28/3/07 17:50 Página 1
 
 www.FreeLibros.me
00-Portadillas 5/12/06 06:44 Página i
 www.FreeLibros.me
Genética Humana
Conceptos, mecanismos y aplicaciones
de la Genética en el campo 
de la Biomedicina
00-Portadillas 5/12/06 06:44 Página i
 www.FreeLibros.me
C E L L A N D M O L E C U L A R B I O L O G Y I N A C T I O N S E R I E S
Genética 
Humana
Conceptos, mecanismos
y aplicaciones de la Genética
en el campo de la Biomedicina
Texto multimedia
Francisco Javier Novo Villaverde
Departamento de Genética
Universidad de Navarra
Madrid • México • Santafé de Bogotá • Buenos Aires • Caracas • Lima • Montevideo • San Juan
San José • Santiago • São Paulo • White Plains
00-Portadillas 5/12/06 06:44 Página iii
 www.FreeLibros.me
GENÉTICA HUMANA. Conceptos, mecanismos 
y aplicaciones de la Genética en el campo de la Biomedicina
Francisco Javier Novo Villaverde
PEARSON EDUCACIÓN, S. A., Madrid, 2007
ISBN: 9788483223598
Materia: Genética, 575
Formato 170 × 240 Páginas: 000
Datos de catalogación bibliográfica
Todos los derechos reservados. 
Queda prohibida, salvo excepción prevista en la Ley, cualquier forma
de reproducción, distribución, comunicación pública y transformación
de esta obra sin contar con autorización de los titulares de propiedad intelectual.
La infracción de los derechos mencionados puede ser constitutiva de delito
contra la propiedad intelectual (arts. 270 y sgts. Código Penal).
DERECHOS RESERVADOS
© 2007 PEARSON EDUCACIÓN, S. A.
Ribera del Loira, 28
28042 Madrid
GENÉTICA HUMANA. Conceptos, mecanismos y aplicaciones de la Genética 
en el campo de la Biomedicina
Francisco Javier Novo Villaverde
ISBN: 9788483223598
Deposito Legal: M-
PEARSON PRENTICE HALL es un sello editorial autorizado de PEARSON EDUCACIÓN, S. A.
Equipo editorial 
Editor: Miguel Martín-Romo
Técnico editorial: Marta Caicoya
Equipo de producción:
Director: José Antonio Clares
Técnico: María Alvear
Diseño de cubierta: Equipo de diseño de Pearson Educación, S. A.
Composición: Claroscuro Servicio Gráfico, S. L.
Impreso por: 
IMPRESO EN ESPAÑA - PRINTED IN SPAIN
Este libro ha sido impreso con papel y tintas ecológicos
00-Portadillas 5/12/06 06:44 Página iv
 www.FreeLibros.me
Utilización de este texto
Las figuras son un elemento fundamental en este texto multimedia. Por lo tanto,
se aconseja vivamente seguir a la vez el texto y las figuras.
El método habitual de estudio comenzará con la lectura de un apartado para in-
tentar comprender los conceptos y mecanismos mostrados. A continuación, el lector
deberá observar atentamente las figuras correspondientes a ese apartado, volviendo
después al texto para repasar y fijar los contenidos que no hubiesen quedado claros
en la primera lectura.
En la página web www.unav.es/genetica/GH/ estarán disponibles actualizacio-
nes, noticias, enlaces, etc., relacionados con este texto.
00-Portadillas 5/12/06 06:44 Página v
 www.FreeLibros.me
Índice de contenido
Prólogo IX
A) Introducción
1. El flujo de la información genética 3
1.1 Los ácidos nucleicos 3
1.2 Visión general del proceso de expresión génica 5
1.3 La transcripción 6
1.4 Regulación de la transcripción en eucariotas 8
1.5 Maduración del ARN mensajero 9
1.6 El ayuste (splicing) y su regulación 10
1.7 Traducción y código genético en eucariotas 13
2. El ADN en el núcleo de la célula eucariota 17
2.1 La cromatina durante el ciclo celular 17
2.2 Replicación de la cromatina en interfase 19
2.3 Formación y segregación de los cromosomas durante la mitosis 23
2.4 Gametogénesis y meiosis 25
2.5 Recombinación a nivel molecular 29
3. Técnicas básicas de genética molecular 33
3.1 Tecnología del ADN recombinante: métodos y usos más frecuentes 33
3.2 Enzimas de restricción 37
3.3 Técnicas básicas de hibridación de ácidos nucleicos 38
3.4 Amplificación in vitro de ADN (PCR) 40
3.5 Secuenciación del ADN 44
3.6 Microarrays 47
B) El genoma humano
4. La geografía del genoma humano 51
4.1 Historia y desarrollo del Proyecto Genoma Humano 51
0-INDICE CONTENIDO 5/12/06 06:46 Página VII
 www.FreeLibros.me
4.2 Estructura del genoma humano y variación inter-individual 58
4.3 El ADN repetitivo 62
4.4 El genoma mitocondrial 66
5. El genoma humano en acción 69
5.1 La secuencia influye en el estado funcional de la cromatina 69
5.2 Modificaciones epigenéticas y su importancia en la regulación 
del estado funcional de la cromatina 71
5.3 Relación entre secuencia, estructura y función de la cromatina: 
territorios cromosómicos 78
6. Origen de la variación genética en humanos 81
6.1 Variación en el ADN: polimorfismos y mutaciones 81
6.2 Mecanismos de reparación del ADN en humanos. Enfermedades
causadas por alteraciones en los mecanismos de reparación 82
C) La transmisión de los caracteres hereditarios
7. Genética mendeliana 93
7.1 Planteamiento experimental de Mendel 94
7.2 Monohíbridos: primera Ley de Mendel 95
7.3 Segunda Ley de Mendel: dihíbridos y trihíbridos 99
7.4 Redescubrimiento del trabajo de Mendel 102
7.5. ¿Dónde están los «factores unitarios»? La teoría cromosómica 
de la herencia 103
8. Herencia relacionada con el sexo 107
8.1 Cada sexo tiene distinta constitución cromosómica 107
8.2 Los genes situados en el cromosoma X muestran un modo especial
de herencia 108
8.3 Determinación genética del sexo en humanos 109
8.4 Compensación de dosis: hipótesis de Lyon 111
8.5 Estructura de los cromosomas sexuales humanos 114
9. Modificaciones de las proporciones mendelianas 117
9.1 Modo de estimar si se cumplen las proporciones mendelianas 
esperadas 117
9.2 Modificaciones de las proporciones mendelianas al estudiar 
un carácter 120
9.3 Modificaciones del dihibridismo. Interacción génica y epistasia 123
10. Genética de los caracteres cuantitativos 129
10.1 Genética de los caracteres cuantitativos: experimentos 
de Johannsen, Nilsson-Ehle y East 129
10.2 Modelo poligenes-ambiente y enfermedades multifactoriales 133
10.3 Heredabilidad en sentido amplio y en sentido restringido. Cálculo
de la heredabilidad en Genética Humana 135
VIII
Genética H
um
ana
0-INDICE CONTENIDO 5/12/06 06:46 Página VIII
 www.FreeLibros.me
11. Ligamiento genético en humanos 139
11.1 El concepto de ligamiento genético: fracción de recombinación y
distancia genética 139
11.2 Informatividad de los marcadores utilizados en estudios de
ligamiento 142
11.3 El cálculo del LOD score 144
11.4 Ligamiento no paramétrico y su utilización en Genética Humana 147
12. Los genes en las poblaciones 153
12.1 El equilibrio de Hardy-Weinberg 153
12.2 Cambios en las condiciones que mantienen el equilibrio: 
cruzamientos no aleatorios 155
12.3 Cambios en las condiciones que mantienen el equilibrio: efectos 
del tamaño poblacional 158
12.4 Cambios en las condiciones que mantienen el equilibrio: migración 
o flujo genético 160
12.5 Cambios en las condiciones que mantienen el equilibrio: 
recombinación y mutación 160
12.6 Cambios en las condiciones que mantienen el equilibrio: selección 161
12.7 Aplicaciones en Genética Humana 165
12.8 Formación de la Teoría Sintética de la Evolución 167
12.9 Explicación actual del proceso evolutivo y sus limitaciones 169
D) Patología genética
13. Citogenética 177
13.1 El estudio de los cromosomas humanos 177
13.2 Anomalías del número de los cromosomas 180
13.3 El fenómeno de no disyunción meiótica 183
13.4 Anomalías estructurales de los cromosomas 185
14. Mutaciones simples como causa de enfermedad 189
14.1 Características generales de las mutaciones 189
14.2 Mutaciones simples: tipos y nomenclatura 190
14.3 Potencial patogénico de las mutaciones en el ADN codificante 
y en el ADN no-codificante intragénico e intergénico 190
14.4 Potencial patogénico de las mutaciones en el ADN no-codificante 192
14.5 Nomenclatura general de mutaciones 195
15. Potencial patogénico de las secuenciasrepetidas 199
15.1 Mutaciones en secuencias que están repetidas en tándem 199
15.2 Expansión de trinucleótidos: neuropatías por expansiones de CAG 
y enfermedades por expansión de otros trinucleótidos 200
15.3 Neuropatías por expansiones de CAG 201
15.4 Enfermedades por expansión de otros trinucleótidos 202
15.5 Otras enfermedades por expansión de secuencias repetidas 204
15.6 Mutaciones debidas a repeticiones dispersas 205
15.7 Desórdenes genómicos 206
IX
Índice de contenido
0-INDICE CONTENIDO 5/12/06 06:46 Página IX
 www.FreeLibros.me
16. Efectos fenotípicos de las mutaciones 211
16.1 Pérdida de función, fenotipos recesivos y haploinsuficiencia 212
16.2 Fenotipos dominantes por ganancia de función 213
16.3 Alteraciones de la impronta genómica 215
16.4 Mutaciones que afectan a la morfogénesis 221
17. Diagnóstico de enfermedades genéticas 227
17.1 Estrategias generales de diagnóstico de enfermedades genéticas 227
17.2 Métodos de detección de mutaciones 228
17.3 Aplicación del ligamiento genético al diagnóstico: el proceso de 
diagnóstico indirecto de enfermedades genéticas 234
18. Genética clínica 237
18.1 Genética clínica y consejo genético 237
18.2 Enfermedades de herencia autosómica 239
18.3 Enfermedades de herencia ligada al cromosoma X 243
18.4 Teorema de Bayes y su aplicación al cálculo de riesgos genéticos 246
18.5 Enfermedades por alteración del ADN mitocondrial 248
18.6 Diagnóstico prenatal 252
E) Nuevas herramientas de la genética moderna
19. Terapia génica 257
19.1 Componentes de un sistema de terapia génica y vías de 
administración 257
19.2 Naturaleza del ácido nucleico terapéutico 258
19.3 Tipos de vectores y su utilización en distintas estrategias 
de transferencia génica 260
19.4 Aplicaciones clínicas de la terapia génica en el momento actual 270
20. Bioinformática del genoma humano 273
20.1 La Bioinformática 273
20.2 Bases de datos en Genética Humana: bases de datos de secuencias 274
20.3 Bases de datos en Genética Humana: bases de datos relacionadas 
con enfermedades 276
20.4 Búsquedas en bases de datos con BLAST 277
20.5 Navegadores del genoma humano 279
Índice analítico 281
X
Genética H
um
ana
0-INDICE CONTENIDO 5/12/06 06:46 Página X
 www.FreeLibros.me
Prólogo
La generalización del uso de Internet y de las computadoras domésticas permite con-
cebir libros de texto cada vez más interactivos, con tutoriales multimedia y enlaces a
los abundantísimos sitios educativos disponibles en la Red. Esto es especialmente útil
en una materia como la Genética, en la que la percepción gráfica de los procesos es
imprescindible para la adecuada comprensión de los conceptos y mecanismos impli-
cados. Este libro de texto es fruto de mi reflexión acerca del modo de impartir la do-
cencia de Genética a alumnos de disciplinas biomédicas que se enfrentan por pri-
mera vez con el apasionante mundo de los genes. Durante años he venido
impartiendo la asignatura de Genética Humana a alumnos de las licenciaturas de
Biología y Bioquímica de la Universidad de Navarra, y esto me ha permitido prepa-
rar poco a poco un manual detallado y abundante material gráfico que han consti-
tuido el esqueleto del presente texto. Sobre este esqueleto inicial he añadido nuevos
capítulos y gran cantidad de material multimedia que han dado como resultado este
texto de «Genética Humana: conceptos, mecanismos y aplicaciones de la Genética
en el campo de la Biomedicina».
Quizás lo que más llame la atención sobre este texto es que se presenta en un for-
mato novedoso: sólo se incluyen algunas tablas e ilustraciones que ayudan a mante-
ner la fluidez de la lectura, pero todos los materiales gráficos se han incluido en un
CD que contiene todas las figuras a las que se hace referencia en el texto. El CD está
compuesto por una serie de páginas web que se pueden visualizar con cualquier na-
vegador, y que van guiando al alumno paso a paso a través de tutoriales propios o de
enlaces a vídeos o figuras de especial interés para comprender algún concepto. Por
tanto, el mayor aprovechamiento se conseguirá si el alumno va estudiando el texto y
siguiendo al mismo tiempo, con calma, las figuras del CD. Este método permitirá, o
al menos eso espero, una comprensión rápida de los conceptos y mecanismos, ya que
éste es el enfoque que he pretendido dar al texto. En mi opinión, ninguna figura «es-
tática» puede suplir la información aportada por un video o una animación comen-
tada, y por ello la mayoría de los tutoriales están grabados con una voz en «off» que
0-INDICE CONTENIDO 5/12/06 06:46 Página XI
 www.FreeLibros.me
Genética H
um
ana
XII explica lo que se está viendo. Esto supone que el alumno debe utilizar una computa-
dora con tarjeta de sonido y altavoces (o auriculares); para los enlaces externos ne-
cesita también conexión a Internet. Confío en que la mayoría de los hogares cuentan
hoy en día con esta tecnología. Una ventaja (no despreciable) de esta estructura es
que permite abaratar significativamente el coste final del producto, al no requerir fi-
guras a color dentro del propio texto; espero que esto ayude también a conseguir una
amplia difusión del libro.
Sin duda, algunos de los que han leído las líneas precedentes (en especial, cole-
gas en la docencia universitaria de Genética) habrán pensado que este libro de texto
supone una especie de «autotexto» que podría hacer innecesarias las clases teóricas.
Nada más lejos de mi intención. De todas formas, al elaborar este método he tenido
en mente las directrices sobre el nuevo Espacio Europeo de Educación Superior, y
en especial el sistema de transferencia de créditos europeos (ECTS) de reciente im-
plantación en la Unión Europea. Este sistema está basado en la cantidad de trabajo
que —a juicio del profesor— debe invertir un alumno para la adecuada comprensión
y aprendizaje de la materia respectiva, y por eso el concepto de crédito incluye tam-
bién las horas de trabajo personal del alumno. El presente libro, que exige al alumno
una inversión sustancial de tiempo mientras «navega» por las figuras al tiempo que
estudia el texto, se adapta especialmente bien a este nuevo concepto. En cualquier
caso, como es lógico, las clases presenciales siguen siendo un pilar básico de la do-
cencia universitaria, puesto que en ellas el alumno recibe una visión diferente de los
mismos conceptos que se exponen en el libro, puede además aclarar las dudas que le
hayan surgido (si ha leído el capítulo correspondiente antes de la clase, como es
aconsejable) y puede también fijar los conceptos clave que poco a poco le irán ayu-
dando a «pensar» como un genetista.
Como he dicho, el principal destinatario de este texto es el alumno que cursa una
asignatura general de Genética en una licenciatura biomédica (Medicina, Farmacia),
y que se enfrenta por primera vez con esta materia. De todas formas, también puede
ser útil para alumnos de la licenciatura de Biología que ya hayan cursado una asig-
natura de Genética General (y, quizás, Ingeniería Genética) y se enfrentan con una
asignatura más específica de Genética Humana, especialmente los capítulos inclui-
dos en los bloques B, D y E. En este caso, los capítulos correspondientes al bloque A
y al bloque C ya habrán sido estudiados con mucho más detalle en esas otras asig-
naturas, pero lo presentado aquí puede servir como resumen que ayude a recordar
los conceptos fundamentales. Lógicamente, espero que este texto también resulte útil
a médicos y otros profesionales del mundo biomédico que quieran ponerse al día, o
que necesiten un compendio claro, actualizado y moderno de los conceptos, meca-
nismos y aplicaciones que ofrece la Genética en el siglo XXI.
0-INDICE CONTENIDO 5/12/06 06:46 Página XII
 www.FreeLibros.me
CAPITULO 1 5/12/06 06:52 Página 1
 www.FreeLibros.me
A) Introducción
Se incluyen en esta sección tres temas que servirán para repasar
los aspectos fundamentales de la estructura de los ácidos nucleicos 
y la biología molecular del gen, así como la estructura básica 
de la cromatina ysus cambios durante el ciclo celular.
CAPITULO 1 5/12/06 06:52 Página 1
 www.FreeLibros.me
C A P Í T U L O 1
El flujo de la información 
genética
Contenidos
1.1 Los ácidos nucleicos
1.2 Visión general del proceso de expresión génica
1.3 La transcripción
1.4 Regulación de la transcripción en eucariotas
1.5 Maduración del ARN mensajero
1.6 El ayuste (splicing) y su regulación
1.7 Traducción y código genético en eucariotas
1.1 Los ácidos nucleicos
La información genética se transmite a través de unas moléculas llamadas ácidos nu-
cleicos, polímeros formados por unidades denominadas nucleótidos. Un nucleótido es
una molécula formada por una pentosa, una base nitrogenada y un grupo fosfato. Al con-
junto formado por la pentosa y la base nitrogenada se le denomina nucleósido. Por tan-
to, un nucleótido es el éster fosfato de un nucleósido. Dependiendo de la naturaleza de
la pentosa, se distinguen dos tipos de ácidos nucleicos: el ácido ribonucleico (ARN) lle-
va D-ribosa, y el ácido desoxi-ribonucleico (ADN) contiene 2-desoxi-D-ribosa. Las bases
nitrogenadas que forman parte de los ácidos nucleicos pueden ser monocíclicas (pirimi-
dinas) o bicíclicas (purinas). Las bases que intervienen en la formación del ADN se de-
nominan Adenina (A), Citosina (C), Guanina (G) y Timina (T). El ARN contiene las tres
primeras y Uracilo (U) en vez de Timina.
Fue Friedrich Miescher el primero en identificar, en 1869, un material que llamó nu-
cleína. Estudios posteriores fueron caracterizando progresivamente la naturaleza quími-
CAPITULO 1 5/12/06 06:52 Página 3
 www.FreeLibros.me
ca de esta sustancia, así como su importancia biológica. Después de bastante con-
troversia, Avery, MacLeod y McCarthy demostraron en 1944 que la introducción de
ADN purificado en bacterias hace que éstas cambien su fenotipo y es, por tanto, la
molécula transmisora de la información genética. En 1953, Rosalind Franklin, Mau-
rice Wilkins, James Watson y Francis Crick describieron la estructura tridimensio-
nal del ADN.
La Figura 1.1 contiene enlaces a los artículos originales de estos autores.
El ADN y el ARN son cadenas de polinucleótidos. Como los nucleótidos tienen
direccionalidad debido a la posición del grupo fosfato en el carbono 5’ y del grupo
hidroxilo en el carbono 3’ de la pentosa, las moléculas de ADN y ARN también tie-
nen una polaridad concreta que viene definida por la dirección 5’→3’. El ADN es una
molécula formada por dos cadenas antiparalelas, es decir, con polaridad contraria.
Cada cadena está formada por un esqueleto desoxi-ribosa-fosfato, en el que alternan
moléculas de desoxi-ribosa unidas a los grupos fosfato mediante enlaces fosfo-diéster.
De este esqueleto «protruyen» las bases nitrogenadas, unidas a la pentosa mediante
enlaces glucosídicos. Además, la molécula de ADN está formada por dos cadenas
complementarias, lo que significa que la secuencia de bases nitrogenadas de una ca-
dena es complementaria a la de la otra cadena. Esto se debe al hecho de que las ba-
ses nitrogenadas forman sólo dos tipos de parejas: Citosina se empareja con Guani-
na y Adenina se empareja con Timina. Erwin Chargaff fue el primero en demostrar
en 1950 que el ADN de doble cadena tiene relaciones equimolares de purinas y piri-
midinas; la cantidad total de desoxi-adenina (dA) es igual a la de desoxi-timina (dT),
y la de desoxi-guanina (dG) igual a la de desoxi-citosina (dC). Por tanto, una conclu-
sión derivada de esto es que siempre se emparejan una purina con una pirimidina del
mismo modo, siendo los pares dA con dT y dG con dC. Watson y Crick, en su mo-
delo de doble hélice, establecieron el modo exacto en que se forman los enlaces en
cada par de bases, con tres puentes de hidrógeno en un par dG·dC y dos puentes
de hidrógeno en un par dA·dT. Aunque hay muchos más tipos posibles de enlaces en-
tre cada uno de estos nucleótidos, los enlaces tipo Watson-Crick tienen una propie-
dad importante: ocupan el mismo espacio dentro de la doble cadena y pueden in-
tercambiarse sin distorsionar la molécula. Finalmente, el hecho de que sólo se formen
dos tipos de pares de bases explica que las dos cadenas sean complementarias, ya que
la secuencia de bases de una puede convertirse fácilmente en la secuencia de bases de
la otra cadena sustituyendo cada base por su complementaria.
La Figura 1.2 contiene un enlace a animaciones en las que se explica la estructura de los ácidos
nucleicos y de la doble hélice.
Por tanto, en la molécula completa de ADN, las cadenas polinucleotídicas se
mantienen unidas entre sí gracias a los puentes de hidrógeno que se forman entre ba-
ses pertenecientes a cada una de las cadenas. Además, esta doble hebra no es lineal
(como una escalera de mano), sino que adopta una configuración helicoidal en la
que las bases nitrogenadas ocupan el interior y se disponen perpendicularmente a las
cadenas laterales. Este fenómeno se denomina «apilamiento» de las bases (base stac-
4
El flujo de la inform
ación genética
CAPITULO 1 5/12/06 06:52 Página 4
 www.FreeLibros.me
king) y es muy importante para mantener la estabilidad global de la doble hélice.
Existen distintos tipos de configuraciones que puede adoptar la doble hélice depen-
diendo de las condiciones del medio, pero la más relevante desde el punto de vista
biológico es la forma B, ya que es la más frecuente en condiciones fisiológicas. En
esta configuración, la hélice es dextrógira, con un diámetro de 2 nm, tiene 10 pares
de bases por vuelta y una distancia de 0,34 nm entre cada par de bases. Las dos mo-
léculas de desoxi-ribosa a las que se unen cada una de las bases del mismo par for-
man dos «surcos» en la superficie externa de la hélice. Además, como estas dos des-
oxi-ribosas no están situadas simétricamente, sino que miran hacia la misma cara de
la doble hélice, los dos surcos que se forman no son iguales: uno de ellos es más an-
cho (surco mayor) y otro más estrecho (surco menor).
La Figura 1.3 permite visualizar la forma B del ADN en tres dimensiones.
1.2 Visión general del proceso de expresión génica
La secuencia de nucleótidos de determinados fragmentos del ADN contiene infor-
mación para la fabricación de proteínas, que son los principales elementos estructu-
rales y funcionales de las células. De hecho, la secuencia de nucleótidos determina
el tipo de aminoácidos y el orden en que se añaden en el proceso de síntesis de pro-
teínas, y esa información está contenida de un modo codificado en la secuencia de
bases del ADN. El proceso por el que dicha información es descodificada y «tradu-
cida» para dar lugar a la síntesis de proteínas específicas se conoce como expresión
génica. Este proceso comprende varios pasos de descodificación, que en líneas ge-
nerales son la transcripción y la traducción. En lenguaje coloquial, transcribir signi-
fica pasar algún tipo de información de un medio a otro. Por ejemplo, se transcribe
una conversación al ponerla por escrito. El primer paso en la lectura de la informa-
ción contenida en la secuencia de nucleótidos consiste en la síntesis de una cadena
de ARN a partir de un segmento de ADN. Este proceso de copia de una secuencia
«molde» de ADN en un ARN se denomina transcripción. El ARN mantiene la in-
formación que estaba contenida en el ADN precisamente porque lleva la misma se-
cuencia de nucleótidos (con la excepción de las timinas, que son sustituidas por ura-
cilos). Esta cadena de ARN puede intervenir directamente en algún proceso celular,
pero lo más habitual es que transmita la información al siguiente elemento de la ca-
dena de descodificación, y por eso se llama ARN mensajero (abreviado como
ARNm). El ARNm es, por tanto, la molécula que va a llevar la información conteni-
da en un segmento concreto de ADN (es decir, un gen) hasta la maquinaria de fa-
bricación de proteínas. Como esta maquinaria está en el citoplasma, el ARNm debe
salir del núcleo celular a través de los poros nucleares y llegar a los ribosomas. Allí,
mediante un proceso denominado traducción, la información genética contenidaoriginalmente en la secuencia de nucleótidos del ADN será finalmente traducida en
una serie de instrucciones que permiten al ribosoma sintetizar una proteína concre-
ta. En los siguientes apartados veremos con detalle cada uno de estos procesos.
La Figura 1.4 contiene un vídeo en el que se ve el proceso general de expresión génica.
5
Visión general del proceso de expresión génica
CAPITULO 1 5/12/06 06:52 Página 5
 www.FreeLibros.me
1.3 La transcripción
El proceso general de transcripción consiste en la síntesis de una cadena de ARN por
la acción de una polimerasa de ARN, que lee la secuencia de nucleótidos contenida
en el ADN molde y sintetiza la nueva cadena de ARN utilizando nucleótidos libres.
En este proceso, la polimerasa se desliza por la cadena molde de ADN. La transcrip-
ción es un proceso cíclico que se repite, en el que hay varias fases esenciales: i) de-
terminar la región molde de ADN que ha de ser copiada, ii) iniciar la síntesis de ARN,
iii) estabilizar y modular la elongación del ARNm naciente, iv) terminar el proceso.
En eucariotas, la molécula encargada de la síntesis es una polimerasa de ARN
dependiente de ADN, es decir una polimerasa que usa un molde de ADN para sin-
tetizar un ARN. Este enzima es en realidad un complejo enzimático formado por
múltiples subunidades proteicas al que se unen también factores accesorios sin los
cuales no puede reconocer el lugar correcto de inicio de la síntesis. En eucariotas se
distinguen tres tipos de ARN polimerasas en función del tipo de genes que transcri-
ben. Los genes tipo I de eucariotas son los que codifican los ARN ribosomales que
veremos más adelante, y la polimerasa encargada de transcribir estos genes es la
ARN polimerasa I. La mayoría de los genes son genes tipo II, que codifican proteí-
nas y algunos ARN pequeños con funciones concretas; su transcripción corre a car-
go de la ARN polimerasa II. Finalmente, otros ARN pequeños, algunos ARN riboso-
males y los ARN transferentes son sintetizados por la ARN polimerasa III.
El primer paso en la transcripción es determinar en qué punto comienza. Esto vie-
ne determinado por la existencia de unas secuencias que definen la región del gen en
la que se une el complejo enzimático responsable de la síntesis. Estas secuencias se
llaman promotores, y son necesarios para que la transcripción pueda tener lugar. Un
promotor consta de varios pequeños motivos de secuencia, dispersos a lo largo de va-
rios cientos de pares de bases, a los que se unen los distintos factores proteicos ne-
cesarios para la transcripción. De hecho, la ARN polimerasa no se une al promotor
directamente, sino a través de otro complejo proteico denominado complejo de prei-
niciación. Por ejemplo, una de las secuencias más constantes en promotores de eu-
cariotas es la caja TATA, cuya secuencia consenso es 5’-TATATAAAT-3’; a esta se-
cuencia se une un factor proteico llamado «proteína de unión a TATA» (en inglés
TATA-binding protein, abreviado TBP). Sobre este factor se unen otros factores ac-
cesorios y dan lugar a un factor de transcripción llamado TFIID. De modo similar,
se forman otros factores de transcripción, que en el fondo no son más que proteínas
con algún dominio de unión al ADN, que reconocen específicamente las secuencias
presentes en los promotores y se unen a ellas. En el promotor eucariota típico de ge-
nes tipo II se forma un complejo con TFIID, TFIIA, TFIIB y TFIIF, al que se une la
ARN polimerasa II. La unión posterior de TFIIH y TFIIE añade otras actividades al
complejo, como la actividad helicasa necesaria para abrir la doble hélice y permitir
el copiado de una cadena, y hace que comience la transcripción. Por tanto, la for-
mación del complejo de preiniciación sobre promotores específicos es la forma de
controlar que la ARN polimerasa comience a sintetizar en el lugar correcto. Además,
los promotores eucariotas están también modulados por otros elementos más lejanos
del punto de inicio de la transcripción, llamados «potenciadores» (enhancers en in-
glés) o «silenciadores». Estos elementos son secuencias de ADN sobre las que se
6
El flujo de la inform
ación genética
CAPITULO 1 5/12/06 06:52 Página 6
 www.FreeLibros.me
unen factores proteicos que contribuyen a estabilizar y potenciar el complejo de prei-
niciación, en el caso de los potenciadores, o a impedir la transcripción en el caso de
los silenciadores. Existen muchos otros elementos de secuencia que forman parte de
promotores y que permiten regular dónde o cuándo se transcribe un gen. Muchos de
estos elementos tienen una localización precisa respecto al inicio de la transcripción:
por ejemplo, la caja TATA suele estar 25 nucleótidos en dirección 5’ al inicio de la
transcripción (es decir, en posición –25, ya que se considera como posición +1 la del
nucleótido donde se inicia la síntesis). Otros elementos frecuentes son la caja GC (se-
cuencia consenso GGGCGG) o la caja CAAT (CCAAT) en posición –100, a las que
se unen factores de transcripción específicos.
Con la fosforilación del extremo carboxilo-terminal de la ARN polimerasa II,
comienza el desplazamiento de la misma por la cadena molde de ADN y la síntesis
del ARN naciente. En este proceso, la polimerasa lee la secuencia de nucleótidos de
una de las cadenas de la doble hebra de ADN y sintetiza un polinucleótido comple-
mentario, reemplazando las timinas del ADN por uracilos. De este modo, se conser-
va perfectamente la información que estaba contenida en el ADN. En este sentido,
tiene importancia saber cuál es la hebra de la doble hélice que es utilizada como mol-
de, y a veces existe cierta confusión sobre la nomenclatura de las dos hebras del ADN
bicatenario. Es importante recordar que los polinucleótidos se sintetizan en dirección
5’→3’, y lo mismo sucede con la síntesis del ARN mensajero. Por tanto, la hebra mol-
de se lee en sentido 3’→5’ (es decir, antisentido) al tiempo que la transcripción pro-
cede en sentido 5’→3’. Por eso, el convenio es llamar «hebra codificante» o «hebra
sentido» a la hebra de la doble cadena de ADN que contiene exactamente la misma
secuencia de nucleótidos que el futuro ARNm transcrito (excepto por los uracilos).
A la hebra complementaria, que es la que se utiliza como molde, se le llama «hebra
molde» o «hebra antisentido».
DOBLE CADENA DE ADN
(GEN)
5’—ACGtataaGATCTCGATCGAGACTAGCTAGCTAGCTAgCGATCGAGCTA-3’
 |||||||||||||||||||||||||||||||||||||||||||||||||
3’-TGCTAGCTAGATAGCTAGCTCTGATCGATCGATCGATCGCTAGCTCGAT-5’
INICIO DE LA
TRANSCRIPCIÓNCAJA TATA
PROMOTOR Exon 1
7
La transcripción
La Figura 1.5 muestra una secuencia de ADN en la que se representan las principales
secuencias implicadas en la transcripción de un gen.
CAPITULO 1 5/12/06 06:52 Página 7
 www.FreeLibros.me
El proceso de elongación del transcrito naciente, al menos en eucariotas, está su-
jeto a numerosas pausas o paradas, debido a diversos obstáculos que la polimerasa
se puede encontrar al avanzar por el ADN molde. Como veremos en el siguiente ca-
pítulo, la doble hélice está empaquetada en forma de cromatina, y esto crea obstá-
culos importantes a los procesos de transcripción; además, el ADN puede haber su-
frido daños que a veces impiden el paso del complejo transcripcional. Por eso, es
importante la presencia de factores que favorecen la elongación, tales como algunos
factores de transcripción (TFIIF y TFIIS) o la elongina. La fosforilación de la ARN
polimerasa también favorece significativamente el proceso de elongación. La última
fase del proceso de transcripción es la terminación de la síntesis. Así como en pro-
cariotas la terminación está mediada por unas secuencias específicas en el ADN mol-
de, en eucariotas la terminación no sigue este modelo, sobre todo en el caso de la
ARN polimerasa tipo II. La síntesis habitualmente sigue hasta que se ha sobrepasa-
do el punto que constituirá el extremo 3’ del ARN mensajero, y la terminación está
ligada a los procesos de maduración del transcrito que se describen a continuación.
La Figura 1.6 contiene un enlace aun vídeo que muestra esquemáticamente el proceso 
de transcripción.
1.4 Regulación de la transcripción en eucariotas
Así como los mecanismos que regulan la expresión génica son bastante bien conoci-
dos en procariotas, y se han identificado distintos tipos de ARN polimerasas y de fac-
tores de transcripción implicados en el inicio de la transcripción, el panorama en eu-
cariotas es mucho más complejo. Sólo en los últimos años ha comenzado a
conocerse con cierto detalle el modo en que se regula la intensidad de la expresión
génica, su restricción a determinados tejidos y su variación en respuesta a estímulos
extracelulares. Aunque esta regulación se puede dar a varios niveles de complejidad,
en este apartado estudiaremos únicamente el nivel basal, que es el compuesto por las
secuencias promotoras, potenciadoras y silenciadoras del inicio de la transcripción y
los factores proteicos que se unen a ellas. El complejo basal de iniciación es una ma-
quinaria molecular gigante, con distintas actividades, cuyo ensamblaje es necesario
para la transcripción correcta tanto de genes constitutivos como de genes que se ex-
presan sólo en determinados tejidos.
Hasta hace unos 10 años, se conocían seis factores generales de iniciación de la
transcripción de genes clase II en eucariotas, llamados TFIIA, TFIIB, TFIID, TFIIE,
TFIIF y TFIIH. Éstos, junto con la ARN polimerasa II, son suficientes para iniciar la
transcripción de algunos genes in vitro, es decir, en el tubo de ensayo. Pronto se vio
que algunos de estos factores generales eran en realidad complejos formados por va-
rios componentes, y se identificaron un total de 23 proteínas además de las 12 sub-
unidades de la ARN polimerasa II; con esto, se propuso un modelo por el que todos
estos factores se ensamblan durante la iniciación de la transcripción. Los progresos
de los últimos años han revelado que en realidad el transcriptosoma es un complejo
mucho mayor de lo que se creía, con muchos otros componentes proteicos que llevan
a cabo otras funciones, como la remodelación de la cromatina o la reparación del
8
El flujo de la inform
ación genética
CAPITULO 1 5/12/06 06:52 Página 8
 www.FreeLibros.me
ADN. La regulación de la expresión génica se ejerce, a este nivel basal, mediante la
regulación del ensamblaje de la maquinaria proteica necesaria para la transcripción,
y en este sentido se ha estudiado especialmente el papel de los potenciadores y los ac-
tivadores. Los potenciadores (enhancers en inglés) son pequeños elementos de se-
cuencia del ADN a los cuales se unen unos factores proteicos llamados activadores,
y dicha unión estimula la transcripción. Dado que distintos genes tienen distintos ele-
mentos potenciadores y que no todas las células poseen los mismos activadores, este
sistema permite cierta especificidad en la respuesta a estímulos fisiológicos que reci-
be las células de distintos tejidos. Además, los activadores son proteínas modulares,
es decir, poseen distintos dominios de unión a potenciadores diferentes, lo cual regu-
la la afinidad y especificidad de las interacciones con los elementos de ADN.
El modo en que la unión de los activadores a los potenciadores es capaz de pro-
mover la trancripción, ha sido estudiado con profundidad en los últimos años. Estos
estudios han permitido aislar otro complejo proteico llamado mediador, constituido
también por varias subunidades, que interacciona con los activadores y con la ARN
polimerasa II y así transduce las señales proporcionadas por los potenciadores al
promotor basal de la transcripción. Se han identificado varios mediadores en huma-
nos, como TRAP, DRIP y otros; además de ayudar a estabilizar el complejo de ini-
ciación gracias a las interacciones con los activadores y los factores generales de
transcripción, los mediadores también pueden regular directamente la actividad de la
ARN polimerasa II.
La Figura 1.7 muestra el ensamblaje del complejo basal de transcripción por la acción 
de activadores y mediadores.
1.5 Maduración del ARN mensajero
En los genes transcritos por la ARN polimerasa tipo II, que en su inmensa mayoría
son genes codificantes de proteínas, el ARN mensajero primitivo debe ser procesado
para mejorar su estabilidad y para eliminar las regiones que no son codificantes. Ade-
más, en algunos casos es sometido a un proceso de corrección de errores o «edición».
En primer lugar, el ARN naciente es estabilizado mediante la adición de distin-
tos grupos en sus extremos 5’ y 3’, ya que los extremos libres de la molécula de ARN
son los más vulnerables a la degradación por unas enzimas llamadas exonucleasas.
El extremo 5’ es modificado mediante la adición del capuchón o caperuza (cap en
inglés), que consiste en la adición al primer nucleótido del ARN de una guanina mo-
dificada. Podemos representar el extremo 5’ de un ARN recién transcrito por 5’-
pppNpN…-3’, siendo cada p un grupo fosfato y N un nucleótido cualquiera (como es
habitual, el primer nucleótido de la cadena tiene tres grupos fosfato unidos al carbo-
no 5’ de la ribosa). La caperuza consiste en una guanina metilada en posición 7, que
se une por su carbono 5’ al primer grupo fosfato de la cadena. Por tanto, el enlace
entre la 7-metil-guanina y el primer nucleótido es atípico, ya que es un enlace 5’→5’
en vez del enlace 5’→3’ habitual.
El otro tipo de modificación del ARN mensajero tiene lugar en el extremo 3’ del
mismo, y consiste en el corte por un punto concreto y la posterior adición de una
9
M
aduración del ARN m
ensajero
CAPITULO 1 5/12/06 06:52 Página 9
 www.FreeLibros.me
cola de poli-adeninas. Es importante recordar que dicha cola no se añade al extremo
final del transcrito primario, sino que previamente tiene lugar un corte interno. El
punto de corte viene definido por la presencia de una señal de poli-adenilación en
el ARNm (cuya secuencia consenso es 5’-AAUAAA-3’) y un tracto rico en guaninas
y uracilos (tracto GU) localizado unos 30-40 nucleótidos por debajo de la señal de
poli-adenilación (es decir, en dirección 3’). El proceso está mediado por unos facto-
res proteicos que se unen a cada una de estas señales, cortan al ARN mensajero unos
20 nucleótidos por debajo de la señal de poli-adenilación, y comienzan a añadir ade-
ninas. La formación de esta cola poli(A) es muy importante para mantener la esta-
bilidad del ARNm y asegurar que éste pueda seguir siendo procesado y llegue a tra-
ducirse correctamente.
La Figura 1.8 contiene un enlace a un vídeo educativo que muestra esquemáticamente la adición 
de la caperuza y la formación de la cola poli(A).
Un último tipo de modificación que pueden sufrir algunos ARNm es la corrección
o «edición». La edición del ARN es un mecanismo de modificación co- o post-trans-
cripcional mediante el cual se cambian uno o varios nucleótidos de un ARNm, con
el resultado de que la secuencia del mensajero es ligeramente distinta de la que ve-
nía codificada en la secuencia genómica. Este fenómeno, bastante común en otras es-
pecies pero más raro en humanos, permite generar diversos ARNm a partir de un
mismo gen. Por ejemplo, la apolipoproteína ApoB48, que se produce en el intestino
para entrar a formar parte de los quilomicrones, se origina por efeco de un cambio
C→U en el que una citosina se des-amina para dar lugar a un uracilo; este cambio
crea un codón de parada en el ARNm de la ApoB100 y se produce una proteína más
corta de lo que sería esperado según la secuencia inicial. Un mecanismo similar está
implicado en el origen de enfermedades como la neurofibromatosis tipo I o el tumor
de Wilms, debidas a alteraciones en los genes NF1 y WT1, respectivamente.
La Figura 1.9 muestra esquemáticamente la edición del ARN que da lugar a la ApoB48.
1.6 El ayuste (splicing) y su regulación
Los ARN mensajeros de eucariotas tienen una característica muy importante: no son
codificantes en su totalidad, desde el principio al fin, sino que las regiones codifi-
cantes están interrumpidas por otras regiones no-codificantes. Es decir, no todos los
nucleótidos del ARN mensajeroson leídos para sintetizar proteínas, sino que existen
regiones codificantes llamada exones que alternan con otras regiones no-codifican-
tes llamadas intrones. Debido a esta configuración, el siguiente paso en la madura-
ción de un ARNm consiste en eliminar los intrones y pegar los exones para formar
un mensajero maduro que pueda ser traducido desde el principio hasta el fin y sin in-
terrupciones. Este proceso de corte y eliminación de intrones con empalme de los
exones se denomina en inglés splicing, término naútico que corresponde al castella-
no ayuste: la unión de dos cabos por sus chicotes. El ayuste es un proceso comple-
jo, porque hay que tener en cuenta que el número de exones e intrones de un gen
10
El flujo de la inform
ación genética
CAPITULO 1 5/12/06 06:52 Página 10
 www.FreeLibros.me
puede ser muy grande, y requiere una maquinaria proteica bastante sofisticada. En
primer lugar, es importante definir el punto exacto que delimita la frontera entre un
exón y un intrón, para que la maquinaria encargada del ayuste pueda actuar. Estos
puntos vienen determinados por secuencias específicas del ARNm. Por ejemplo, los
intrones de eucariotas comienzan en la práctica totalidad de los casos por los nu-
cleótidos Guanina-Uracilo (secuencia 5’ de ayuste, GU) y terminan en
Adenina–Guanina (secuencia 3’ de ayuste, AG). Estas secuencias se localizan dentro
de unas regiones más amplias que cumplen un consenso de secuencia concreto. Por
ejemplo, la secuencia de ayuste 5’ está formada por el consenso 5’-
AG|GU[A/G]AGU-3’ (la barra vertical indica el sitio de corte donde termina el exón
precedente y comienza el intrón; [A/G] significa que en esa posición puede haber
una A o una G). Por su parte, la secuencia de ayuste 3’ se ajusta al consenso 5’-
NCAG|G-3’ (siendo N cualquier nucleótido). Además, es importante la presencia de
una adenina 20-40 nucleótidos por arriba (es decir, en dirección 5’) de la secuencia
3’ de ayuste. Esta adenina se encuentra en la secuencia consenso 5’-
CU[A/G]A[C/U]-3’ (es la adenina en negrita y subrayada), es decir, precedida por A
o G y seguida por C o U, y se denomina punto de ramificación (en inglés, branch
point). Entre el punto de ramificación y la secuencia de ayuste 3’ se encuentra un
tracto rico en pirimidinas, es decir, formado casi exclusivamente por timinas o cito-
sinas. Finalmente, se han identificado pequeños elementos de secuencia en exones o
en intrones que actúan como potenciadores o silenciadores del proceso de ayuste, y
que tienen gran importancia en la modulación y regulación fina del proceso.
Exón 1 Exón 2
Intrón 1
GUC CAUUCA
ARNn p U1
AGU
…UGAC…..….[C/T] [C/T][C/T][C/T] [C/C/T]AG G
CAG GUA
11
El ayuste
(splicing)
y su regulación
La Figura 1.10 muestra esquemáticamente las distintas secuencias que son importantes
en el proceso de ayuste.
CAPITULO 1 5/12/06 06:52 Página 11
 www.FreeLibros.me
El proceso de ayuste implica varias reacciones enzimáticas que realizan cortes
endonucleolíticos y unión de extremos libres. El primer paso del proceso es el corte
en el sitio de ayuste 5’, justo por delante de la guanina del GU inicial del intrón. Este
extremo libre se une a la Adenina del punto de ramificación mediante un enlace fos-
fo-diéster 5’-2’, creando una estructura en lazo. Finalmente, se corta la secuencia de
ayuste 3’ por detrás de la guanina del sitio AG, lo que resulta en la liberación del in-
trón; los extremos libres de los dos exones flanqueantes son entonces religados. Las
moléculas que llevan a cabo estos procesos son unas ribonucleoproteínas nucleares
pequeñas (RNPnp), formadas por un ARN nuclear pequeño (ARNnp) y varias su-
bunidades proteicas. Aunque hay varios tipos de ARNnp, los que participan en el
proceso de ayuste se llaman U1, U2, U4, U5 y U6, y además dan su nombre a las co-
rrespondientes RNPnp. La RNPnp U1 se une a la secuencia de ayuste 5’ por com-
plementariedad de bases, ya que uno de sus extremos es complementario a la se-
cuencia consenso que rodea a la GU del extremo 5’ del intrón.
Las otras ribonucleoproteínas implicadas actúan en los siguientes pasos del pro-
ceso. La RNPnp U2 se une al punto de ramificación y esto hace que ambas RNP en-
tren en contacto y facilita la formación del lazo. A continuación, un complejo for-
mado por la RNPnp U4/6 y la RNPnp U5 se une a la región de ayuste 3’ y estabiliza
la formación de todo el complejo, llamado ayusteosoma (spliceosome en inglés), y
lleva a cabo el corte 3’ y la unión de los exones.
La Figura 1.11 contiene un enlace a un vídeo educativo que muestra esquemáticamente el proceso
de ayuste.
Como se puede suponer, en un genoma eucariota hay miles de sitios que cumplen
el consenso de secuencia necesario para funcionar como sitios de ayuste, pero sin
embargo sólo unos pocos participan en el procesamiento normal de los genes. De he-
cho, uno de los temas más interesantes en la regulación del ayuste es cómo se defi-
nen exactamente los límites de exones e intrones, de modo que la maquinaria de
ayuste los reconozca como tales. Aunque todavía quedan incógnitas por resolver, hoy
en día sabemos que hay otros elementos que cooperan para estabilizar el ayusteoso-
ma y permitir que se lleve a cabo el proceso. Entre estos elementos destacan la pro-
teínas SR (llamadas así por ser ricas en los aminoácidos Serina y Arginina), que
interaccionan con distintos componentes del ayusteosoma y se unen a secuencias
moduladoras como son los potenciadores exónicos del ayuste. Todas estas interac-
ciones tienen lugar antes de la unión de las RNPnp U4/6 y RNPnp U5, y son muy
importantes para definir los límites de exones e intrones y para regular el ayuste al-
ternativo, que es el fenómeno por el cual un mismo gen puede sufrir distintos patro-
nes de ayuste dependiendo del tejido o del tipo celular en que se lleva a cabo. El ayus-
te alternativo es un fenómeno muy común en humanos, y hace que los ARNm
resultantes de los distintos tipos de ayuste sean diferentes y por tanto tengan la ca-
pacidad de codificar proteínas distintas, lo que añade un nivel más de complejidad
en la función del genoma.
La Figura 1.12 muestra esquemáticamente los complejos que intervienen en la definición 
de los exones e intrones, así como el fenómeno de ayuste alternativo.
12
El flujo de la inform
ación genética
CAPITULO 1 5/12/06 06:52 Página 12
 www.FreeLibros.me
1.7 Traducción y código genético en eucariotas
El paso final en el proceso de la expresión génica es la fabricación de una proteína a
partir de la información contenida en la secuencia del ARNm. Conceptualmente, este
proceso es parecido a la interpretación de unas instrucciones escritas en un idioma,
siguiendo un código de interpretación concreto. Por eso, el proceso se denomina tra-
ducción. Si queremos traducir un lenguaje, en primer lugar necesitamos conocer el
diccionario para entender el significado de las palabras. En este caso, el diccionario
se conoce como código genético, que es la correspondencia entre la información
contenida en el ARNm y el tipo de aminoácido que se añade a la proteína durante
su síntesis. En el ARNm, las instrucciones están compuestas por palabras de tres le-
tras, es decir, cada tres nucleótidos forman una palabra que instruye a la maquinaria
de síntesis proteica a añadir un aminoácido concreto. Estas palabras de tres letras se
denominan codones. Es fácil calcular el número posible de palabras de tres letras que
se pueden formar con un alfabeto de cuatro letras (A, C, G y T): 43, es decir 64 pa-
labras distintas. Sin embargo, sólo hay 20 aminoácidos esenciales en las proteínas,
por lo que en teoría sólo serían necesarios 20 codones. Teniendo en cuenta las pala-
bras necesarias para la instrucción de iniciar la transcripción (AUG) y de terminarla
(UAG, UAA, UGA), todavía tenemos la posibilidad de codificar un mismo ami-
noácido con varios codones distintos. Para indicar este fenómeno se dice que el có-
digo genético es degenerado, en el sentido de que varias palabras a veces codifican
el mismo aminioácido.Por ejemplo, algunos aminoácidos como la leucina están co-
dificados por seis codones diferentes.
La Figura 1.13 muestra el código genético, con la tabla de equivalencias entre los distintos
aminoácidos y los codones que los codifican.
El hecho de que el código genético utilice palabras de tres letras implica que cual-
quier secuencia anónima, cuyo significado no conocemos, podría dar lugar al menos
a tres proteínas distintas dependiendo del punto de inicio de la traducción. En efec-
to, cualquier secuencia (supongamos la secuencia 5’-ACGACTGCGTACACGTC-3’,
por ejemplo) puede dividirse en bloques de tres palabras que configurarán instruc-
ciones distintas si comenzamos a contar desde el primer nucleótido (ACG, ACT,
GCG, etc. en nuestro ejemplo), desde el segundo (CGA, CTG, CGT, etc.) o desde el
tercero (GAC, TGC, GTA, etc.). Como puede observarse, las proteínas codificadas en
cada caso tienen una secuencia de aminoácidos diferente. Cada una de estas posibles
formas de leer una secuencia codificante se denomina marco de lectura, y siempre
existen tres marcos de lectura posibles (en secuencias de una sola hebra) porque el
cuarto marco de lectura es idéntico al primero, el quinto al segundo, etc. Esto plan-
tea el problema de cómo reconoce la célula cuál es el marco de lectura que debe usar
para sintetizar la proteína correcta. Esto se soluciona de dos formas: en primer lugar,
por la existencia de un codón de inicio (AUG, que codifica para el aminoácido me-
tionina), y en segundo lugar porque sólo uno de los tres marcos de lectura (llamado
por eso «abierto») da lugar a una proteína de longitud adecuada, ya que en los otros
dos marcos de lectura aparecen codones de parada y las proteínas codificadas resul-
tarían muy cortas y sin funcionalidad. En eucariotas, el codón de inicio está inclui-
13
Traducción y código genético en eucariotas
CAPITULO 1 5/12/06 06:52 Página 13
 www.FreeLibros.me
do en una secuencia consenso definida por Marilyn Kozak, que es 5’-
C[A/G]CCAUGG-3’. El marco de lectura abierto quedará definido, por tanto, cuan-
do el codón de inicio vaya seguido por un número suficiente de codones codifican-
tes hasta llegar a un codón de parada. Es importante tener en cuenta que la
traducción no comienza al principio del ARNm, y tampoco termina al final del men-
sajero. De hecho, en el gen y en el ARNm se pueden definir dos regiones no-tradu-
cidas, una en dirección 5’ al inicio de la traducción y otra desde el codón de parada
hasta el final, que flanquean la región codificante (el marco de lectura abierto). La
región no traducida 5’ (RNT-5’, en inglés UnTranslated Region o 5’-UTR) se extien-
de desde el inicio del ARNm (la caperuza) hasta el inicio de la traducción (codón de
iniciación); la RNT-3’ (en inglés 3’-UTR) se extiende desde el codón de parada has-
ta el inicio de la cola poli(A).
La maquinaria que lleva a cabo la traducción está constituida básicamente por
dos elementos: los ribosomas y los ARN de transferencia. El ribosoma es una partí-
cula compleja formada por subunidades de naturaleza ribonucleoproteica. En euca-
riotas, el ribosoma consta de una subunidad pequeña (coeficiente de sedimentación
40S) formada por un ARN y unas 30 proteínas, y otra subunidad grande (60S) for-
mada por 3 ARN y unas 50 proteínas. Los ARN transferentes (ARNt) son pequeñas
moléculas de ARN que llevan en uno de sus extremos un aminoácido, y actúan como
los adaptadores que leen la información de cada codón y la transforman en un ami-
noácido específico. Aunque se representan habitualmente con forma de trébol, en
realidad están doblados en forma de L. Las dos regiones más importantes de un
ARNt son el anticodón y el extremo 3’, que termina en los nucleótidos 5’-CCA-3’ y
lleva el aminoácido correspondiente. El anticodón está formado por los tres nucleó-
tidos que se emparejan con el codón por complementariedad, ya que la secuencia del
codón y la del anticodón son complementarias (ambas en dirección 5’→3’). Este em-
parejamiento no necesita ser siempre perfecto, sino que en ocasiones se permite un
 70 80 90 100 110 120
----:----|----:----|----:----|----:----|----:----|----:----|
atgTGGTTTTCTGTCCACTTCCCCTatgCAGGTGTCCAACGGATGTGTGAGTAAAATTCT
M W F S V H F P Y A G V Q R M C E * N S
 C G F L S T S P M Q V S N G C V S K I L
 V V F C P L P L C R C P T D V * V K F W
130 140 150 160 170 180
----:----|----:----|----:----|----:----|----:----|----:----|
GGGCAGGTATTACGAGACTGGCTCCATCAGACCCAGGGCAATCGGTGGTAGTAAACCGAG
G Q V L R D W L H Q T Q G N R W * * T E
 G R Y Y E T G S I R P R A I G G S K P R
 A G I T R L A P S D P G Q S V V V N R E
14
El flujo de la inform
ación genética
La Figura 1.14 muestra una secuencia de ADN con los distintos marcos de lectura posibles 
en el ARNm, señalando además las regiones no traducidas.
CAPITULO 1 5/12/06 06:52 Página 14
 www.FreeLibros.me
cierto «tambaleo» cuando uno de los tres nucleótidos no forma un emparejamiento
perfecto tipo Watson-Crick; precisamente, esto es lo que permite que varios codones
sean leídos por un mismo anticodón.
La Figura 1.15 muestra un ARNt, señalando el anticodón unido al codón. 
El proceso de traducción comienza con la fase de iniciación, mediante la unión
de la subunidad pequeña del ribosoma a la caperuza del ARNm maduro que provie-
ne del proceso de ayuste. A continuación, la misma subunidad ribosomal se despla-
za por el ARNm hasta encontrar el codón de iniciación apropiado, momento en que
se unen el ARNtMet (el ARN transferente que lleva el aminoácido Metionina) y la su-
bunidad ribosomal grande. El bolsillo del ribosoma donde está unido este primer
ARNt se llama sitio A (aminoacil). En este proceso participan también varios facto-
res de iniciación (eIF1 a eIF6, del inglés eukaryotic initiation factor). La segunda fase
de la traducción se llama elongación, y consiste en un proceso cíclico por el que el
ribosoma se desplaza tres nucleótidos y el ARNt que ocupaba el sitio A pasa a ocu-
par otra región del ribosoma llamada sitio P (peptidil). Gracias a este movimiento, el
siguiente codón del ARNm queda dentro del sitio A, a donde acude otro ARNt con
un anticodón complementario al nuevo codón. A continuación, la cadena peptídica
que «cuelga» del ARNt que ocupa el sitio P es transferida al aminoácido del ARNt
que ocupa el sitio A, con lo que la cadena polipeptídica se alarga en un aminoácido.
Estos procesos están ayudados y catalizados por los propios ARN ribosomales y por
dos factores de elongación (eEF1 y eEF2, del inglés eukaryotic elongation factor). La
terminación de la traducción tiene lugar cuando alguno de los tres codones de pa-
rada ocupa el sitio A, porque en vez de unirse un ARNt acude un factor de termina-
ción (eRF1 y eRF3 en eucariotas, del inglés eukaryotic release factor).
La Figura 1.16 contiene un enlace a un vídeo que muestra el proceso de traducción.
La traducción completa el proceso de expresión génica. Aunque actualmente se
está reconociendo el papel de los ARN no codificantes, que se transcriben y son pro-
cesados pero no se traducen en proteínas, el aforismo «un gen, una proteína» sigue
siendo válido en la mayoría de los casos. Igualmente, el «dogma central de la bio-
logía molecular» (es decir, la vía ADN→ARN→Proteína) no siempre se cumple, por-
que algunos virus y otros organismos tienen un genoma con ARN que se retro-trans-
cribe a ADN. En cualquier caso, las nociones y mecanismos que se han repasado en
este capítulo constituyen el punto básico de arranque para comprender la naturale-
za molecular de los genes y su función como portadores de información biológica.
15
Traducción y código genético en eucariotas
CAPITULO 1 5/12/06 06:52 Página 15
 www.FreeLibros.me
CAPITULO 1 5/12/06 06:52 Página 15
 www.FreeLibros.me
C A P Í T U L O 2
El ADN en el núcleo 
de la célula eucariota
Contenidos
2.1 La cromatinadurante el ciclo celular
2.2 Replicación de la cromatina en interfase
2.3 Formación y segregación de los cromosomas durante la mitosis
2.4 Gametogénesis y meiosis
2.5 Recombinación a nivel molecular
2.1 La cromatina durante el ciclo celular
En las células somáticas que tienen núcleo, la molécula de ADN está presente en una for-
ma peculiar llamada originalmente cromatina. Por la estructura de la doble hélice del
ADN, sabemos que la distancia entre nucleótidos es de 0,34 nm; si el genoma humano
haploide tiene 3 × 109 pares de bases, la longitud total del genoma en forma de doble hé-
lice lineal sería algo superior a un metro, y además cada núcleo contiene dos copias del
genoma. Todo este material debe entrar en el núcleo de una célula eucariota, cuyo diá-
metro medio es de 5 µm. Esto significa que el ADN ha de adoptar un alto grado de em-
paquetamiento para poder alojarse dentro del núcleo. Este empaquetamiento se lleva a
cabo mediante la unión de la doble hélice con varios tipos de proteínas para dar lugar a
una estructura que es, precisamente, la cromatina.
Las células eucariotas, al proliferar, siguen una serie de etapas en las que se llevan a
cabo los procesos necesarios para dar lugar a dos células hijas: duplicar los componen-
tes celulares, segregarlos espacialmente y dividir la célula de modo que las dos células re-
sultantes lleven todos los ingredientes necesarios para su correcto funcionamiento. Estas
etapas deben completarse en orden, de un modo altamente regulado, y constituyen lo que
CAPITULO 2 5/12/06 06:54 Página 17
 www.FreeLibros.me
se llama ciclo celular. En cada ciclo celular se distinguen por tanto varias fases: la
interfase (etapa en la que la célula duplica su contenido), la mitosis (etapa en la que
los componentes se separan a polos opuestos de la célula) y citoquinesis (separación
física de las dos células hijas). Probablemente sea la cromatina el componente celu-
lar en el que es más importante la duplicación y segregación correctas, ya que esto
va a asegurar que la información genética se transmita sin alteraciones. Por tanto, es
importante saber cómo se comporta la cromatina en las distintas etapas del ciclo ce-
lular. 
La Figura 2.1 muestra las distintas fases del ciclo celular de una célula eucariota y los cambios que
sufre la cromatina.
Durante la interfase, que es la etapa más larga del ciclo, la cromatina está sujeta
a un grado de empaquetamiento de unas 2 000 veces, es decir, lo que en su estado
natural ocuparía un tamaño de 2 000 mm se reduce a un tamaño de 1 mm. Esto se
consigue por la unión de la doble hebra de ADN con unas proteínas básicas llama-
das histonas, cuyos grupos positivos interaccionan con los grupos negativos del es-
queleto fosfato del ADN. Hay cinco tipos principales de histonas, llamadas H1, H2A,
H2B, H3 y H4, que se asocian entre sí para formar un octámero: dos moléculas de
H3 junto con dos moléculas de H4 forman un tetrámero, y dos dímeros H2A/H2B
forman otro tetrámero; ambos tetrámeros se asocian para formar un núcleo proteico
(octámero) alrededor del cual se enrolla la molécula de ADN. En concreto, 146 pa-
res de bases de ADN dan 1,65 vueltas alrededor del octámero, y sobre este com-
plejo se une la histona H1. Esta estructura, de unos 10 nm de diámetro, es lo que se
conoce con el nombre de nucleosoma, y es la unidad básica de organización de la
cromatina. Los nucleosomas están unidos entre sí por el filamento de ADN que se va
enrollando a su alrededor, como bolas en una cuerda, y esto da lugar a la fibra de
cromatina de 10 nm. En esta estructura, unos 200 pares de bases ocupan 10 nm, lo
que significa un grado de empaquetamiento de unas seis veces respecto al tamaño
lineal que ocuparía un fragmento de ADN de esa longitud (200 × 0,34 nm = 64 nm).
La Figura 2.2 muestra algunos modelos tridimensionales de un nucleosoma.
En condiciones fisiológicas, la fibra de 10 nm sufre un segundo grado de enrolla-
miento sobre sí misma para dar lugar a una estructura en forma de solenoide, con
seis nucleosomas por vuelta. Esta configuración constituye la fibra de 30 nm, en la
que el grado de empaquetamiento del ADN es de unas 40 veces. La fibra de 30 nm
sufre diferentes grados de empaquetamiento durante interfase y, especialmente, en la
mitosis, en la que la cromatina alcanza su empaquetamiento máximo (unas 10 000
veces) y da lugar a las estructuras visibles que llamamos cromosomas. Estos tipos de
alto grado de enrollamiento se consiguen porque la fibra de 30 nm forma asas que se
unen por su base a una estructura proteica que sirve como andamio. El andamio
(scaffold en inglés) está constituido por proteínas no histonas, de las que las princi-
pales son la Sc1 (idéntica a la topoisomerasa II) y la Sc2 o SMC2, que pertenece a
una familia de proteínas llamada SMC (Structural Maintenance of Chromosomes, en
inglés). Estas proteínas cumplen también un papel importante en el mantenimiento
18
El ADN en el núcleo de la célula eucariota
CAPITULO 2 5/12/06 06:54 Página 18
 www.FreeLibros.me
de la condensación de la cromatina (de ahí que también se les llame condensinas).
Las asas de la fibra de 30 nm se unen al andamio mediante unas secuencias ricas en
Adeninas y Timinas llamadas SAR (Scaffold Attachment Region en inglés), que tie-
nen gran afinidad por las proteínas del andamio. La estructura que resulta de este en-
rollamiento da lugar a una fibra de unos 300 nm de grosor, en la que el grado total
de empaquetamiento del ADN es de unas 2 000 veces. Las SAR son regiones impor-
tantes, dispersas por el genoma, que flanquean genes y a menudo se asocian con los
orígenes de replicación que veremos más adelante, por lo que se piensa que pueden
jugar un papel importante en la función y estructura de la cromatina. Finalmente, el
empaquetamiento máximo de la cromatina durante la mitosis se consigue al espira-
lizarse la fibra de 300 nm para dar lugar a una estructura de 600 nm de grosor (una
cromátide) en la que el ADN alcanza ya un grado de empaquetamiento de 10 000
veces.
2.2 Replicación de la cromatina en interfase
La interfase se subdivide en tres fases, de las que la más importante es la fase de sín-
tesis (fase S). En esta fase tiene lugar la duplicación de los componentes celulares,
incluyendo la cromatina. La fase S viene precedida y seguida por dos breves fases G
(de gap, hueco o hiato), fase G1 y fase G2 respectivamente. Uno de los principales
procesos que tienen lugar durante la fase S es la duplicación del contenido total de
ADN del núcleo, que se lleva a cabo mediante la replicación del ADN y el ensam-
blaje en nucleosomas para dar lugar a la nueva cromatina. El proceso de replicación
del ADN ya había sido sugerido por Watson y Crick en su descripción del ADN, al
darse cuenta de que la estructura de la doble hélice y la complementariedad de ba-
ses permitía un mecanismo sencillo de copia. Aunque durante algunos años se dis-
cutió cómo podría funcionar este mecanismo, Matthew Meselson y Franklin Stahl
demostraron que el ADN se replica de modo semi-conservativo, es decir, que cada
Doble hélice (2 nm)
Fibra de 30 nm
Nucleosoma
Fibra de 10 nm
Solenoide
19
Replicación de la crom
atina en interfase
La Figura 2.3 muestra los distintos grados de empaquetamiento de la cromatina.
CAPITULO 2 5/12/06 06:54 Página 19
 www.FreeLibros.me
una de las nuevas moléculas lleva una cadena de la molécula original y otra cadena
nueva, sintetizada tomando como molde la cadena complementaria. Posteriormente
se fueron descubriendo los detalles del proceso, e identificando los distintos compo-
nentes que lo llevan a cabo.
La Figura 2.4 muestra esquemáticamente la replicación semiconservativa, y contiene un enlace 
a un sitio educativo que explica los experimentos de Meselson y Stahl.
En eucariotas, la replicación comienza en múltiples sitios de una misma molécu-
la de ADN a la vez, llamados orígenes de replicación. Dada la velocidad de copia
de las polimerasas, una sola molécula de ADN polimerasa tardaría varios días en re-
plicar un cromosomacompleto, por lo que de hecho la replicación de la cromatina
se lleva a cabo en varios miles de orígenes de replicación a la vez. De todas formas,
aunque todos los orígenes funcionan durante la fase S, no todos se ponen en marcha
a la vez: en algunos orígenes la replicación comienza al principio de la fase S (repli-
cación temprana) y en otros comienza hacia el final (replicación tardía). En cada
origen de replicación se forma una burbuja de replicación, por acción de unas heli-
casas que abren la doble hélice para permitir la unión de las enzimas que llevarán a
cabo la síntesis, que son las polimerasas de ADN. Este primer paso está sujeto a una
fina regulación, ya que un mismo origen sólo se replica una vez en cada ciclo ce-
lular. De hecho, aunque la replicación a partir de un origen ya haya terminado y ése
mismo origen pudiese volver a iniciar otro ciclo de replicación en la misma fase S,
esto nunca sucede. Esta regulación se lleva a cabo por la acción de varios complejos
proteicos como el ORC (del inglés Origin Recognition Complex), el complejo de pro-
teínas MCM, y la geminina.
En cada burbuja se forman dos horquillas de replicación, apuntando en direc-
ciones contrarias. Como los eventos que tienen lugar en cada horquilla son idénticos,
basta estudiar lo que sucede en una de ellas. En primer lugar, una proteína de unión
a ADN mono-catenario, llamada RPA (Replication Protein A, en inglés) se une a las
cadenas que han sido separadas por las helicasas, y esto ayuda a mantener la burbu-
ja de replicación abierta. A continuación, a cada una de las cadenas se une una en-
zima llamada primasa, que es una ARN polimerasa dependiente de ADN (es decir,
sintetiza ARN tomando como molde ADN). La primasa sintetiza un pequeño ARN
que actúa como cebador (primer, en inglés, de ahí su nombre) para iniciar la síntesis
de ADN. Las polimerasas de ADN dependientes de ADN llevan a cabo la síntesis
de ADN elongando la cadena a partir del cebador de ARN generado previamente.
Esta síntesis tiene lugar de modo diferente en cada una de las cadenas, debido a la
distinta orientación que tienen. En la cadena que discurre en sentido 3’→5’, el ceba-
dor y la nueva cadena sintetizada sobre ella discurrirán en sentido 5’→3’, que es el
único modo en que pueden sintetizar ADN las polimerasas. Por tanto, en esta cade-
na, llamada cadena guía (leading strand en inglés) se puede sintetizar el nuevo ADN
de modo continuo. Por el contrario, la otra cadena de la molécula original discurre
en sentido 5’→3’, por lo que la nueva cadena sintetizada a partir de ésta (cadena re-
trasada, o lagging strand en inglés) debería crecer en sentido 3’→5’. Como esto no es
posible, ya que las polimerasas son incapaces de sintetizar ADN de esta forma, lo que
sucede es que se generan varios cebadores de ARN a pequeñas distancias, sinteti-
20
El ADN en el núcleo de la célula eucariota
CAPITULO 2 5/12/06 06:54 Página 20
 www.FreeLibros.me
zándose el ADN a partir de cada uno de ellos en sentido 5’→3’. El resultado neto es
la síntesis semi-discontinua de la cadena retrasada en sentido 3’→5’ gracias a la sín-
tesis de pequeños fragmentos (cada uno de los cuales fue sintetizado en sentido
5’→3’). Estos fragmentos se denominan fragmentos de Okazaki, y tienen una longi-
tud entre 100 y 1 000 nucleótidos en eucariotas. A medida que la horquilla de repli-
cación avanza, las helicasas continúan abriendo la doble hélice (ayudadas por otras
enzimas llamadas topoisomerasas, que relajan la tensión generada por delante de la
horquilla). Tras la síntesis en ambas cadenas, otras enzimas eliminan los fragmentos
de ARN que habían servido de cebadores, rellenan los huecos que quedan, y final-
mente unas ligasas sellan los últimos enlaces fosfo-di-éster para obtener una cadena
sin solución de continuidad.
Figura 2.5. En estas animaciones se muestra esquemáticamente el proceso de síntesis de la cadena
guía y de la cadena retrasada durante la replicación del ADN.
Aunque los complejos proteicos que intervienen en la replicación del ADN en eu-
cariotas no han sido caracterizados con tanta profundidad como en procariotas, hoy
en día se conocen bastantes detalles. De entre las diferentes ADN polimerasas iden-
tificadas en eucariotas, la síntesis de los cebadores de ARN es obra de la primasa,
que actúa junto con la ADN polimerasa αα. Ésta prolonga el cebador de ARN unos
pocos nucleótidos. El factor C de la replicación (RFC) desplaza la polimerasa α-pri-
masa, una vez que se ha formado el cebador de ARN, y trae consigo otra proteína
llamada PCNA (Proliferating Cell Nuclear Antigen, en inglés), que a su vez es la res-
ponsable de reclutar la polimerasa que lleva a cabo la síntesis de ADN. Éstas son la
ADN polimerasa δδ (en la cadena retrasada) y la ADN polimerasa εε (en la cadena
guía). El complejo PCNA-Polimerasa también incluye una endonucleasa (FEN1 en
eucariotas) que es la responsable de degradar los cebadores de ARN que son despla-
zados por la polimerasa. Finalmente, la ligasa que culmina el proceso en eucariotas
es la ADN ligasa I.
La Figura 2.6 contiene un vídeo que explica el proceso de replicación de la cadena retrasada, 
con los distintos complejos proteicos implicados. 
Es importante entender que la replicación del ADN no se refiere sólo a la dupli-
cación de la doble cadena, sino que implica también el ensamblaje de la cromatina
a medida que el ADN se va replicando. De hecho, durante la replicación sólo se al-
tera el empaquetamiento de la cromatina en una pequeña región: se estima que sólo
los dos nucleosomas por delante de la horquilla de replicación se ven afectados por
el avance de la maquinaria replicativa, y que unos 300 nucleótidos por detrás de la
horquilla ya se vuelven a ensamblar los nuevos nucleosomas para comenzar a formar
las dos nuevas fibras de cromatina. Este re-ensamblaje de la cromatina se produce en
varias etapas, comenzando con la unión del tetrámero H3-H4 en primer lugar, se-
guida de la deposición del tetrámero H2A/H2B; finalmente se añade la histona H1.
Lógicamente, es muy importante mantener la «memoria» acerca del estado en que
estaba una región de cromatina, para que las fibras hijas que se producen tras la re-
plicación mantengan el mismo estado que tenía la fibra original. Como veremos, esto
21
Replicación de la crom
atina en interfase
CAPITULO 2 5/12/06 06:54 Página 21
 www.FreeLibros.me
se consigue por modificaciones químicas de algunos aminoácidos de las histonas, que
se distribuyen por igual desde los nucleosomas de la fibra original a los nucleosomas
de las fibras recién formadas.
En el caso de moléculas lineales de ADN, como los cromosomas, la replicación
de los extremos terminales presenta un problema particular, puesto que el cebador
de ARN localizado en el extremo de la cadena retrasada no puede ser reemplazado
por ADN (como ocurre en la replicación normal). Por tanto, los cromosomas estarí-
an sujetos a una degradación progresiva de sus extremos con cada división celular, y
esto sería letal en células que se dividen muchas veces a lo largo de la vida de un in-
dividuo. Para evitar esto, los cromosomas de eucariotas tienen en sus extremos unas
estructuras especiales, llamadas telómeros, que protegen los extremos libres y evitan
la erosión asociada con la replicación. Estas estructuras están formadas por la repe-
tición una pequeña secuencia que está repetida múltiples veces al final del extremo
3’ de una de las cadenas de la doble hélice, cadena que por tanto será más larga que
la otra. Estas repeticiones, que en humanos están formadas por el hexanucleótido
TTAGGG, son añadidas por la acción de un enzima denominado telomerasa, que
consta de un componente ARN y de un componente enzimático con actividad poli-
merasa de ADN dependiente de ARN. Usando el componente ARN como molde, la
telomerasa va añadiendo nuevas repeticiones TTAGGG al extremo 3’ de una de las
cadenas del cromosoma. Esto posibilita que, durante la replicación, se sintetice el ce-
bador de ARN sobre las repeticiones teloméricas y no se pierdamaterial genético
propio del cromosoma. Las repeticiones que se pierden por causa de la replicación,
son después añadidas por acción de la telomerasa, lo que asegura la integridad de los
cromosomas durante toda la vida de la célula.
La Figura 2.7 incluye un vídeo que ilustra el problema de la replicación de los extremos y la acción
de la telomerasa.
Una consecuencia importante de la replicación es que el contenido total de ADN
de la célula se duplica antes de que los cromosomas se hagan visibles y se sepa-
ren en la mitosis, como veremos a continuación. Esto es precisamente lo que hace
que cada cromosoma, durante la mitosis, esté compuesto por dos cromátides herma-
nas pegadas. En este sentido, es importante evitar la confusión entre el número de
cromosomas y el contenido total de ADN de una célula. El número haploide de cro-
mosomas (número de cromosomas distintos, que es característico de cada especie) se
representa por la letra n; una célula somática tiene un número diploide (2n) de cro-
mosomas, ya que tiene dos copias de cada cromosoma (n parejas de cromosomas
homólogos). Antes de entrar en la fase S, una célula somática tiene un número 2n de
cromosomas (aunque no se ven en su forma típica, por estar la cromatina poco con-
densada) y un contenido total de ADN correspondiente a una cromátide por cro-
mosoma: esto se representa por la cantidad de ADN 2C. Al final de la replicación del
ADN, esa célula sigue teniendo 2n cromosomas (todavía invisibles) pero ahora tiene
un contenido de ADN igual a 4C, ya que tenemos dos cromátides por cromosoma.
Tras la mitosis, la segregación de las cromátides hermanas tiene como resultado que
cada una de las células hijas lleva otra vez 2n cromosomas y un contenido de ADN
22
El ADN en el núcleo de la célula eucariota
CAPITULO 2 5/12/06 06:54 Página 22
 www.FreeLibros.me
igual a 2C. De este modo, se mantiene el número de cromosomas y la cantidad total
de ADN tras las sucesivas divisiones celulares.
2.3 Formación y segregación de los cromosomas durante 
2.3 la mitosis
La cromatina es una estructura dinámica cuyo grado de empaquetamiento es máximo
durante la mitosis, y por eso en esta fase del ciclo celular se puede ver en una forma
especialmente condensada que da lugar a los cromosomas. Como hemos visto, esta
condensación se produce porque la fibra de cromatina de 300 nm se enrolla en for-
ma de espiral, proporcionando un grado de empaquetamiento unas cinco veces ma-
yor al observado durante la interfase. La mitosis es el proceso de división de las cé-
lulas somáticas, fundamental en la proliferación celular que tiene lugar durante el
desarrollo embrionario, el crecimiento y el mantenimiento de los tejidos. Supone una
reorganización drástica de todos los componentes celulares, pero muy especialmente
de los cromosomas, cuya segregación a cada una de las células hijas debe ser muy pre-
cisa y estar finamente regulada y coordinada con la separación física de las nuevas cé-
lulas (citoquinesis). Durante la mitosis, la maquinaria celular se especializa en llevar
a cabo los distintos procesos que tienen lugar en la célula: condensación de la cro-
matina, formación del huso mitótico, segregación de los componentes y fisión celular.
La primera fase de la mitosis (profase), comienza con la condensación de la cro-
matina, la ruptura de la envuelta nuclear y el desarrollo del huso mitótico. Es im-
portante recordar que la cromatina ha sido replicada en la fase S de la interfase pre-
via, por lo que cada cromosoma está ahora formado por dos cromátides hermanas.
Los microtúbulos se unen a los quinetocoros, estructuras proteicas formadas sobre
los centrómeros de cada cromosoma, y comienzan a transportar a los cromosomas
hacia el plano ecuatorial del huso.
En la fase siguiente (metafase) cada cromosoma está unido a microtúbulos proce-
dentes de los dos polos de la célula, de modo que todos los cromosomas están en el
ecuador del huso mitótico sometidos a fuerzas tensionales opuestas. Los mecanismos
moleculares que regulan la cohesión de cromátides hermanas comienzan a conocerse
cada vez mejor, y su implicación en patología humana está adquiriendo mayor rele-
vancia. Por ejemplo, se han identificado las proteínas cromosómicas necesarias para
mantener la cohesión de cromátides hermanas, que se denominan cohesinas. En eu-
cariotas funcionan como cohesinas al menos cuatro miembros de la familia SMC
(Structural Maintenance of Chromosomes), y en Xenopus (sapo) se ha identificado un
complejo que es necesario para la cohesión y que está formado por SMC1 y SMC3
junto con SCC1 (Sister Chromatid Cohesion 1). La cohesión se establece en la fase S
del ciclo celular, durante la replicación del ADN, aunque las cohesinas estaban ya pre-
sentes en la cromatina. Al replicarse el ADN, ambas cromátides quedan unidas por las
cohesinas en toda su longitud, distinguiéndose dos tipos de cohesión: la cohesión en
los centrómeros y la cohesión en los brazos cromosómicos. Ambos tipos de cohe-
sión están mediados por cohesinas, pero los procesos que los regulan son algo dife-
rentes. El mantenimiento de esta cohesión durante metafase es muy importante, por-
que es precisamente el balance entre las fuerzas de los microtúbulos y la cohesión de
23
Form
ación y segregación de los crom
osom
as durante la m
itosis
CAPITULO 2 5/12/06 06:54 Página 23
 www.FreeLibros.me
ambas cromátides lo que permite el alineamiento de los cromosomas en el plano ecua-
torial: la tendencia de los microtúbulos a separar las cromátides se ve contrarrestada
por la cohesión que las mantiene unidas, y gracias a esta cohesión se genera la ten-
sión necesaria para formar la placa metafásica. Es precisamente la pérdida brusca de
cohesión lo que permite la separación de las cromátides. Lógicamente, un compo-
nente fundamental en estos procesos es el quinetocoro, que en definitiva es el punto
de cada cromosoma donde se anclan los microtúbulos. Existe en células eucariotas un
sistema que comprueba que todos los quinetocoros estén unidos a microtúbulos y ac-
tiva un punto de control que impide la separación de las cromátides antes de conse-
guir la perfecta unión de todos los quinetocoros a sus microtúbulos respectivos.
La metafase va seguida por la anafase, en la que tiene lugar la segregación de las
cromátides hermanas de cada cromosoma hacia polos opuestos de la célula. La se-
paración simultánea de 46 pares de cromátides hermanas en la transición metafase-
anafase es un momento crucial del ciclo celular, y por tanto está finamente regulado.
Por ejemplo, es crítico que la cohesión se pierda en el momento adecuado, para que
cada cromátide pueda migrar a una célula hija sin errores. En general, se observa que
primero se pierde la cohesión en los centrómeros, y a medida que los microtúbulos
van «tirando» de los quinetocoros se va perdiendo la cohesión en los brazos. La se-
paración se lleva a cabo mediante la degradación de las cohesinas.
La última fase de la mitosis es la telofase, en la que los cromosomas vuelven a
descondensarse y se forma la envoltura nuclear alrededor de cada uno de los nuevos
núcleos que se han formado en cada polo de la célula. Terminada la mitosis, el pro-
ceso de división celular se completará con la citoquinesis, en la que los componen-
tes celulares se reordenan y se reorganiza el citoesqueleto para facilitar la divisón fí-
sica de la célula en dos células hijas.
La Figura 2.8 contiene un vídeo que ilustra las principales fases de la mitosis.
Dada la importancia de la separación de las cromátides hermanas en anafase, se
ha investigado mucho en torno a su regulación. Se sabe que la degradación de las co-
hesinas se lleva a cabo por dos mecanismos distintos: fosforilación (mediada por la
quinasa Polo) de algunos componentes, y proteolisis de otros. Las proteínas implica-
das en la proteolisis de la cohesinas se llaman separinas (o separasas). Se ha com-
probado que las separinas son capaces de romper el complejo cohesina porque de-
gradan la proteína SCC1 (una cohesina) durante el comienzo

Continuar navegando

Materiales relacionados

19 pag.
RCP avanzada - Diana Solorzano

User badge image

Desafio PASSEI DIRETO