Logo Studenta

Nuevas Tecnologías en Auditoría de Calderas

¡Este material tiene más páginas!

Vista previa del material en texto

ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E 
INDUSTRIAS EXTRACTIVAS 
 
NUEVAS TECNOLOGÍAS EN AUDITORÍA EN SISTEMAS DE VAPOR DE UNA 
REFINERÍA DE PETRÓLEO (CALDERAS) 
 
T E S I S 
 
QUE PARA OBTENER EL TÍTULO DE 
INGENIERO QUÍMICO PETROLERO 
 
P R E S E N T A N 
 
LIZBETH BALTAZAR GARCÍA 
VICTOR ALBERTO CABELLO RÍOS 
 
 
 DIRECTOR DE TESIS: ING. ARIEL DIAZBARRIGA DELGADO 
 
 
MÉXICO D.F. ENERO 2016 
INSTITUTO POLITÉCNICO NACIONAL 
 
NUEVAS TECNOLOGÍAS EN AUDITORÍA EN SISTEMAS DE VAPOR DE UNA REFINERÍA DE PETRÓLEO (CALDERAS) 
 
ESIQIE IPN 
 
 
ÍNDICE 
 
RELACIÓN DE FIGURAS i 
RELACIÓN DE TABLAS iii 
RESUMEN iv 
INTRODUCCIÓN v 
 
CAPÍTULO I. GENERALIDADES 1 
1.1 El problema energético 2 
1.2 El uso energético industrial 3 
1.2.1 Instalaciones térmicas en la industria 3 
1.2.2 Sistemas de generación 4 
1.2.3 Sistemas de distribución 4 
1.2.4 Equipos finales de proceso 5 
1.3 Calderas en la industria petrolera 5 
1.3.1 Procesos que constituyen una refinería 5 
1.3.2 Procesos que involucran vapor 8 
 
CAPÍTULO II. SISTEMAS DE MANEJO DEL VAPOR 14 
2.1 Descripción de un sistema de vapor 15 
2.1.1 Características del agua de alimentación para la caldera 16 
2.1.2 Generación de vapor 16 
2.1.3 Sistema de distribución de vapor y retorno de condensados 17 
2.2 Calderas 17 
2.2.1 Partes principales de una caldera 18 
2.2.2 Clasificación de las calderas 22 
2.2.2.1 Por la disposición de los fluidos 22 
NUEVAS TECNOLOGÍAS EN AUDITORÍA EN SISTEMAS DE VAPOR DE UNA REFINERÍA DE PETRÓLEO (CALDERAS) 
 
ESIQIE IPN 
 
2.2.2.2 Por su configuración 23 
2.2.2.3 Por el tipo de combustible 23 
2.2.2.4 Por el tiro 24 
2.2.2.5 Por el modo de controlar la operación 25 
2.3 Calderas en la industria petrolera 26 
 
CAPÍTULO III. METODOLOGÍA DE AUDITORIA EN SISTEMAS DE VAPOR 
(CALDERAS) 27 
3.1 Tipos de auditorías 27 
3.2 Metodología detallada para realizar auditorías energéticas 31 
3.3 Inspección de la caldera 32 
3.3.1 Quemadores 32 
3.3.2 Controles de la combustión 33 
3.3.3 Apariencia de la flama 34 
3.3.4 Monitoreo de la chimenea 35 
3.4 Toma de datos 35 
3.4.1 Procedimiento de prueba por el método directo 39 
3.4.2 Procedimiento de prueba por el método indirecto 40 
3.5 Métodos de medición, aparatos y técnicas 41 
3.5.1 Métodos para determinar la razón de aire/combustible 41 
3.5.2 Medición de flujo 42 
3.5.3 Medición de los productos de la combustión 42 
3.5.4 Aparatos usados en las mediciones 43 
3.5.5 Técnicas de medición 45 
3.5.6 Instrumentación en la chimenea 47 
3.5.7 Medidores misceláneos 49 
3.6 Resumen de la auditoría energética de las calderas 54 
3.7 Reporte final de la auditoria 58 
 
 
NUEVAS TECNOLOGÍAS EN AUDITORÍA EN SISTEMAS DE VAPOR DE UNA REFINERÍA DE PETRÓLEO (CALDERAS) 
 
ESIQIE IPN 
 
CAPÍTULO IV. NUEVAS TECNOLOGÍAS EN AUDITORÍAS PARA CALDERAS DE UNA 
REFINERIA DE PETRÓLEO 61 
4.1 Importancia de las auditorías en calderas 61 
4.1.1 Generación de vapor 62 
4.1.2 Consumo de vapor 63 
4.1.3 Retorno de condensado 64 
4.2 Material necesario para la realización de auditorías 64 
4.3 Nuevas tecnologías en auditorias de calderas 65 
4.3.1 Aplicaciones de los ensayos no destructivos 66 
4.3.1.1 Ensayo no destructivo por método de ultrasonido 67 
4.3.1.2 Ensayo no destructivo por método de partículas magnéticas 69 
4.3.1.3 Ensayo no destructivo por método de líquidos penetrantes 72 
4.3.1.4 Ensayo no destructivo por método de réplicas metalográficas 79 
4.3.1.5 Ensayo no destructivo por métodos radiográficos 80 
4.3.1.6 Ensayo no destructivo por método de video endoscopía 83 
4.4 Analizador de los gases de combustión y cámaras termográficas 84 
4.5 Ejemplo práctico de ensayos no destructivos en calderas 85 
 
CONCLUSIONES Y RECOMENDACIONES 90 
REFERENCIAS 92 
ANEXO 95 
 
 
 
 
 
 
 
RELACIÓN DE FIGURAS Y TABLAS 
 
ESIQIE-IPN Página i 
 
RELACIÓN DE FIGURAS 
Figura Descripción Página 
 
1.1 
 
Esquema a Resumen del Problema energético 
 
2 
 
1.2 Esquema de Instalación de vapor 3 
 
1.3 Sistema de Generación 4 
 
1.4 A Sistema de Distribución 4 
 
1.4 B Equipos finales de proceso 5 
 
1.5 Esquema General de Refinación 
 
7 
1.6 Unidad de Destilación 9 
 
1.7 Unidad de Destilación al vacío 10 
 
1.8 Unidad de Desintegración Catalítica Fluida 11 
 
1.9 Unidad de Tratamiento con Amina 12 
 
1.10 Unidad de Recuperación de Azufre 13 
 
2.1 Sistema de Generación y Distribución de vapor 15 
 
2.2 Entradas y salidas de la caldera 17 
 
2.3 Partes principales de una caldera 18 
 
2.4 Puerta del hogar 19 
 
2.5 Cámara de vapor, agua y alimentación de agua 22 
 
2.6 Clasificación de las calderas 22 
 
2.7 Acuotubulares 23 
 
2.8 Pirotubulares 23 
 
2.9 Tiro natural 24 
 
2.10 Tiro Presurizado 24 
 
2.11 Tiro equilibrado 24 
RELACIÓN DE FIGURAS Y TABLAS 
 
ESIQIE-IPN Página ii 
 
 
 
 
 
 
2. 12 
 
Tipo Manual 
 
25 
 
2.13 Tipo semiautomático 25 
 
2.14 Tipo automático 25 
 
3.1 Instrumentación para calcular la eficiencia de la caldera por el 
método directo 
40 
 
3.2 Instrumentación para calcular la eficiencia de la caldera por el 
método indirecto 
41 
 
3.3 Esquema de la medición de la presión del hogar 
 
46 
3.4 Esquema del sistema de muestreo de los productos de la combustión 46 
 
4.1 Incrustaciones en el lado agua de la caldera 62 
 
4.2 Esquema de elementos piezoeléctricos. 68 
 
4.3 Esquema de generación por método magnetoestrictivo 68 
 
4.4 Esquema de un equipo de rayos X 82 
 
4.5 Endoscopia 83 
 
4.6 Analizador de gases de combustión 84 
 
4.7 Cámara termográfica 86 
 
4.8 Video endoscopia en el Domo 87 
 
4.9 Video endoscopia en el Hogar 87 
 
4.10 Inspección visual en serpentines 88 
 
4.11 Inspección visual en serpentines 89 
 
RELACIÓN DE FIGURAS Y TABLAS 
 
ESIQIE-IPN Página iii 
 
RELACIÓN DE TABLAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabla Descripción Página 
 
3.1 
 
Tipos de Auditoría 
 
29 
 
3.2 Objetivos y Alcances 30 
 
3.3 Aplicación 30 
 
3.4 Hoja de Datos de monitoreo de la caldera 37 
 
3.5 Sistemas de medición 43 
 
3.6 Aparatos de medición 
 
44 
3.7 Rango típico de emisiones de 48 
 
3.8 Programa de auditoría 60 
 
RELACIÓN DE FIGURAS Y TABLAS 
 
ESIQIE-IPN Página iv 
 
RESUMEN 
Las auditorías en los sistemas de vapor, principalmente en las calderas, son una 
herramienta eficaz que permiten identificar los escenarios donde el consumo energético se 
realiza de forma ineficiente, estableciendo además las posibles mejoras de índole técnica, 
organizativa y ambiental, encaminadas al ahorro de energía del sistema, mediante un 
análisis técnico, principalmente de los componentes o grupos de componentes del sistema 
generador y se basa en los datos de operación existentes. 
Este trabajo está enfocado principalmente a exponer las nuevas tecnologías 
utilizadas en auditorías de calderas, las cuales buscan mejorar los procedimientos llevados a 
cabo en la operación de las calderas industriales en una refinería de petróleo. El primer 
capítulo muestra un panorama general del uso de vapor en la industria, así como también 
los procesos que involucran vapor en una refinería de petróleo. 
El capítulo segundo describe un sistema de vapor en general las partes de una 
caldera industrial y sus tipos, seguido de las calderas instaladas en la industria petrolera. 
 En el capítulo tercero se detalla lametodología de la auditoría en las calderas 
industriales, en la cual destaca la inspección de la caldera, procedimientos de prueba, 
métodos de medición y equipo, y parámetros que afectan al medio ambiente. 
Finalmente, en el capítulo cuarto se presentan las nuevas tecnologías y su aplicación 
en auditorías para calderas de una refinería de petróleo. 
Es necesario hacer conciencia que los ahorros potenciales de energía pueden 
llevarse a cabo por medio de una auditoría energética en sistemas generadores de vapor y 
que por lo tanto las nuevas tecnologías en auditoría juegan un papel muy importante dentro 
de cualquier industria. 
Con el desarrollo de nuevas tecnologías y una mejor comprensión de los aspectos de 
la operación de las calderas, se obtendrá un rendimiento máximo y se evitarán las posibles 
fuentes de calor no aprovechadas. De la misma manera corregir problemas y dar solución a 
las deficiencias de estos sistemas, reducirán costos operacionales, y por la vía de la 
optimización de estos sistemas, mejorar la competitividad de las empresas nacionales. 
RELACIÓN DE FIGURAS Y TABLAS 
 
ESIQIE-IPN Página v 
 
INTRODUCCIÓN 
La tendencia del encarecimiento de los combustibles que se utilizan actualmente en 
la industria para producir, particularmente, energía calorífica, ha desarrollado el uso de 
técnicas y sistemas que por una parte aumenten la eficiencia de los procesos y por otra 
reduzcan significativamente los consumos de combustible. Una de las partes principales en 
la operación de las industrias lo representan los sistemas generadores de vapor, por esta 
razón, el presente trabajo enmarca las tecnologías utilizadas en la actualidad para llevar a 
cabo una auditoría en los sistemas de vapor de una refinería de petróleo. 
Las auditorías energéticas que se han venido realizando en la industria petrolera en 
los últimos años, ponen de manifiesto el potencial ahorro energético. Como resultado de las 
mismas, ya se han puesto en marcha una serie de actuaciones encaminadas a alcanzar las 
mayores eficiencias energéticas en sus centros de trabajo. 
En este sentido, el actual modelo energético, basado en generar la energía a 
cualquier precio para satisfacer una demanda creciente, es insostenible para cualquier 
sociedad desarrollada. La preocupación por preservar el medio ambiente y aumentar el 
grado de autoabastecimiento energético, han llevado a los países a orientar sus políticas 
energéticas hacia una reducción del consumo de energía, incentivando el ahorro y su 
eficiencia. 
Las mejoras en eficiencia energética incluyen todos los cambios que conllevan una 
reducción de la cantidad de energía para un mismo nivel de actividad, teniendo en cuenta la 
satisfacción de los requerimientos de la sociedad actual de llevar asociado el menor costo 
económico, energético y ambiental posible para nuestro territorio. 
Los parámetros que deben ser cubiertos durante la auditoría, se establecen de 
acuerdo a normas y bases comunes de referencia para el análisis y cuantificación de las 
medidas de ahorro energético, incluidas en los estudios que se realicen en el sector 
industrial, garantizando además la eficiencia en los resultados derivados de su 
implementación, así como su confiabilidad. 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 1 
 
CAPÍTULO I 
GENERALIDADES 
La energía es un recurso vital en la actividad industrial y como tal debe ser 
considerado en la planificación, dirección y seguimiento por parte de la empresa. El ahorro 
y uso eficiente de la energía es el eje central de la estrategia en cualquier programa de 
ahorro de energía. 
La experiencia en la aplicación de programas de ahorro de energía ha demostrado 
que con el incremento de la eficiencia energética se obtienen beneficios económicos 
adicionales a la reducción en el costo de la energía, junto con la posibilidad de incrementar 
la producción y la reducción de emisiones contaminantes. Una auditoría energética consiste 
básicamente en el análisis de la situación a lo largo de un periodo de tiempo dado, con el 
fin de determinar cómo y dónde se utiliza la energía en sus distintas formas [1]. 
El vapor de agua es uno de los medios de transmisión de energía calórica de mayor 
efectividad en la industria, se estima que este servicio es utilizado por el 95% de las 
industrias como medio de calentamiento, por su fácil generación, manejo y bajo costo 
comparado con otros sistemas [2]. 
Tradicionalmente las auditorías en sistemas de vapor han centrado sus esfuerzos en 
aumentar o mejorar la eficiencia energética de los generadores térmicos y equipos de 
proceso (hornos, secadores, motores eléctricos, entre otros.) y, en ocasiones, de las redes de 
distribución, por lo que se han implementado nuevas metodologías que permitan abordar de 
forma estructurada cada uno de estos aspectos, mediante una secuencia que garantice la 
mejora de forma conjunta sin dejar a un lado algunos de sus aspectos esenciales. 
Lo anterior propone mejorar de una manera práctica, rápida y objetiva, los procesos 
en la industria y conocer las nuevas herramientas existentes para realizar auditorías en 
calderas. De manera que las nuevas tecnologías utilizadas para realizarlas, juegan un papel 
fundamental. Para ello, se evalúa energéticamente el funcionamiento de la instalación, se 
analizan las posibles mejoras del proceso o equipos y se determinan las inversiones a 
realizar y sus periodos de retorno, proponiendo la implantación de aquellas medidas de 
ahorro y eficiencia energética más apropiadas. 
I. GENERALIDADES 
 
ESIQIE-IPN Página 2 
 
1.1 EL PROBLEMA ENERGÉTICO 
 
El problema energético y medioambiental que existente a nivel mundial, se 
manifiesta a través de un horizonte finito y cercano para los combustibles no renovables y 
el calentamiento del planeta a través del efecto invernadero. Esto ha llevado a las diferentes 
administraciones a implementar políticas energéticas dirigidas a fomentar el uso racional de 
la energía y la eficiencia energética como se muestra en la Figura 1.1. 
 
 
 
 
 
 
 
 
 
Figura 1.1 Esquema a Resumen del Problema energético 
 
Así, la estrategia global y local en el ámbito energético a desarrollar en cualquier 
país o región, debe primar el ahorro de energía, por su efecto favorable sobre el medio 
ambiente y de la economía de la empresa. 
 
Las auditorías energéticas constituyen un instrumento de primer orden para hacer 
posible que el potencial ahorro energético del sector industrial de los países pueda ser 
ejecutado. En el sector industrial, estas auditorías persiguen un triple objetivo: 
1. Adecuar los consumos reales de la planta, revisando los equipos, los procesos y 
garantizando un buen mantenimiento de las instalaciones. 
2. Reducir las pérdidas de energía, introduciendo nuevas tecnologías que aumenten la 
eficiencia del consumo energético. 
3. Aprovechar las corrientes residuales y optimizar la operación de los servicios 
energéticos. 
I. GENERALIDADES 
 
ESIQIE-IPN Página 3 
 
La eficiencia energética, el ahorro y la diversificación de energía, el aprovechamiento de 
energías residuales y de las energías renovables, tienen como principal objetivo obtener un 
rendimiento energético óptimo para cada proceso o servicio en el que su uso sea 
indispensable, sin que ello signifique una disminución de la productividad, calidad o del 
nivel de confort del servicio. 
 
1.2 EL USO ENERGÉTICO INDUSTRIAL 
 
1.2.1 INSTALACIONES TÉRMICAS EN LA INDUSTRIA 
La industria requiere de una gran cantidad de energía térmica y eléctrica para llevar 
a cabo sus procesos productivos. La energía se utiliza como un recurso necesario e 
insustituible para elaborar los productos con las calidades exigidas. Por tanto, como 
cualquier otro servicio habrá que adquirirlo o transformarlo, adecuándolo a las necesidades 
de su utilización; transportarlo a los puntos de consumo y, por último, posibilitar su usofinal por los consumidores. Además, puesto que la energía no se destruye, habrá que 
recuperar la energía residual que quede tras su uso. 
En el caso de la energía térmica, ésta es llevada a los procesos por medio de los 
fluidos caloportadores*, que tomando la energía térmica del combustible, a través del 
sistema de generación, la transportan y transfieren para su consumo en los equipos de 
proceso como se muestra en la Figura 1.2. 
 
Figura 1.2 Esquema de Instalación de vapor 
 
*Fluido caloportador: Líquido o gas que absorbe o cede energía calorífica en sistemas de calefacción. 
I. GENERALIDADES 
 
ESIQIE-IPN Página 4 
 
1.2.2 SISTEMA DE GENERACIÓN 
La energía llega a la planta en forma de combustible líquido, sólido o gaseoso y se 
consume directamente en los equipos de generación térmica (Figura 1.3): 
• Calorífica: Si en ellos se produce un calentamiento de fluidos caloportadores, como por 
ejemplo las calderas de vapor, de agua sobrecalentada y agua caliente o los hornos de aceite 
térmico. 
• Frigorífica: Son aquellos sistemas en los que se realiza el enfriamiento de fluidos 
caloportadores, como por ejemplo las torres de enfriamiento o las plantas frigoríficas. 
 
 
Figura 1.3 Sistema de Generación 
 
1.2.3 SISTEMAS DE DISTRIBUCIÓN 
Los equipos de generación producen el calentamiento o enfriamiento de fluidos 
caloportadores (agua, vapor, aceite térmico, entre otros.) que han de ser distribuidos en la 
fábrica hasta los puntos de consumo finales como lo indica la Figura 1.4 A. 
 
 
 
Figura 1.4 A Sistema de Distribución 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 5 
 
La importancia en el mantenimiento de estas redes de distribución es crucial, pues 
sus ineficiencias implican aumentos en el consumo de energía, dado que son directamente 
pérdidas de esa energía ya transformada. 
 
1.2.4 EQUIPOS FINALES DE PROCESO 
Se podría entender por equipos de proceso (Figura 1.4 B) los consumidores últimos 
directos de energía, los cuales la requieren para realizar transformaciones sobre el producto 
procesado (reactores, hornos de proceso, secaderos, columnas de destilación, evaporadores 
de simple o múltiple efecto) o su calentamiento o enfriamiento (intercambiadores de calor). 
Los requerimientos térmicos de los equipos de proceso, a través de la red de 
distribución (vapor, agua caliente o fría), podrían ser satisfechos mediante el uso de 
corrientes residuales del proceso, disminuyendo así la demanda energética [3]. 
 
Figura 1.4 B Equipos finales de proceso 
 
1.3 CALDERAS EN LA INDUSTRIA PETROLERA 
 
1.3.1 PROCESOS QUE CONSTITUYEN UNA REFINERÍA 
Una refinería moderna debe contar con infraestructura suficiente para mantener la 
continuidad de su operación, es decir, tener flexibilidad para realizar mantenimientos. Los 
principales procesos (Figura 1.5) que conforman una refinería son [4]: 
Destilación combinada primaria y vacío: La función de estos procesos es descomponer o 
separar el petróleo crudo en sus diferentes componentes por medio de destilación 
atmosférica y al vacío. 
I. GENERALIDADES 
 
ESIQIE-IPN Página 6 
 
Coquización: El propósito principal de esta planta es procesar el residuo de vacío para 
obtener productos de mayor valor agregado como gas, gasolina y gasóleos. 
Hidrodesulfuración de gasolina: La función de este proceso es eliminar de la gasolina el 
contenido de productos indeseables como azufre y nitrógeno. 
Hidrodesulfuración de nafta catalítica: El objetivo de este proceso es disminuir el 
contenido de azufre por debajo de 15 partes por millón de la gasolina catalítica producto. 
Hidrodesulfuración de gasóleos de coquización y de vacío: La función principal de este 
proceso es disminuir el contenido de azufre en el diesel y en el gasóleo producto. 
Recuperación de Azufre: La función principal de este proceso es la recuperación del 
azufre de los gases ácidos. 
Reformación catalítica. La función principal de este proceso es la obtención de gasolina 
reformada de alto octano. 
Isomerización de pentanos y hexanos. El propósito de este proceso es incrementar el 
índice de octano de la gasolina de carga. 
Alquilación. Este proceso se utiliza para la obtención de gasolina (alquilado) de alto 
octano. 
Craqueo catalítico: El craqueo catalítico es el proceso de la refinería más importante y 
más ampliamente utilizado para la conversión de aceites pesados en gasolina y productos 
más ligeros. 
Reducción de viscosidad. Proceso relativamente moderado de eliminación de carbón, con 
el cual se incrementa el rendimiento de destilados intermedios y de destilados ligeros 
aunque en menor grado. 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 7 
 
 
DIAGRAMA GENERAL DE UNA REFINERÍA 
 
F
ig
u
ra
 1
.5
 E
sq
u
em
a
 G
en
er
a
l 
d
e 
R
ef
in
a
ci
ó
n
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 8 
 
1.3.2 PROCESOS QUE INVOLUCRAN VAPOR 
Hay un conjunto de procesos que no están directamente implicados en la producción 
de combustibles pero que tienen una misión auxiliar. Estos son los sistemas de producción 
de vapor, sistemas de refrigeración y otros servicios generales (distribución de corriente 
eléctrica, aire de instrumentación, agua potable, agua de servicio contra incendio, 
alcantarillas, colectores de residuos, entre otros.) [5]. 
Los principales procesos que involucran vapor dentro de una refinería se muestran a 
continuación: 
 Destilación combinada primaria y vacío: Aunque normalmente las columnas de 
destilación no utilizan hervidores, generalmente se incorporan varios platos por 
debajo de la zona de alimentación, introduciéndose vapor por el fondo de la 
columna para reducir la presión parcial de los hidrocarburos disminuyendo así la 
temperatura requerida para la vaporización como se muestra en la Figura 1.6 y 1.7. 
 
 Craqueo catalítico: En el proceso de craqueo catalítico de lecho fluidizado se 
emplea un catalizador en forma de partículas muy finas que se comportan como un 
fluido cuando se airean con vapor (Figura 1.8). 
 
 Unidad de tratamiento de gas con aminas: La unidad de tratamiento de gas con 
aminas elimina los gases ácidos (sulfuro de hidrógeno y dióxido de carbono) de las 
corrientes gaseosas de la planta de gas. Este proceso utiliza vapor en el fondo del 
regenerador (Figura 1.9). 
 
 Planta de recuperación de azufre: Para satisfacer las normas sobre medio ambiente, 
se debe recuperar al menos 98% del azufre de los gases ricos en sulfuro de 
hidrógeno. En este proceso se utiliza una caldera recuperadora de calor para 
aprovechar la energía generada en la reacción entre el gas ácido de la planta de 
amina, gas amargo del agotador de agua amarga y aire. El vapor producido podrá 
ser utilizado en otros procesos (Figura 1.10). 
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 9 
 
 
F
ig
u
ra
 1
.6
 U
n
id
a
d
 d
e 
D
es
ti
la
ci
ó
n
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 10 
 
 
 
Figura 1.7 Unidad de Destilación al vacío 
 
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 11 
 
 
 
 
 
 
 
 
 
F
ig
u
ra
 1
.8
 U
n
id
a
d
 d
e 
D
es
in
te
g
ra
ci
ó
n
 C
a
ta
lí
ti
ca
 F
lu
id
a
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 12 
 
 
 
 
 
F
ig
u
ra
 1
.9
 U
n
id
a
d
 d
e 
T
ra
ta
m
ie
n
to
 c
o
n
 A
m
in
a
 
 
I. GENERALIDADES 
 
ESIQIE-IPN Página 13 
 
 
F
ig
u
ra
 1
.1
0
 U
n
id
a
d
 d
e 
R
ec
u
p
er
a
ci
ó
n
 d
e 
A
zu
fr
e 
 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 14 
 
CAPÍTULO II 
SISTEMAS DE MANEJO DE VAPOR 
El vapor de agua es un servicio muy común en la industria, que se utiliza para 
proporcionar energía térmica a los procesos de transformación de materias primas a 
productos, por lo que la eficiencia del sistema para generarlo, la distribución adecuada y el 
control de su consumo, tendrán un gran impacto en la eficiencia total de la planta. Esta 
situación se refleja en los costos de producción delvapor y, en consecuencia, en la 
competitividad y sustentabilidad de la empresa. 
En México, la tercera parte de la energía utilizada a nivel nacional, es consumida 
por la industria, y de ésta, cerca del 70% proviene de combustibles fósiles, distribuidos en 
la forma siguiente: el gas natural como principal recurso (50%), seguido por el combustóleo 
(21%) y el coque (11%). Este requerimiento energético demandado por la industria lo 
conforman principalmente los sistemas de combustión directa, como son los calentadores a 
fuego directo y calderas, donde estas últimas se utilizan para la generación de vapor, el cual 
se requiere para suministrar trabajo mecánico y calor a los procesos [6]. 
El vapor es generado en una caldera a partir de la utilización de un combustible, 
generalmente un derivado del petróleo o biomasa, como medio aportante de energía, para 
transformar el agua en vapor a determinada presión y temperatura. Luego de ser generado y 
debido a su presión puede ser transportado al equipo o proceso consumidor sin necesidad 
de utilizar algún medio mecánico como una bomba. 
El vapor también puede ser utilizado para generar trabajo, aprovechando la presión 
del vapor generado en la caldera para producir movimiento. Para el primer caso la 
aplicación más común es un intercambiador de calor y para el segundo caso una locomotora 
(pistón) o turbina de vapor para generar electricidad. 
A parte de ser fácil de transportar por medio de una red de tuberías, el vapor es un 
excelente medio de transporte de energía, aunque también presenta algunas limitantes como 
la generación de condensado en las redes, en muchas ocasiones con problemas de 
corrosión. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 15 
 
Adicionalmente el agua con que se genera el vapor debe presentar determinadas 
características en cuanto a calidad, siendo necesario adecuarla utilizando sustancias 
químicas. 
Cuando se estudian sistemas donde se utiliza vapor es indispensable conocer la 
manera como este se usará, es decir, emplearlo como medio de transporte de energía de un 
lugar a otro, o para producir trabajo. También es necesario conocer el tipo de caldera en la 
que se produce el vapor. 
 
2.1 DESCRIPCIÓN DE UN SISTEMA DE VAPOR 
 
La Figura 2.1 muestra un sistema de generación y distribución de vapor cuyas partes 
principales se describen a continuación [7]. 
 
 
 
 
 
 
 
 
 
Figura 2.1 Sistema de Generación y Distribución de vapor 
 
Un sistema típico de vapor está constituido por tres secciones, las cuales conforman 
un ciclo. La primera sección corresponde a la Generación. Durante esta etapa, en la caldera, 
se aplica calor al agua de alimentación para elevar su temperatura. Después de que el agua 
se ha evaporado, pasa a la segunda etapa del ciclo de vapor: Distribución. Esto es 
simplemente el movimiento del vapor de agua en un sistema cerrado a su punto de 
consumo. Finalmente la tercera y última sección que completa el ciclo de vapor es el 
Retorno del condensado. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 16 
 
2.1.1 CARACTERÍSTICAS DEL AGUA DE ALIMENTACIÓN PARA LA 
CALDERA 
La calidad del agua de alimentación a la caldera repercute directamente sobre el 
buen funcionamiento de la misma, así como sobre la vida de muchos de los elementos que 
forman el equipo generador de vapor. 
 
Control de la calidad del agua: 
A continuación se presentan las variables más importantes que se deben de controlar 
en el agua de la caldera: 
Concentración de gases no condensables 
Sólidos disueltos totales (STD) 
Dureza 
PH 
Alcalinidad 
Conductividad eléctrica 
 
2.1.2 GENERACIÓN DE VAPOR 
La generación de vapor corresponde a la primera sección del sistema de vapor, en 
donde el equipo clave es la caldera. La función de las calderas es el de producir vapor o 
calentar agua a una temperatura superior a la del ambiente y presión mayor a la 
atmosférica. 
Las calderas forman parte de los equipos más utilizados por la industria y estos son 
los responsables del mayor porcentaje de consumo de combustibles; por lo tanto, 
mantenerlos trabajando a una buena eficiencia reditúa en beneficios importantes para las 
empresas. 
En la Figura 2.2 se presenta un diagrama de la caldera en donde se muestra las 
corrientes de entrada y de salida tanto de materia como de energía. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 17 
 
 
Figura 2.2 Entradas y salidas de la caldera 
 
2.1.3 SISTEMA DE DISTRIBUCIÓN DE VAPOR Y RETORNO DE 
CONDENSADOS 
El tipo de corrosión más común en estos sistemas es la causada por el dióxido de 
Carbono ( . El entra al sistema con el agua de alimentación en forma de sales de 
carbonato o bicarbonato (alcalinidad) que cuando se pone en contacto con el agua interior 
de la caldera a alta temperatura, estos compuestos se rompen formando dióxido de carbono 
que es transportado por el vapor y se absorbe en las tuberías y equipos que forma el sistema 
de condensados, transformándose en ácido carbónico ( ) [8]. 
 
2.2 CALDERAS 
 
Una caldera es un recipiente cerrado en el cual el agua, bajo presión, es 
transformada en vapor por la aplicación de calor. Los recipientes abiertos y aquellos que 
generen vapor a presión atmosférica no son considerados calderas. En el quemador la 
energía química en el combustible es convertida en calor, y es la función de la caldera 
transferir este calor al agua de la manera más eficiente [9]. 
 
 
 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 18 
 
2.2.1 PARTES PRINCIPALES DE UNA CALDERA 
Debido a que cada caldera dispone, dependiendo del tipo, de partes características, 
es muy difícil atribuir a todas ellas un determinado componente. Debido a lo anterior se 
analizarán las partes principales de las calderas en forma general, especificando en cada 
caso el tipo de caldera que dispone de dicho elemento (Figura 2.3) 
 
Figura 2.3 Partes principales de una caldera [10]. 
 
 Hogar: Es el espacio donde se quema el combustible. Se le conoce también con el 
nombre de " Cámara de Combustión". Los hogares se pueden clasificar según: 
a) Su ubicación 
-Hogar exterior 
-Hogar interior 
b) El tipo de combustible 
-Hogar para combustible sólido 
- Hogar para combustible liquido 
- Hogar para combustible gaseoso 
c) Su construcción. 
- Hogar liso 
- Hogar corrugado 
 Puerta del hogar: Como se muestra en la Figura 2.4 es una pieza metálica, 
abisagrada, revestida generalmente en su interior con refractario o de doble pared, 
por donde se alimenta el combustible al hogar y se hacen las operaciones de control 
del fuego. En calderas que queman combustibles líquidos o gaseosos, esta puerta 
es reemplazada por el quemador. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 19 
 
 
 
Figura 2.4 Puerta del hogar 
 
 Parrillas (emparrillado): Son piezas metálicas en forma de rejas, generalmente 
rectangulares o trapezoidales, que van en el interior del fogón y que sirven de 
soporte al combustible sólido. Debido a la forma de reja que tienen, permiten el 
paso del "aire primario" que sirve para que se produzca la combustión. Las parrillas 
deben adaptarse al combustible y deben cumplir principalmente los siguientes 
requisitos: 
- Permitir convenientemente el paso del aire 
- Permitir que caiga la ceniza 
- Permitir que se limpien con facilidad y rapidez 
- Impedir que se junte escoria 
- Los barrotes de la parrilla deben ser de buena calidad para que no se quemen o deformen. 
- Ser durables. 
 Cenicero: Es el espacio que queda bajo la parrilla y que sirve para recibir las 
cenizas que caen de ésta. Los residuos acumulados deben retirarse periódicamente 
para no obstaculizar el paso de aire necesario para la combustión. En algunas 
calderas el cenicero es un depósito de agua. 
 
 Puerta del cenicero: Accesorio que se utiliza para realizar las funciones de limpiezadel cenicero. Mediante esta puerta regulable se puede controlar también la entrada 
del aire primario al hogar. Cuando se hace limpieza de fuegos o se carga el hogar, 
se recomienda que dicha puerta permanezca cerrada con el objetivo de evitar el 
retroceso de la llama. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 20 
 
 Altar: es un pequeño muro de ladrillo refractario, ubicado en el hogar, en el 
extremo opuesto a la puerta del hogar y al final de la parrilla, debiendo sobrepasar a 
ésta en aproximadamente 30 cm. 
Los objetivos del altar son: 
- Impedir que al avivar, cargar o atizar los fuegos arrojen partículas de combustibles o 
escoria al primer tiro de los gases. 
- El altar forma también el cierre interior del cenicero. 
- Imprimir a la corriente de aire de la combustión una distribución lo más uniforme posible 
y una dirección ascensional vertical en todo el largo y ancho de las parrillas. 
 Mampostería: Se llama mampostería a la construcción de ladrillos refractarios o 
comunes que tienen como objeto: 
a) Cubrir la caldera para evitar pérdidas de calor y 
b) Guiar los gases y humos calientes en su recorrido 
Para que la mampostería sea un mejor aislante se dispone a veces en sus paredes de 
espacios huecos (capas de aire) que dificultan el paso del calor. En algunos tipos de 
calderas, se ha eliminado totalmente la mampostería de ladrillo, colocándose solamente 
aislación térmica en el cuerpo principal y cajas de humos. Para este objeto se utilizan 
materiales aislantes tales como lana de vidrio recubierta con planchas metálicas y asbestos. 
 Conductos de humo: Son los espacios por los cuales circulan los humos y gases 
calientes de la combustión. De esta forma se aprovecha el calor entregado por éstos 
para calentar el agua y/o producir vapor. 
 
 Caja de humo: Corresponde al espacio de la caldera en el cual se juntan los humos 
y gases, después de haber entregado su calor y antes de salir por la chimenea. 
 
 Chimenea: Es el conducto de salida de los gases y humos de la combustión para la 
atmósfera. Además tiene como función producir el tiro necesario para obtener una 
adecuada combustión. 
 
 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 21 
 
 Regulador de tiro o templador: Consiste en una compuerta metálica instalada en el 
conducto de humo que comunica con la chimenea o bien en la chimenea misma y 
que tiene por objeto dar mayor o menor paso a la salida de los gases y humos de la 
combustión. Este accesorio es accionado por el operador de la caldera para regular 
la cantidad de aire en la combustión, al permitir aumentar (al abrir) o disminuir (al 
cerrar) el caudal. Generalmente se usa en combinación con la puerta del cenicero. 
 
 Tapas de registro o puertas de inspección: Son aberturas que permiten inspeccionar, 
limpiar y reparar la caldera. Existen dos tipos, dependiendo de su tamaño: 
- Las puertas hombre (manhole). Por sus dimensiones permite el paso de un hombre al 
interior de la caldera. 
- Las tapas de registro (handhole). Por ser de menor tamaño sólo permiten el paso de un 
brazo. 
 Puertas de explosión: Son puertas metálicas con contrapeso o resorte, ubicadas 
generalmente en la caja de humos y que se abren en caso de exceso de presión en la 
cámara de combustión, permitiendo la salida de los gases y eliminando la presión. 
 
 Cámara de agua: Es el espacio o volumen de la caldera ocupado por el agua. Tiene 
un nivel superior máximo y uno inferior mínimo bajo el cual, el agua, nunca debe 
descender durante el funcionamiento de la caldera. 
 
 Cámara de vapor: Es el espacio o volumen que queda sobre el nivel superior 
máximo de agua y en el cual se almacena el vapor generado por la caldera. Mientras 
más variable sea el consumo de vapor, tanto mayor debe ser el volumen de esta 
cámara. En este espacio o cámara, el vapor debe separarse de las partículas de agua 
que lleva en suspensión- Por esta razón algunas calderas tienen un pequeño cilindro 
en la parte superior de esta cámara, llamado " domo" y que contribuye a mejorar la 
calidad del vapor. 
 
 Cámara de alimentación de agua: Es el espacio comprendido entre los niveles 
máximo y mínimo de agua. Durante el funcionamiento de la caldera se encuentra 
ocupada por vapor y/o agua, según sea donde se encuentre el nivel de agua (Figura 
2.5). 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 22 
 
 
Figura 2.5 Cámara de vapor, agua y alimentación de agua 
 
2.2.2 CLASIFICACIÓN DE LAS CALDERAS 
Las calderas se clasifican según diferentes criterios: la disposición de los fluidos, la 
configuración, el tipo de combustible que utilizan, el tipo de tiro, el modo de controlar la 
operación y el número de pasos como se muestra en la Figura 2.6 
 
Figura 2.6 Clasificación de las calderas [2]. 
 
2.2.2.1 POR LA DISPOSICIÓN DE LOS FLUIDOS 
En las calderas Acuotubulares (Figura 2.7) el agua circula por dentro de los tubos y 
los gases que transfieren la energía al agua se encuentran circundando los tubos. Son de 
bajo costo, simplicidad de diseño, exigen menor calidad del agua de alimentación, son 
pequeñas y eficientes, pero necesitan mayor tiempo para responder a caídas de presión o 
para entrar en funcionamiento. De acuerdo con la presión se pueden subdividir en calderas 
de baja presión (0-20 bar), media presión (20-60 bar) y alta presión (60-150 bar). 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 23 
 
En las calderas Pirotubulares (Figura 2.8) los gases circulan por dentro de los tubos 
y transfieren su energía al agua que circunda los tubos. Pueden ser puestas en marcha 
rápidamente, operan a presiones mayores a 20 bar, pero son de mayor tamaño, peso y costo, 
además deben ser alimentadas con agua de gran pureza. De acuerdo con la presión se 
pueden subdividir en calderas de baja presión (0-4 bar), media presión (4-10 bar) y alta 
presión (150-300 bar). 
 
 
 
 
 
 
 
 
 
Figura 2.7 Acuotubulares Figura 2.8 Pirotubulares 
 
2.2.2.2 POR SU CONFIGURACIÓN 
De acuerdo con la forma en que estén dispuestas se clasifican en Verticales y 
Horizontales. Generalmente las calderas verticales presentan eficiencias menores a las de 
configuración horizontal, debido a que la temperatura de los gases es alta. 
 
2.2.2.3 POR EL TIPO DE COMBUSTIBLE 
De acuerdo con el tipo de combustible las calderas se clasifican en las que utilizan 
combustibles sólidos, como carbón, bagazo o material vegetal. Estas son complejas de 
operar por la forma de alimentar el carbón, generan cenizas y suciedad y son de difícil 
control de la combustión. Su principal ventaja es que los combustibles son de bajo precio o 
en algunos casos gratis, por tratarse de subproductos de un proceso como por ejemplo el 
bagazo de caña de azúcar en la industria azucarera. Las de combustible líquido utilizan 
crudos livianos o pesados que deben ser atomizados para facilitar la mezcla con el aire al 
momento de darse la combustión. 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 24 
 
Las calderas de combustible gaseoso como gas natural son de fácil control de 
combustión y requieren menos frecuencia de mantenimiento, pero generalmente son más 
costosas de operar por el costo del combustible, además requieren mayores cuidados por 
tratarse de combustibles bastante explosivos. Su transporte se realiza por la propia presión 
del sistema lo que evita la presencia de piezas o elementos en movimiento. 
 
2.2.2.4 POR EL TIRO 
De acuerdo con la forma como ingresa el aire de combustión y la salida de los gases 
a las calderas se clasifican en las de tiro natural (Figura 2.9), en las que la entrada y salida 
del aire de combustión y los gases no son asistidas por ventiladores, sino que el flujo de 
ellos se da por circulación natural debido a la diferencia de densidad de estos fluidos. 
Las presurizadas (Figura 2.10), son aquellas que tienen unventilador de tiro forzado 
para inyectar el aire de combustión al hogar, pero los gases producto de la combustión salen 
por la presión generada en el hogar. 
Las de tiro equilibrado (Figura 2.11) son aquellas que tienen un ventilador de tiro 
forzado que inyecta aire de combustión y un ventilador de tiro inducido que extrae los 
gases de combustión de la cámara, manteniendo la presión del hogar ligeramente negativa 
(presión de succión). 
 
 
 
 
 
Figura 2.9 Tiro natural Figura 2.10 Tiro Presurizado 
 
 
 
 
 
 
Figura 2.11 Tiro equilibrado 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 25 
 
2.2.2.5 POR EL MODO DE CONTROLAR LA OPERACIÓN 
De acuerdo con el tipo de control y la manera como se suministra el combustible las 
calderas pueden ser de tipo manual, semiautomático y automático. En las de tipo manual 
(Figura 2.12) la alimentación de carbón es realizada por un operario de forma irregular de 
acuerdo con la señal de presión de la caldera, es decir cuando la presión cae más allá de un 
valor mínimo determinado, indica que la planta está demandando vapor y que requerirá 
alimentación de combustible para mantener la presión de operación del sistema. El control 
sobre la combustión es casi nulo y generalmente presentan baja eficiencia térmica. 
 
Las de tipo semiautomático (Figura 2.13), requieren la asistencia de un operario 
para alimentar tolvas, estas a su vez entregan a la caldera el combustible de acuerdo a la 
demanda de vapor de los procesos productivos. Presentan mejor eficiencia térmica que la 
manuales, pero requieren una mayor inversión inicial. 
 
Las de tipo automática (Figura 2.14), en operación normal no requieren de la 
asistencia de operarios. 
 
 
 
 
 Figura 2.12 Tipo Manual Figura 2.13 Tipo semiautomático 
 
 
 
 
Figura 2.14 Tipo automático 
II. SISTEMAS DE MANEJO DE VAPOR 
 
ESIQIE-IPN Página 26 
 
2.3 CALDERAS EN LA INDUSTRIA PETROLERA 
Las calderas utilizadas en la industria de la refinación de petróleo son de tipo 
pirotubulares las cuales suministran aproximadamente de 200 ⁄ a 300 
 
 ⁄ de 
vapor con una eficiencia del 85%-89% de acuerdo a la ASME Power test code, Código 
PTC para pruebas de potencia en unidades de generación de vapor, y eficiencia en calderas 
de Council of Industrial Boiler Owners, Energy Efficiency Handbook (Anexo A Calderas 
instaladas en Pemex Refinación) [11]. 
A pesar del uso de combustibles convencionales, como carbones, fuel-oil o gas 
natural, la industria de la refinación de petróleo en México se ha preocupado por el uso de 
calderas que utilicen diversos combustibles alternativos como hullas, lignitos, antracita, 
coque, residuos forestales, residuos urbanos e industriales, gases pobres y muchos otros 
subproductos que aseguran tener una fuente de energía segura y económica [12]. 
Es así que las calderas instaladas en las refinerías del país emplean distintas calderas 
que se ajustan a las condiciones de vapor demando siguiendo las normas de protección al 
medio ambiente [13]. 
 
 
 
 
 
 
 
 
 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 27 
 
CAPÍTULO III 
METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR 
(CALDERAS) 
Por definición y en forma general, una auditoría energética proporciona un 
diagnóstico del estado energético de un equipo, un proceso, una planta e incluso una 
perspectiva industrial de un país. El objetivo de la auditoría energética es determinar cuanta 
energía se suministra, cuanta es teóricamente necesaria, cuanta en realidad se utiliza o se 
transforma en trabajo y cuánta se desperdicia, detectando donde, como y cuanto se 
consume con el fin de implantar medidas de corrección, control y comparación, que 
permitan el uso eficiente de la energía. 
Para lograr el objetivo anterior, el consumo óptimo de la energía resulta de una serie 
de estudios basados en balances de materia y energía (de exergía principalmente), análisis 
entálpicos y entrópicos y, en algunos casos, de simulaciones de proceso. 
3.1 TIPOS DE AUDITORÍAS 
 
Una regla general es que una auditoría energética provee de beneficios adicionales 
para cualquier planta construida 5 o más años antes, cuando la Ingeniería Económica no 
tenía el impacto que obtiene hoy en día [14]. La Auditoría puede ser de tres tipos: 
 
Auditoría de Primer Grado: 
Consiste en la inspección visual del estado de conservación de las instalaciones y en 
el análisis de los registros de operación y mantenimiento que rutinariamente se llevan en 
cada instalación. Al realizar este tipo de auditoría se deben anotar los detalles que se 
detectan a simple vista y se consideran como desperdicios de energía, como fugas de vapor, 
falta de aislamiento, mala combustión, equipos que operan innecesariamente, entre otros. 
En este tipo de auditoría no se buscar efectuar un análisis exhaustivo del uso de la energía, 
sino detectar las posibilidades de ahorro de aplicación inmediata y de nula o baja inversión. 
 
Auditoría de segundo grado: 
También se conocen como auditoría de campo y es más completa que la anterior, ya 
que en ella se incluye información sobre el consumo de energía por cada actividad; así 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 28 
 
como individualmente por equipo. Con los datos obtenidos se elaboran balances de materia 
y energía evaluándose la eficiencia con la que se usa la energía en las áreas sustantivas. 
Para realizar este tipo de auditoría es conveniente contar con la adecuada instrumentación y 
control para comparar los valores de diseño y determinar las variaciones en la eficiencia; 
sin embargo es conveniente mencionar que en caso necesario pueden efectuarse 
estimaciones basadas en cálculos de ingeniería. 
Auditoría de tercer grado: 
Este tipo de auditoría requiere un estudio más profundo de las condiciones de 
operación y una base de datos más precisa, por lo que no se pueden admitir estimaciones 
por falta de instrumentación. 
Se requiere un análisis más exhaustivo, con la información completa de flujo de 
balances de materia y energía, propiedades y condiciones de operación de las diferentes 
corrientes. En esta auditoría es común el uso de toda la instrumentación en simuladores de 
proceso con el fin de analizar la interrelación de equipos y procesos, y de evaluar los 
efectos de los cambios de condiciones de operación en el consumo específico de energía. 
Una vez identificados los potenciales ahorros energéticos y las fuentes de 
desaprovechamiento, corresponde desarrollar una etapa en la que se proponen las diferentes 
soluciones para corregir las desviaciones encontradas. Así se puede establecer un programa 
de actividades en las que se distinguen las de carácter inmediato a corto, mediano y largo 
plazo [15] [16]. 
En la Tabla 3.1 se mencionan las principales características de cada uno de los tres 
tipos de auditorías. Los objetivos y los alcances se muestran en la Tabla 3.2 y se enlistan 
los principales resultados obtenidos en la Tabla 3.3. 
Cuando se desea aplicar una auditoría es importante planear con anticipación las 
principales actividades a desarrollar, las áreas que se desean cubrir, las reuniones de 
compendio, entre otros. En resumen elaborar un programa de auditoría que garantice el 
orden, comunicación y el abarcar todas las áreas de consumo energético. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 29 
 
La fijación de indicadores es una herramienta de comparación necesaria que permite 
saber si los consumos energéticos de las calderas se han visto reducidos o si pueden 
reducirse aún más, sin el cambio en las condiciones de operación del sistema. 
El objetivo de la auditoría en calderas es el de examinar las condiciones existentes 
del quemador, hogar, sistemas de evaporación y las condicionesde la combustión para 
detectar y eliminar las obvias fuentes de ineficiencia. El diagnóstico puede servir para la 
preparación de programas más ambiciosos de mejoramiento de la eficiencia a través de las 
modificaciones de operación y/o la adición de equipo recuperador de calor. 
 
 
Tabla 3.1 Tipos de Auditoría 
Características 
TIPO DE AUDITORIA 
Primer Grado Segundo Grado Tercer grado 
Objetivo Inspección y Registro Cuantificar Ingeniería 
Alcances Enfatizar costos Incluir bases de Cálculo Constituir planes 
Grupo auditor 
3 Auditores incluyendo al 
Ing. de planta. 
4 Auditores incluyendo 
un consultor. 
4 Auditores incluyendo 2 
consultores. 
Duración 1 día. de 3-5 días de 4-16 semanas 
Frecuencia Cada 6-12 meses Una cada año Cada 3 años 
Costo/Beneficio 1/4.3 1/4.9 1/1.7 
Preparación 
Visitas pre-auditoría no 
necesaria. 
Visitas pre-auditoría y 
asambleas de lo que se va 
a hacer. 
Visitas pre-auditoría y 
esquemas de lo que se va 
a hacer. 
Programa Frecuentemente por área. 
Reuniones de apertura y 
clausura. 
Reuniones semanarias. 
Reporte 
Lista de descubrimientos 
esperado una semana 
después de la auditoría. 
Costos base, esperado un 
mes después de la 
auditoría. 
Sugerencias en 
Ingeniería, esperado tres 
semanas después de la 
auditoría. 
Aplicación de 
Resultados 
Define funciones de 
responsabilidad. 
Establece el 
cumplimiento del 
programa de 
Administración 
Energética. 
Define completamente el 
programa del Proyecto. 
 
 
 
 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 30 
 
Tabla 3.2 Objetivos y Alcances 
TIPO DE AUDITORIA 
 Primer grado Segundo grado Tercer grado 
Objetivo 
Revisar más áreas 
energéticas y encontrar 
nuevas oportunidades de 
ahorro. 
Identificar y cuantificar 
mayores oportunidades de 
ahorro energéticos. 
Define, cuantifica, idea y 
asigna prioridades para 
todas las oportunidades de 
ahorro. 
Contabilizar el 70% de la 
energía usada. 
Cuantificar el 85% de la 
energía usada. 
Cuantificar el 90% de la 
energía usada. 
Obtener información 
inmediata de la auditoría. 
Obtener información más 
detallada a la auditoría. 
Grupo de proyectos sin 
costo, y energía usada. 
Alcances 
Grupo de proyectos que 
pueda profundizar de 
inmediato y que requiere 
de aprobación de alto 
nivel. 
Grupo de Proyectos cuya 
naturaleza requieran 
capital. 
Desarrollar cálculos 
detallados de ingeniería y 
determinar el consumo de 
energía y costos. 
Poner de relieve costos de 
energía totales e incentivos 
económicos. 
Perfilar nuevos caminos 
en programas de 
administración energética. 
Establecer la necesidad e 
iniciar planes de 
capacitación. 
Incluye recomendaciones 
generales que involucran 
todos los componentes del 
proceso productivo. 
Instituir y afinar los 
detalles sin costo con 
supervisores de 
departamento de manera 
inmediata. 
Instituir recomendaciones 
sin costo y con poca 
inversión. 
 
Tabla 3.3 Aplicación 
TIPO DE AUDITORIA 
 Primer grado Segundo grado Tercer grado 
Aplicación 
Determina e informa 
claramente y da 
recomendaciones dentro de 
un inventario (programa). 
Determina e informa 
responsabilidades de función y 
establece un programa 
detallado para proyectos de 
capital. 
Asigna el tipo de personal 
para cada proyecto generado 
en las recomendaciones. 
Instituye la selección, 
puesta en marcha y 
mantenimiento de detalles 
en ahorro energético. 
Define necesidades de capital 
para los siguientes dos años. 
Determina programas 
completos para posteriores 
proyectos. 
Decide cuándo y la 
necesidad de una auditoría 
de segundo o tercer grado. 
Establece la frecuencia de 
visita con un reporte de 
sistema. 
Define e informa las 
necesidades de capital para 
los siguientes 5 años. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 31 
 
3.2 METODOLOGÍA DETALLADA PARA REALIZAR AUDITORÍAS 
ENERGÉTICAS 
 A continuación se presenta una metodología para realizar, en forma general una 
auditoría energética [17]. 
1. Reunión de las partes que intervendrán en la auditoría. 
Los temas a tratar serán: 
a) Intención, alcance, objetivos. 
b) Entrenamiento sobre los procesos de la auditoría. 
c) Desarrollo de los criterios para la auditoría. 
d) Selección de los sistemas en los que se pretenda realizar la auditoría. 
 
2. Auditorías preliminares. 
a) Realizar visitas de campo. 
b) Análisis de los indicadores representativos para conocer en forma realista los usos 
de la energía. 
c) Estimación del potencial de ahorro a través de los indicadores anteriores por equipo 
o sistema generador de vapor. 
 
3. Auditoría Energética detallada: procesos claves intensivos en el uso de la energía. 
4. Realización de la auditoría energética. 
5. Identificación de las principales pérdidas. 
6. Identificación de las opciones para ahorrar energía; tamaño y estimación del costo 
de equipo. 
7. Estimación de los ahorros de energía por año para cada opción. 
8. Cálculo de la amortización de la inversión. 
9. Verificar si el ahorro logrado es útil, sino es así repetir las etapas 6, 7 y 8. 
10. Selección del sistema propuesto con mejor tasa de retorno de la inversión. 
11. Jerarquización de los proyectos por monto del capital de inversión disponible. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 32 
 
12. Eliminación de los proyectos no justificables económica y técnicamente que no 
reúnan una tasa interna de retorno mínima. 
13. Clasificación de los proyectos económicamente factibles para todas las Auditorías 
realizadas por el tipo de la tecnología utilizada. 
14. Estimación de los tiempos para las inversiones y los ahorros de energía. 
15. Impacto de las medidas tomadas. 
16. Identificación del impacto de la conservación de energía en diferentes escenarios. 
 
3.3 INSPECCIÓN DE LA CALDERA 
Un aspecto importante a considerar y que esta aunado con la reducción en los 
requerimientos de exceso de aire, es la reducción en las emisiones de óxidos de tipo , 
por lo que además de mejorar la eficiencia global de la caldera, se pueden conseguir 
lineamientos que permitan la operación del sistema de acuerdo a las condiciones 
ambientales de la localidad en el que esté la planta. 
Aun cuando el equipo de la caldera se encuentre en malas condiciones de operación, 
pueden lograrse condiciones “mejoradas” y la reducción en las emisiones de pueden 
encontrarse bajo estos procedimientos de la inspección en las calderas. Sin embargo los 
mejoramientos en la eficiencia de la caldera bajo un estado deteriorado del equipo pueden 
ser menores si se encuentran en las apropiadas condiciones de trabajo. Para obtener los 
máximos ahorros del combustible y las más bajas emisiones por la chimenea, es necesario 
que sea examinada la condición de la caldera antes de realizar la auditoría y que sean 
hechos los trabajos de mantenimiento correspondiente. 
Algunos de los aspectos más comunes de inspección en calderas son: 
3.3.1 QUEMADORES 
Cuando se quema el aceite para producir el calor en la caldera, debe asegurarse de 
que el atomizador es del diseño y tamaño apropiados para el tipo de aceite combustible y la 
geometría del quemador. Los pasajes del aceite y los orificios del quemador deben ser 
examinados por excesiva erosión y los depósitos de carbón deben ser eliminados para 
asegurar un correcto flujo del combustible. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 33 
 
También deberán observarse las temperaturas en el quemador para saber si se está 
trabajando a los niveles correctos de operación. Los difusores del quemador deberán ser 
inspeccionados para asegurarse de que no se encuentren rotos y que estén apropiadamente 
localizados con respecto al aceite combustible. El refractario del quemador debe estar en 
buenascondiciones de tal forma que no se tengan fugas de calor. 
Cuando se utiliza gas natural como combustible, conviene la inspección de los 
orificios de inyección del gas y deberá verificarse que estos orificios no estén tapados. Los 
filtros y las trampas de humedad deben estar limpios para prevenir el taponamiento en los 
orificios del quemador. 
Los componentes de los quemadores de carbón pulverizado, tales como los 
pulverizadores, alimentadores, transportadores y los ductos de aire primario/secundario 
deben trabajar adecuadamente. Todas las tuberías de carbón no deben de contener 
depósitos, por lo que sería favorable su limpieza periódica. 
3.3.2 CONTROLES DE COMBUSTIÓN 
Todas las válvulas del combustible deberán ser inspeccionadas para verificar su 
adecuado funcionamiento a la vez de asegurar que sus partes internas se encuentren 
limpias. También deberán ser adecuadas las presiones en el suministro del combustible, así 
como los reguladores de presión, para encontrar las presiones de salida de acuerdo a los 
diversos tipos de velocidad de la combustión. El vapor de atomización o los sistemas de 
aire de alimentación deberán desarrollar los flujos correctos de operación. Deberán ser 
corregidos los elementos de control los cuales puedan fallar de acuerdo a las demandas de 
vapor. Todos los manómetros deben de estar calibrados e identificados para prevenir que 
ocurran problemas en la operación que ocasionen malas lecturas. 
Hogar: 
Es necesaria la inspección de las superficies de los tubos del lado de la caldera, para 
prevenir los depósitos de incrustaciones que originarían problemas de operación. Esta 
inspección es la más importante ya que repercute directamente en la eficiencia de la 
caldera. Las malas condiciones de la combustión pueden ser las causas de los problemas 
dados por los depósitos de la caldera, pero la correcta operación de los sopladores de hollín 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 34 
 
deberá revisarse. La limpieza periódica de la superficie de los tubos puede ser una solución 
práctica cuando los quemadores y los sopladores no estén trabajando en buena forma. 
Deberán ser reparadas las fugas en los pasajes del gas en la caldera. El aislamiento y 
los ladrillos refractarios deben ser cambiados si estos se encuentran fracturados. Las 
observaciones de la apariencia de la flama es una parte esencial de la inspección o chequeo 
de la caldera. Esta provee de una idea del funcionamiento del quemador, situación de las 
paredes del hogar y los pasos de convección. 
3.3.3 APARIENCIA DE LA FLAMA 
La apariencia de la flama puede proveer de una buena indicación preliminar de las 
condiciones de la combustión. Es difícil generalizar las características de una buena flama 
ya que existe una cierta preferencia del operador y variaciones debido al diseño del 
quemador. Son deseadas flamas cortas, brillantes y con alta turbulencia para combustibles 
líquidos o de carbón pulverizado. Para combustible tipo gas se han encontrado flamas 
azuladas y casi invisibles. Sin embargo la operación con bajas emisiones de óxidos de 
nitrógeno ( a niveles reducidos de aire pueda dar como resultado una diferente 
apariencia de la flama. También se desea la estabilidad de la flama en el quemador y una 
mínima vibración del hogar. Una buena apariencia de la flama se encuentra con altos 
niveles de operación de exceso de aire, más altos que el necesario por condiciones de 
seguridad y de limpieza de la combustión. 
Cuando la combustión se lleva a cabo con los más bajos niveles de aire, aproximadamente 
se libera la misma cantidad de energía para una cantidad dada de energía calorífica de 
entrada del combustible. Sin embargo este proceso puede tomar un largo periodo de tiempo 
y requerir de un mayor volumen del hogar, antes de que el combustible sea completamente 
quemado. El resultado de la combustión con bajo nivel de aire es una flama que puede tener 
las siguientes características típicas: 
a) Flamas que crecen en volumen y llenan más completamente el hogar. 
b) Flamas que exhiben una floja apariencia remolinada. En lugar de intensidad, y de 
flama altamente turbulentas, las flamas de bajo oxígeno parecen fluir más bajas a 
través del hogar. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 35 
 
c) El color global de la flama puede cambiar cuando se reducen los niveles de aire. Las 
flamas de gas natural llegan a ser más visibles o luminosas con partes amarillentas. 
En cambio las flamas en donde se queman combustibles líquidos y sólidos, pueden 
tener un color amarillo más obscuro, con respecto al anterior e incluso pueden ser 
anaranjadas. 
 
Estas características son contrarias a las condiciones de la flama tradicionalmente 
deseadas por los operadores de la caldera para lograr un proceso de combustión limpio. 
Mientras eso quizá parezca en desacuerdo, pueden encontrarse todavía, condiciones 
seguras, integridad y bajas emisiones de óxidos de nitrógeno ( con la combustión con 
bajo nivel de aire. También debe ser mencionado que, en muchos casos, la combustión con 
un bajo nivel de aire, no produce necesariamente algún cambio drástico en la apariencia de 
la flama. 
3.3.4 MONITOREO DE LA CHIMENEA 
 Como se describió previamente, la apariencia de la flama puede cambiar con la 
operación de bajas emisiones de óxidos de nitrógeno . La instrumentación de la 
caldera y la chimenea deberán observarse cuidadosamente mientras se hacen las 
correcciones necesarias. Si se tiene alguna duda, se deben verificar siempre los 
combustibles no quemados monóxido de carbono ( ) en los gases de combustión. La 
conducción de estas inspecciones puede requerir de una energía adicional así que los 
controles y la instrumentación, la apariencia de la flama y las condiciones en la chimenea 
deben ser monitoreados simultáneamente durante los ajustes. Todo el personal deberá estar 
altamente familiarizado con los objetivos de esta inspección e instruido totalmente sobre su 
participación en la prueba. 
 
3.4 TOMA DE DATOS 
Para obtener el máximo beneficio de la inspección de la caldera, deberán ser tomados 
todos los datos que involucren las condiciones de mejoramiento de la caldera. El registro 
permanente de las condiciones de operación de la caldera y de las mediciones en la 
chimenea no solamente documentará la eficiencia y las características de las emisiones de 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 36 
 
la caldera, sino que habilitarán las comparaciones futuras para ayudar a diagnosticar algún 
problema relativo a la eficiencia o a las emisiones contaminantes. Los datos de las pruebas 
deberán registrarse en hojas de datos preparadas para este fin, las cuales deben incluir las 
siguientes consideraciones: 
1. Identificación de la caldera, tipo de combustible, fechas de las pruebas y los 
nombres del personal de operación. 
2. Condiciones de vapor, agua de alimentación y flujos del combustible (velocidades 
de flujo, presión, y temperatura) para documentar la velocidad de combustión en la 
caldera y la generación de vapor. 
3. Posición del control de la combustión y localización de los quemadores. 
4. Presiones y temperaturas en el hogar, y ajustes de la válvula de mariposa en la 
chimenea. 
5. Mediciones en la chimenea: Dióxido de carbono ( , Monóxido de carbono 
( ), Óxidos de nitrógeno ( , humos, temperatura). 
6. Todos los comentarios relevantes sobre la apariencia de la flama, condiciones 
anteriores y del hogar. 
7. Registro de cualquier cambio, nuevos y permanentes, hechos a los controles de la 
combustión o localización de los quemadores. 
 
Las lecturas actuales dependerán de la instrumentación disponible un ejemplo de una 
toma de datos se muestra en la figura en la Tabla 3.4, pero podrán hacerse las adiciones o 
cambios que sean necesariospara cada caldera en particular. 
Las lecturas deben registrarse solamente después de que se ha llegado a las condiciones 
de régimen estacionario de la caldera. Esto es indicado usualmente en la temperatura de la 
chimenea, combustible de entrada, condiciones de vapor (presión, temperatura y nivel en el 
tambor). Las lecturas de exceso de oxígeno en la chimenea son una buena indicación de los 
flujos estables de aire y de combustible. 
 
 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 37 
 
Tabla 3.4 Hoja de Datos de monitoreo de la caldera 
Planta____________________________ Hecho por______________ 
Caldera No. ___________________ Tipo de combustible___________________ 
Prueba No. 
Tiempo (s) 
Flujo de vapor (kg/hr) 
Presion vapor (bar) 
Temperatura de vapor (°C) 
Flujo de combustible (kg/hr) 
Presión del combustible (bar) 
Temperatura de combustible (°C) 
Presión de atomización (bar) 
Temperatura del aire de combustión (°C) 
Temperatura de gases de combustión (°C) 
Presión de hogar (m.c.a.) 
Presión de la chimenea (m.c.a.) 
Colocación del ventilador 
Colocación del registrador de aire 
Posiciones del quemador 
Densidad de los humos 
O2 
CO ppm 
NOx, ppm 
Apariencia de flama 
Notas: 
 
Es muy deseable que estas pruebas se efectúen a presiones normales de vapor. Esto 
asegurará que las temperaturas en la chimenea y del hogar sean representativas de las 
condiciones normales de operación. Ya que será necesario controlar, manualmente, la 
velocidad de la combustión de la caldera durante las pruebas o tomas de datos para obtener 
las condiciones estables, esto puede traer algunos problemas en satisfacer la demanda de 
vapor. Si se dispone de capacidad alternativa de generación de vapor, la carga de otras 
calderas deberá modularse para mantener las presiones constantes. Cuando esto no es 
posible, puede ser necesario hacer provisiones de descargas innecesarias de vapor o 
interrumpir temporalmente el proceso de la planta. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 38 
 
El objetivo del monitoreo es el de documentar las desviaciones de la operación deseada 
de la caldera como una función del tiempo. 
Si el control maestro de la caldera se coloca en la operación manual, la razón de 
aire/combustible estará dada por el sistema de control de la misma. El funcionamiento del 
generador de vapor bajo estas condiciones indicará la desviación de la razón deseada e 
aire/combustible de otras desviaciones de operación. El ajuste manual de la razón 
aire/combustible al nivel deseado puede originar una segunda fuente de datos; la cual 
representa las desviaciones en la operación atribuibles a otras fuentes que la de la razón 
aire/combustible, tales como limpieza de la superficie de transferencia de calor, mamparas 
de la caldera, etc. 
Las lecturas actuales a ser tomadas y la frecuencia con la que son hechas están 
determinadas por el tamaño y la complejidad del equipo y de la energía que requiera el 
aparato para la toma de las lecturas. Una práctica usual es la de registrar los datos por hora 
para checar el funcionamiento general. 
La información relacionada con la eficiencia de la caldera, la cual debe ser incluida en 
la bitácora del operador es la siguiente: 
1. Datos generales de entrada y salida. 
a) Flujo de vapor, presión. 
b) Temperatura del vapor sobrecalentado. 
c) Temperatura del agua de alimentación. 
 
2. Datos del sistema de combustión. 
a) Tipo de combustible. 
b) Velocidad del flujo de combustible. 
c) Presión de suministro del aceite o gas. 
d) Presión en los quemadores. 
e) Temperatura del combustible. 
f) Posición de los reguladores en el quemador. 
g) Aire secundario de los quemadores. 
 
 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 39 
 
3. Indicación del flujo de aire. 
a) Entrada del precalentador de aire. 
b) Oxígeno en los gases de chimenea. 
4. Gases de combustión y temperatura del aire. 
 
5. Indicación de combustibles no quemados. 
a) Medida de monóxido de carbono ( . 
b) Apariencia de los gases de la chimenea y apariencia de la flama. 
 
6. Presiones del aire y de los gases de la combustión. 
 
7. Condiciones anormales. 
a) Fugas de vapor. 
b) Vibración o ruidos anormales. 
c) Mal funcionamiento del equipo. 
d) Excesiva agua de alimentación. 
 
8. Operación del sistema de purga. 
 
La operación de una caldera puede realizarse por dos métodos. El método directo mide 
la eficiencia de la caldera y para lograrlo las medidas deben determinar las entradas y 
salidas de los flujos de agua y combustible. Por otro lado, método indirecto mide la 
eficiencia de la combustión y es necesario obtener un análisis tanto del combustible como 
de los gases de combustión a la salida de la chimenea. 
3.4.1 PROCEDIMIENTO DE PRUEBA POR EL MÉTODO DIRECTO 
 La caldera deberá probarse a diferentes velocidades de flujo de vapor contra el 
rango en el cual la caldera es operada. Las velocidades de flujo entre pruebas sucesivas 
deberán variar cerca del 10% de su capacidad. Se recomienda el siguiente procedimiento de 
prueba: 
1. Instalar instrumentos calibrados (Figura 3.1 Instalación la cual no requiere de paros 
en la caldera). 
2. Operar la caldera por una hora a la carga deseada antes de empezar la prueba. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 40 
 
3. Marcar el nivel de agua de la caldera. 
4. Lectura de las variables de operación de la caldera por, aproximadamente una hora. 
5. Parar la prueba cuando el nivel de agua se encuentre en la misma posición. 
 
Figura 3.1 Instrumentación para calcular la eficiencia de la caldera por el método directo 
 
3.4.2 PROCEDIMIENTO DE PRUEBA POR EL MÉTODO INDIRECTO 
 Tal como el método directo, la caldera debe ser probada a varias condiciones de la 
carga contra el rango de operación cuando se aplica este método. Es recomendado el 
siguiente procedimiento de prueba: 
1. Instalar instrumentos calibrados 
2. Operar la caldera a la carga especificada, por aproximadamente una hora. 
3. Hacer análisis Orsat de los gases de salida de la caldera. 
4. Tomar una muestra de combustible (el cual deberá estar de acuerdo con los 
procedimientos recomendados por el análisis en el laboratorio) y medir la 
temperatura y composición química de este. 
5. Registro de los datos. 
a) Temperatura de entrada del aire, presión y humedad relativa. 
b) Temperatura y composición de los gases de combustión. 
c) Composición química del combustible. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 41 
 
Las velocidades de flujo y las temperaturas deberán ser constantes durante la prueba. La 
Figura 3.2 se refiere a la instrumentación requerida por el método indirecto. 
 
Figura 3.2 Instrumentación para calcular la eficiencia de la caldera por el método 
indirecto 
3.5 MÉTODOS DE MEDICIÓN, APARATOS Y TÉCNICAS 
A continuación se presentan los métodos para determinar la razón de aire 
combustible de un proceso de generación de vapor y de su ajuste para su operación óptima. 
 
 
3.5.1 MÉTODOS PARA DETERMINAR LA RAZÓN DE AIRE/COMBUSTIBLE 
Las tres maneras básicas en determinar la razón de aire/combustible del proceso de 
combustión son: 
1. Encontrar el flujo de aire y de combustible en cada quemador, individualmente. 
2. Análisis de los productos de la combustión y los combustibles. 
3. Observación visual de las características de la flama. 
 
Dadas las variaciones en el equipo, procesos y controles, ninguno de estos métodos es 
aplicable para todos los ajustes. Como se muestra a continuación la determinación más 
típica de la razón de la combustión será hechacon la combinación de estos tres métodos. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 42 
 
Conocer los flujos de aire y de combustibles puede ser ajustada en cada quemador de un 
sistema de múltiples quemadores. Por ejemplo, el ajuste individual de los quemadores no 
contabiliza las fugas de aire al hogar a través de las puertas y aberturas. De aquí que 
después de colocar todos los quemadores para trabajar en condiciones estequiométricas, el 
oxígeno puede existir todavía en los productos de la combustión como resultado de la 
infiltración de aire en el hogar. 
También esta técnica requiere de medidores individuales de aire y combustibles, así 
como válvulas en cada quemador y estos no son incluidos siempre como una parte integral 
del sistema. La adición de estos medidores puede ser un poco caro y difícil. Finalmente, 
esta técnica asume la combustión completa en el quemador. 
El método más económico y formal de la determinación de la razón de la combustión 
de un sistema completo, es el de analizar los productos de la combustión. Esta técnica 
envuelve la medición cuantitativa de un o más productos de la combustión. Esta medida 
puede ser usada para determinar la razón de cambio de aire/combustible del proceso 
completo de la combustión. 
3.5.2 MEDICIÓN DE FLUJO 
Los aparatos más comunes de medición son los medidores de obstrucción, rotámetros y 
medidores de cantidad. Los rotámetros son los medidores más frecuentemente utilizados 
para medir flujos líquidos y gaseosos pero pueden utilizarse en flujos de gases. Las partes 
esenciales del rotámetro son el flotador y el tubo en el cual el flotador se mueve libremente. 
 
3.5.3 MEDICIÓN DE LOS PRODUCTOS DE LA COMBUSTIÓN 
Ya que el análisis de los productos de la combustión es el método principal para 
determinar la razón de la combustión, es importante conocer y entender el significado de 
los productos de la combustión. La combustión perfecta produce dióxido de carbono 
 
 
nitrógeno y vapor de agua. También existen en los productos de la combustión una 
pequeña cantidad de oxígeno libre. 
Midiendo el porcentaje de oxígeno en los gases de combustión también engloba los 
ajustes que sean hechos en condiciones relativamente seguras de la combustión, donde no 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 43 
 
se encuentran presentes combustibles. La ausencia de oxígeno en los productos de la 
combustión no significa condiciones estequiométricas. 
La situación ideal sería la de medir, cuando menos, dos constituyentes de los 
productos de la combustión. Esto permitiría las indicaciones inmediatas y exactas de las 
razones de aire/combustible que se están utilizando. Sin embargo ya que las instrucciones 
para un ajuste general pueden llevarse a cabo con un mínimo equipo de medición. Se 
sugieren los sistemas descritos en la Tabla 3.5. 
Tabla 3.5 Sistemas de medición 
SISTEMA DE 
MEDICIÓN 
VENTAJAS DESVENTAJAS 
Medir solamente oxígeno 
Muy aplicable porque 
solamente se necesita 
instrumento y bajo nivel 
de oxígeno indica la 
razón adecuada de 
aire/combustible. 
No son definidas las 
condiciones 
subestequiométricas. 
Medir oxígeno y 
combustibles totales 
Más preferible porque 
hay un instrumento que 
mide el oxígeno y 
combustibles. Esto 
define el rango total de la 
combustión. 
 
Medir oxígeno y dióxido 
de carbono 
Define el rango entero de 
la combustión. 
Se requieren dos instrumentos. 
Medir oxígeno y monóxido 
de carbono 
Define el rango entero de 
la combustión. 
Se requieren dos instrumentos. 
Medir solamente dióxido 
de carbono 
Se requiere solamente un 
instrumento. 
Información particular del 
combustible y el equilibrio de 
los productos de combustión 
definirán el clima de la 
reacción. 
3.5.4 APARATOS USADOS EN LAS MEDICIONES 
Se encuentran disponibles un gran número de instrumentos para medir los productos 
individuales de la combustión. El rango de aparatos va desde un detector de tubos de 
prueba, hasta los complejos sistemas de cromatografía de gases. Esta sección describe los 
pocos aparatos que se consideran los mejores para medir los constituyentes de los 
productos de la combustión en las calderas industriales hoy en día. 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 44 
 
Los aparatos listados en la Tabla 3.6 son considerados como los más aplicables para 
las mediciones requeridas en los ajustes de la razón aire/combustible. 
Tabla 3.6 Aparatos de medición 
Aparato Mide Características 
Analizador Orsat 
 , , y 
 ( por 
diferencia) 
Absorción selectiva de 
constituyentes individuales por 
reacción química. 
Probador de calor , % combustible. 
Mide oxígeno por el principio de 
reacción electroquímica y 
combustibles por combustión 
catalítica de la muestra con aire. 
Analizador de 
oxígeno 
 
Mide oxígeno por principios 
electroquímicos. 
analizador de 
infrarrojos 
 , y 
Mide la cantidad de absorción de 
radiación infrarroja por un gas en 
particular, la absorción es 
proporcional a la cantidad de gas. 
Absorción de gases o 
Trabaja sobre el mismo principio 
que el Orsat excepto que 
solamente un gas, ya sea u 
es medido en una unidad alta. 
Un Orsat consiste de una serie de 5 tubos de vidrio que contienen compuestos 
químicos que absorben de forma selectiva monóxido de carbono ( , dióxido de carbono 
( ) y oxígeno ( ). El hidrógeno ( y el metano ( son determinados por la 
combustión controlada de combustibles remanentes con una cantidad medida de oxígeno y, 
subsecuentemente, por absorción. El muestreo para el análisis Orsat no es continuo, por 
ejemplo un determinado volumen de los gases de combustión es analizado completamente 
antes de que sea hecho otro muestreo. La operación es completamente manual y la 
exactitud depende de la medida cuidadosa del volumen del gas. 
Un operador bien entrenado, usando técnicas de sonido puede obtener análisis 
repetitivos y exactos. El mantenimiento es despreciado generalmente pero los compuestos 
III. METODOLOGÍA DE AUDITORÍA EN SISTEMAS DE VAPOR (CALDERAS) 
 
ESIQIE-IPN Página 45 
 
químicos deben ser reemplazados periódicamente y es requerida una fuente de oxígeno para 
la determinación de hidrógeno y metano. 
El probador de calor consiste de dos sistemas individuales de medición. Un sistema 
mide el oxígeno libre en la muestra con un medidor de dos escalas, una que va de 0-5 % y 
de 5-21% de oxígeno. El otro sistema mide los combustibles totales en la muestra. De los 5 
aparatos considerados, el probador de calor se encuentra en un costo intermedio. 
Los analizadores de oxígeno miden la cantidad total de oxígeno en la muestra de los 
gases de combustión. Los rangos de lectura pueden variar de 0-1% hasta 1-100% con 
dobles rangos estándar normalmente. 
Los analizadores de infrarrojos se diseñan para medir monóxido de carbono ( , 
dióxido de carbono ( ) o metano ). Un instrumento puede medir solamente un gas. 
El muestreo es continuo y la lectura es hecha normalmente en el medidor. Comparado con 
los otros instrumentos de medición el costo de medición por infrarrojos es muy elevado. 
 
3.5.5 TÉCNICAS DE MEDICIÓN 
Las instrucciones de operación del fabricante definirán claramente los instrumentos 
y operaciones requeridas para medidas exactas. Se deben considerar cuidadosamente las 
técnicas de muestreo de los productos de la combustión para englobar las mediciones 
representativas del proceso de la combustión. 
En muchos de los casos, estas técnicas involucran mediciones preliminares y, en 
otros casos, ajustes de las presiones en el hogar. Aunque el procedimiento de medición de 
la presión del hogar es casi universal, el ajuste de la presión del hogar depende del tipo de 
proceso, diseño del hogar y de los quemadores. Esta técnica de medición

Continuar navegando