Logo Studenta

Cálculo e Seleção de Equipamento de Ar Condicionado

¡Este material tiene más páginas!

Vista previa del material en texto

0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I�STITUTO POLITÉC�ICO �ACIO�AL 
 
ESCUELA SUPERIOR DE I�GE�IERÍA 
MECÁ�ICA Y ELÉCTRICA 
 
U�IDAD PROFESIO�AL AZCAPOTZALCO 
 
 
 
“CÁLCULO Y SELECCIÓ� DEL EQUIPO 
DE U� SISTEMA DE AIRE 
ACO�DICIO�ADO PARA U� TEATRO E� 
PUERTO VALLARTA, JALISCO” 
 
 
T E S I S 
 
QUE PARA OBTE�ER EL TÍTULO DE: 
 
I�GE�IERO MECÁ�ICO 
 
 
P R E S E � T A �: 
 
TREJO GARCÍA PEDRO MA�UEL 
REYES ABU�DIS HUMBERTO 
 
 
ASESOR: 
 
I�G. ALFO�SO HER�Á�DEZ ZÚÑIGA 
 
 
MEXICO, D.F. 2009 
 
 
 1 
 
 2 
 
AGRADEZCO: 
 
 
 
A DIOS 
Por su amor y bendiciones en mi vida. 
 
 
A MI MAMÁ 
Por que desde pequeño ella ha sido para mi un gran y maravilloso 
ejemplo y que siempre le estaré agradecido por su dedicación, 
sacrificios y esfuerzos realizados para que yo pudiera culminar 
una de mis grandes metas. 
Quien con su confianza, cariño y apoyo sin escatimar 
esfuerzo alguno, me ha convertido en una persona de 
provecho y por enseñarme a luchar por lo que se quiere… 
Mi triunfo es tuyo. 
 
 
A MI PAPÁ 
A quien al término de esta etapa de mi vida 
quiero expresar un profundo agradecimiento por su 
ayuda, apoyo, comprensión y por alentarme a lograr esta 
hermosa realidad. 
Por la infinita paciencia y aliento que me ha brindado 
en todo momento, y para el cual no existe palabra 
alguna que exprese lo que él significa en mi vida. 
Gracias por lo que hemos logrado. 
 
 
A MIS HERMANOS 
Quienes me brindaron parte de su tiempo animándome 
a seguir adelante, estando conmigo en momentos difíciles 
y en especial por su cariño y completa confianza puesta en mi. 
Por esto y mas gracias… 
 
 
Trejo García Pedro Manuel 
 
AGRADECIMIENTOS 
 3 
AGRADEZCO: 
 
A MI FAMILIA 
 
Mi papa y mama: (Ciro y Alberta) 
Quienes con su confianza, cariño y apoyo han sacrificado gran parte de su vida 
para formarme y educarme, ayudándome al logro de una meta más; mi carrera 
profesional. 
Por compartir tristezas, alegrías, éxitos y fracasos 
Por todos los detalles que me han brindado durante mi vida y por hacer de ella lo 
que soy ahora. 
 
 A mi hermano: (Roberto) 
 
Al cual quiero mucho, es mi único hermano y quien tiene dos angelitos que son mis 
sobrinitas 
 Agradezco por alentarme a terminar mi carrera 
 
A MIS TIOS; Familia Bazán Bravo 
 
Mi tío y tía: (José y Ma. Luisa) 
Mis primos: (José y José Luis) 
 
Quienes considero que son mi segunda familia y con los que conviví en el lapso de 
mi carrera 
Por el apoyo y la confianza brindada aun en los momentos mas difíciles 
Por lo cual no existen palabras que expresen lo que ha significado en el transcurso 
de mis estudios su apoyo, cariño y confianza. 
 
A MI ASESOR 
 
Ingeniero: Alfonso Hernández Zúñiga 
 
Por habernos siempre alentado a titularnos, reciba un especial agradecimiento por 
la gran ayuda que nos ha brindado 
 
A todos muchas gracias. 
Reyes Abundis Humberto 
AGRADECIMIENTOS 
 4 
“CÁLCULO Y SELECCIÓ� DEL EQUIPO DE U� SISTEMA DE AIRE 
ACO�DICIO�ADO PARA U� TEATRO E� PUERTO VALLARTA, JALISCO” 
 
 
�DICE 
 
 
I 
ESTADO DEL ARTE 
 
I.1 Introducción……………………………………………………………………………... 
I.2 Problemática……………………………………………..………………….……...…... 
I.3 Objetivos…………………………………………………..……..……………………… 
I.4 Justificación..…………………………………………………………………..………... 
I.5 Generalidades…………..………………………………………………………………. 
 I.5.1 Historia del Aire Acondicionado…………………………………………………… 
 I.5.2 Importancia y aplicaciones del Aire Acondicionado……...…………………...… 
 I.5.3 Como funciona un Sistema de Aire Acondicionado………………………...…... 
 I.5.4 Componentes esenciales de un Sistema de Aire Acondicionado……………... 
I.6 Condiciones de Diseño………………………………………………………………… 
 I.6.1 Condiciones exteriores del local……………………...…………………………… 
 I.6.2 Condiciones interiores del local………………………………...…………………. 
 I.6.3 Cantidad de ocupantes………………………...…………………………………... 
 I.6.4 Tipo de alumbrado………………………………………………………………….. 
 I.6.5 Aplicación y uso del sistema de Aire Acondicionado……………………...……. 
 I.6.6 Ubicación geográfica del local…………………………………...………………... 
 I.6.7 Orientación del local……………………………………...………………………… 
 
 
 
II 
BALANCE DE CARGA TÉRMICA 
 
II.1 Definición de carga térmica…………………………………………………………… 
II.2 Ganancia de calor por transmisión (techo, piso y muros)……………………….... 
 II.2.1 Diferencia de temperatura………………………..………………………………. 
 II.2.2 Cálculo de áreas del local…………………………………………………………. 
 II.2.3 Coeficientes de película…………………………………………………………… 
 II.2.4 Cálculo de coeficientes globales de transferencia de calor “U”…………...….. 
 II.2.5 Calor por transmisión………...……………………………………………………. 
II.3 Ganancia de calor por ocupantes………………………………………………….… 
II.4 Ganancia de calor por iluminación……………………………..………………….... 
II.5 Ganancia de calor por aparatos eléctricos……..…………………………………… 
II.6 Resumen de balance térmico para verano……………………………..………….. 
 
 
 
8 
8 
8 
9 
9 
9 
11 
12 
12 
14 
14 
14 
14 
14 
14 
15 
15 
 
17 
17 
17 
18 
18 
19 
21 
21 
22 
22 
23 
 5 
III 
SELECCIÓN DE EQUIPO 
 
III.1 Unidades de Paquete enfriadas por aire tipo techo (ROOFTOP)……………….. 
III.2 Características de unidad paquete………………………………………………….. 
III.3 Selección de equipo por análisis psicrométrico……………………………………. 
III.4 Diagrama del sistema de aire acondicionado con retorno……………………….. 
III.5 Gráfica psicrométrica del sistema…………………………………………………… 
III.6 Selección de equipo…………………………………………………………………... 
 III.6.1 Descripción del modelo…………………………………………………………… 
 III.6.2 Datos generales del equipo………………………………………………………. 
 III.6.3 Datos de Operación……………………………………………………………….. 
 III.6.4 Datos eléctricos…………………………………………………...……................ 
 III.6.5 Datos dimensionales…………………………………………………...…………. 
 III.6.6 Peso de equipo………………………………………………………………...….. 
III.7 Ductos……………………………………………………...…………………………... 
 III.7.1 Cálculo de ductería para el teatro……………………………………………….. 
 III.7.1.1 Sistema de ductos de inyección……………………………………………… 
 III.7.1.2 Pérdidas totales en sistema de inyección…………………………………... 
 III.7.1.3 Sistema de ductos de retorno………………………………………………… 
 III.7.1.4 Pérdidas totales en sistema de retorno……………………………………... 
 
 
 
IV 
INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 
IV.1 Instalación de equipo…………………………………………………………………. 
IV.2 Operación de equipo..………………………………………………...……………… 
IV.3 Funcionamiento, limpieza y mantenimiento……………………………………….. 
IV.4 Mantenimiento y servicio………………………………………………………...…... 
IV.5 Precaución de seguridad…………………………………………………………….. 
 
 
 
 
Anexos……………………………………………………………….……………………… 
 
Glosario……………………………………………………………………………………… 
 
Conclusiones…………………………………………………………..…………………... 
 
Bibliografía……………………………………………………………...…………………... 
 
 
 
 
 
 
25 
27 
27 
28 
29 
31 
32 
33 
34 
37 
38 
39 
40 
40 
40 
42 
43 
43 
47 
49 
55 
56 
60 
 
 
 
 
63 
 
68 
 
70 
 
71 
 
 6 
Lista de símbolos y Abreviaturas 
 
 
HR humedad Relativa, medida en porcentaje (%) 
TBS temperatura de bulbo seco, medida en grados Celsius (°C) 
TBH temperatura de bulbo húmedo, medida en grados Celsius (°C) 
∆T diferencial de temperatura, medida en grados Celsius (°C) 
 h coeficiente de película, en watt sobre metro cuadrado grado Celsius (W/m2°C) 
 V volumen específico, medido en metros cúbicos sobre kilogramo (m3/Kg) 
 U coeficiente global de transferencia de calor, en watt sobre metro cuadrado grado 
 Celsius (W/m2°C) 
 x espesor, medido en metros (m) 
 k coeficiente de conductividad térmica, medido en watt sobre metro grado Celsius 
 (W/m°C) 
 QT calor total, medido en (watt), (BTU/hr) 
 QS calor sensible, medido en (watt), (BTU/hr) 
 QL calor latente,medido en (watt), (BTU/hr) 
TR tonelada de refrigeración 
m.s.n.m metro sobre el nivel del mar 
Tm temperatura de mezcla, medida en grado Celsius (°C) 
t1, t2 temperatura exterior e interior respectivamente, medida en grado Celsius (°C) 
m1, m2 masa de aire de ventilación y masa de aire de retorno respectivamente, en (%) 
SHR, RCS factor de calor sensible, medido en porcentaje (%) 
CFM capacidad de ventilación, gasto, flujo de aire; medido en pies cúbico por minuto 
PPM velocidad de aire, medido en pies por minuto 
“C.A. pérdida de presión, pulgadas columna de agua 
 
 
ASHRAE – American Society of Heating, Refrigerating and Air Conditioning Engineers, (Asociación 
Americana de Ingenieros en Calefacción, Refrigeración y Aire Acondicionado) 
 
HVAC – Heating, Ventilating and Air Conditioning, (Calefacción, Ventilación y Aire Acondicionado) 
 
AMERIC – Asociación Mexicana de Empresas del Ramo de Instalaciones para la Construcción, 
A.C. 
 
 
 
 
 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AGRADECIMIENTOS 
 8 
I.1 INTRODUCCIÓN 
 
La aplicación de un sistema de aire acondicionado se ha hecho indispensable en todo edificio 
moderno, porque el aire acondicionado no es un lujo como muchas veces se considera, sino una 
necesidad, ya que está destinado no solo para el confort de los ocupantes sino básicamente para 
preservar la salud humana y como un requisito para procesos además del óptimo funcionamiento 
de dispositivos. 
 
 
I.2 PROBLEMÁTICA 
 
A causa de que en Puerto Vallarta existen condiciones climatológicas calurosas a (35°C ± 5), y que 
en lugares cerrados el cuerpo humano transfiere mayor calor al medio circundante, esto eleva la 
temperatura en el local, ocasionando al ser humano sensaciones de incomodidad como mareos, 
sofocación, sudoración, malos olores y falta de atención debido a la poca oxigenación en el interior 
del local cerrado. 
 
1.3 OBJETIVOS 
 
OBJETIVO GENERAL 
 
Calcular y seleccionar un sistema de acondicionamiento de aire para mantener un ambiente 
confortable y saludable en el teatro; basándose en las recomendaciones de la normatividad vigente 
en aire acondicionado. 
 
OBJETIVO ESPECÍFICO 
 
Diseñar e implementar un sistema de aire acondicionado para producir el tratamiento de aire 
ambiente del teatro de Puerto Vallarta, Jalisco de tal manera que se controle simultáneamente la 
temperatura, humedad, limpieza y distribución de aire para satisfacer las necesidades de los 
usuarios del local. Manteniendo una temperatura de b (24 °C) en el interior, así como una humedad 
relativa del b (55%). 
 
 
a
 Valores tomados de Tabla 1. Condiciones atmosféricas de Diseño (AMICA). Ver anexo 
b
 Valores Tomados de Tabla 2. Condiciones de proyecto recomendadas para ambiente interior invierno – verano. Ver anexo 
CAPÍTULO I: ESTADO DEL ARTE 
 9 
I.4 JUSTIFICACIÓN 
 
Debido al clima excesivamente caluroso y tropical de Puerto Vallarta en verano, se requiere 
diseñar e implementar un sistema de aire acondicionado para un teatro; creando un ambiente 
confortable, saludable, otorgando aire limpio y fresco; de tal forma que se controle su temperatura, 
humedad, limpieza y distribución para responder a las exigencias del espacio climatizado. 
 
I.5 GENERALIDADES 
 
I.5.1 HISTORIA DEL AIRE ACONDICIONADO 
 
Uno de los grandes sistemas para suprimir el calor fue sin duda el de los egipcios. Se utilizaba 
principalmente en el palacio del faraón, cuyas paredes estaban formadas por enormes bloques de 
piedra, con un peso superior a mil toneladas. 
 
Durante la noche, tres mil esclavos desmantelaban las paredes y acarreaban las piedras al 
Desierto del Sahara. Como el clima desértico es extremoso y la temperatura disminuye a niveles 
muy bajos durante las horas nocturnas, las piedras se enfriaban notablemente. 
 
Justo antes de que amaneciera, los esclavos acarreaban de regreso las piedras al palacio y 
volvían a colocarlas en su sitio. Se supone que el faraón disfrutaba de temperaturas alrededor de 
los 26° Celsius, mientras que afuera el calor subía hasta casi el doble. 
 
Si entonces se necesitaban miles de esclavos para poder realizar la labor de acondicionamiento 
del aire, actualmente esto se efectúa fácilmente. 
 
En 1842, Lord Kelvin inventó el principio del aire acondicionado. Con el objetivo de conseguir un 
ambiente agradable y sano, el científico creó un circuito frigorífico hermético basado en la 
absorción del calor a través de un gas refrigerante. Para ello, se basó en 3 principios: 
 
El calor se transmite de la temperatura más alta a la más baja; El cambio de estado del líquido a 
gas absorbe calor; La presión y la temperatura están directamente relacionadas. 
 
CAPÍTULO I: ESTADO DEL ARTE 
 10 
En 1902, el estadounidense Willis Haviland Carrier sentó las bases de la refrigeración moderna y, 
al encontrarse con los problemas de la excesiva humidificación del aire enfriado, las del aire 
acondicionado, desarrollando el concepto de climatización de verano. 
 
El joven se puso a investigar con tenacidad cómo resolver el problema y diseñó una máquina que 
controlaba la temperatura y la humedad por medio de tubos enfriados, dando lugar a la primera 
unidad de aire acondicionado de la Historia. 
El invento hizo feliz al impresor de Brooklyn, que por fin pudo tener un ambiente estable que le 
permitió imprimir a cuatro tintas sin ninguna complicación. El “Aparato para Tratar el Aire” fue 
patentado en 1906. 
 
Aunque Willis Haviland Carrier es reconocido como el “padre del aire acondicionado”, en 1906 el 
término "aire acondicionado" fue utilizado por primera vez por el ingeniero Stuart H. Cramer. 
 
En 1911, Carrier reveló su Fórmula Racional Psicométrica básica a la Sociedad Americana de 
Ingenieros Mecánicos. La fórmula sigue siendo hoy en día la base de todos los cálculos 
fundamentales para la industria del aire acondicionado. 
 
Las industrias florecieron con la nueva habilidad para controlar la temperatura y los niveles de 
humedad durante la producción. Películas, tabaco, carnes procesadas, cápsulas medicinales y 
otros productos obtuvieron mejoras significativas en su calidad gracias al aire acondicionado. 
 
En 1915, entusiasmados por el éxito, Carrier y seis amigos ingenieros reunieron 32,600 dólares 
para formar la Compañía de Ingeniería Carrier, dedicada a la innovación tecnológica de su único 
producto, el aire acondicionado. 
 
En 1921, Willis Haviland Carrier patentó la máquina de refrigeración centrífuga. También conocida 
como enfriadora centrífuga o refrigerante centrifugado, fue el primer método para acondicionar el 
aire en grandes espacios. 
 
El nuevo sistema se estrenó en 1924 en la tienda departamental Hudson de Detroit, Michigan. 
El éxito fue tal, que inmediatamente se instalaron este tipo de máquinas en hospitales, oficinas, 
aeropuertos y hoteles. 
 
CAPÍTULO I: ESTADO DEL ARTE 
 11 
En 1928, Willis Haviland Carrier desarrolló el primer equipo que enfriaba, calentaba, limpiaba y 
hacía circular el aire para casas y departamentos, pero la Gran Depresión en los Estados Unidos 
puso punto final al aire acondicionado en los hogares. 
 
Las ventas de aparatos para uso residencial empezaron hasta después de la Segunda Guerra 
Mundial. A partir de entonces, el confort del aire acondicionado se extendió a todo el mundo. 
 
En 1958 se constituye la ASHRAE. (American Society of Heating Refrigeration Air conditioning 
Engineers) 
 
El senado de E.U. aprueba en 1982 el protocolo de Montreal de las Naciones Unidas para las 
sustancias que generan daño a la capa de ozono. 
 
En 2004 se tiene el 1er. prototipo de A/A residencial operado por celdas híbridas. 
 
1.5.2 IMPORTANCIA Y APLICACIONES DEL AIRE ACONDICIO NADO 
 
La climatización es el proceso de tratamientodel aire que controla simultáneamente su 
temperatura, humedad, limpieza y distribución para responder a las exigencias del espacio 
climatizado. 
 
El calor es una forma de energía relacionada directamente con la vibración molecular. Cuando 
calentamos una sustancia, sus moléculas se mueven rápidamente, generando así una energía, el 
calor. Si la enfriamos, el movimiento molecular se detiene, bajando la temperatura. 
 
La humedad se refiere a la cantidad de agua contenida en el aire y está directamente relacionada 
con la sensación de bienestar. El aire ambiente se controla para mantener la humedad relativa 
preestablecida mediante la humidificación o deshumidificación del aire ambiente. 
 
Para obtener el confort deseado, es necesario que el aire sea distribuido y circule uniformemente 
por todo el recinto, sin producir corrientes desagradables. 
 
Por último, la eliminación de las partículas de polvo es fundamental para la salud. Conseguir un 
adecuado filtrado de aire es una labor básica de un equipo de aire acondicionado. 
CAPÍTULO I: ESTADO DEL ARTE 
 12 
 
Además de la comodidad que disfrutamos con el aire acondicionado en un día cálido y húmedo de 
verano, actualmente muchos productos y servicios vitales en nuestra sociedad dependen del 
control del clima interno, como los alimentos, la ropa y la biotecnología para obtener químicos, 
plásticos y fertilizantes. 
 
El aire acondicionado juega un rol importante en la medicina moderna, desde sus aplicaciones en 
el cuidado de bebés y las salas de cirugía hasta sus usos en los laboratorios de investigación. 
 
Sin el control exacto de temperatura y humedad, los microprocesadores, circuitos integrados y la 
electrónica de alta tecnología no podrían ser producidos. Los centros computacionales dejarían de 
funcionar. 
 
I.5.3 COMO FUNCIONA UN SISTEMA DE AIRE ACONDICIONAD O 
 
El acondicionador de aire o clima toma aire del interior de una recamara pasando por tubos que 
están a baja temperatura estos están enfriados por medio de un liquido que a su vez se enfría por 
medio del condensador, parte del aire se devuelve a una temperatura menor y parte sale 
expulsada por el panel trasero del aparato, el termómetro esta en el panel frontal para que cuando 
pase el aire calcule la temperatura a la que esta el ambiente dentro de la recamara, y así 
regulando que tan frío y que tanto debe trabajar el compresor y el condensador. 
 
I.5.4 COMPONENTES ESENCIALES DE UN SISTEMA DE AIRE 
ACONDICIONADO 
 
Los sistemas de aire acondicionado contienen básicamente los siguientes equipos: 
 
� Compresor 
� Evaporador 
� Condensador 
� Dispositivo de expansión 
 
Todos estos componentes interconectados por medio de una tubería llevan en su interior un líquido 
refrigerante, además incluyen un sistema de movimiento de aire, compuesto comúnmente de un 
motor, abanico o turbina. 
CAPÍTULO I: ESTADO DEL ARTE 
 13 
 
A continuación mencionaremos brevemente las características de los equipos básicos de los 
sistemas de aire acondicionado. 
 
Compresor 
Los compresores de vapor usados en la refrigeración industrial o acondicionamiento de aire son de 
tres tipos principales: recíprocos, rotatorios y centrífugos. La función del compresor es comprimir el 
refrigerante elevando su presión, temperatura y entalpía. 
Otra función es crear y mantener la baja presión del evaporador que permite que la evaporación 
del refrigerante sea a baja temperatura. Por otra parte crea y mantiene la alta presión en el 
condensador que permite la nueva utilización del refrigerante en estado líquido. El refrigerante en 
el compresor, se encuentra a baja presión y temperatura durante la succión y a alta presión y 
temperatura en la descarga. 
 
Evaporador 
El evaporador es cualquier superficie de transferencia de calor en el cual se vaporiza un líquido 
volátil para eliminar calor de un espacio o producto refrigerado. Debido a las diversas aplicaciones 
los evaporadores se fabrican en una gran variedad de tipos, formas, tamaños y diseños. 
Los evaporadores se construyen por lo general de tubo de acero o tubo de cobre. El tubo de acero 
se usa en evaporadores grandes y en evaporadores que usan amoníaco, mientras que los de tubo 
de cobre se utilizan en la fabricación de evaporadores pequeños y se les usa refrigerante que no 
sea amoníaco. 
 
Condensador 
Es una superficie de transferencia de calor. El calor del vapor refrigerante caliente pasa a través de 
las paredes del condensador para su condensación. Como resultado de su pérdida de calor hacia 
el medio condensante, el vapor refrigerante es primero enfriado hasta saturación y después 
condensado hasta su fase de estado liquido. 
Los condensadores son de tres tipos generalmente: enfriados con aire, enfriados con agua y 
evaporadores que emplean tanto aire como agua. 
 
Dispositivo de Expansión (Válvula) 
Este dispositivo se encarga de pulverizar o expandir el refrigerante. Su función es doble, por una 
parte regula la cantidad de líquido que entra en el evaporador para que, según la cantidad de 
vapores aspirados por el compresor, pueda mantenerse constante la presión del evaporador. 
CAPÍTULO I: ESTADO DEL ARTE 
 14 
I.6 CONDICIONES DE DISEÑO 
 
Condiciones climatológicas en verano (Junio 22- Septiembre 21) 
 
I.6.1 CONDICIONES EXTERIORES DEL LOCAL 
 
Puerto Vallarta, México 
 
Latitud: 20.37, 
Longitud: 105.15 
Altura: 2 m.s.n.m 
 
Humedad relativa: c (34 %) 
 
Temperatura bulbo seco: c (40°C) 
 
Temperatura bulbo húmedo: c (26°C) 
 
Velocidad máxima exterior del aire: 30 km/hr 
 
Presión barométrica: c (760 mmHg) 
 
I.6.2 CONDICIONES INTERIORES DEL LOCAL 
 
Velocidad del aire: 0 Km/hr 
 
Temperatura de bulbo seco: d (24°C) 
 
Humedad relativa: d (55%) 
 
 
I.6.3 CANTIDAD DE OCUPANTES 
 467 Personas 
 
 
I.6.4 TIPO DE ALUMBRADO 
 Lámparas fluorescentes e incandescentes 
 
 
I.6.5 APLICACIÓN Y USO DEL SISTEMA DE AIRE ACONDIC IONADO 
 
 La aplicación del sistema de aire acondicionado es para confort y uso es únicamente para verano. 
 
 
 
 
 
c
 Valores tomados de Tabla 1. Condiciones atmosféricas de Diseño (AMICA). Ver anexo 
d
 Valores tomados de Tabla 2. Condiciones de proyecto recomendadas para ambiente interior invierno – verano. Ver anexo 
CAPÍTULO I: ESTADO DEL ARTE 
 15 
 
I.6.6 UBICACIÓN GEOGRÁFICA DEL LOCAL 
El municipio de Puerto Vallarta está situado al poniente del estado de Jalisco. Limita al norte con el 
estado de Nayarit, al sur con el municipio de Cabo Corriente y Talpa de Allende; al oriente con San 
Sebastián y Mascota y al poniente con el Océano Pacífico. Su extensión territorial es de 1,300.67 
kilómetros cuadrados. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I.6.7 ORIENTACION DEL LOCAL 
 
Entrada principal del local al Norte 
 
 
 
 
 
 
 
TEATRO 
�
CAPÍTULO I: ESTADO DEL ARTE 
 16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17 
II. CÁLCULO DE CARGA TÉRMICA 
 
II.1 DEFINICIÓN DE CARGA TÉRMICA 
También nombrada como carga de enfriamiento, es la cantidad de energía que se requiere vencer 
en un área para mantener determinadas condiciones de temperatura y humedad para una 
aplicación específica (ej. Confort humano). Es la cantidad de calor que se retira de un espacio 
definido, se expresa en BTU, la unidad utilizada comercialmente en relación a la unidad de 
tiempo, Btuh, [Watts]. 
 
 
 CONCEPTO 
1. Transmisión muros, piso y techo + 
2. Ocupantes + + 
3. Iluminación + 
4. Aparatos eléctricos + + 
 
 
II.2 GANANCIA DE CALOR POR TRANSMISIÓN (TECHO, PIS O Y MUROS) 
 
II.2.1 DIFERENCIA DE TEMPERATURA : 
 
Condiciones de diseño para verano TBSint = 24 °C 
 TBSext = 40 °C 
 TBStierra = 23 °C 
 
 
 
Tabla 1. Cálculo de la diferencia de temperaturas 
 
Ubicación Cálculo ∆T (°C) 
Muro norte (40-24) 16 
Ventana norte (40-24) 16 
Murosur (40-24) + 2.22* 18.22 
Muro este (40-24) + 3.33* 19.333 
Ventana este (40-24) + 6.66* 22.66 
Muro oeste (40-24) + 3.33* 19.33 
Ventana oeste (40-24) + 6.66* 22.66 
Techo (40-24) + 8.33* 24.33 
Piso (25-24) 1 
 
 
 
 
 
 
*
 
Valores de factores para corrección de temperatura por el efecto solar (tomado de Tabla 3 del Manual de Fundamentos ASHRAE, 1967, y copiado con 
autorización) (Ver anexos) 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 18 
II.2.2 CÁLCULO DE ÁREAS DEL LOCAL: 
 
Todas y cada una de las áreas mostradas en la Tabla 2 son extraídas del plano arquitectónico del 
local. 
 
Tabla 2. Cálculo de áreas 
 
Superficies de transferencia de calor 
Muro norte 26.30 m2 
Ventana norte 88.16 m2 
Techo 590.788 m2 
Muro este 177.71 m2 
Ventana este 23.44 m2 
Piso 449.13 m2 
Muro sur 55.93 m2 
Muro oeste 167.99 m2 
Ventana oeste 33.88 m2 
 
 
II.2.3 COEFICIENTES DE PELÍCULA: 
 
Ecuaciones para el cálculo de coeficiente de película (e) 
 
Muy lisa h= 6.8 + 0.85 V 
Lisa h= 7.8 + 0.90 V 
Moderadamente áspera h= 9.8 + 1.20 V 
Donde V= velocidad del aíre 
 
Tabla 3. Cálculo de los coeficientes de película “h” 
 
Muros he=9.8 + 1.20(30) = 
hi=10.3+ 1.5(0) = 
45.8 kcal/hm2°C 
10.3 kcal/hm2°C 
53.265 W/m2°C 
11.978 W/m2°C 
Techo he=7.8 + 0.90(30) = 
hi=9.8 + 1.20(0) = 
34.8 kcal/hm2°C 
9.8 kcal/hm2°C 
40.472 W/m2°C 
11.397 W/m2°C 
Piso he= 0 no existe 
hi=10.3+ 1.5(0) = 
 
10.3 kcal/hm2°C 
 
11.978 W/m2°C 
Vidrio he=6.8 + 0.85(30) = 
hi=6.8 + 0.85(0) = 
32.3 kcal/hm2°C 
6.8 kcal/hm2°C 
37.565 W/m2°C 
7.9084 W/m2°C 
 
Tabla 4. Factor de conversión 
 
W/m2 - °C Kcal/m2 - h - °C Btu/pie2 - h - °F 
1 0.860 0.1763 
1.163 1 0.205 
5.678 4.882 1 
 
 
(e) 
Tomado de la Tabla 4. Ecuaciones para determinar el coeficiente de película “h” (ver anexos) 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 19 
II.2.4 CÁLCULO DE COEFICIENTES GLOBALES DE TRANSFER ENCIA DE CALOR “U” 
 
TECHO Fórmula: 
hik
x
k
x
k
x
k
x
k
x
k
x
he
U
11
1
6
6
5
5
4
4
3
3
2
2
1
1 +++++++
= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
U= 0.019 W/m2°C 
 
 
MUROS Fórmula: 
hik
x
k
x
k
x
k
x
k
x
he
U
11
1
5
5
4
4
3
3
2
2
1
1 ++++++
= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
U= 0.423 W/m2°C 
 
Material de techo 
 
(K)** 
W/m°C 
X(m) 
 
1.- Impermeabilizante 0.697 0.003 
2.- Entortado cemento-arena 1.395 0.030 
3.- Concreto loza 0.29 0.100 
4.- Corcho 0.04 0.064 
5.- Aire 0.02 1.000 
6.- Acustome 0.314 0.030 
Material de muros 
 
(K)** 
W/m°C 
X(m) 
 
1.- Mortero de cemento 1.16 0.015 
2.- Hilada de block 1.00 0.200 
3.- Mortero de cemento 1.16 0.015 
4.- Corcho 0.04 0.064 
5.- Moqueta 0.046 0.020 
Cm
W
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
U
°
+
°
+
°
+
°
+
°
+
°
+
°
+
°
=
22
397.11
1
314.0
030.0
02.0
1
04.0
064.0
29.0
1.0
395.1
03.0
697.0
003.0
472.40
1
1
Cm
W
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
m
Cm
W
U
°
+
°
+
°
+
°
+
°
+
°
+
°
=
22
397.11
1
046.0
02.0
04.0
064.0
16.1
015.0
1
2.0
16.1
015.0
265.53
1
1
(**) Valores tomados de Tabla 5. Coeficientes de Conductividad Térmica (k) de Materiales de Construcción a 20 °C (ver anexos) 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 20 
 
PISO Fórmula: 
hik
x
k
x
he
U
11
1
2
2
1
1 +++
= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
U= 1.016 W/m2°C 
 
 
 
 
VENTANAS Fórmula: 
hik
x
he
U
11
1
1
1 ++
= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
U= 6.15 W/m2°C 
 
 
 
 
Material de piso 
 
(K)** 
W/m°C 
X(m) 
 
1.- Firme de concreto 0.29 0.100 
2.- Alfombra 0.027 0.015 
Material de ventana 
 
(K)** 
W/m°C 
X(m) 
 
1.- Vidrio 1.05 0.01 
Cm
W
Cm
W
m
Cm
W
m
U
°
+
°
+
°
+
=
2
978.11
1
027.0
015.0
29.0
1.0
0
1
Cm
W
Cm
W
m
Cm
W
U
°
+
°
+
°
=
22
908.7
1
05.1
01.0
565.37
1
1
(**) Valores tomados de Tabla 5. Coeficientes de Conductividad Térmica (k) de Materiales de Construcción a 20 °C (ver anexos) 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 21 
II.2.5 CALOR POR TRANSMISIÓN 
 
Q = A U ∆T [WATTS] 
 
Tabla 5. Cálculo de ganancias por transmisión 
 
UBICACIÓN A (m2) U (W/m2°C) ∆T (°C) Q (W) 
Muro norte 26.30 0.423 16 177.99 
Ventana norte 88.16 6.15 16 8674.94 
Muro sur 55.93 0.423 18.22 431.05 
Muro este 177.71 0.423 19.333 1453.06 
Ventana este 23.44 6.15 22.66 3266.57 
Muro oeste 167.99 0.423 19.33 1373.58 
Ventana oeste 33.88 6.15 22.66 4721.48 
Techo 590.78 0.019 24.33 273.09 
Piso 449.13 1.016 1 456.31 
TOTAL 20828.07 
 
Q TRANSMISIÓN = 20828.07 W 
 
 
II.3 GANANCIA DE CALOR POR OCUPANTES 
 
• 25 Actores (Baile moderado) 
 
QS (W) = 25 * 270
(f) = 6750 btuh = 1976.47 W 
 
QL (W) = 25 * 580
(f) = 14500 btuh = 4245.75 W 
 
• 407 personas de público (Sentadas en reposo) 
 
QS (W) = 407 * 200
(f) = 81400 btuh = 23834.77 W 
 
QL (W) = 407 * 130
(f) = 52910 btuh = 15492.6 W 
 
• 30 personas en vestíbulo (Caminando lento) 
 
QS (W) = 30 * 220
(f) = 6600 btuh = 1932.55 W 
 
QL (W) = 30 * 230
(f) = 6900 btuh = 2020.39 W 
 
• 5 personas de limpieza (Trabajo moderado) 
 
QS (W) = 5 * 330
(f) = 1650 btuh = 438.14 W 
 
QL (W) = 5 * 670
(f) = 3350 btuh = 980.91 W 
 
Q OCUPANTES = 50921.58 W 
 
(f)
Valores tomados de Tabla 6. Ganancia de calor por ocupantes en espacios acondicionados. (Ver anexos) 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 22 
II.4 GANANCIA DE CALOR POR ILUMINACIÓN 
 
 
Q = (ÁREA) (CALOR CALCULADO) 
 
• CAMERINOS: (Tareas con requerimientos visuales elevados)..……………...(g) (8.098 W/m2) 
 
 Q = 8.26 m2 2 8.098 W/m2 = 133.77 W 
 
• ESCENARIO: (Tareas con requerimientos visuales muy exigentes o de alta precisión)……. 
(g) (16.14 W/m2) 
 
 Q = 32.798 m2 16.14 W/m2 = 529.36 W 
 
• ÁREA DE BUTACAS: (Tareas con requerimientos visuales sencillos)..……. (g) (2.732 W/m2) 
 
 Q = 280.98 m2 2.732 W/m2 = 767.64 W 
 
• VESTÍBULO: (Tareas con requerimientos visuales elevados)…………….…. (g) (8.098 W/m2) 
 
 Q = 114.562 m2 8.098 W/m2 = 927.72 W 
 
Q ILUMINACIÓN = 2358.49 W 
 
 
II.5 GANANCIA DE CALOR POR APARATOS ELÉCTRICOS 
 
Tabla 6. Cálculo de ganancias por aparatos eléctricos 
 
EQUIPO QS (w)
(***) QL (w)
(***) CANTIDAD QR (w) 
EQUIPO DE SONIDO 6800 ----- 1 6800 
COMPUTADORA 325 ----- 5 1625 
MAQUINA PARA CAFÉ 1800 ----- 1 1800 
MAQUINA DE REFRESCOS 997 ----- 1 997 
MAQUINA DE SNACKS 138 ----- 1 138 
PLANCHAS PARA CABELLO 65 ----- 3 195 
PLANCHAS PARA ROPA 1200 750 2 3900 
PLANCHAS DE VAPOR 1500 675 2 4350 
SECADORAS PARA CABELLO 1400 ----- 4 5600 
TENACILLAS PARA RIZAR 30 ----- 4 1200 
CAFETERAS ½ GALÓN 1075 850 2 3850 
ASPIRADORA 432 ----- 2 864 
TELEVISOR 185 ----- 2 370 
 TOTAL 31689 
 
Q APARATOS = 31689 W 
 
 
 
(g) 
Valores tomados de Tabla 7. Rangos más comunes de niveles de iluminación para diferentes áreas, tareas y actividades (ISO.8995) (ver anexo) 
(***) 
Tomados de Tabla 3-17 de Manual TRANE de Aire Acondicionado. 
 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 23 
 
II.6 RESUMEN DE BALANCE TÉRMICO PARA VERANO 
 
 
Tabla 7. Balance térmico total para verano 
 
CONCEPTO QS (w) QL (w) 
TRANSMISIÓN PISO , MUROS Y TECHO 20828.07 
OCUPANTES 28181.93 22739.65 
ILUMINACIÓN 2358.49 
APARATOS 27139 4550 
TOTAL 78507.49 27289.65 
 
 QTOTAL= 105797.14 W 
 
 Fs. (10%) QTOTAL= 116 376.854 W 
 
Si 1 TR= 3516.853 W ∴ QTOTAL= 33.091 TR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO II: BALANCE DE CARGA TÉRMICA 
 24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25 
III.1 UNIDADES DE PAQUETE ENFRIADAS POR AIRE TIPO T ECHO (ROOFTOP)La configuración usual es la de una caja rectangular con conexiones de suministro y retorno en el 
frente y tomas para succión y descarga del aire de condensación en los laterales y en la parte de 
atrás. 
 
El arreglo interno es relativamente sencillo, el aire de retorno es succionado a través del 
evaporador de tubos y aletas por un ventilador centrífugo que a su vez lo descarga como aire de 
suministro por el frente, en los tamaños más pequeños el ventilador es del tipo de acople directo al 
motor. 
 
Las unidades grandes tienen trasmisiones con bandas y poleas variables. Una bandeja de 
condensado debajo del evaporador recoge toda la humedad y está conectada a un drenaje 
permanente; El compartimiento del evaporador está muy aislado para evitar pérdidas y 
condensación en la lámina exterior, el filtro está generalmente localizado en el ducto de retorno. 
 
Separando el compartimento del evaporador del de condensación tenemos una pared la cual 
aparta los flujos de aire y sirve de aislamiento para mínima transmisión de calor y ruido al aire 
acondicionado. El compresor y el serpentín de condensación forman el lado de alta del circuito 
refrigerante. 
 
El aire de condensación es tomado por los lados y descargado a través del serpentín de 
condensación, esta disposición se denomina ventilador soplador. 
Algunas unidades son de tipo de ventilador succionador y descargan por los lados. 
 
El ventilador de condensación, es la mayoría de las veces del tipo axial. Puede mover grandes 
volúmenes de aire en donde haya poca resistencia, los ventiladores axiales de aspas no son para 
uso con ductos. 
La caja de controles incluye los capacitores de los motores de los ventiladores y de los 
compresores, relés de arranque y las terminales para la conexión remota del termóstato. 
 
La capacidad de las unidades de paquete enfriadas por aire varía desde 1 1/2 toneladas hasta 7 
1/2 toneladas para uso residencial y hasta más de 30 toneladas para uso comercial. 
La mayoría de las unidades son evaluadas y certificadas de acuerdo con los estándares que 
establece 26.6 ºC bulbo seco y 19.4 ºC bulbo húmedo como la temperatura de retorno del aire al 
evaporador y 35 º C bulbo seco como la temperatura del aire exterior entrando al condensador 
exterior. 
 
Está también el requisito de que la unidad debe ser capaz de operar hasta una temperatura de 46 
ºC para el ambiente exterior sin desconectarse por alta presión o sin que el compresor prenda y 
pare por sobrecarga. 
Esquemáticamente, un sistema operando en las condiciones normales tiene las características 
mostradas en la Figura 1 el aire de retorno desde el espacio acondicionado a una temperatura de 
80º F, bulbo seco y a un rango de 400 a 450 pies/min., por tonelada, pasa a través del filtro y luego 
a través del evaporador donde es enfriado y deshumidificado. 
 
El aire al salir del serpentín estará alrededor de los 14.4 ºC a 15.5 ºC B.S. Así, pues hay una 
reducción en temperatura a través del serpentín de aproximadamente 6.6 °C a 5.5 °C B.S. La 
proporción de enfriamiento sensible a enfriamiento total será de cerca de 0.75. 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 26 
La presión de succión con R-22 a la salida del serpentín será de cerca de 73 a 76 lbs/pulg2. El aire 
acondicionado sale a 60º y asumiendo que absorbe una pequeña cantidad de calor en su recorrido 
por los ductos, llegará al espacio acondicionado a 62º ó 65º B.S. (15º A 18º de diferencia a 
temperatura, D.T.), la cual es una diferencia aceptable. 
 
En el lado de alta del refrigerante, el aire exterior para condensación será introducido a 35 °C al 
serpentín, el flujo de aire sobre él será nominalmente de 800 pies/min. por tonelada. La presión de 
descarga resultante en el compresor con R-22 estará en el rango de las 295 lbs/pulg 
manométricas. 
 
La temperatura promedio en el condensador será de 54.4 ºC con un subenfriamiento de 8.8 ºC 
aproximadamente para el refrigerante, ya en el estado líquido, lo que da una temperatura de salida 
de líquido de 45.5 °C de serpentín de condensación. 
 
La clasificación de la unidad de enfriamiento “solamente” no es muy exacta ya que la mayoría de 
los fabricantes dejan espacios internos disponibles para que haya la posibilidad de añadir 
resistencias eléctricas para proveer calefacción durante el invierno. Estas resistencias trabajan de 
un modo muy parecido al del equipo de calefacción eléctrico. 
 
Son ensambladas y ensayadas en su totalidad en la fábrica y son relativamente fáciles de instalar 
con un mínimo de trabajos eléctricos e hidráulicos. Necesitan ductos cortos o pueden prescindir 
completamente de ellos permitiendo una simple distribución de ellos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 27 
 
III.2 CARACTERÍSTICAS DE UNIDAD PAQUETE 
 
Aplicaciones: 
 Refrigeración y calefacción 
 
Clasificación: 
 Con condensador enfriado por aire. 
 
Capacidades: 
 De 1 a 120 T.R. 
 
Instalación: 
 Al exterior 
Limitantes: 
 
Instalación al exterior. 
Drenaje de condensados canalizado. 
Ambiente corrosivo. 
Pequeñas caídas de presión. 
Capacidad de disipación de calor sensible. 
Capacidad de volumen de aire. 
 
Selección: 
 
 Datos requeridos: 
 
Condiciones del lugar, Altura sobre el nivel del mar. 
Ganancias térmicas de calor sensible (TR), de calor latente (TR) 
Perdidas térmicas. 
Capacidad en btu/h (TR) 
Datos eléctricos, tensión disponible (Bases de diseño). 
Temperaturas: Temperatura exterior de diseño, bulbo seco, Tbs/Tbh entrada al serpentín, 
Volumen del aire Pcm ( cfm) mas presión estática externa (ductos, rejillas etc). 
 
 
 
III. 3 SELECCIÓN DE EQUIPO POR ANÁLISIS PSICROMÉTRI CO 
 
ANÁLISIS PSICROMÉTRICO 
 
La psicrometría es una rama de la física, que estudia las propiedades termodinámicas del aire 
húmedo, y el efecto de la humedad atmosférica sobre los materiales y sobre el confort humano. 
En el acondicionamiento de aire, es el método que utilizaremos para analizar y determinar las 
condiciones atmosféricas de humedad para el local que se va acondicionar. 
 
Para el siguiente proyecto (teatro) debido a las condiciones y requerimientos del local, es posible 
recircular el 80% del aire. En los manuales de ASHRAE hay recomendaciones para el porcentaje 
de recirculación con respecto a las condiciones. 
A continuación se presenta el análisis psicrométrico. 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 28 
Condiciones interiores 
TBS= 24°C 
Ø= 55 % (HUMEDAD RELATIVA). 
 
La ganancia de calor es: 
(h) QS= 78507.49 W 
(h) QL= 27289.75 W 
 
Condiciones exteriores 
TBS= 40°C 
TBH= 26°C 
 
Se calcula la temperatura de inyección por medio de la carta psicrométrica y el resultado es: 
Temperatura de inyección = 13.3°C 
 
Por lo tanto el incremento de temperatura entre el aire de inyección al local, y el local es: 
∆T2-4= 10.7°C 
 
Calor específico del aire a presión constante = 1.0 KJ/kg°C 
 
III.4 DIAGRAMA DEL SISTEMA DE AIRE ACONDICIONADO CO N RETORNO 
 
 
 
 
 
 
 
 
 
 
 
 
Donde; 
1 – aire exterior de suministro MS 
2 – condiciones del local 
3 – condiciones de mezcla 
4 – condiciones del aire a la salida del equipo 
MP= aire perdido 
80% de aire de recirculación 
 
Condiciones del aire a la entrada del acondicionador (estado 3) 
 
Esto se refiere a las condiciones de la caja de mezclas, antes de pasar al acondicionador (numero 
3 del diagrama del sistema), a estas condiciones se les conoce como “condiciones de mezcla”. 
Tm =temperatura de la mezcla. 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
(h) 
Valores obtenidos en Capítulo II, Tabla 7. Balance Térmico total para verano 
C
mm
tmtm
Tm °=
+
+=
+
+= 2.27
2.08.0
)40)(2.0()24)(8.0(
12
1122
 29 
III.5 GRÁFICA PSICROMÉTRICA DEL SISTEMA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
.3
 °
C
 
24
 °
C
 
27
.2
 °
C
 
40
 °
C
 
CAPÍTULO III: SELECCIÓNDE EQUIPO 
 30 
Con este valor de la temperatura de la mezcla de bulbo seco, se sigue la coordenada que marca 
27.2°C de temperatura de bulbo seco, en dirección v ertical hasta que cruce con la línea que une al 
estado 1 con el estado 2. 
 
Esta intersección marca el estado 3, que serán las condiciones de la caja de la mezcla antes de 
entrar al equipo a acondicionador. 
 
Por lo tanto al tener el valor anterior ya se tienen tres estados. 1, 2 y 3. 
 
Estado TBS (°C) T BH (°C) Ø (%) h (KJ/kg°C) W(kgv/kgas) v(m
3/kg) 
1 40 26 33 80 0.0155 0.908 
2 24 18 55 50 0.0102 0.8550 
3 27.2 19.7 50 56 0.0113 0.8652 
 
Condiciones del aire a la salida del equipo (estado 4) 
 
Temperatura del estado 4 
 
∆T2-4= 24 - 10.7 = 13.3°C 
 
Entalpia del aire en el estado 4 (h4) (salida del acondicionador) 
 
Relación de calor sensible (RCS) = SHR 
 
 
 
 
 
 
 
Por carta psicrométrica obtenemos el valor de la temperatura de bulbo húmedo: 
 
TBH4=12.5 
 
Tenemos así de la carta psicrométrica para le estado 4: 
 
Estado TBS (°C) TBH (°C) Ø (%) h (KJ/kg°C) W(kgv/kgas) v(m3/kg) 
4 13.3 12.5 90 35.5 0.00851 0.822 
 
Capacidad del ventilador 
 
 
Donde �= 0.8550 m3/Kg 
 
 
CKg
KJ
C
CKg
KJ
RCS
TC
hh
hh
TC
RCS
W
W
QQ
Q
RCS
PP
LS
S
°=
°°−=
∆
−=∴
−
∆
=
==
+
=
−− 5.35]
74.0
)7.10)(0.1(
50[]
))((
[
))((
74.0
105797
49.78507
24
24
42
24
))(( 222
2
2
2 vmV
v
V
m =∴=
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 31 
 
 
Capacidad del acondicionador en T.R. 
 
 
 
 
III.6 SELECCIÓN DE EQUIPO 
 
Con el cálculo anterior se selecciona la unidad paquete MARCA TRANE , MODELO TC-H-600-A-F-
0 -A-2-A-F-0-A-2-A-2-A-2-C-D-4-A cumpliendo con las necesidades y condiciones requeridas para 
las exigencias del espacio climatizado. 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 32 
 
III.6.1 DESCRIPCIÓN DEL MODELO 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 33 
 
III.6.2 DATOS GENERALES DEL EQUIPO 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 34 
 
 
 
 
III.6.3 DATOS DE OPERACIÓN 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 35 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 36 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 37 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
III.6.4 DATOS ELÉCTRICOS 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 38 
 
III.6.5 DATOS DIMENSIONALES 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 39 
 
III.6.6 PESO DE EQUIPO 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 40 
 III.7 DUCTOS 
 
Para llevar el flujo de aire necesario a cada área a acondicionar se requiere hacer un sistema de 
distribución de aire, esto se logra a través de ductería la cual puede ser de forma circular, 
rectangular o triangular. 
Diseñar un sistema de ductos implica considerar muchos factores en orden de importancia serían; 
 
- Espacio disponible. 
- Costo de instalación. 
- Perdidas de aire por fricción. 
- Nivel de ruido. 
- Fugas en el ducto y transferencia de calor. 
- Cumplimiento de códigos y estándares. 
 
En la Tabla 8. de anexos vemos las velocidades recomendadas en el diseño de ductos expresadas 
en pies cúbicos por minuto de acuerdo a la aplicación. 
Los ductos son fabricados en lamina galvanizada, aunque los hay en fibra de vidrio y también de 
lona, el proceso para diseñar una red de ductos implica determinar los CFM´s requeridos la 
distancia a recorrer la forma en que se distribuirán en la zona, esto es en uno o varios difusores, y 
sobre todo la trayectoria la cual puede tener partes curvas, codos, subidas, bajadas, reducciones, 
transiciones y conversiones de ducto por ejemplo de circular a rectangular. 
 
 
III.7.1 CÁLCULO DE DUCTERÍA PARA EL TEATRO 
 
 
 
III.7.1.1 SISTEMA DE DUCTOS DE INYECCIÓN 
 
Método de velocidades constantes 
 
Datos: 
QEquipo = 13,000 CFM 
QInyección = 12,700 CFM 
Velocidad en ductería = (I) 400 PPM en ductos principales 
 (I) 700 PPM en ductos ramales 
 
Cálculo de difusores de inyección 
 
 
N = QInyección / no. de difusores 
 
N = 12,700 CFM / 36 difusores = 352 CFM/difusor 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
(I)
 
Valores tomados de Tabla 8. Velocidades máximas recomendadas para sistemas de baja velocidad (Ver anexos) 
 41 
 
SISTEMA DE DUCTOS DE INYECCIÓN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 42 
III.7.1.2 PÉRDIDAS TOTALES EN SISTEMA DE INYECCIÓN 
 
TRAMO 
DEL DUCTO 
VOLUME� 
(CFM) 
VELOCIDAD 
(PPM) 
DIME�SIÓ� 
DUCTO 
(PULG.) 
LO�G. DUCTOS 
METROS / PIES 
PÉRDIDAS POR 
FRICCIÓ� 
(“C.A./100 PIES) 
PÉRDIDAS 
“C.A. 
T1 12700 1400 40 X 35 1.14 / 3.74 0.06 0.0022 
T2 11990 1400 40 X 34 2.15 / 7.05 0.055 0.0038 
T3 11287 1400 40 X 32 1.46 / 4.79 0.06 0.0029 
T4 10583 1400 40 X 30 1.49 / 4.89 0.075 0.0037 
T5 9879 1400 40 X 28 2.38 / 7.8 0.055 0.0043 
T6 7767 1400 40 X 22 2.64 / 8.66 0.075 0.0065 
T7 4951 1400 40 X 14 3.66 / 12 0.1 0.012 
T8 2839 1400 40 X 9 3.35 / 10.99 0.13 0.014 
T9 1431 1400 40 X 5 1.61 / 5.28 0.19 0.01 
 TOTAL 0.06 
 
 
 
CODOS 
TRAMO 
DIME�SIO�ES 
DE CODOS 
(PULG) CA�TIDAD 
LO�G .EQ. 
PIES 
LO�G .EQ. 
TOTAL 
PÉRDIDAS 
“C.A./100 
PIES 
PÉRDIDAS 
“C.A. 
T1-T2 1 X 36 2 10 20 0.099 0.0198 
T2-T3 1 X 34 2 10 20 0.11 0.022 
T3-T4 1 X 32 2 10 20 0.14 0.028 
T4-T5 1 X 30 2 10 20 0.15 0.03 
T5-T6 4 X 28 2 10 20 0.45 0.09 
T6-T7 7 X 22 2 10 20 0.28 0.056 
T7-T8 8 X 14 2 10 20 0.26 0.052 
T8-T9 10 X 9 2 10 20 0.2 0.04 
T9 20 X 5 2 15 30 0.22 0.066 
TOTAL 0.4 
 
 
 
 
 
 
 
PÉRDIDAS TOTALES DE FRICCIÓ� E� DUCTERIA “C.A. 0.06 
PÉRDIDAS TOTALES DE FRICCIÓ� E� CODOS “C.A. 0.4 
*PÉRDIDAS E� VE�TILADOR “C.A. A U�A VELOCIDAD DE 1400 CFM 0.12 
PÉRDIDAS TOTALES DEL SISTEMA DE I�YECCIÓ� E� “C.A. 0.58 
*Valor obtenido del manual CARRIER, TABLA 8, CAP. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 43 
III.7.1.3 SISTEMA DE DUCTOS DE RETORNO 
 
Método de velocidades constantes 
 
Datos: 
QInyección = 12,700 CFM 
QRetorno = 10,080 CFM 
 
Velocidad en ductería = (J) 1100 PPM en ductos principales 
 (J) 600 PPM en ductos ramales 
 
Cálculo de difusores de inyección 
 
N = QRetorno / no. de difusores 
 
N = 10,080 CFM / 18 difusores = 560 CFM/difusor 
 
 
III.7.1.4 PÉRDIDAS TOTALES EN SISTEMA DE RETORNO 
 
 SISTEMA DE DUCTOS DE RETORNO 
 
TRAMO 
DEL DUCTO 
VOLUME� 
(CFM) 
VELOCIDAD 
(PPM) 
DIME�SIÓ� 
DUCTO 
(PULG.) 
LO�G. DUCTOS 
METROS / PIES 
PÉRDIDAS POR 
FRICCIÓ� 
(“C.A./100 PIES) 
PÉRDIDAS 
“C.A. 
TX 560 600 18 X 8 3.74 / 12.27 0.045 0.0055 
TW 1200 600 18 X 16 5.27 / 17.3 0.03 0.0052 
TV 560 600 18 X 8 3.73 / 12.24 0.045 0.0055 
TU 1200 600 18 X 16 2.93 / 9.61 0.03 0.0028 
TT 2240 1100 40 X 9 3.35 / 10.99 0.055 0.0061 
TS 560 600 18 X 8 4.51 / 14.8 0.045 0.0066 
TR 1120 600 18 X 16 3.85 / 12.63 0.03 0.0038 
TP 1120 600 18 X 16 1.69 / 5.54 0.03 0.0016 
TQ 560 600 18 X 8 4.66 / 15.29 0.045 0.0068 
TO 4480 1100 40 X 16 3.61 / 11.84 0.056 0.0066 
TN 560 600 18 X 8 5.34 / 17.52 0.045 0.0079 
TM 1120 600 18 X 16 3.78 / 12.40 0.03 0.0037 
TK 1120 600 18 X 16 1.64 / 5.38 0.03 0.0016 
TL 560 600 18 X 8 5.53 / 18.14 0.045 0.0082 
TJ 6720 1100 40 X 24 3.27 / 10.73 0.045 0.0048 
TI 560 600 18 X 8 3.90 / 12.79 0.045 0.0057 
TH 560 600 18 X 8 2.88 / 9.45 0.045 0.0042 
TG 7840 1100 40 X 28 3.39 / 11.12 0.038 0.0042 
TF 560 600 18 X 8 2.96 / 9.71 0.045 0.0044 
TE 560 600 18 X 8 1.29 / 4.23 0.045 0.0019 
TD 8960 1100 40 X 32 2.24 / 7.35 0.04 0.0029 
TC 560 600 18 X 8 2.10 / 6.89 0.045 0.0031 
TB 560 600 18 X 8 1.09 / 3.58 0.045 0.0016 
TA 10080 1100 40 X 36 2.29 / 7.51 0.036 0.0027 
 TOTAL 0.157 
 
 
 
 
 
 
 
(J)
 
Valores tomados de Tabla 8. Velocidades máximas recomendadas para sistemas de baja velocidad (Ver anexos) 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 44 
 
 
CODOS 
 
TRAMO 
DIME�SIO�ESDE CODOS 
(PULG) CA�TIDAD 
LO�G .EQ. 
PIES 
LO�G .EQ. 
TOTAL 
PÉRDIDAS 
“C.A./100 
PIES 
PÉRDIDAS 
“C.A. 
TW - TT 18 X 9 1 15 15 0.11 0.0165 
TU - TT 18 X 9 1 15 15 0.11 0.0165 
TR - TO 18 X 16 1 15 15 0.023 0.0034 
TP - TO 18 X 16 1 15 15 0.023 0.0034 
TM - TJ 18 X 24 1 15 15 0.01 0.0015 
TK - TJ 18 X 24 1 15 15 0.01 0.0015 
TI - TG 18 X 28 1 15 15 0.112 0.0017 
TH - TG 18 X 28 1 15 15 0.112 0.0017 
TF - TD 18 X 32 1 15 15 0.128 0.0019 
TF - TD 18 X 32 1 15 15 0.128 0.0019 
TC - TA 18 X 36 1 15 15 0.144 0.0022 
TB - TA 18 X 36 1 15 15 0.144 0.0022 
TOTAL 0.0544 
 
 
 
 
 
 
PÉRDIDAS TOTALES DE FRICCIÓ� E� DUCTERIA “C.A. 0.157 
PÉRDIDAS TOTALES DE FRICCIÓ� E� CODOS “C.A. 0.0544 
*PÉRDIDAS E� VE�TILADOR “C.A. A U�A VELOCIDAD DE 1100 CFM 0.07 
PÉRDIDAS TOTALES DEL SISTEMA DE I�YECCIÓ� E� “C.A. 0.28 
 
*Valor obtenido del manual CARRIER, TABLA 8, CAP. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 45 
SISTEMA DE DUCTOS DE RETORNO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO III: SELECCIÓN DE EQUIPO 
 46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47 
 
INSPECCIÓN DE LA UNIDAD 
 
Inmediatamente después de recibir la unidad, deberá ser inspeccionada por posibles daños que 
puedan haberse ocasionado durante el traslado. Si algún daño es evidente, deberá de ser 
notificado y registrado con el transportista. Una reclamación por escrito del agente transportista 
deberá de ser realizada en ese mismo momento. 
 
UBICACIONES Y TOLERANCIAS 
 
Las siguientes guías deberán ser usadas para seleccionar una ubicación apropiada para la 
instalación de la unidad. 
 
� La unidad esta diseñada solo para instalación en exterior. 
� Los serpentines del condensador deberán de tener un suministro ilimitado de aire. 
� Coloque la unidad de tal manera que el aire pueda circular libremente y no sea recirculado. 
� Apropiado para la instalación en techo, tejados. 
� Las estructuras de ubicación deberán ser capaces de soportar el peso de la unidad así como 
de sus accesorios. 
� Mantenga la tolerancia del nivel a 1/2 pulgada a lo ancho y 2 pulgadas a lo largo. 
� Para un adecuado acceso y flujo de aire, todos los lados de la unidad deben de estar a una 
distancia mínima igual al ancho de la unidad desde cualquier pared u obstrucción. Es preferible 
que esta distancia se incremente tanto como sea posible. 
� También asegurarse de dejar suficiente espacio para los servicios de mantenimiento de la 
unidad. Asegurarse de que todos los paneles puedan abrir libremente y que se cuente con el 
espacio suficiente para mover los equipos y herramientas de trabajo. 
 
 
IZAMIENTO Y MANEJO 
 
El izamiento y manejo apropiado del equipo es mandatario durante la descarga y colocación de la 
unidad a su ubicación para mantener las condiciones de la garantía. 
� Todos los herrajes de levantamiento deberán ser usados para evitar el torcimiento y /o daños a 
la unidad. 
� Deberá de tenerse cuidado para mantener a la unidad en posición vertical hacia arriba durante 
el izamiento para evitar daños soldaduras a prueba de agua del gabinete de la unidad. 
� Evite los manejos rudos o innecesarios. 
� Barras de izamiento y cables apropiados deberán de ser usados cuando se efectué el 
izamiento. También es mandatario que una persona con experiencia y confiable sea seleccionado 
para efectuar las maniobras de descarga y colocación final del equipo. 
� La persona que efectué la maniobra deberá ser prevenido de que la unidad contiene 
componentes internos y que debe ser manejada de manera vertical. Deberá tenerse cuidado para 
evitar torcimientos de la estructura del equipo. 
 
 
IV. 1 INSTALACIÓN DE EQUIPO 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 48 
 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 49 
 
VERIFICACIÓN DEL SISTEMA ANTES DEL ARRANQUE INICIAL 
(SIN ENERGÍA) 
 
� Inspeccione la unidad por daños en el embarque y durante la instalación. 
� Visualmente verifique por fugas de la tubería de refrigerante. 
� El nivel de aceite del compresor deberá ser mantenido para que el nivel de aceite este visible 
en la mirilla. En este caso, el aceite deberá estar entre la ½ y ¾ de la mirilla. 
� Verifique el tablero de control para asegurar que este libre de material extraño (alambres, 
rebabas metálicas, etc.) 
� Visualmente inspecciones el alambrado de campo (energía y control). 
� Verifique que las terminales estén apretadas en el interior del tablero de energía en ambos 
lados de los contactores, sobrecargas, fusibles y conexiones de energía. 
� Verifique el tamaño del fusible en los circuitos principales. 
� Verifique el alambrado de campo para el termostato. 
� Los tornillos de resorte del aislador del abanico de abastecimiento, removidos. 
� Verifique los valores de apriete del collarín de seguro y el balero en los abanicos de liberación 
y suministro 
� Verifique el alineamiento del eje apropiado de los abanicos de liberación y suministro. 
� Verifique la tensión apropiada de la banda del abanico de liberación y suministro. 
� Las bandas deberán de ser verificadas después de 24 horas de la operación inicial. 
� Gire manualmente las ruedas de abanico y del ventilador así como de los motores para 
asegurar la libertad de movimiento. 
� Verifique la instalación de la trampa de desagüe de condensación apropiada. Llene las 
trampas con agua antes del arranque de la unidad 
� Si es aplicable, verifique la instalación de los filtros de aire(refiérase a la sección de 
Instalación por tamaño y cantidad) 
� Verifique los puntos de Ajuste del Eje de Frecuencia Variable para las unidades VAV y los 
abanicos de liberación de mando variable opcional. 
� Verifique si esta equipado con la válvula en la línea de succión, válvula en la línea de 
descarga, y válvula en la línea de liquido para cada sistema refrigerante. 
 
 
VERIFICACIONES DE LA UNIDAD 
(ENERGÍA APLICADA) 
 
1. Aplique la energía trifásica y verifique su valor. El voltaje de desbalance no deberá de ser de 
más del 2 % del voltaje promedio. 
2. Verifique los puntos de ajuste programados de las unidades. 
3. Verifique la rotación apropiada del abanico, deberá de girar en dirección de la flecha del 
alojamiento del abanico. 
4. Asegurase de la rotación apropiada del compresor. (Monitoree las presiones de succión y 
descarga del circuito de refrigerante respectivo mientras que el compresor se encuentre 
PRENDIDO. 
5. Verifique nivel de aceite de compresor; (El nivel de aceite puede solo ser probado cuando el 
compresor este operando en condiciones estabilizadas). 
 
 
 
 
 
IV.2 OPERACIÓN DE EQUIPO 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 50 
ARRANQUE INICIAL 
 
Después que todas las verificaciones precedentes hallan sido completadas, la unidad puede ser 
puesta en operación. 
 
1. Coloque el interruptor de la unidad en el tablero de control a la posición de operar (RUN). 
 
2. Con una demanda, el abanico de suministro ciclara a PRENDIDO, y permitirá la operación del 
compresor si el interruptor de presión que promociona el aire para el abanico de suministro ha 
cerrado. 
 
3. El primer compresor arrancara. Después de varios minutos de operación, un flujo de refrigerante 
será observado en la mirilla, el vapor en la mirilla se eliminara. 
 
4. Permita que el compresor opere durante un breve periodo estando listo para detenerlo de 
manera inmediata si cualquier ruido inusual o condición adversa se desarrolla. 
 
5. Verifique los parámetros de operación del sistema. Haga esto al seleccionar las varias pantallas 
como presiones y temperaturas y comparando estas lecturas con las presiones y temperaturas 
tomadas con los indicadores de la unidad. 
 
6. Con un amperímetro,verifique que cada fase de los abanicos del condensador, compresores, 
abanico de suministro, y abanico de liberación este dentro del rango enlistado en la placa de datos 
de la unidad. 
7. Verificación de Sobrecalentamiento y Subenfriamiento 
8. Verifique por fugas los compresores, conexiones y tubería para asegurar que no halla fugas. 
 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 51 
 
 
 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 52 
 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 53 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 54 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 55 
 
 
 
IV.3 FUNCIONAMIENTO, LIMPIEZA Y MANTENIMIEN TO 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 56 
 
MANTENIMIENTO REGULAR 
 
Además de la rutina de mantenimiento que usted realice, su sistema Registre el modelo, producto 
y número de serie de su nuevo equipo de confort deberá ser revisado con regularidad por un 
técnico de en los espacios proporcionados abajo. Esta información, junto con servicio 
especializado. La inspección (preferentemente una vez al otra de primera referencia requerida 
abajo, será necesaria en el año, pero cuando menos cada dos años) deberá incluir lo siguiente: 
caso de que requiera información o servicio. 
� Inspección de rutina para saber si el filtro (s) necesita ser limpiado o reemplazado. 
� Inspección y limpieza de la rueda del soplador, caja y motor. El servicio deberá incluir una 
lubricación apropiada de estos componentes. 
� Inspección, y si se requiere, limpieza del serpentín interior y serpentín exterior. 
� Inspección de la charola de desagüe del serpentín interior, además de la línea de desagüe. 
El servicio deberá incluir limpieza si es necesaria. 
� Una revisión de todas las conexiones y alambrado eléctrico. 
� Una revisión de conexiones físicas seguras de los componentes individuales dentro de las 
unidades. 
� Revisión operacional del sistema para determinar su condición de rendimiento actual. Si es 
necesario hacer reparaciones o dar mantenimiento, este es el momento de hacerlo. 
 
 
MANTENIMIENTO PERIÓDICO – MENSUAL 
 
Filtros 
Verifique la limpieza de los filtros y cambie o limpie como se requiera. 
 
Varillajes 
Examine el varillaje del operador y la compuerta para asegurar que cada uno este libre y operando 
de una manera suave. 
 
Compresores 
Examine el nivel de aceite; puede ser solo probado cuando el compresor este operando en 
condiciones estabilizadas. Además de revisar el nivel de contaminación en aceite mediante un 
análisis del mismo. 
 
Lubricación del Balero del Abanico 
Agregue grasa lentamente con la flecha girando hasta que una capa ligera se forme en los sellos. 
 
Serpentines del Condensador 
La suciedad no deberá ser permitida que se acumule en las superficies del serpentín del 
condensador. La limpieza deberá ser tan a menudo como sea necesario para mantener limpio al 
serpentín. 
 
MANTENIMIENTO PERIÓDICO – TRES A SEIS MESES 
 
Lubricación del Balero del Motor 
Los baleros deberán de ser prelubricados periódicamente para asegurar una gran duración. El 
balero del motor deberá ser lubricado anualmente, pero puede necesitar lubricación mas a 
menudo, dependiendo de las condiciones severas de operación. 
 
IV.4 MANTENIMIENTO Y SERVICIO 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 57 
Tensión de la Banda 
Ajuste la tensión d la banda si es necesario si es necesario. Los datos de la tensión requerida de la 
banda son proporcionados en la placa de datos del patín, anexo al alojamiento del abanico. Nunca 
use compuestos en las bandas. Si las bandas patinan con la tensión apropiada, use un buen 
limpiador de bandas. 
 
MANTENIMIENTO PERIÓDICO – ANUAL 
 
Verifique que las ruedas de abanico e inspeccione la charola de desagüe por sedimentos, y 
materiales extraños. Limpie si es necesario. 
Observe la operación de todas las compuertas y efectué cualquier ajuste que sea necesario en el 
varillaje, y la orientación del aspa para una operación apropiada. 
 
Inspección Completa de la Unidad 
Además de las verificaciones en listadas en esta sección, inspecciones periódicas en general de la 
unidad deberán de ser completadas para asegurar la operación apropiada del equipo. 
Los artículos como material suelto, operación del componente, fugas de refrigerante, ruidos 
inusuales, etc. deberán de ser investigadas y corregidas de manera inmediata. 
 
Alineamiento de la Polea : 
Para verificar el alineamiento de la polea, use una regla recta o una pieza de cuerda puede ser 
usada. Si las poleas son alineadas de una manera apropiada, la cuerda u regla recta tocaran todos 
los puntos. Girando las poleas se determinara si esta oscilando o la flecha de mando esta doblada. 
El error en la alineación deberá de ser corregido para evitar la falla del balero y de la banda. 
 
Bandas 
Cuando las bandas sean nuevas, deberán de ser verificadas después de 24 horas de operación. 
En poleas ajustables múltiples, la profundidad del paso deberá de ser verificada para asegurar una 
carrera de la banda igual, la transferencia de energía y desgaste. Una banda tensionada y alineada 
inapropiadamente puede acortar substancialmente la vida de la banda o sobrecargar al abanico y 
los baleros del motor, acortando su esperanza de vida. Una banda tensionada demasiado apretada 
puede sobrecargar la corriente del motor, ocasionando cortes molestos por las sobrecargas del 
motor /o falla de la flecha. 
 
Reemplazo del Filtro del Deshidratador 
El filtro /deshidratador deberá ser reemplazado cada vez que se trabaja en el circuito refrigerante. 
 
Baleros de la Flecha del Abanico 
Cuando remueva y cambie los baleros, tenga cuidado de asegurarse que el área donde los baleros 
ajusten en la flecha no se dañe o rayen. La flecha en esta área deberá de ser limpiada 
completamente antes que el balero sea removido y de nuevo antes que el nuevo sea instalado. 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 58 
 
 
 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 59 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 60 
 
 
 
 
 
IV.5 PRECAUCIONES DE SEGURIDAD 
 
CAPÍTULO IV: INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO DE EQUIPO 
 61 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63 
ANEXOS 
 
 
 
 
 
 
 
 
Tabla 1. CONDICIONES ATMOSFÉRICAS DE DISEÑO (AMICA) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabla 2. CONDICIONES DE PROYECTO RECOMENDADAS PARA AMBIENTE 
INTERIOR INVIERNO-VERANO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Tabla 4, Cap. 2 Manual Carrier 
 
 
 
 
 
 64 
 
 
 
 TABLA 3. CORRECCIÓN DE TEMPERATURA POR EL EFECTO S OLAR 
(Grados Fahrenheit / Celsius que han de añadirse a la diferencia de temperatura normal en los cálculos de 
transmisión de calor para compensar el efecto solar) 
 
 TIPO DE SUPERFICIE Pared Este Pared Sur Pared Oeste Techo Plano 
Superficies de color oscuro tales como: 
 Techo de arcilla negra 
 Techo de chapopote 
 Pintura negra 
8 °F / 4.44 °C 5 °F / 2.77 °C 8 °F / 4.44 °C 20 °F / 11.1 °C 
Superficies de color medio tales como: 
 Madera sin pintar 
 Ladrillo 
 Losa roja 
 Cemento oscuro 
 Pintura roja , gris o verde 
6 °F / 3.33 °C 4 °F / 2.22 °C 6 °F / 3.33 °C 15 °F / 8.3 °C 
Superficies de color claro tales como: 
 Piedra blanca 
 Cemento de color claroPintura blanca 
4 °F / 4.44 °C 2 °F / 4.44 °C 4 °F / 4.44 °C 9 °F / 5 °C 
Tomado del Manual de Fundamentos ASHRAE, 1967; y copiado con autorización. 
 
 
 
 
TABLA 4. ECUACIONES PARA DETERMINAR EL COEFICIENTE DE PELÍCULA “h” 
 
 
TIPO DE SUPERFICIE 
COEFICIENTE DE PELICULA “F” 
(SISTEMA MÉTRICO) 
kcal/h·m 2·ºC 
Muy lisa: vidrio, acrílico liso, lámina de aluminio, lámina de 
latón, etc. 
h = 6.8 + 0.85 V 
Lisa: madera lisa, aplanado de yeso, etc. h = 7.8 + 0.90 V 
Moderadamente áspera: concreto, tabique rojo comprimido, 
aplanado de cemento, etc. 
h = 9.8 + 1.20 V 
Muy áspera: concreto sin afinar, tabique áspero, stucco, etc. h = 10.3 + 1.50 V 
 V = Velocidad de aire en km/h 
(SISTEMA INGLÉS) 
Btu/h·ft 2·ºF 
Muy lisa: vidrio, acrílico liso, lámina de aluminio, lámina de 
latón, etc. 
h = 1.4 + 0.28 V 
Lisa: madera lisa, aplanado de yeso, etc. h = 1.6 + 0.30 V 
Moderadamente áspera: concreto, tabique rojo comprimido, 
aplanado de cemento, etc. 
h = 2.0 + 0.40 V 
Muy áspera: concreto sin afinar, tabique áspero, stucco, etc. h = 2.1 + 0.50 V 
V = Velocidad de aire en millas/h 
 
 
 
 
 
 
 65 
 
TABLA 5. COEFICIENTES DE CONDUCTIVIDAD TÉRMICA (K) DE MATERIALES DE 
CONSTRUCCIÓN A 20°C 
 
MATERIAL 
DENSIDAD 
Kg/m 3 
k 
kcal/h ⋅⋅⋅⋅ m ⋅⋅⋅⋅ °C 
k 
W/m °C 
Acabado texturizado 0.20 0.23 
Acustome 800 0.26 0.314 
Arena, por término medio 1,500 – 1,800 0.80 0.93 
Arenisca Calcárea 1,600 0.70 0.814 
Asfalto 2,100 0.60 0.69 
Contrachapado de Madera 600 0.12 0.14 
Concreto Armado 1,600 – 1,800 0.25 0.29 
Mortero de cemento 0.99 1.16 
Cemento - arena 1.20 1.395 
Granito 2,600 – 2,900 2.50 – 3.50 2.9 – 4.0 
Grava para relleno 1,500 – 1,800 0.80 0.93 
Impermeabilizante 0.60 0.697 
Block común 0.86 1.0 
Ladrillo 1,600 – 1,800 0.33 – 0.45 0.38 – 0.52 
Linóleo 1,200 0.16 0.19 
Mosaico y Azulejo 0.90 1.04 
Madera, vertical a la fibra: 
 Ligera, de balsa 200 - 300 0.07 – 0.09 0.08 – 0.10 
 Abeto rojo, Pino 400 - 600 0.10 – 0.14 0.11 – 0.16 
 Haya, Roble 700 - 900 0.14 – 0.18 0.16 – 0.21 
Mampostería de Ladrillo, 
 Ladrillo hueco 
800 0.30 – 0.45 0.35 – 0.52 
Mampostería de Ladrillo, 
 Ladrillo hueco 
1,600 0.45 – 0.65 0.52 – 0.75 
Mampostería de Ladrillo, 
 Macizo, interior 
1,600 – 1,800 0.60 0.69 
Mampostería de Ladrillo, 
 Macizo exterior 
1,600 – 1,800 0.75 0.87 
Mortero de Cemento 1.20 1.4 
Pavimento de Cemento 2,200 1.20 1.4 
Piedra Arenisca 2,200 – 2,500 1.40 – 1.80 1.63 – 2.09 
Piedra Caliza 2,550 1.05 1.22 
Poliestireno (Styropor) 15 - 30 0.033 0.038 
Corcho 0.03 0.04 
Recubrimiento (Plástico) 1,500 0.2 0.23 
Revoque, Aplanado de 
 Cemento, Cal, Arena 
1,600 – 1,800 0.80 – 1.00 0.93 – 1.16 
Tableros rígidos de Fibra de 
 Madera 
900 0.15 0.17 
Terrazo (Mosaico Veneciano) 2,200 1.20 1.4 
Terreno, seco 1,000 – 2,000 0.15 - 0.50 0.17 – 0.58 
Moqueta 0.039 0.046 
Alfombra 0.023 0.027 
Viruta de caña de azúcar 
 (Celotex) 
300 0.05 0.058 
Vidrio de ventana 2,400 – 3,200 0.50 – 0.90 0.58 – 1.05 
Yeso (Aplanado) 500 0.18 0.21 
 
 66 
TABLA 6. GANANCIA DE CALOR POR OCUPANTES EN ESPACI OS 
ACONDICIONADOS 
 
GRADO DE ACTIVIDAD APLICACIÓN TÍPICA 
CALOR 
TOTAL 
HOMBRE 
ADULTO 
(BTU/HR) 
CALOR TOTAL 
ADJUNTO 
(BTU/HR) 
CALOR 
SENSIBLE 
(BTU/HR) 
CALOR 
LATENTE 
(BTU/HR) 
Teatro función de tarde 390 330 200 130 Sentado en posición 
de reposo Teatro función de noche 390 350 215 135 
Sentado,trabajo muy ligero Oficina, hoteles, 
apartamentos 450 400 215 185 
Trabajo de oficina 
moderadamente activo 
Oficina, hoteles, 
apartamentos 475 450 220 230 
De pie, un trabajo ligero departamento de venta al 
por menor 550 450 220 230 
Caminando despacio departamento de almacén 550 450 220 230 
Caminando, sentado Farmacia 550 500 220 280 
De pie, caminando despacio Banco 550 500 220 280 
Trabajo sedentario Restaurant 490 550 240 310 
Trabajo de banco ligero Fábrica 800 750 240 510 
Baile moderado Salón de baile 900 850 270 580 
Caminando,3 mph; 
Trabajo moderadamente 
pesado 
 
Fábrica 1000 1000 330 670 
Trabajo pesado Fábrica 1500 1450 510 940 
Tomado de 1965 ASHRAE GUIDE and Data Book. 
 
 
 
TABLA 7. RANGOS MÁS COMUNES DE NIVELES DE ILUMINAC IÓN PARA 
DIFERENTES ÁREAS, TAREAS Y ACTIVIDADES (ISO.8995) 
 
RANGO DE ILUMINANCIAS 
(LUX) 
TIPO DE ÁREA, TAREA O 
ACTIVIDAD 
POTENCIA CALORÍFICA 
APROXIMADA POR ÁREA 
(W/m2) 
20 – 30 – 50 Áreas de trabajo y circulación exterior 0.291 
50 – 100 – 150 Áreas de circulación, orientación 
sencilla o corta iluminación 
0.873 
100 – 150 – 200 Locales de trabajo no empleados 
continuamente 
1.160 
200 – 300 – 500 Tareas con requerimientos visuales 
sencillos 
2.732 
300 – 500 – 750 Tareas con requerimientos visuales 
medios 
4.384 
500 – 750 – 1000 Tareas con requerimientos visuales 
elevados 
8.098 
750 – 1000 – 1500 Tareas con requerimientos visuales 
exigentes 
9.957 
1000 – 1500 – 2000 Tareas con requerimientos visuales 
especiales 
13.276 
Superiores a 2000 Desempeño de tareas visuales muy 
exigentes o de alta precisión 
16.140 
 
 
 
 
 
 67 
 
 
 
 
 
 
 
 
 
TABLA 8. VELOCIDADES MÁXIMAS RECOMENDADAS EN DUCTO S PARA 
SISTEMAS DE BAJA VELOCIDAD (FPM) 
 
VELOCIDADES MÁXIMAS RECOMENDADAS EN DUCTOS PARA SISTEMAS DE BAJA VELOCIDAD (FPM) 
FACTORES DE CONTROL DE FRICCIÓN EN DUCTOS 
DUCTOS PRINCIPALES DUCTOS RAMALES 
 
APLICACIÓN 
FACTORES PARA CONTROLAR 
LA GENERACIÓN DE RUIDOS 
Ductos Principales INYECCIÓN RETORNO INYECCIÓN RETORNO 
RESIDENCIAS 600 1000 800 600 600 
APARTAMENTOS 
HOTELES 
HOSPITALES 
 
1000 
 
1500 
 
1300 
 
1200 
 
1000 
OFICINAS PRIVADAS 
OFICINAS DIRECTIVAS 
LIBRERIAS 
 
1200 
2000 1500 1600 1200 
TEATROS 
AUDITORIOS 
800 1400 1100 1100 800 
OFICINAS GENERALES 
RESTAURANTES Y 
TIENDAS ALTA CLASE 
BANCOS 
 
1500 
 
2000 
 
1500 
 
1600 
 
1200 
TIENDAS MEDIA CLASE 
CAFETERÍA 
1800 2000 1500 1600 1200 
INDUSTRIAL 2500 3000 1800 2200 1500 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68 
 
Glosario 
 
 
Calor: La cantidad de energía que un cuerpo transfiere a otro como consecuencia de una 
diferencia de temperatura entre ambos. 
 
Calor latente: Es el que se necesita para cambiar de fase una sustancia sin variar su temperatura. 
 
Calor sensible: El calor que puede sentirse o medirse. Este causa un cambio en la temperatura de 
una sustancia, pero no un cambio en el estado. 
 
Temperatura: Magnitud física que expresa el grado o nivel de calor de los cuerpos o del ambiente. 
 
Coeficiente de película: Factor que cuantifica la influencia de las propiedades del fluido, de la 
superficie y del flujo cuando se produce transferencia de calor por convección. 
 
Transferencia de calor: Proceso por el que se intercambia energía en forma de calor entre 
distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. 
 
Conducción: El transporte de energía se realiza partícula a partícula; de esta forma se transmite 
el calor en los sólidos. 
 
Convección: Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi 
seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte 
del fluido a otra. 
 
Radiación: La energía que pasa de un cuerpo a otro sin que haya contacto entre ellos. 
 
Conductividad térmica: Propiedad de un material que indica su capacidad para transmitir el calor. 
 
Balance térmico: Balance de las entradas y salidas de calor de un cerramiento o una edificación. 
 
Coeficiente global de transferencia de calor: Son los coeficientes de transferencia de calor entre 
el lado caliente y en el lado frío de la pared. Es importante ya que nos proporciona la cantidad total 
de calor transferido cuando se multiplica este por área de la superficie del muro. 
 
Psicrometría: Estudia las propiedades termodinámicas de la mezcla aire con agua. 
 
Sistema frigorífico: El arreglo de dispositivos que trabajan realizando un ciclotérmico cerrado en 
el curso del cual una carga de gas refrigerante retorna periódicamente a asumir el valor inicial. 
El ciclo se compone de una fase de compresión, condensación y otra de expansión evaporación 
las cuales al alternarse consiguen transferir calor del recinto al ambiente exterior. 
Refrigerante: Son compuestos químicos que nos permiten remover calor. 
 
Refrigeración. Es la técnica para la remoción de calor de un cuerpo o sustancia para llevarlo a 
una temperatura menor generalmente debajo de la del medio ambiente. 
 
Humidificar: Transmitir humedad al ambiente. 
 
 69 
Climatización: Proceso que permite otorgar una temperatura deseada, la cual garantice nuestra 
comodidad, a un ambiente determinado. 
 
Temperatura de bulbo húmedo: Es la temperatura que da un termómetro a la sombra, con el 
bulbo envuelto en una mecha de algodón húmedo bajo una corriente de aire. 
 
Temperatura de bulbo seco: Es la temperatura seca o simplemente la temperatura del aire. Es 
medida con un termómetro de mercurio. 
 
Humedad relativa: Es la humedad que contiene una masa de aire. 
 
Cajas VAV: Compuertas de Volumen de Aire Variable que regulan el flujo de aire mediante un 
dispositivo electrónico denominado actuador. 
 
Elemento Sensor: Un dispositivo o componente que mide el valor de una variable. 
 
Expansión Directa: Sistema de enfriamiento empleado por los equipos de aire acondicionado 
basado en refrigerante. 
 
Serpentín – Conjunto de tuberías en el cual se hace pasar por su interior un fluido el cual puede 
ser agua o gas refrigerante a baja temperatura y por la parte exterior se hace pasar aire con el fin 
de quitarle calor al mismo y lograr enfriarlo. 
 
Tonelada de refrigeración. Término común que se usa para definir y medir la producción de frío. 
 
Termostato: Aparato que sirve para mantener automáticamente una determinada temperatura. 
 
Condensador: Es un intercambiador de calor, y su función es lograr el cambio de fase (gas a 
líquido) de un fluido. 
 
Evaporador: Es un intercambiador de calor, y su función es lograr el cambio de fase (líquido a 
gas) de un fluido. 
 
Compresor: Son máquinas que tienen por finalidad aportar una energía a los fluidos compresibles 
(gases y vapores) sobre los que operan, para hacerlos fluir aumentando al mismo tiempo su 
presión. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70 
 
 
 
 
 
CONCLUSIONES 
 
 
Como sabemos el acondicionamiento de aire es la técnica que comprende el control simultáneo y 
continúo de los factores (temperatura, humedad, movimiento, distribución, pureza y ruido) que 
afectan las condiciones físicas y químicas de la atmósfera, dentro de cualquier local destinado a 
ocuparse por personas para confort o con fines industriales. Con esto se hizo el cálculo preciso 
para el diseño y selección adecuada del equipo. 
 
El objeto de la presente tesis, fue concretar el procedimiento adecuado para el cálculo, selección, 
instalación y mantenimiento de un sistema de aire acondicionado, aplicado específicamente a un 
teatro. 
 
Esta tesis es esencialmente una guía para el desarrollo de un proyecto de esta naturaleza. Aunque 
algunos conceptos pueden variar, dependiendo de las necesidades que se tengan, el 
procedimiento es básicamente el mismo. Por lo que podemos considerar al presente trabajo de 
gran utilidad tanto en el aspecto teórico-académico como en el de aplicación. 
 
Una selección adecuada del equipo nos va a beneficiar, ya que satisfacerá las condiciones 
necesarias para el local y para su óptimo funcionamiento, además de reducir los costos de 
instalación, operación, mantenimiento, y lo más importante el ahorro de energía eléctrica. 
 
Concluyendo, el aire acondicionado es un tema bastante amplio y que esta en constante 
desarrollo, cada año salen nuevos equipos, productos, software; por eso es de vital importancia 
que el ingeniero mecánico se actualice continuamente para seguir siendo competitivo dentro del 
ramo. 
 
 
 
 
 
 
 
 71 
 
 
 
BIBLIOGRAFÍA 
 
 
 
 
 
Air Conditioning Manual TRANE 
THE TRANE COMPANY 
1965 
 
Asociación Mexicana de Empresas del Ramo de Instalaciones para la Construcción, A. C. 
(AMERIC) 
 
Botero G. Camilo 
Refrigeración y aire acondicionado 
Prentice Hall International, 1981 
 
Manual Carrier “Aire Acondicionado” 
Capítulo 1 – Análisis del local y estimación de la carga. 
Capítulo 2 – Condiciones del proyecto-Condiciones interiores del proyecto. 
Ed. Marcombo 1999 
J.P. Holman 
 
Transferencia de calor; “Coeficiente de conductividad térmica” 
E.d Continental; Tabla A-3 (Propiedades de no metales): p.p 592 
Frank P. Incropera; David P. Dewitt 
 
Fundamentos de transferencia de calor; “Coeficiente de conductividad térmica” 
Prentice Hall; 4a edición; Tabla A.3 (Propiedades de materiales estructurales de construcción) : p.p 
833 
 
MANUAL ASHRAE 
Coeficiente de conductividad térmica 
Tabla 3.a (Coeficiente de conductividad térmica K de materiales de construcción) 20°C 
1967 
 
 
 
PAGINAS WEB 
C.M.N (Centro Meteorológico Nacional) 2009 
www.cmn.com.mx

Continuar navegando