Logo Studenta

LIXIVIACION-DE-ORO-EN-MONTONES-Y-RECUPERACION-POR-CARBON-ACTIVADO

¡Este material tiene más páginas!

Vista previa del material en texto

INSTITUTO POLITÉCNICO NACIONAL 
 
Escuela Superior de Ingeniería 
Química e Industrias Extractivas 
 
 
“Lixiviación de Oro en Montones y 
Recuperación por Carbón Activado” 
 
 
 MEMORIA DE EXPERIENCIA PROFESIONAL 
 
 
QUE PARA OBTENER EL TITULO DE: 
 
Ingeniero en Metalúrgia y Materiales. 
 
 P R E S E N T A: 
 Juan Pablo Gutiérrez García. 
 
Asesor: 
Dr. Francisco Javier Juarez Islas 
 
 México, D.F Septiembre 2011. 
http://mx.geocities.com/ipn_cecyt1/programas/Ipn.zip
INSTITUTO POLITÉCNICO NACIONAL
 
ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA EINDUSTRIAS EXTRACTIVAS 
SECRETARíA
 
DE
 DEPARTAMENTO DE EVALUACiÓN Y SEGUIMIENTO ACADÉMICO 
EDUCACiÓN PUBLICA 
T-081·11. 
México, D. F., a 8 de Junio de 2011. 
Al C. Pasante: Boleta: Carrera: Generación: 
JUAN PABLO GUTIERRÉZ GARCíA 98320384 IMM 1998-2002 
Carretera Federal México Laredo Km. 178 
Barrio de San Isidro 
asquillo 
idalgo 
C.P. 42380 
Mediante el presente se hace de su conocimiento que este Departamento acepta que el 
Dr. Francisco Javier Juárez Islas, sea orientador en el Tema que propone usted desarrollar como prueba 
escrita en la opción; Memoria de Experiencia Profesional con el título y contenido siguiente: 
"Lixiviación de Oro en Montones y Recuperación por Carbón Activado". 
Resumen. 
Introducción. 
1.- Fundamentos teóricos. 
11.- Desarrollo del proceso industrial. 
111.- Análisis y discusión de resultados. 
Concl usiones. 
Bibliografía. 
Anexos. 
Se concede un plazo máximo de un año, a partir de esta fecha, para presentarlo a revisión por el 
Jurado asignado. r:-~ 
Dr. Francisco . r Juárez islas IslasDr. Francisc~rez 
Presidente de la Academia de Director de Tesis 
Metalurgia Extractiva Cedo Prof. 1332430 
)
Lic. Guillermo Albe 
Jefe del Departamento Evaluación y 
Seguimiento Aca émico 
c.c.p Expediente. 
GATA/rnre 
INSTITUTO POLITÉCNICO NACIONAL 
ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA EINDUSTRIAS EXTRACTIVAS 
SECRETARIA 
EDUCACION PUBLICA 
DE 
DEPARTAMENTO DE EVALUACIÓN Y SEGUIMIENTO ACADÉMICO 
México, D. f., a 29 de agosto del 2011 T·081·11 
Al C. Pasante: 
JUAN PABLO GUTIÉRREZ GARCíA 
Presente. 
Boleta: 
98320384 
Carrera: 
IMM 
Generación: 
1998-2002 
Los suscritos tenemos el agrado de informar a Usted, que habiendo procedido a 
revisar el borrador de la modalidad de titulación correspondiente, denominado 
"Lixiviación de Oro en Montones y Recuperación por Carbón Activado" 
encontramos que el citado trabajo de Memoria de Experiencia Profesional, reúne los 
requisitos para autorizar el Examen Profesional y PROCEDER A SU IMPRESIÓN según 
el caso, debiendo tomar en consideración las indicaciones y correcciones que al respecto 
se le hicieron. 
Atentamente 
JURADO 
Presidente 
a vador Meza Espinoza 
~ 
. ardo G. S'ánchez Alvarado Dr. FranciS~árez Islas 
) Vocal Secretario 
GATA/ams* 
C.c.p.- Expediente 
 
 
A mis queridos padres: 
 
 
Felicitas y Juan 
 
 
Con infinito agradecimiento por haberme dado la vida 
su infinito amor y otorgarne el mejor de los legados el estudio 
que gracias a su esfuerzo y sacrificio hoy 
se culmina con mi titulacion profesional y con ello forjar 
el mayor de sus anhelos ser un hombre de bien y de provecho. 
 
 
A mis hijos: 
 
 
Marco 
Ari 
Yuri 
Abril 
 
Que con su ternura motivaron mi superacion personal y profesional, con ello tambien 
que este trabajo sea un estimulo a su superacion para que en la vida siempre se 
conduzcan como personas de bien y tengan exito en la vida. 
 
Con todo mi amor. 
 
 
 
 
 
"Un metalúrgista debe ser maestro de algo y aprendiz de todo" 
 
 
 
Motto. 
RESUMEN 
 
En la recuperación de metales valor, el proceso empleado depende de la ley del mineral, el 
valor económico del metal y el tonelaje a procesar. El presente estudio contempla el 
tratamiento y procesamiento del mineral de La Unidad Minera “Los Filos” por el proceso de 
lixiviación en montones y adsorción con carbón activado, el cual tiene una capacidad de 
trabajo del orden de 60000 a 70000 ton día-1 de mineral, con una ley promedio de 0.69 g t-1 
de Au y 5.8g t-1 de Ag y un volumen de solución rica en su planta de adsorción con carbón 
activado de 85000 m3 día-1 con una ley promedio en la solución de 0.4 ppm de Au y Ag lo 
cual hace rentable a dicho proceso. 
 
Al instalar un sistema de lixiviación en montones (heap leaching) es fundamental la función 
de la geomembrana que ayuda a recuperar en forma eficiente el licor lixiviado, está 
cubierta plástica además también permite mantener la estabilidad del patio de lixiviación y 
mantiene un control estricto del balance hídrico del proceso, además de evitar impactos 
ambientales. También durante el acondicionamiento del sitio del patio de lixiviación es 
importante realizar una buena construcción del mismo porque impacta directamente en la 
vida productiva de la misma unidad minera, otro punto importante a considerar en los tajos, 
donde después de minar los óxidos pudieran aparecen sulfuros, es que estos tendrían que 
tratarse por tostación u otro proceso alternativo, antes de ser depositados en el patio de 
lixiviación, ya que la cinética de reacción en el caso de los sulfuros es más lenta, 
comparada con la de los óxidos que son más fácilmente lixiviables. 
 
En este trabajo se describe principalmente el proceso de lixiviación en montones que incluye 
adsorción de valores de Au en carbón activado y se presenta una comparación de los 
costos de operación de estos procesos contra los de una planta de lixiviación por agitación, 
que incluya el proceso Merrill-Crowe para la recuperación de valores metalicos, en este 
análisis se puede observar que los costos de este último son 75% más altos que los de 
lixiviación en montones. 
 
 
INDICE 
 
 Página 
RESUMEN. 
INTRODUCCIÓN. 1 
I.- FUNDAMENTOS TEORICOS. 5 
 1.1. El oro (Au). 5 
 1.2. La plata (Ag). 5 
 1.3. Patios de lixiviación. 6 
 1.4. Lixiviación. 7 
 1.4.1. Cianuración. 7 
 1.4.2. Lixiviación por agitación. 11 
 1.4.3. Lixiviación en montones (heap leaching). 14 
 1.4.4. Cianuración intensiva. 19 
 1.4.5. Lixiviación en piletas (Vat leaching). 19 
 1.4.6. Lixiviación en el lugar (In situ leaching). 20 
 1.4.7. Topografía de un patio de lixiviación. 21 
 1.5. Carbón activado. 22 
 1.5.1. Proceso de adsorción con carbón activado. 25 
 1.5.2. Proceso Merrill-Crowe. 28 
 1.6. Comparación entre el proceso de adsorción con carbón activado y el proceso 
Merrill-Crowe. 
31 
 
II. DESARROLLO DEL PROCESO INDUSTRIAL. 
 
33 
 2.1. Acarreo del mineral del tajo Filos. 36 
 2.2. Acarreo del mineral del tajo Bermejal. 37 
 2.3. Trituración y aglomeración. 38 
 2.4. Colocación de celdas en riego. 40 
 2.5. Adsorción con carbón activado. 43 
 2.6. Desorción de valores. 47 
 2.7. Electro-obtención de oro y plata. 49 
 2.8. Fundición y preparación de barras dore. 52 
III. ANÁLISIS Y DISCUSIÓN DE RESULTADOS. 55 
 3.1. Control de mineral. 55 
 3.2. Dosificación de cal y cemento. 56 
 3.3. Calidad del aglomerado. 57 
 3.4. Control de lixiviación en columnas. 58 
 3.5. Actividad relativa del carbón activado. 59 
 3.6. Control de adsorción. 60 
 3.7. Dureza del agua de proceso. 61 
 3.8. Control del proceso de desorción o despojo. 62 
 3.9. Electro-obtención. 63 
 3.10. Control del producto final. 64 
CONCLUSIONES 66 
BIBLIOGRAFÍA 67 
ANEXOS 68 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INDICE DE FOTOGRAFÍAS Y GRÁFICAS 
 
 Página 
Gráfica 1. Valor promedio del oro durante 100 años. 4 
Fotografía 1. Vista general del patio de lixiviación. 6 
Fotografía 2. Colocación y compactación de la capa de arcilla. 15 
Fotografía 3. Colocación de la geo membrana sobre la capa de arcilla. 16 
Fotografía 4. Tubería corrugada utilizadapara drenar solución. 16 
Fotografía 5. Colocación de grava sobre la geo membrana. 17 
Fotografía 6. Vista de un canal de agua pluvial. 18 
Fotografía 7. Vista de un sub-dren. 18 
Fotografía 8. Topografía del patio de lixiviación y niveles entre cada celda. 22 
Gráfica 2. Incremento en el consumo de energía eléctrica. 32 
Fotografía 9. Silo de cal y la adición a un camión de acarreo. 36 
Fotografía 10. Instalación de tubería para colocar riego. 41 
Gráfica 3. % Resistencia del aglomerado vs días. 57 
Gráfica 4. Recuperación de Au vs días de lixiviación. 58 
Gráfica 5. Capacidad de adsorción del carbón activado. 59 
Gráfica 6. Control de la dureza del agua de proceso. 61 
Gráfica 7. Evolución del proceso de desorción. 63 
 
 
 
 
 
INDICE DE TABLAS Y DIAGRAMAS 
 
 Página 
Tabla 1. Efecto del oxígeno en la velocidad de disolución del oro. 9 
Tabla 2. Propiedades del carbón activado (marca Calgon). 24 
Figura 1. Diagrama de flujo de una planta de adsorción con carbón. 27 
Figura 2. Diagrama de lixiviación decantación y recuperación de valores 
por el proceso Merrill-Crowe. 
30 
Tabla 3. Costos de operación del proceso de adsorción con carbón 
activado. 
31 
Tabla 4. Costos de operación de lixiviación por agitación y del proceso 
Merrill-Crowe. 
32 
Figura 3. Diagrama general de la Unidad Minera “Los Filos”. 35 
Tabla 5. Balance metalúrgico de lixiviación. 35 
Figura 4. Curva de equilibrio de HCN vs CN-. 37 
Figura 5. Arreglo general para colocar una celda en riego. 42 
Tabla 6. Variables de control en el área de adsorción de Au con carbón 
activado. 
47 
Figura 6 Diagrama típico del proceso de desorción 48 
Tabla 7. Variables de control en el proceso de desorción. 49 
Tabla 8. Variables de control en el área de electro-obtención. 51 
Tabla 9. Variables de control en el área de fundición. 54 
Tabla 10. Rocas minerales de los tajos “Los Filos y Bermejal”. 55 
Tabla 11. Contenido elemental en cada mineral. 56 
Tabla 12. Consumos por día de cal y cemento. 57 
Tabla 13. Balance metalúrgico de adsorción. 60 
Tabla 14. Balance de control de desorción. 62 
Tabla 15. Balance de electro-deposito. 64 
Tabla 16. Control de productos del área de fundición. 65 
Tabla 17 Eficiencia total del proceso 71 
Tabla 18. Estimación de la tasa de precipitación. 71 
Tabla 19. Estimación de flujo de rociadores, tamaño de la boquilla y la 
presión. 
72 
Tabla 20. Calculo de perdidas por fricción en tuberías. 72 
Tabla 21. Estimación de potencia de bombeo necesaria. 72 
Tabla 22. Boquillas números y colores designados por el proveedor 
SENNINGER. 
73 
Tabla 23. Datos estadísticos de proceso. 73 
Tabla 24. Potenciales eléctricos. 74 
Tabla 25. Especies mineralógicas más comunes de oro. 74 
Tabla 26. Cálculos del porcentaje molecular por cada elemento. 75 
Tabla 27. Efectos del oxigeno en la disolución de oro. 75 
Tabla 28. Datos históricos. 76 
Tabla 29. Precianuración antes de Cristo. 76 
Tabla 30. Precianuración después de Cristo. 76 
Tabla 31. Inicios del proceso de cianuración. 77 
 
 
 
 
 
 
 
 
 
Lista de Abreviaturas 
 
Å 
 
Amstrong 
ppm partes por millón 
g.t-1 gramos por tonelada 
Kg Kilogramo 
Kg.t-1 kilogramo por tonelada 
t toneladas 
m metros 
m3.h-1 metros cúbicos por hora 
m3.día-1 metros cúbicos por día 
t.día-1 toneladas por día 
Mt miles de toneladas 
Mt millones de toneladas 
Mex$.t-1 pesos por tonelada 
US$ dólares 
Mdd miles de dólares 
Mdl millones de dólares 
US$.t-1 dólares por tonelada 
US$.lb-1 dólares por libra 
cts-US$.lb-1 centavos de dólar por libra 
US$.oz-1 dólares por onza troy 
 
 
 
 
1 
 
INTRODUCCIÓN. 
El presente estudio tiene como objeto el tratamiento y procesamiento del mineral de la 
Unidad Minera “Los Filos, la cual es filial del grupo Goldcorp que es una empresa de 
capital privado, que cotiza en la bolsa de valores, dedicada a la minería y producción de 
oro, incluyendo actividades de exploración, extracción, procesamiento y recuperación. 
Con sede en Vancouver, Cánada, tiene mas de 9000 trabajadores en todo el mundo, 
Goldcorp tiene 17 operaciones y proyectos mineros desde Cánada, E.U.A, México, 
Guatemala, Honduras, Republica Dominicana y Argentina. En 2006 la compañía duplicó 
sus reservas y recursos de 5 a 10 millones de onzas, por medio de la adquisición de activos 
de Barrick y Glamis Gold Ltd. Goldcorp. Las operaciones mineras con las que Goldcorp 
cuenta en México son: El Sauzal en Urique Chihuahua, El Peñasquito en Zacatecas, “Los 
Filos” en Mezcala Guerrero y los proyectos Noche Buena y Camino Rojo, tambien en 
Zacatecas. 
 
En el presente trabajo unicamente se describe el proceso de La Unidad Minera “Los Filos”, 
esta unidad minera está ubicada a 200 km hacia el suroeste de la Ciudad de México, la 
cual emplea la lixiviación en montones, utilizando una solución de cianuro de sodio para 
recuperar oro de dos depósitos Los Filos y Bermejal. Los depósitos están ubicados a 8 
kilómetros del pueblo de Mezcala, Estado de Guerrero, México. Las leyes de mineral, 
expresados en gramos de metal por tonelada de mineral, promedian 0.69 g.t-1 en el caso 
del oro y 5.8 g.t-1 de plata. Las recuperaciones más altas son de 63 % de oro y un 7 % de 
plata. La recuperación de estos valores metálicos tienen lugar en la planta de adsorción-
desorción en carbón activado ADR (Adsorción, Desorción, Refinado) como 
operativamente se le conoce, el nombre técnico correcto de este tipo de proceso de 
adsorción de oro con carbón activado, es CIC por sus siglas en ingles (carbón in colums). 
2 
 
Esta planta tiene una capacidad de flujo promedio de 85,000 m3.día-1 siendo la de mayor 
capacidad en su tipo en México, la solución que es recibida tiene una concentración 
promedio de 0.4 ppm de Au y Ag. Dicha planta esta constituida por cuatro trenes de 
cinco columnas en cascada cada uno. La desorción utiliza un proceso de elución 
presurizada a 45-55 psi y una temperatura de 135°C a este proceso tambien se le conoce 
como despojo a presion. La recuperación de los metales, se realiza en los cátodos en el 
proceso de electro-obtención, los lodos son recuperados del fondo de las celdas 
electrolíticas, estos lodos resultantes se filtran, se secan y se funden en un horno eléctrico 
de inducción marca Inductotherm con capacidad para 220 kg de lodos con los que se 
producen barras (doré) de oro y plata, que son la parte final del proceso. 
 
La instalación de plantas que utilicen carbón activado en México se comenzo a 
desarrollar en los años 80, en el estado de Sonora principalmente a continuación se 
mencionan algunas de ellas, El Chanate; en Caborca Sonora con una capacidad de 500 
m3.h-1, El Castillo; en San Juan Durango con capacidad 1600 m3.h-1, Mulatos; en Mulatos 
Sonora con una capacidad de 600 m3.h-1, Mascota; en Pinos Altos Chihuahua de 375 
m3.h-1, San Francisco; Santa Ana Sonora 1000 m3.h-1, Minera Cerro Colorado; Trincheras 
Sonora capacidad de150 m3.h-1, LLuvia de Oro; Magdalena de Kino Sonora con 300 m3.h-1 
y fuera de operacion, se encuentran El Magistral; en Mocorito Sinaloa de 300 m3.h-1, Santa 
Gertudris; Cucurpe Sonora de 250 m3.h-1, La Trinidad; El Rosario Sinaloa de 200 m3.h-1. 
 
El precio de los metales de manera general, depende de que el dolar americano se haga 
mas fuerte “suba de precio” y por ende se necesiten menos dolares para comprar 
cualquier producto que se cotice en esta moneda. Cuando el dólar se vuelve más débil 
3 
 
“baja de precio” sucede lo contrario mencionado anteriormente, se necesita más dólares 
para comprar el mismo producto. 
 
El precio de todos los productos denominados en dólares, incluidos los metales preciosos, 
como el oro y la plata, cambiarán para reflejar el hecho de que se tendrá menos o más 
dólares para comprar ese producto. Con esta estrategia se explica parte de las 
fluctuaciones que vemos en el valor del oro, la otra parte es un aumento real de la oferta 
o lademanda de oro. Si el precio es más alto cuando se mide no sólo en dólares, sino 
también en euros, libras esterlinas, yenes japoneses y todas las monedas principales, 
entonces sabemos que la demanda de oro es mayor y ha aumentado en valor. En 
consecuencia, si el precio del oro es más alto en dólares, mientras que al mismo tiempo 
más barato en otras monedas, entonces podemos concluir que el dólar, se ha debilitado, 
y que el oro realmente ha perdido valor en todas las demás monedas. 
 
El tratamiento de minerales con valores de oro, como se observa en la grafica 1, recibió 
un fuerte impulso a mediados de la década de los 70, cuando el oro alcanza 
cotizaciones de hasta 600 US$.oz-1, en esta misma década se implementa también 
reutilizar, el carbón activado para adsorción de valores de oro por este proceso. 
 
En la industria minero metalúrgica nacional, las reservas de minerales que contengan 
metales preciosos, presentan leyes cada vez más bajas, por lo que es necesario que en 
los procesos tradicionales instalados se busquen alternativas para obtener mejoras 
economicas. 
 
4 
 
El objetivo de este trabajo es resaltar la importancia del proceso de lixiviación en 
montones y del proceso de adsorción de oro con carbón activado, el punto de partida 
como se menciono en parrafos anteriores es el precio de la onza de oro, que a la fecha a 
alcanzado un costo de 1746 US$.oz-1, lo cual representa el 65.63% del costo alcanzado en 
la decada de los 70, como se puede observar en la gráfica 1, tambien en este trabajo se 
compara el costo de operación entre el proceso Merril-Crowe y la adsorción de oro con 
carbón activado. 
 
Gráfica 1. Valor promedio del oro durante 100 años[9]. 
2020200019801960194019201900
1200
1000
800
600
400
200
0
año
dl
/o
z
Cotización de Onzas de Oro
 
 
 
 
 
 
 
 
 
 
 
5 
 
I.- FUNDAMENTOS TEORICOS. 
 
1.1. El oro (Au). 
Ha sido considerado desde la antigüedad por su belleza y permanencia como un tesoro. 
La mayor parte del oro que se fábrica hoy en día se utiliza en la fabricación de joyas. Sin 
embargo, debido a su alta conductividad eléctrica y resistencia a la corrosión, el oro es 
mezclado con otros metales para crear aleaciones más fuertes y duraderas que 
mantengan las propiedades particulares de este. Todas las características de este metal 
fue lo que lo hicieron considerarlo a finales del siglo 20 como un metal industrial esencial, 
en la actualidad el oro es utilizado en equipos de comunicación, naves espaciales, 
motores de aviones y una serie de otros productos. Aunque el oro es importante para la 
industria y las artes, también conserva un carácter único entre todos los metales ya que 
durante mucho tiempo el oro fue la base de los sistemas monetarios del mundo y 
actualmente sigue siendo un importante indicador de la economía actual. 
 
1.2. La plata (Ag). 
Se ha utilizado durante miles de años como ornamento y en la fabricación de utensilios y 
en el comercio como base para muchos sistemas monetarios. De todos los metales la 
plata pura tiene el color más blanco, la más alta reflectividad y conductividad térmica y 
eléctrica. Debido a las propiedades anteriores, la plata tiene muchas aplicaciones 
industriales como en fabricación de espejos, en los productos eléctricos y electrónicos, 
además en la fotografía que es la industria que mayor uso da a la plata. Las propiedades 
catalíticas de la plata la hacen ideal para su utilización como catalizadores en 
reacciones de oxidación, por ejemplo, la producción de formaldehído a partir de 
metanol y aire por medio de pantallas de plata y cristales. 
6 
 
1.3. Patios de lixiviación. 
La construcción de un patio de lixiviación es considerada esencialmente para minerales 
que en su mayoría están compuestos por óxidos, los cuales son más facilmente lixiviables, 
esta lixiviación preferencial permite la instalación del proceso de adsorción de valores de 
oro con carbón activado ya que por naturaleza del proceso del 95 al 99% de oro se 
adsorbe en el carbón. 
 
Lo anterior se justifica con un estudio técnico metalúrgico y de factibilidad economica, 
donde las principales ventajas de este proceso se deben a que requiere de una inversión 
moderada unida a costos de operación relativamente bajos para tratar 
metalúrgicamente minerales con baja ley en metales preciosos oro y plata, comparada 
con la cianuración por agitación. Desde el punto de vista económico, una cosa 
compensa a la otra, la baja ley es compensada por el alto volumen de mineral, como lo 
presenta la fotografía 1 en una vista aérea del proceso de lixiviación en montones que se 
encuentra instalado en La Unidad Minera “Los Filos”, dicho de otra manera cantidad por 
calidad ya que para lixiviación dinámica se requieren leyes más altas y menor cantidad 
de mineral, (recuperación vs producción) en esta decisión siempre se toma en cuenta el 
valor actual del metal. 
 
Fotografía 1. Vista general del patio de Lixiviación1. 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
7 
 
1.4. Lixiviación.[7] 
En el contexto de la extracción del oro y la plata, la lixiviación es la disolución del metal 
contenido en el mineral. La reacción primaria concerniente es la disolución de oro en 
solución acuosa, lo cual requiere de un complejante y un oxidante para lograr un 
porcentaje de disolución aceptable. Un numero limitado de complejos forman ligaduras 
suficientemente estables para ser usados en el proceso de extracción de oro. El cianuro 
es universalmente utilizado por su relativo bajo costo y su alta efectividad para la 
disolución de oro, también a pesar de algunas preocupaciones sobre la toxicidad del 
cianuro, se puede aplicar con poco riesgo para la salud y el medio ambiente. El oxidante 
más comunmente usado en la lixiviación con cianuro es el oxígeno suministrado por el 
aire, lo que contribuye a que este proceso sea más eficiente. 
 
Los diferentes procesos desarrollados para obtener metales valor que incluyan cianuro son 
los que a continuación se mencionan de manera general, cianuración, lixiviación con 
agitación, lixiviación en montones, cianuración intensiva, lixiviación en piletas y lixiviación 
en el lugar. 
 
1.4.1. Cianuración.[7] 
El proceso de lixiviación con soluciones de cianuro es la técnica más importante 
desarrollada para la extración de Au y se conoce como cianuración este proceso es 
usado en operaciones de Au a traves de todo el mundo y tiene mucha aceptación por 
causa de su superioridad economica y metalúrgica sobre otros procesos utilizados a la 
fecha como la amalgamación y la clorinación. 
 
8 
 
El principio básico de la cianuración está basado en que las soluciones alcalinas débiles 
tienen una acción directa al disolver de forma preferencial el oro contenido en el mineral. 
La reacción enunciada por Elsner explica la reacción entre el cianuro y oro: 
 
 4Au + 8CN- + O2 + 2H2O ↔ 4Au(CN)-2 + 4OH- (1) 
La química involucrada en la disolución de oro y plata en el proceso de cianuración en 
montones es la misma aplicada en los procesos de cianuración por agitación también 
conocida como lixiviación dinámica. En ambos procesos el oxígeno es un elemento 
esencial para la disolución del oro y plata, este es introducido en la solución de cianuro 
mediante la inyección directa de aire al tanque de solución de cabeza y en el caso de la 
lixiviación en patios se lleva a cabo por irrigación en forma de lluvia y por bombeo de la 
solución recirculante. 
La velocidad de disolución de los metales preciosos en soluciones de cianuro depende 
del área superficial del metal en contacto con la fase líquida, lo que hace que el proceso 
de disolución sea un proceso heterogéneo; la velocidad de disolución depende también 
de la velocidad de agitación lo queindica que el proceso también se ve afectado de un 
fenómeno físico. 
A continuación se mencionan otros factores que influyen en la velocidad de disolución: 
a) Tamaño de la partícula.- Cuando se presenta oro grueso libre en la mena, la 
práctica generalizada es recuperarlo por medio de trampas antes de la 
cianuración ya que las partículas gruesas podrían no disolverse en el tiempo que 
dura el proceso. Las pruebas realizadas en condiciones que se consideran ideales, 
9 
 
con respecto a la aireación y agitación, son que la velocidad mínima de disolución 
de oro es 3.25 mg cm-2.h-1 como valor promedio recomendado. 
 
b) Oxígeno.- Es un elemento indispensable en la disolución del oro y plata (aireación 
de la pulpa); siendo el aire atmosférico la fuente de oxígeno utilizado en el proceso 
de cianuración, el cual incrementa la cinética de la disolución del metal valor 
como se aprecia en la tabla 1. 
 
Tabla 1. Efecto del oxígeno en la velocidad de disolución del oro.[7] 
 
 
 
 
 
 
c) Concentración de la solución de cianuro: La solubilidad del oro en una solución de 
CN- aumenta al pasar de las soluciones diluidas a las concentradas. La solubilidad 
es muy baja con menos de 0.005% NaCN (cianuro de sodio), pero crece 
rápidamente cuando contiene 0.01% y después lentamente, llegando al máximo 
cuando contiene más de 0.25%. La proporción más eficaz para disolver metales 
preciosos es de 0.05 a 0.7%. 
La concentración usual de CN- para el tratamiento de menas de oro es de 0.05% y 
para menas de plata de 0.3% para concentrados de oro-plata, la fuerza de NaCN 
está entre 0.3 0.7%. El NaCN es el más usado en el proceso de cianuración, aunque 
también en algunos casos se emplea el KCN (cianuro de potasio). 
 
Oxígeno 
% 
Velocidad de disolución 
mg cm-2 h-1 
0.0 0.04 
9.6 1.03 
20.9 2.36 
60.1 7.62 
99.5 12.62 
10 
 
d) Temperatura.- La velocidad de disolución de los metales en una solución de NaCN 
aumenta con el incremento de la temperatura, hasta 85°C arriba de esta 
temperatura las pérdidas por descomposición del cianuro son un serio problema. 
 
e) Alcalinidad protectora.- Las funciones del óxido de calcio CaO también conocida 
como cal viva en la cianuración son los siguientes: 
 Evitar pérdidas de cianuro por hidrólisis. 
 Prevenir pérdidas de cianuro por acción del CO2 del aire. 
 Neutralizar los componentes ácidos y evitar la formación de gas HCN, 
manteniendo un pH en la solución rica de entre 10 -10.5 
 Facilitar el asentamiento de las partículas finas de modo que pueda separarse 
la solución rica clara del mineral cianurado. 
 
f) Porcentaje de finos.- Este aspecto es muy importante, porque cuando el 
porcentaje de finos es mayor al 20% del total (< -10 mallas, 1.7 mm) las partículas 
tienden a aglutinarse y en consecuencia no dejan pasar las soluciones de cianuro 
por lo que estos minerales requieren ser aglomerados con cal, cemento o un 
porcentaje de ambos para lograr aglomerarlos y facilitar la percolación. En la 
lixiviación dinámica el tamaño de partícula es una condición muy importante ya 
que es una de las operaciones de más alto costo dentro del proceso, con una 
molienda o trituración gruesa se obtiene una baja recuperación, en el caso 
contrario con una molienda o una trituración fina se incrementa el consumo de 
cianuro por disolución de cianicidas y problemas de lamas en los tanques, por tal 
motivo un parámetro de operación adecuado se considera una trituración desde -
6 mallas y molienda típica de 70-80% a -200 mallas. 
11 
 
1.4.2. Lixiviacion por agitación.[7] 
La lixiviación por agitación es comunmente utilizada en un amplio intervalo de minerales. 
El material a ser lixiviado se muele a un tamaño que optimiza la recuperación de oro y el 
costo de molienda, por lo general se encuentra entre 80% ≤ 150 µm y 80% ≤ 45 µm. La 
lixiviación por agitación raramente se aplica a materiales con un tamaño más grueso que 
150 µm aproximadamente, esta es una condición operativa ya que cada vez es más 
difícil mantener los sólidos gruesos en suspensión además de que la velocidad de la 
abrasión se incrementa. La lixiviación se lleva a cabo en tanques de acero y los sólidos se 
mantienen en suspensión por medio de aire o agitación mecánica. La agitación con aire 
en tanques de lixiviación de fondo cónico (o tanques Pachuca) era una práctica 
generalizada en los primeros años de la cianuración pero ha sido prácticamente 
sustituida por la agitación mecánica, la cual hizo más eficiente el consumo de energía. 
 
Un sistema de agitación bien diseñado pueden acercarse a las condiciones de flujo de 
mezcla perfecta en un solo reactor, lo que ayuda a optimizar la cinética de reacción y 
sacar el máximo partido del equipo de lixiviación disponible. Los principales parámetros a 
considerar en este tipo de lixiviación son los siguientes: 
 
a) Densidad de la pulpa: en lixiviación es usual trabajar con densidades de pulpa de 
entre 35% y 50% sólidos, dependiendo de los sólidos, gravedad específica, tamaño 
de partícula y la presencia de minerales que afecten la viscosidad de la pulpa (por 
ejemplo arcillas). El fenómeno de transporte de masa se incrementa con 
densidades de pulpa bajas, sin embargo el tiempo de retención de sólidos en un 
volumen fijo de equipos de lixiviación aumenta a medida que aumenta la 
densidad, además de que los consumos de reactivos se reducen al mínimo 
12 
 
mediante la maximización de la densidad de la suspensión, la concentración 
óptima se puede lograr mediante dosis más bajas debido al menor volumen de 
solución o por unidad de masa de material. 
 
b) Modificación de pH: es necesario para la modificación y control del pH en la 
pulpa, añadir un reactivo alcalino antes de la adición de cianuro, para proveer 
alcalinidad requerida que evita la pérdida excesiva de cianuro por hidrólisis. La 
mayoría de los sistemas de lixiviación operan entre un pH de 9 a 11.5. 
Adicionalmente la etapa alcalina puede ser requerida en todo el circuito de 
lixiviación para mantener el pH de operación deseado especialmente durante el 
tratamiento de materiales que consuman álcalis. En algunas operaciones el control 
del pH se logra de forma manual o automática con medición en línea en varias 
etapas del proceso. 
 
c) Cianuro: el cianuro puede ser añadido a los sistemas de lixiviación con agitación, 
ya sea antes del circuito de lixiviación o durante la molienda o en la primera etapa 
de lixiviación. Las adiciones de este reactivo se puede hacer en etapas posteriores 
a la lixiviación para mantener o aumentar las concentraciones de cianuro y para 
maximizar la disolución de oro. Las concentraciones de cianuro usualmente se 
controlan mediante técnicas de titulación manual y en la actualidad ya más 
comúnmente por los analizadores en línea sobre la base de cianuro, técnicas 
colorimétricas, electrodos potencio métricos y de iones específicos. 
 
d) Oxígeno: este reactivo es generalmente introducido en los sistemas de lixiviación 
como aire, ya sea por medio de roció, con lanzas en la parte inferior de los tanques 
13 
 
o directamente al mecanismo principal de agitación. En cualquier caso, los 
sistemas de aspersión de aire son suficientes para proporcionar la dispersión de 
burbujas adecuada para garantizar que la concentración de oxígeno disuelto se 
mantenga. Varían las opiniones sobre el mejor método para introducir aire en los 
tanques de lixiviación pero en la práctica, se ha comprobado que el sistema de 
aspersión óptima depende de la geometría de los tanques de lixiviación. por 
ejemplo, tanques de fondo cónico (tanques Pachuca) con un solo punto de 
aspersión (una práctica común en Sudáfrica antes de 1980), posterior a esta fecha 
se implementan los tanques de lixiviación con fondo plano y con múltiples puntos 
de aireación o simplemente por la adición directa sobre el eje agitador se han 
utilizado a la fecha con resultados aceptables.e) Tiempo de residencia: varía dependiendo de las características de lixiviación de 
cada mineral tratado y debe ser determinado por los tiempos de trabajo de 
pruebas de lixiviación previas, aplicado en la práctica la lixiviación varía desde 
unas pocas horas hasta varios días. La lixiviación se realiza generalmente en 4 a 10 
etapas, con un volumen individual en cada una de las etapas y el número de 
etapas utilizadas depende del caudal de lodos, el tiempo de residencia y la 
eficiencia requerida dependen del equipo empleado para mezclar. 
 
f) Lixiviación a contra corriente: la eficiencia de la lixiviación a contracorriente se 
puede mejorar mediante la aplicación del principio de Le Chatelier: en resumen, 
menor es la concentración de oro en solución, mayor será la fuerza impulsora para 
la disolución de oro que se produzca. Esto se puede aplicar en la práctica 
mediante la separación sólido-líquido, cuidando cada uno de los pasos o 
14 
 
separaciones durante la lixiviación para extraer oro de soluciones de alta calidad y 
volver a diluir los sólidos, con una solución fresca, para obtener una lixiviación de 
menor grado. En muchas plantas donde se trabaja con oro a menudo hay un 
aumento de la disolución de oro y el lixiviado de los lodos es transferida de un tipo 
de equipo de proceso a otro por ejemplo (entre los tanques de lixiviación, tanques 
espesadores, filtros, bombas y tuberías), esto se explica porque en cada equipo el 
mecanismo de mezcla es diferente, junto con otros factores, tales como cambios 
en el porcentaje de sólidos en suspensión y composición de la solución. 
 
1.4.3. Lixiviación en montones.(heap leaching) 
La lixiviación sea por percolación o por agitación requiere trituración y molienda previa 
del mineral, los costos de instalación y operación para estas dos etapas son demasiado 
altas, por lo que resulta incosteables para ser aplicados a minerales de muy baja ley. En la 
actualidad ha habido y sigue habiendo grandes cantidades de mineral de baja ley o 
mineral con leyes diseminadas, especialmente el superficial, extraído en operaciones a 
tajo abierto, para este tipo de minerales es necesario un tratamiento definitivamente más 
económico en costos de instalación y operación. 
 
Por esa razón en este trabajo se realiza una descripción detallada del proceso de 
lixiviación en montones, el cual ofrece importantes posibilidades para el tratamiento de 
minerales de baja ley, en operaciones a cielo abierto, lo anterior sin dejar de considerar 
los factores de diseño y operación que impactan directamente en la vida productiva de 
la misma unidad minera los cuales se mencionan a continuación. 
 
15 
 
1. Pérdida de estabilidad de suelo natural o removido en el sitio donde se construye el 
proyecto. 
2. Daño potencial o ruptura de la geo membrana. 
3. Control del balance hídrico. 
 
El proceso inicia con la preparación del lugar, antes de amontonar el mineral se 
descapota el cerro y se remueve el suelo natural a un a zona donde este material se 
conserva para ser utilizado al final del proyecto, posteriormente se coloca una superficie 
de arcilla, la cual es un material compuesto en su mayor parte por arcilla, la cual forma 
una capa impermeable muy dura para evitar las filtraciones por una posible ruptura de la 
geomembrana, esta capa de material arcilloso es de 30 cm de espesor sobre la cual se 
coloca la geomembrana, tal y como lo muestra la fotografía 2. 
 
Fotografía 2. Colocación y compactación de la capa de arcilla1. 
 
La geomemabra, cubierta plástica o liner como se le conoce en el argot, es una cubierta 
de plástico(HDPE) que se coloca sobre la arcilla compactada cuya función principal es 
evitar que cualquier líquido que se utilice dentro del patio de lixiviación penetre al suelo 
natural. Sobre este plástico escurre la solución que se filtra a través del mineral hasta las 
piletas de almacenamiento de solución rica, las cuales tienen doble revestimiento de 
liner, como se observar en la fotografía 3. 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
16 
 
 
 
Fotografía 3. Colocación de geomembrana sobre la capa de arcilla1. 
 
La tubería corrugada y perforada va instalada encima de la geomembrana del patio de 
lixiviación formando una red de drenaje cuyo objetivo es hacer que una parte de la 
solución rica que se filtra a través del mineral se infiltre hacia el interior de la tubería para 
conducirla a la pileta de solución rica. Generalmente en la parte baja va colocada 
tubería de 24 a 30”de diámetro, conforme va aumentando la inclinación del terreno se 
utilizan tuberías de 12 a 18”, en las partes mas inclinadas llega hasta 4”. La tuberia que se 
utiliza se presenta en la fotografía 4. 
 
 
Fotografía 4 Tubería corruga utilizada para drenar la solución1. 
 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
17 
 
La grava u “over liner” es obtenida del material sin valor procedente del tajo “Filos o 
Bermejal” y es reducida hasta un tamaño de 1.5 pulgadas y tiene la función de permitir el 
flujo libre de solución líquida a través de ésta, hasta llegar a la geomembrana, además 
de servir de amortiguamiento para evitar el golpeo por el contacto directo de la roca 
sobre la geomembrana y evitar posibles rupturas. La altura de la cama de grava sobre la 
geomembrana en el patio de lixiviación se debe mantener en 60 centímetros como lo 
presenta la fotografía 5. 
 
 
Fotografía 5. Colocación de grava sobre la geo membrana1. 
 
Para el excedente de agua que se tiene en la temporada de lluvias se contruyen canales 
para desviar esta agua que escurre de los alrededores y evitar entre al patio de lixiviación 
ya que correría directamente hasta las piletas de almacenamiento de solución rica lo 
que ocasiona se diluya la solución rica, provocando perdidas directas en el proceso. Uno 
de estos canales de desvio se presenta en la fotografía 6. 
 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
unicamente son para uso didáctico. 
18 
 
 
Fotografía 6. Vista de un canal de agua pluvial1. 
 
El agua de los manantiales o de precipitación pluvial dentro del patio de lixiviación es 
desviada por medio de canales llamados sub-drenes, estos son construidos a dos metros 
de profundidad en cada canal hay tubería de 18 pulgadas, el canal es rellenado y 
compactado con tierra antes de nivelar y colocar la arcilla impermeable. Uno de los usos 
dados a esos subdrenes es la detección oportuna de alguna rotura en la geomembrana, 
como lo presenta la fotografía 7. 
 
 
Fotografía 7. Vista de un sub-dren1. 
 
 
 
 
 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
19 
 
1.4.4. Cianuración intensiva.[7] 
Los procesos de cianuración intensiva utilizan altas concentraciones de reactivos, 
principalmente de cianuro y oxígeno, además con frecuencia se trabajan a elevada 
temperatura y presión, para incrementar la velocidad de disolución de oro. Estos se 
aplican a los minerales de mayor ley que pueden justificar el costo de tratamiento y con 
los cuales se puede lograr una mayor recuperación. A estos minerales también se les 
puede tratar por procesos de flotación y concentración gravimétrica. A continuación se 
mencionan algunas otras razones por las que se debe considerar utilizar la cianuración 
intensiva: 
 
1. El mineral contiene oro grueso que requiere un tiempo de lixiviación muy largo 
en condiciones de cianuración estándar. 
2. Parte o la totalidad del oro está atrapado en minerales que contienen sulfuros, 
solubles en cianuro, cuya velocidad de disolución es mayor a altas 
concentraciones de cianuro y oxígeno. 
3. El oro ocurre con otros minerales que interfierencon la práctica de cianuración 
estándar por ejemplo, telurio y mercurio. 
 
1.4.5. Lixiviación en piletas. (Vat leaching).[7] 
La lixiviación en piletas normalmente se lleva a cabo en grandes estructuras de concreto 
o piletas, pero tambien puede llevarse a cabo en lugares donde se tenga una 
configuración de valle de relleno (valley fill), este tipo de lixiviación se lleva a cabo 
cuando el mineral está completamente sumergido en la solución de lixiviación ya sea 
durante todo el ciclo de lixiviación o de parte de ella. Esto tiene la ventaja de mojar más 
eficientemente toda la superficie del mineral a ser lixiviado y en cierta medida ayuda a 
20 
 
ser más eficiente la disolución. Las ventajas que operativamente se tienen son que no se 
tienen canales preferenciales de la solución como puede llegar a pasar en la lixiviación 
en montones, además de que en este tipo de lixiviación no se tiene zonas muertas (zonas 
fuera de riego) ya que el mineral siempre está en contacto con la solución, sin embargo 
el proceso es poco utilizado debido a los altos costos de capital asociados con la 
construcción de la pileta, en comparación con los beneficios de recuperación sobre la 
práctica estándar de lixiviación que también son descritas en este trabajo. 
 
1.4.6. Lixiviacion en el lugar. (In situ leaching)[7] 
Cualquier análisis de este tipo de lixiviación se debe realizar tomando en cuenta dos 
caracteristicas. Una de ellas es que sólo en algunas circunstancias se puede considerar 
costeable la “lixiviación in situ” de un yacimiento no quebrado, no desarrollado ni 
preparado. Lo anterior es porque se tienen antecedentes de que este tipo de lixiviación 
no ha dado resultados al intentar lixiviar mineral subterraneo sin quebrar. Los motivos del 
fracaso están precisamente en la naturaleza misma del proceso de lixiviación. Si se toma 
una roca que contenga minerales con asociaciones de oro, por ejemplo, sólo se puede 
lixiviar cuando es suficientemente porosa para que la solución entre en contacto con el 
metal, actúe en él y vuelva a la superficie de la roca llevando consigo el metal disuelto. El 
tiempo que se requiere para que este proceso se lleve a cabo depende de las 
dimenciones de la roca. Lo cual aplica para cualquier mineral de que se trate o las 
reacciones químicas de disolución. 
 
Se han realizado pruebas en las que un mineral ha sido molido a menos de 60 mallas, se 
coloca a lixiviar por agitación en 4 a 8 horas. El mismo mineral, triturado a unos 6 mm (
 
 
 de 
pulgada), se puede lixiviar en 5 dias, aproximadamente. Sin embargo, si se quebrara el 
21 
 
mismo mineral en tamaños de 15.2 cm (6 pulgadas) y se apilara o amontonara, se 
necesitarían de 4 a 6 años para que se pudiera obtener una extracción razonable 
mediante la lixiviación por lotes. Este rapido aumento del tiempo necesario para la 
lixiviación conforme se aumenta el tamaño de particula, hace que resulte prácticamente 
imposible la “lixiviación in situ” de mineral que no ha sido fragmentado y preparado. 
 
1.4.7 Topografía de un patio de lixiviación. 
El patio de lixiviación ideal es aquel que está completamente horizontal con una ligera 
pendiente hacia los puntos de recolección de solución rica (piletas). Pero debido a que 
no siempre se cuenta con áreas suficientemente horizontales se necesita adaptar los 
patios de lixiviación a lo que la topografía original del terreno nos dicta y en su caso 
aprovechar el ángulo natural de reposo del mineral (36°), en la construcción de un patio 
de lixiviación la forma de las celdas y la altura de estas dependen directamente de ello, 
por esta razon existen patios que son rellenos de valles (valley fill) y contra pendiente. 
 
Es importante que se considere el equipo y el tipo de deposición del mineral al momento 
del diseño de los patios de lixiviación ya que su efectividad está directamente 
relacionada con la producción, también es igualmente importante que la operación 
cuente con un departamento de planeación exclusivo para darle seguimiento al plan de 
deposición del mineral, con el objetivo de que se aproveche al máximo el área 
disponible. 
 
Los factores importantes que dependen directamente de la topografía y que se deben 
considerar durante el diseño de un patio de lixiviación son: la capacidad final de 
depositación que para La Unidad Minera “Los Filos” es aproximadamente de 203 Mt (30.2 
22 
 
Mt de mineral triturado aglomerado y 172.5 Mt de mineral directo de mina), la 
permeabilidad del lecho, la cantidad de oxígeno requerido para este mineral en 
específico, la concentración de la solución utilizada para lixiviar, la resistencia de la 
geomenbrana o carpeta de polietileno de alta densidad (HDPE) y el tipo de uso que va a 
tener este patio de lixiviación, en este caso especifico se trata de un patio de un solo uso 
de múltiples niveles, por lo que todas las consideraciones anteriores tienen como objetivo 
lograr la maxima eficiencia de este sistema. La fotografía 8 muestra parte de la topografía 
del patio de lixiviación o lixiviación en montones que se encuentra instalado el la unidad 
Minera “Los Filos” 
 
 
Fotografía 8. Topografía del patio de lixiviación y niveles entre cada celda1. 
 
1.5. Carbón activado.[1] 
El carbón activado durante muchos años fue el único agente usado para la 
recuperación, separación y purificación de muchas sustancias. Desde 1950 en los Estados 
Unidos dicho material se empleó como adsorbente de productos orgánicos en agua de 
desecho y comprende una familia de sustancias con fórmulas y estructuras no definidas. 
 
Las únicas bases para su diferenciación es la medida de su capacidad relativa de 
adsorción. Los procesos básicos de activación son la carbonización y la oxidación. El 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
23 
 
proceso de carbonización es conducido en ausencia de aire a 600°C mientras la 
oxidación se realiza en una atmosfera oxidante a 900°C. 
 
Los cristales formados durante la carbonización consisten de 2 o más placas, una sobre 
otra, de las cuáles se descubrió que las placas Iisas son átomos de carbono arreglados en 
una red hexagonal. Cada átomo excepto aquellos de los bordes, son detenidos por 
ligaduras covalentes de otros tres átomos de carbono. El diámetro de las placas y la 
altura del montón son menores de los 100 Å. El carbón preparado con un buen 
tratamiento de carbonización es suficientemente activo. 
 
El tratamiento de oxidación también es usado para corroer selectivamente la superficie, 
crear porosidad y con eso incrementar el área superficial. La oxidación también tiene una 
variedad de grupos funcionales que contienen oxígeno sobre la superficie que juegan un 
papel importante en los procesos de adsorción. 
 
El carbón activado posee la virtud de adherir o retener en su superficie uno o más 
componentes del líquido que está en contacto con él, esto sucede por la cantidad de 
poros que posee en su estructura. Aunque la estructura submicroscópica no está bien 
definida, se asume que puede ser compuesta de partículas amorfas al azar distribuidas 
para dar una compleja red irregular en parte interconectada entre las partículas. 
 
Los poros van dentro de las dos distintas clases de tamaño, los macro poros constituyen 
aproximadamente el 5% de la superficie activa, son de 1000 a 2000 Å de diámetro. Los 
micro poros son menores de 20 Å en diámetro y son los más importantes ya que alcanzan 
24 
 
el 95% del área superficial disponible. En la tabla 2 se describen las principales 
propiedades del carbón activado. 
 
Tabla 2.Propiedades del carbón activado (marca Calgon) [1] 
Condición Valor Unidad 
Densidad de partícula 0.8 – 0.85 g.ml-1 
Volumen de poro 0.70 – 0.80 g.ml-1 
Área superficial 1050-1200 m2.g-1 
Tamaño Inicial 3.35 x 1 - 6 x 16 mm - mallas(#) 
Tamaño Final 3.35 x 1 - 6 x 12 mm - mallas(#)Los sistemas de recuperación de metales utilizando carbón activado se han empleado en 
los últimos veinte años porque tienen la gran ventaja de no requerir un tratamiento de la 
solución de lixiviación cargada antes de la recuperación y son muy versátiles. Existen un 
gran número de adaptaciones para las diferentes operaciones incluyendo lixiviación, 
adsorción, electrodeposición, desorción y tratamiento con ácido, entre otros. 
 
El mecanismo de adsorción en carbón de los metales preciosos de solución de cianuro no 
ha sido plenamente establecido, sin embargo, para el caso del oro las siguientes 
características más importantes que se conocen son: 
 
1. Mejor extracción en presencia de electrolitos (CaCl2 y KCl). 
2. Complejos neutros de cianuro, como Hg (CN)2, se adsorben fuertemente al carbón 
activado, independientemente de la fuerza iónica de la solución. 
3. La adsorción es un proceso reversible, con una mayor velocidad de desorción en 
condiciones ligeramente diferentes. 
4. La capacidad de carga y la velocidad de adsorción incrementa el equilibrio con 
el aumento de pH. 
25 
 
5. La adsorción de oro se incrementa con el aumento de pH. 
6. Existe evidencia de que la adsorción depende del potencial de reducción del 
sistema. 
7. Para la mayoría de condiciones, la concentración molar de oro y nitrógeno es de 
0.5, lo cual es consistente con la presencia del complejo Au (CN)-2 
8. La adsorción disminuye al aumentar la temperatura. 
9. El mecanismo de adsorción se ilustra por la ecuación (2). 
 
 Mn+ + nAu(CN)2- ↔ Mn+[Au(CN)2-]n(ads) (2)[1] 
Las pruebas de cinética indican que la velocidad inicial de la adsorción de los complejos 
de cianuro es rápida y disminuye a medida que en estas condiciones la reacción se 
acerca al equilibrio, la tasa de adsorción es controlada por el transporte de masa del 
complejo hacia la superficie del carbón. Una vez alcanzado el equilibrio la difusión del 
complejo a través de los microporos del carbón se convierte en un proceso mucho más 
lento que la difusión a través de la capa límite debido a la longitud de los poros. La 
energía de activación para la adsorción de oro, por ejemplo es del orden de 11 KJ.mol-1, 
valor que indica el control del proceso por transporte de masa. 
 
1.5.1 Proceso de adsorción con carbón activado.[6] 
En 1979, Pitt y colaboradores de la Universidad de Utah publicaron sus investigaciones 
sobre la termodinámica y cinética de la adsorción de cianuro de Au y Ag sobre carbón 
activado. Llevaron a cabo los experimentos de adsorción para cianuros de metales 
preciosos con carbón activado usando soluciones con concentraciones variadas de Na+, 
Ca2+, H+ y cianuro libre. Los datos muestran que el Na+ y el Ca2+ mejoran la adsorción 
26 
 
mientras que el cianuro libre la reduce. Por lo que proponen que el mecanismo de 
adsorción se basa en la teoría de la doble capa eléctrica. 
 
1. Au(CN)-2 se adsorbe sobre sitios del carbón activado. 
2. Na+ y Ca2+ son únicamente adsorbidos cuando Au(CN)-2 está presente. 
3. Cuando presenta Au(CN)-2 adicional puede ser adsorbido en la capa difusa. 
4. El cianuro libre compite por los sitios con el Au(CN)-2. 
 
Estas observaciones sugieren que la solución debe ser ajustada para optimizar la 
adsorción. Pitt y colaboradores determinaron experimentalmente isotermas de adsorción 
para cianuro de Au y Ag que siguen la conducta Langmuir. Determinaron el porcentaje 
de difusión y energías de activación, para la adsorción del cianuro de Au y Ag sobre el 
carbón activado; el porcentaje indica el grado resultante para hacer la difusión de poro y 
no una difusión conjunta o alguna superficie de paso lento controlada. Los porcientos de 
adsorción dependen del diámetro del poro y área superficial, mostrando que la 
reactividad química no es un factor determinante. También midieron la adsorción para 
diferentes tamaños de iones y establecieron que el Au(CN)-2 es mayor Ag(CN)-2 y este 
mayor que CN-. Sugiriendo que el oro puede cargarse en una mayor proporción que la 
plata y la plata más que el cobre y otros metales. Todas las observaciones realizadas han 
sido comprobadas a nivel industrial donde se corroboro que el proceso de adsorción 
recupera alrededor del 90-95% del oro y plata contenido en la solución rica y con la 
menor cantidad de cobre, como se observa en el balance metalúrgico de la tabla 14. 
 
Por otra parte el proceso de adsorción en la planta ADR, que se muestra en la figura 1, 
consiste de 4 trenes paralelos de columnas a cada tren se suministra un flujo de solución 
rica que pasa por los cinco tanques en cascada. Los veinte tanques instalados tienen la 
27 
 
forma de un cilindro vertical de 4 metros de diámetro por 4 metros de altura, con una 
capacidad para 6 toneladas de carbón activado cada uno, para propósitos de este 
proceso cada tren está diseñado para un caudal nominal de solución rica de 690 a 930 
m3 h-1, en estas condiciones se asegura que la profundidad de la cama de carbón sea 
suficiente para desorber el oro de la solución rica. La solución rica ingresa a la parte 
inferior de la columna, fluye hacia arriba a través de una placa perforada de distribución 
de solución y se descarga desde el rebalse en la parte superior de la columna. Luego la 
solución rica cae a través de una tubería para entrar a la parte inferior de la columna 
siguiente y repetir el ciclo el cual tiene un tiempo de residencia de 15 minutos, para las 5 
columnas de cada tren. En forma periódica, el carbón cargado (carbón con 
concentración más alta de oro) se saca de la primera columna y se transfiere a la 
columna de elución. 
 
 
 
Figura 1. Diagrama de flujo de una planta la adsorción con carbón.[1] 
 
 
 
 
 
 
28 
 
1.5.2. Proceso Merrill-Crowe. 
El proceso de recuperación convencional Merrill-Crowe, es quiza la práctica más comun 
para beneficiar minerales con metales preciosos Au y Ag, en este proceso la solucion rica 
se separa de los sólidos en la pulpa por espesamiento y/o filtración seguida por 
clarificación en arena o clarificadores de hojas, luego se quita el oxígeno de la solución 
preñada mediante vacío, añadiéndo polvo de zinc para precipitar el oro. El zinc cargado 
de oro se separa de la solución estéril por filtros prensa o filtros de hojas, el cuál es 
periodicamente removido y fundido a “bullion”. 
 
El principio de la precipitación de metales preciosos contenidos en soluciones de CN-, por 
el proceso conocido como Merrill-Crowe, está basado en el hecho de que el oro y la 
plata son electronegativos respecto al zinc ocurriendo un reemplazo electroquímico del 
oro y la plata por el zinc, seguido por el desplazamiento del hidrógeno del agua por el 
sodio según la siguiente reacción: 
 NaAu(CN)2 + Zn +2NaCN + H2O↔Au +Na2Zn(CN)4 + NaOH + 1/2H2 (3)[3] 
En la práctica, ocurre un exceso en el consumo de Zn por encima de la demanda teórica 
debido a que tanto el CN- con el álcali libre en la solución tienden a atacar al Zn 
disolviéndolo. 
 
Para recuperar los valores de Ag y Au de minerales polimetalicos se utiliza la precipitación 
con Zn, en la mayoria de los casos estos minerales son tratados por procesos 
convencionales, como el que se presenta en la figura 2, donde se incluye desde la 
disminución del tamaño de mineral utilizando molienda SAG, molienda de bolas, 
29 
 
flotación, espesamiento y secado de concentrados, lavado a contracorriente y 
destrucción de CN-1 en la parte final del proceso. 
 
La solución de colas del proceso de flotación se lixivia y se lava a contracorriente, la 
solución que se recupera se le conoce como solucion rica, a esta se le desoxigena, 
clarifica y dosifica Zn para precipitar los valores metalicos presentes en ella, en esta 
seccion del proceso se requiere de un control estricto, ya que lacementación es sensitiva 
a los niveles de alcalinidad y cianuro libre, tambien es afectada por diversos 
constituyentes comunes presentes en la solución lixiviada de cianuro de Au, tales como 
cobre, fierro antimonio y complejos de arsenico, los cuales disminuyen la recuperación 
de Au. En el proceso de precipitación con zinc, la solución esteril o solución Barren debe 
tener valores de menos de menos de 0.1 g de Au por tonelada, para hacer rentable esta 
seccion del proceso. El proceso Merrill-Crowe tiene la limitante de ser aplicado para 
menas donde los contenidos de Ag son mayores a los de Au. En la figura 2 se presenta un 
proceso de lixiviación decantación que incluye la recuperación de valores con el 
proceso Merrill-Crowe. 
 
 
 
 
 
 
 
 
 
 
30 
 
 
Figura 2. Diagrama de lixiviacion decantación y recuperación de valores por el proceso Merrill-Crowe. 
31 
 
1.6 Comparación entre el proceso de adsorción de carbón activado y el 
proceso Merrill-Crowe. 
Al analizar las 2 alternativas de los procesos para recuperación de metales preciosos se 
observa que el caso del proceso de adsorción con carbón activado es una operación 
simple compara con el proceso Merrill Crowe, en el primer caso no se requiere molienda 
fina del mineral, los consumos de energéticos y agua son menores, por mencionar 
algunas de las ventajas económicas que tiene con respecto a métodos de agitación. Los 
costos de instalación del proceso de lixiviación en montones, una planta de adsorción en 
carbón activado, electro-obtención y fundición, son un 30% más bajos comparados a los 
de una planta por agitación decantación que recupere metales valor por el proceso 
Merrill-Crowe, 
 
En este trabajo se describe principalmente el proceso de lixiviación en montones y una 
planta de adsorción de Au con carbón activado los cuales se comparan 
económicamente con la lixiviación por agitación que incluya el proceso Merrill-Crowe 
para la recuperación de valores, por lo que en las tablas 3 y 4 se presentan los costos de 
operación entre ambos procesos. 
Tabla 3.Costos de operación del proceso de adsorción con carbón activado. 
 
 
 
 
 
 
 
 
 
Descripción Costo (Mex$ t-1) % 
Lixiviación y adsorción con carbón 39.94 90.28 
Desorción-regeneración y electro-obtención 4.30 9.71 
Total (Mex$.t-1 de mineral) 44.240 100 
Los costos de operación son muy sensibles al consumo de cianuro y costo de este. 
32 
 
Se puede observar que los costos de la lixiviación con agitación son 91% más altos que los 
de lixiviación en montones, con lo que se justifica la rentabilidad de este proceso. 
 
Tabla 4.Costos de operación de lixiviación por agitación y del proceso Merrill-Crowe. 
Descripción Costo (Mex$.t-1) % 
Lixiviación por agitación y lavado a contracorriente 444.90 92.58 
Precipitación con polvo de Zn 35.64 7.42 
Total Mex$.ton-1 de mineral 480.54 100 
 
En el estudio de factibilidad economica realizado para La Unidad Minera “Los Filos” se 
estimo el costo por tonelada de mineral procesado antes de instalar la trituración, con 
una depositación promedio en los patios de lixiviación de 70,000 t.dia-1 y recuperación de 
los valores con carbón activado en 22.12 Mex$.t1 La estimación contemplo construcción 
del patio de lixiviación, transporte del mineral, lixiviación adsorción-desorción y 
regeneración del carbón activado. Después del arranque de trituración en Marzo de 2009 
el consumo de energía comparado con el mes anterior se incrementó un 36.89%, del 
presupuesto asignado a energia eléctrica para esta área, no obstante este consumo se 
justifico ya que la recuperación se incremento un 10% sobre la del mes anterior. Este 
incremento en el consumo de energía se presenta en la gráfica 2. 
Gráfica 2.Incremento en el consumo de energía eléctrica. 
 
 
 
 
 
 Febrero
Marzo
kw/mes 36.89%
4328
6858
Consumo de energía.
Febrero Marzo
33 
 
II.- DESARROLLO DEL PROCESO INDUSTRIAL. 
Es importante mencionar que un proyecto minero-metalúrgico, está integrado por la 
exploración, minado y procesamiento y que continuamente se está investigando para 
encontrar mejoras en cada uno de estos procesos ya instalados a nivel industrial, con el 
objetivo de que los resultados técnicos obtenidos se vean reflejados en la factibilidad 
económica de un proyecto futuro que incluya además los aspectos ambientales. 
 
La exploración tiene como propósito conocer las características de los yacimientos, 
principalmente cuantitativas y cualitativas, así como estudiar los aspectos técnicos y 
económicos que determinarán la factibilidad para su aprovechamiento, utilizando 
herramientas que van desde la exploración de campo y estudio de los mantos por medio 
de perforaciones hasta la información obtenida a través de aerografías y satélites; de 
esta manera se clasifican los yacimientos de acuerdo con sus propiedades físicas y 
químicas. Con la información obtenida se puede elaborar un inventario lo más cercano a 
la realidad que permita conocer los volúmenes disponibles de los diferentes tipos de 
mineral, así como su localización dentro del yacimiento. 
 
El Minado constituye una de las fases más importantes del proceso, este se hace a cielo 
abierto o subterráneo dependiendo del tipo de yacimiento que puede ser diseminado o 
por vetas respectivamente. En La Unidad Minera los “Filos” se cuenta con los dos tipos. 
Para ambos casos se debe llevar a cabo una planeación adecuada, de manera tal que 
el mineral obtenido se encuentre dentro de los lineamientos de calidad a fin de satisfacer 
los requerimientos de producción. Las operaciones de extracción del mineral de los 
yacimientos se inicia con las perforaciones para las voladuras, para esta operación se 
utilizan rotarias neumáticas o taladros eléctricos, que pueden perforar con diámetros de 
http://www.monografias.com/trabajos5/esfa/esfa.shtml
http://www.monografias.com/trabajos11/contrest/contrest.shtml
http://www.monografias.com/trabajos7/sisinf/sisinf.shtml
http://www.monografias.com/trabajos12/comsat/comsat.shtml
http://www.monografias.com/trabajos11/conin/conin.shtml
http://www.monografias.com/trabajos54/produccion-sistema-economico/produccion-sistema-economico.shtml
http://www.monografias.com/trabajos6/diop/diop.shtml
34 
 
31 a 38 cm y profundidades de hasta 18 m, lo que permite construir bancos de 
explotación de 15 m de altura. El número de perforaciones en el área mineralizada 
depende del tonelaje que se quiera producir. 
La figura 2 presenta de manera general todo el proceso de la Unidad Minera “Los Filos” 
iniciando desde el acarreo de mineral ROM (Run of Mine) del tajo Filos, el cual se deposita 
directamente en el patio de lixiviación, por su parte el mineral del tajo Bermejal es 
enviado al proceso de trituración, para después ser aglomerado utilizando cemento 
Portland 6 kg.t-1 con un desplome en la ley menor del 10%, el objetivo del cemento es 
formar pelets y dar mayor resistencia a estos para evitar que las partículas finas y la 
cantidad de arcillas existentes en el mineral sellen o reduzcan la permeabilidad de este, 
las leyes promedio son de 0.69 g.t-1Au y 5.8 g.t-1 Ag , una vez depositado en el patio de 
lixiviación este mineral es regado con una solución de NaCN a una concentración de 300 
ppm, la solución rica que percola se canaliza a dos piletas de contención sur y norte, 
desde ambas piletas la solución es bombeada a la planta de adsorción con carbón 
activado o planta ADR como operativamente se le conoce, para adsorber los valores de 
oro y plata, la solución estéril o solución Barren con una concentración promedio de 0.04 
ppm vuelve a ser acondicionada con 300 ppm de NaCN y rebombeada al patio de 
lixiviación para trabajar en un circuito cerrado, los valores de Au que son adsorbidos en el 
carbón posteriormente son desorbidos o despojados y recuperados en los cátodos por el 
proceso de electro-obtención, los lodos también son recuperados, secados fundidospara 
obtener barras dore y así dar por terminado el proceso. 
 
 
 
 
 
http://www.monografias.com/trabajos11/bancs/bancs.shtml
35 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 3. Diagrama general de la Unidad Minera “Los Filos”. 
 
En la tabla 5 se presenta el balance metalúrgico de lixiviación tomando como base las 
leyes promedio y recuperaciones. 
 
Tabla 5. Balance metalúrgico de lixiviación 
Balance Metalúrgico 
Producto 
Peso 
(t) 
Volumen 
m3.día-1 
Sólido 
g.t-1 
Solución 
ppm 
Contenidos 
(g) 
Recuperación 
(%) 
Au Ag Au Ag Au Ag Au Ag 
Cabeza 70,000 0.69 5.8 48300 406000 100 100 
Solución 85,000 0.358 0.3344 30429 28420 63 7 
Residuo 70,000 0.255 5.394 17871 377580 37 93 
 
Los Filos 
Electro-obtención Barras Dore Fundición 
Patio de Lixiviación 
0.69 g.t-1 Au – 5.8 g.t-1 Ag 
 
Trituración 
Aglomeración 
Planta ADR 
Cemento 
6 kg.t-1 
Cal 
5 kg.t-1 
Pileta 
Norte 
0.2 ppm 
Pileta 
Sur 
0.4 ppm 
Solución 
Estéril 
0.04 ppm 
Solución 
Estéril 
0.04 ppm 
 
 
 
El Bermejal 
36 
 
2.1. Acarreo de mineral del tajo Filos. 
El mineral del tajo Filos que en su mayoría es de baja ley, se deposita de forma directa al 
patio de lixiviación, usando camiones de volteo, las capacidades de los camiones son 88 
y 130 toneladas, estos vacían directamente el mineral sobre el nivel actual y con los 
tractores de orugas se va empujando el mineral sobre el borde del nivel para formar una 
celda nueva siempre en expansión. 
 
Las recomendaciones basicas para la depositación de mineral directamente sobre el 
“overliner” o grava son: que operativamente se debe tener cuidado especial de que la 
capa de grava que cubre la geo membrana posea la altura estándar de 60 cm y que el 
camión no circule por encima de ésta a una altura menor de 5 metros, con el objeto de 
no dañar la geo membrana en el viaje desde la mina cada camión se detiene 
brevemente en un silo de cal donde se agrega cal viva CaO al mineral en promedio de 5 
kg.t-1 mineral antes de vaciar el mineral en la celda que se está formando, la razón de 
esta adición es evitar la formación de gas HCN al regar el mineral con solución de cianuro 
de sodio, como se muestra en la fotografía 9. 
 
 
Fotografía 9. Silo de cal y la adición a un camión de acarreo1. 
 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
37 
 
La curva de equilibrio que se presenta en la figura 3, ilustra la concentración de HCN 
contra los iones de CN- en función del pH a 25°C. Cabe mencionar que a un pH de 10, la 
cantidad potencial disponible de HCN es superior a 10 por ciento del cianuro total 
contenido en la solución, lo que explica porque el pH de la solución se debe mantener 
sobre 10.5 
 
0%
20%
40%
60%
80%
100%
6 7 8 9 10 11 12
C
o
n
ce
n
tr
ac
ió
n
 H
C
N
 %
pH
Concentración HCN vs pH
HCN
CN
 
Figura 4. Curva de equilibrio de HCN vs CN-. 
 
2.2. Acarreo de mineral del tajo Bermejal. 
El mineral que se extrae de este tajo, es enviado a una preparación previa antes de su 
depositación en el patio de lixiviación (dump leach), esta preparación consiste en triturar 
y aglomerar el mineral, despues de este tratamiento el aglomerado es transportado al 
patio de lixiviación mediante una serie de bandas transportadoras fijas que cuentan con 
una sección de varias bandas transportadoras móviles de 37 metros de largo que además 
son portátiles (operativamente conocidas como chapulines), en la parte final del sistema 
el mineral es depositado en el patio mediante un sistema transportador u apilador radial 
conocido como “sistema de depositación RAHCO”. 
 
38 
 
Pero cuando por cuestiones operativas se toma la desición de que este mineral se 
deposite directamente en el patio de lixiviación y en una zona nueva donde únicamente 
se tiene instalada la cama de grava que protege la geo membrana, se deben de tomar 
las mismas precauciones que se mencionan anteriormente, con el objeto de no dañar la 
geo membrana. 
 
La altura de la nueva celda de lixiviación puede manejarse de entre 5 a 15 m, la cual 
depende directamente de la permeabilidad del mineral. De manera general 7 u 8 metros 
es el valor que en otras operaciones se toma como promedio, para el caso de La Unidad 
Minera “Los Filos” se consideran 10 metros para la altura de cada celda de lixiviación, 
debido a que la topografía de la zona en la que se ubicado el patio de lixiviación es una 
zona que cuenta con pendientes pronunciadas que oscilan de entre 2% a 39%. 
 
Para este caso en particular cuando se esta depositando mineral directamente grava de 
protección o mineral sobre la geo membrana y se tenga una pendiente como las que se 
mencionan en el párrafo anterior, el depósito deberá ser siempre de forma ascendente 
en los taludes ya que de realizar la deposición de mineral en forma descendente se 
podría tener un deslizamiento del mineral sobre la grava produciendo una daño en la 
geo membrana. 
 
2.3. Trituración y aglomeración. 
La operación de trituración incluye el recibimiento de mineral desde la mina, en el área 
de trituración primaria se cuenta con una quebradora de quijadas y en el área de 
trituración secundaria con dos quebradoras cónicas. El mineral directo de mina es 
recibido a un tamaño promedio menor a -36” el mineral que excede este tamaño es 
39 
 
fragmentado con martillo neumático que se opera manualmente posterior a esta 
operación el mineral pasa por una criba fija a un tamaño de -18” cae a un alimentador 
de placas y este descarga a una criba grizzly vibratoria (criba de doble cama) . 
 
El producto de la quebradora de quijadas -8” y el bajo tamaño de la criba grizzliy -8” son 
recombinados, pesados y trasportados hasta la tolva de mineral grueso. Desde la tolva de 
compensación a un alimentador de placas y una banda transportadora mueven el 
mineral hasta un cajón distribuidor que divide el mineral en dos corrientes. Alimentadores 
de placas llevan el mineral desde el cajón distribuidor y lo depositan en dos cribas 
banana (cribas vibratorias de múltiples inclinaciones). El mineral de sobretamaño -6” de 
las cribas descarga dentro de los alimentadores vibratorios electromecánicos y alimenta 
a las quebradoras cónicas secundarias en un circuito cerrado para obtener un producto 
con un tamaño de -2”. 
 
El sistema cuenta con una dosificación controlada de cemento Portland 6 kg.t-1, el 
objetivo del cemento es formar pelets y dar mayor resistencia a estos para evitar que las 
partículas finas y la cantidad de arcillas existentes en el mineral sellen o reduzcan la 
permeabilidad del mineral una vez depositado en el patio de lixiviación. Para llevar a 
cabo la aglomeración se adoptó la aglomeración en banda, esta ocurre en los puntos 
de transferencia de banda a banda. 
 
El mineral aglomerado es transportado al patio de lixiviación mediante una serie de 
bandas transportadoras terrestres fijas, varias bandas transportadoras móviles de ruedas 
de 37 metros de largo portátiles y una banda de alimentación apiladora. 
40 
 
El mineral es depositado en el patio de lixiviación mediante un sistema transportador 
apilador radial conocido como sistema de depositación RAHCO. Este sistema deposita 
uniformemente el mineral aglomerado en la celda con un nivel de 8 metros de altura. 
 
2.4. Colocación de celdas en riego. 
En el patio de lixiviación cada superficie de elevación de mineral o celda es regada de 
manera uniforme usando emisores de riego por goteo y por aspersión con solución de 
lixiviación estéril cargada de cianuro a una concentración de 300 ppm. La diferencia 
fundamental entre ambas tecnicas de riego son especificamente: el área de riego o 
(cobertura) y la evaporación. 
 
Como se menciono anteriormente la técnica de riego con aspersores tienen una mejor 
cobertura, pero presenta dos problemas queafectan la eficiencia y costo del proceso, el 
primero es que la evaporación es del orden del 9%, el otro problema es que con esta 
técnica se destruye el aglomerado y por consecuencia de la cantidad de finos afecta la 
permeabilidad del monton. 
 
En el riego por goteo la cobertura no es tan efectiva en la parte superficial del material, 
pero a medida que va percolando cada gota forma un cono que se entre cruza en la 
parte interna del monton, lo que hace que se mantenga siempre humectado el mineral, 
este tipo de riego es recomendable en regiones de poca precipitación pluvial. 
 
El costo es relativo ya que es importante tomar en cuenta cuanto representa el costo del 
agua adicional al proceso al utilizar emisores de riego por aspersión cuando las perdidas 
por evaporación son en promedio del 9% por otra parte cuanto representa el costo de 
41 
 
las mangueras al utilizar riego por goteo ya que por lo general dichas mangueras son 
desechables. 
 
En la fotografía 10 se observa la colocación de la tubería en una celda nueva, el proceso 
inicia con el bombeo de la solución Barren al patio de lixiviación, por la configuración que 
se tiene en la tubería en el caso específico de esta Unidad Minera el tanque barren 
abastece la zona sur y el tanque de recirculación abastece la zona norte. El tanque 
barren cuenta con un cabezal principal de 24 pulgadas interconectado al cabezal 
principal de 16 pulgadas proveniente del tanque de recirculación, ambas tuberías de 
acero que atraviesan el patio de lixiviación, donde se desprenden tuberías cada vez de 
menor diámetro de 16, 10 y 6 pulgadas y a partir de estos disparos comienza el riego 
propiamente, con aspersión o por goteo sobre el mineral preparado. 
 
 
Fotografía 10. Instalación de tubería para colocar riego1. 
 
 
 
 
 
 
1 Las fotografías presentadas en este trabajo son propiedad de la Unidad minera “Los Filos” y 
únicamente son para uso didáctico. 
42 
 
La figura 5 muestra el diseño típico para la instalación de un sistema de riego ya sea por 
goteo o por aspersión. 
 
 
Figura 5. Arreglo general para colocar una celda en riego. 
 
La preparación del terreno consiste en realizar una remoción de la tierra utilizando los 
arados del tractor de orugas, a esta operación se le conoce como ripear (rasgar la tierra 
para permitir que se filtre libremente la solución) y la colocación de las tuberías y 
mangueras. Actualmente y debido a las características irregulares del terreno donde se 
deposita el mineral, no ha sido posible formar celdas de riego con una geometría 
definida, sin embargo se busca la manera de que las tuberías queden en una posición 
que permitan la interconexión de mangueras de tubo a tubo, como lo muestra la 
fotografía 10 donde se observa la colocación de una tubería de riego en una celda 
nueva. 
 
43 
 
Una condición operativa que repetidamente sé realiza en la lixiviación en montones, es 
que al depositar mineral sobre algún nivel ya regado, es necesario retirar el sistema de 
riego que estuvo en función, esperar a que seque alrededor de 5 días y remover el 
mineral con los arados del tractor de orugas (ripear) los cuales alcanzan una profundidad 
aproximada de 1.20 m, el objetivo de que sea a esta profundidad es evitar el 
encharcamiento de solución sobre el nuevo mineral, además de evitar la formación de 
canales preferenciales que eviten la humectación homogénea del mineral, los surcos o 
canalizaciones que se hacen con el tractor, deben quedar en forma de cruz en toda la 
superficie antes de depositar el nuevo nivel de mineral. 
 
2.5. Adsorción con carbón activado. 
En la sección de adsorción, el objetivo es transferir alrededor del 95-99% del oro y plata 
contenido en la solución rica al carbón activado con la menor cantidad de cobre. Por 
acción del cianuro de sodio los valores de oro y plata se disuelven en la solución, razón 
por la cual a este líquido se le llama solución rica, esta solución se hace pasar por las 
columnas que contienen carbón activado, para que se adsorban los valores de oro y 
plata, la solución estéril o solución Barren que sale de esta planta se reacondiciona con 
cianuro y se bombea de retorno a los patios de lixiviación, trabajando en circuito cerrado. 
 
La Adsorción es un fenómeno en el que las moléculas de un fluido se concentran en la 
superficie de un sólido mediante fuerzas químicas, fuerzas físicas o ambas. La diferencia 
entre Adsorción y Absorción es que en el primer fenómeno es un proceso físico químico 
por el cual los átomos, iones o moléculas son atrapadas o retenidas en la superficie de un 
material, es de esta manera como el oro se adsorbe en el carbón, en el segundo 
fenómeno físico químico los átomos, iones o moléculas pasan de una primera fase a otra 
44 
 
incorporándose al volumen de la segunda fase, en este fenómeno siempre se toma como 
ejemplo el agua absorbida por una esponja. 
 
El proceso de adsorción con carbón activado en columnas, consiste de 4 trenes 
paralelos, cada uno con un flujo de solución rica a cinco columnas en cascada y en 
serie. Las columnas de carbón son un cilindro vertical de 4 metros de diámetro por 4 
metros de altura, con una capacidad de 6 toneladas cada una, para propósitos de este 
proceso cada tren está diseñado para un caudal nominal de solución rica de 690 a 930 
m3 h-1, en estas condiciones se asegura que la profundidad de la cama de carbón sea 
suficiente para adsorber el oro de la solución rica, esta solución rica ingresa a la parte 
inferior de la columna, fluye hacia arriba a través de una placa perforada de distribución 
de solución y se descarga desde el rebalse en la parte superior de la columna, cae a 
través de una tubería para entrar a la parte inferior de la columna siguiente y repetir el 
ciclo, el cual tiene un tiempo de residencia de 15 minutos, para las 5 columnas de cada 
tren, como lo muestra la figura 1 antes presentada. 
 
En un periodo de 24 horas, el carbón cargado (con más alta concentración de oro), se 
saca de la primera columna y se transfiere a la columna de elución. En contracorriente a 
la solución rica cada uno de los lotes de carbón hace avanzar (transfiere) para de esta 
manera volver a llenar la columna inmediata superior que se encuentre vacía y 
completar este tren respectivamente. 
 
El carbón despojado o sin valores es regenerado química y térmicamente, según 
corresponda y se transfiere en contra corriente al flujo de la solución rica, para completar 
una columna vacía del circuito De esta forma, el carbón con la más alta afinidad con el 
45 
 
oro está en contacto con la solución rica con la menor concentración de oro en la última 
columna. 
 
Para la fabricación de carbón activado se utiliza principalmente como materia prima la 
cascara de coco. Con el objetivo de conferir al carbón activado la virtud de adherir o 
retener en su superficie uno o más componentes del líquido que están en contacto con 
él, esto sucede por la cantidad de poros que posee en su estructura, la manera en la que 
se crea la porosidad en este carbón son las altas temperaturas, la atmósfera especial y la 
inyección de vapor del proceso de fabricación de este, lo cual “activa” su estructura y le 
confiera propiedades adsorbentes. 
La capacidad de adsorción del carbón se degenera con el tiempo, debido a la 
absorción de incrustaciones provocadas por las sales disueltas que se encuentran en el 
agua de proceso y otras impurezas que bloquean la estructura porosa del carbón, lo cual 
reduce la capacidad para adsorber oro y plata. La regeneración del carbón para 
mantener la actividad se hace dentro de las instalaciones y está compuesta de dos 
procesos: lavado con ácido y regeneración térmica. 
 
Después del proceso de despojo, el carbón es transferido primero a uno de los recipientes 
de lavado ácido, los cuales son tanques de acero revestidos con fibra de vidrio, capaces 
de procesar lotes de

Continuar navegando