Logo Studenta

Análise Térmica na Solidificação de Aço 1045

¡Este material tiene más páginas!

Vista previa del material en texto

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY 
CAMPUS ESTADO DE MÉXICO 
DIVISIÓN DE GRADUADOS E INVESTIGACIÓN DIRECCIÓN DE MAESTRÍAS EN INGENIERÍA 
ANÁLISIS TÉRMICO DURANTE Y DESPUÉS DE LA 
SOLIDIFICACIÓN DE UN LINGOTE DE ACERO 1045 
TESIS QUE PARA OPTAR EL GRADO DE 
MAESTRO EN SISTEMAS DE MANUFACTURA 
ESPECIALIDAD EN MATERIALES 
PRESENTA 
BIBLlllTE<J( 
LEONOR FALCÓN OMAÑA 
Asesor: Dr. EMIL R. LIEBERMANN G. 
Comité de tesis: Dr. EMIL R. LIEBERMANN G. 
Dr. ARMANDO BRAVO ORTEGA 
Dra. OLIMPIA SALAS 
Jurado: Dr. ARMANDO BRAVO ORTEGA 
Dr. PEDRO GRASA SOLER 
Dr. EMIL R. LIEBERMANN G. 
Atizapán de Zaragoza, Estado de México, diciembre de 1995. 
Presidente 
Secretario 
Vocal 
1'f5 tS 
15 
12~ 
·f'3 
/995 
8 7 ASO 199! 
t 5 DI C 1997 ,¡r_:sM-CEM 
O 6 JUN 2000 ::W.-u.l 
,, 1 
'2.~~ \~~ 
, s O\C 1996 
A G R A D E C I M I E N T O S. . , . ., 
A mi Asesor el Dr. Emil Liebermann y a mis sinodales Dr. Pedro Grasa y Dr. 
Armando Bravo Ortega, por el tiempo y apoyo que me dieron para terminar, al Dr. 
Pedro Tamayo por todo el impulso y apoyo que me brindó para estudiar la maestría, 
a los lng. Daría Parra, Pedro Rodríguez, Laura Hernández, al técnico Javier 
Hernández, y en general a todo el personal de Industrias CH, S. A., que apoyaron 
en alguna forma la realización experimental de esta investigación, al M: ~n t.
6
~~ctor 
Romero por su asesoría, a la Dra. Olimpia Salas p.or su oportuna .oplnión··fespecto a 
• :·~ :!-f·;· _:· ••. !" .· 
mi trabajo, al lng. Ulises Figueroa por su apoyo en Industrias CH, S. A., y en general 
a todos mis compañeros del Centro de Manufactura del Instituto Tecnológico de 
Monterrey, Campus Estado de México que me apoyaron para desarrollar esta tesis. 
A todos Gracias. 
Con el amor más grande que hay en el 
mundo, el de madre a Brenda Lis 
Con cariño dedico esta tesis a Manuel, a 
mi madre, a mi abuelita y todos mis 
hermanos. 
ÍNDICE 
LISTA DE TABLAS Y FIGURAS viii 
PREFACIO xi 
CAPITULO 1. INTRODUCCIÓN 1 
CAPÍTULO 2. SITUACIÓN EN LA EMPRESA. 
2.1 Introducción 6 
2.2 Secuencia del Proceso de fabricación de Billets en Industrias 
CH, S. A. ................................................... 6 
2.3 Clasificación, Nomenclatura y Simbología de los defectos en CH.. 13 
2.4 Resvisión Histórica de Datos .................................................... 15 
2.4.1 Identificación de incidencia del problema ........................................... 15 
2.4.2 Condiciones de producción de las coladas problema ......................... 19 
a. Composición Química ...................................................... 20 
b. Velocidad de Colada ...................................................... 20 
c. Temperatura de Colada ...................................................... 22 
d. Tiempo de Deslingoteo ...................................................... 23 
2.5 Seguimiento de Coladas ...................................................... 25 
2.5.1 Hornos LF y VD ...................................................... 26 
2.5.2 Piso de Vaciado ...................................................... 26 
a. Lingoteras ...................................................... 26 
b. Metal ...................................................... 27 
2.6. Observación de algunas grietas en lingotes de CH ................................. 30 
2.6 Resumen ...................................................... 32 
CAPÍTULO 3. GRIETAS 
3.1 Introducción 
3.2 Principios de Fractura 
3.2.1 Fractura Dúctil 
3.2.2 Fractura Frágil 
3.2.3 Fractura por fatiga 
3.2.4 Fractura por corrosion 
V 
·························· ............ -................ 34 
······················································ 35 
...................................................... 35 
...................................................... 36 
...................................................... 36 
.............................................. : ....... 37 
3.2.5 Esfuerzo Cohesivo ..................................................... 37 
3.2.6 Factor de Intensidad de esfuerzos ..................................................... 39 
3.2.7. Condiciones de Fractura ..................................................... 39 
3.3 Grietas en Lingotes ...................................................... 42 
3.3.1 Factores que influyen en la nucleación de grietas de estructuras 
de colada ...................................................... 42 
3.3.2 Principales Factores que generan grietas en los lingotes ................. 47 
3.3.3 Mecanismos de formación de grietas en caliente ......................... . 
52 
a. Zona de Fragilización ...................................................... 52 
a.1 Coalescencia de microcavidades ................................................... 52 
a.2 Deslizamiento de Límites de Grano ............................................... 54 
b. Alta Ductilidad a Bajas Temperaturas HDL. ......................................... 55 
c. Alta Ductilidad a Altas Temperaturas HDH .......................................... 57 
3.4 Tensiones Térmicas ...................................................... 60 
3.5 Criterios de Fractura ...................................................... 64 
3.6 Resumen ...................................................... 64 
CAPÍTULO 4. ANÁLISIS TÉRMICO. 
4.1 Introducción ...................................................... 67 
4.2 Análisis Térmico. . ..................................................... 68 
4.2.1. Consideraciones iniciales ...................................................... 69 
4.2.2. Distribución de Temperaturas ...................................................... 71 
4.2.2.1. Calor transferido a la lingotera por conducción .......................... 75 
4.2.2.2. transferencia de calor por conducción y radiación através de la 
rendija ...................................................... 77 
4.2.3. Determinación de Parámetros de las ecuaciones .............................. 80 
4.2.3.1. Conductividad térmica del acero 1045 en función de T .............. 80 
4.2.3.2. Transferencia de calor de la lingotera al medio ambiente .......... . 
80 
4.2.3.3. Cálculo de temperatura de la superficie interna de la lingotera .. 84 
4.2.4 Análisis de Estabilidad ..................................................... . 
86 4.3 Deformaciones Térmicas ...................................................... 88 
4.4 Cálculos y Resultados ...................................................... 90 
4.4.1 Temperaturas y Entalpías ..................................................... . 
90 
4.4.2 Coeficiente de transmitividad y distancia de la rendija entre molde-
lingote . . . . . . . . . . . . . . . . . . . . ........... .. ... . . . . .. . . . . . . . . . . . 90 · 
4.4.3 Gráficas de los resultados ...................................................... 91 
VI 
CAPÍTULO 5. CONCLUSIONES 
5.1 Proceso de Fabricación 
5. 1. 1 Identificación del Problema 
5.1.2 Variables del Proceso 
5.2 Distribución de Temperaturas 
CAPÍTULO 6. RECOMENDACIONES 
...................................................... 117 
······················································ 117 
...................................................... 118 
...................................................... 121 
6.1 Recomendaciones para la planta ............................................................... 124 
6.2 Recomendaciones para continuar la investigación .................................... 125 
APÉNDICES: 
Apéndice A. Valores de Propiedades Termomecánicas del acero 1045 
e Hierro Gris. . ..................................................... 127 
Apéndice B Codificación del Programa en Pascal ........................................ 134 
Apéndice 4.011 Codificación del Programa de NCARG ................................. 144 
BIBLLIOGRAFÍA ...................................................... 147 
Vll 
LISTA DE FIGURAS. 
Página 
2.1 Secuencia del proceso de producción de palanquillas(Billets). 8 
2.2 Cantidad de material rechazado por defectos durante el primer 
semestre de 1993. 16 
2.3 Frecuencia de aparición de defectos en coladas. 17 
2.4 Pesos rechazados por grieta longitudinal tipo aguja en billets 19 
2. 5 Desviaciones en la temperatura de vaciado de las coladas 
problema 23 
2.6 Diferencia de tiempos de deslingoteo de 28 estrellas 23 
2.7 Dispersión de temperaturas de vaciado. 28 
2.8 Dispersión en los tiempos de llenado. 29 
2.9 Acero 8620, Grieta ancha rodeada de una zona descarburada. 30 
2.1 O Acero 4137, grieta ancha con depresión superficial. 30 
2.11 Acero 4140, traslape profundo. 31 
2. 12 Acero 4137 grieta ancha poco profunda. 31 
3.1 Energía y fuerzas de enlace con respecto a la distancia 
interatómica. 38 
3.2 Modos básicos de carga. 41 
3.3 Distribución de esfuerzos en la vecindad de la punta de la grieta. 42 
3.4 Geometría de las dendritas. 51 
3.5 Curva de ductilidad en caliente para aceros. · 53 
3.6 Coalescencia de microcavidades intergranulares. 55 
3. 7 Agrietamiento por deslizamiento de límite de grano. 56 
4.1 Esquema del octante en la sección transversal del lingote y de la red 
trazada sobre el mismo. 75 
4.2 Diagrama de flujo del cálculo de las temperaturas y deformaciones. 92 
4.3 Coeficiente de transmitividad entre lingote y lingotera con el 
paso del tiempo. 93 
4.4 Distancia entre lingote y lingotera con el paso del tiempo. 94 
4.5 Distribución de Entalpías a los 25 min Condición O. 95 
4.6 Distribución de Entalpías a los 50 min Condición O. 95 
4. 7 Distribución de Entalpías a los 75 min Condición O. 96 
4.8 Distribución de Entalpías a los 100 min Condición O. 96 
4.9 Distribución de Entalpías a los 11 O min Condición O. 97 
4.1 O Distribución de Entalpías a los 25 min. Condición A. 97 
V1l1 
4.11 
4.12 
4.13 
4.14 
4.15 
4.16 
4.17 
4.18 
4.19 
4.20 
4.21 
4.22 
4.23 
4.24 
4.25 
4.26 
4.27 
4.28 
4.29 
4.30 
4.31 
4.32 
4.33 
4.34 
4.35 
4.36 
4.37 
4.38 
4.39 
4.40 
4.41 
4.42 
4.43 
4.44 
4.45 
4.46 
4.47 
4.48 
A.1 
A.2 
Distribución de Entalpías a los 50 min. Condición A. 
Distribución de Entalpías a los 75 min. Condición A. 
Distribución de Entalpías a los 100 min Condición A. 
Distribución de Entalpías a los 11 O min Condición A. 
Distribución de Entalpías a los 25 min Condición B. 
Distribución de Entalpías a los 50 min Condición B. 
Distribución de Entalpías a los 75 min Condición B. 
Distribución de Entalpías a los 100 min Condición B. 
Distribución de Entalpías a los 11 O min Condición B. 
Distribución de Entalpías a los 25 min Condición C. 
Distribución de Entalpías a los 50 min Condición C. 
Distribución de Entalpías a los 75 min Condición C. 
Distribución de Entalpías a los 100 min Condición C. 
Distribución de Entalpías a los 110 min Condición C. 
Distribución de Temperaturas a los 5 min Condición O. 
Distribución de Temperaturas a los 25 min Condición O. 
Distribución de Temperaturas a los 50 min Condición O. 
Distribución de Temperaturas a los 75 min Condición O. 
Distribución de Temperaturas a los 100 min Condición O. 
Distribución de Temperaturas a los 11 O min Condición O. 
Distribución de Temperaturas a los 5 min Condición A. 
Distribución de Temperaturas a los 25 min Condición A. 
Distribución de Temperaturas a los 50 min Condición A. 
Distribución de Temperaturas a los 75 min Condición A. 
Distribución de Temperaturas a los 100 min Condición A. 
Distribución de Temperaturas a los 11 O min Condición A. 
Distribución de Temperaturas a los 5 min Condición B. 
Distribución de Temperaturas a los 25 min Condición B. 
Distribución de Temperaturas a los 50 min Condición B. 
Distribución de Temperaturas a los 75 min Condición B. 
Distribución de Temperaturas a los 100 min Condición B. 
Distribución de Temperaturas a los 11 O min Condición B. 
Distribución de Temperaturas a los 5 min Condición C. 
Distribución de Temperaturas a los 25 min Condición C. 
Distribución de Temperaturas a los 50 min Condición C. 
Distribución de Temperaturas a los 75 min Condición C. 
Distribución de Temperaturas a los 100 min Condición C. 
Distribución de Temperaturas a los 110 min Condición C. 
Coeficiente de Conductividad térmica del acero 1045 en 
función de la temperatura. 
Coeficiente de Conductividad térmica del hierro gris en 
función de la temperatura. 
IX 
98 
98 
99 
99 
100 
100 
101 
101 
102 
102 
103 
103 
104 
104 
105 
105 
106 
106 
107 
107 
108 
108 
109 
109 
110 
110 
111 
111 
112 
112 
113 
113 
114 
114 
115 
115 
116 
116 
129 
129 
LISTA DE TABLAS. 
2.1 Tipo de defecto y cantidad rechazada durante el primer 
semestre de 1993. 16 
2.2 Frecuencia con que se encontraron coladas con defectos 17 
2.3 Descomposición del "resto" de defectos poco frecuentes 18 
2.4 Aceros con mayor rechazo por grietas durante el primer semestre 
de 1993. 18 
2.5 Contenido de Al, especificado en los aceros con mayor problema 19 
2.6 Desviación respecto a la composición química (fuera del límite 
máximo o mínimo) estándar de las coladas problema. 20 
2.7 Cantidad de Estrellas llenadas dentro y fuera del tiempo (t) 
especificado en las coladas problema 21 
2.8 Desviaciones de la temperatura respecto a la temperatura 
estándar de las coladas problema. 22 
2.9 Diferencia de tiempos de deslingoteo de 28 estrellas 
(14 coladas con registro de tiempo). 24 
2.10 Desviaciones de temperatura y tiempo de vaciado. 28 
2.11 Temperaturas de deslingoteo a un tiempo de 150 min Acero 1541 29 
A.1 Coeficientes de Conductividad Térmica del acero 1045 y del hierro 
Gris 128 
A.2 Valores ponderados de Conductividad Térmica, Densidad y Cp 
del acero 1045 129 
A.3 Determinación del Coeficiente equivalente de Transferencia 
de calor al medio ambiente 130 
A.4 Análisis de Estabilidad para determinar el paso en el tiempo. 131 
X 
PREFACIO 
En principio quiero anotar que en las conversaciones sostenidas con el Dr. Emil 
Liebermann a lo largo de mi trabajo, entendí y estoy de acuerdo en que la investigación 
tecnológica en México debe estar encaminada a resolver nuestros problemas reales y 
no a divagar en estudios que resuelven problemas que aún no tenemos o que tal vez 
no tendremos. 
Percibo que hasta ahora ha imperado en la mentalidad de la industria la idea de que 
las instituciones educativas y de investigación están muy alejadas de sus problemas 
reales de producción y de que producen profesionistas que en muchos casos no 
considera suficientemente preparados. Por esto siento que existe la necesidad de un 
verdadero acercamiento industria-universidades el cual creará en los profesionistas 
una cultura por hacer bien las cosas y en la industria una actitud que no considere a la 
investigación un gasto inútil, sino un beneficio para todos. 
En parte debido a ese alejamiento, la industria enfrenta serios problemas para fabricar 
productos de calidad a precios competitivos y todos sufrimos por la gran dependencia 
tecnológica que como país, tenemos del extranjero. 
Es por todo lo anterior que escogí este tema, un problema real de una de las industrias 
mexicanas de la cual dependen muchas familias, con la finalidad de recopilar 
información y aplicar conocimientos del procesamiento y transformaciones que sufren 
los materiales metálicos, para hacer un aporte hacia el establecimiento de las causas y 
medidas correctivas para disminuir el número de rechazos por defectos que en ella se 
presentan. 
XI 
El trabajo se desarrolla en un marco teórico-práctico, tomando como base variables 
reales del proceso e idealizando otras. Sin embargo esto no debería ser el fin, hay 
muchos puntos que se pueden complementar y que por razones obvias de tiempo y de 
recursos no se abarcaron. De todos modos se ha producido una herramienta útil para 
aplicarse en posteriores análisis de las condiciones de agrietamiento de lingotes. 
Por otro lado, el eventual desarrollo posterior de este trabajo no sólo tendrá aplicación 
en el problema particular que se trata, existen un sin número de componentes que 
están sujetos a esfuerzosno sólo térmicos sino mecánicos combinados con cambios de 
fase, por ejemplo en los procesos de fundición y en todos esos casos será aplicable el 
enfoque desarrollado en esta tesis. 
Xll 
CAPÍTULO 1. 
INTRODUCCIÓN 
1.1 ANTECEDENTES. 
Industrias CH, S. A, se dedica a la producción de semiproductos de acero en forma de 
billet vía laminación y vía forja. En los billets producidos a partir de lingotes de 3.1 t se 
presentan con frecuencia grietas lo que representa una pérdida económica por el 
reproceso que dichos defectos exigen y, además, el acondicionado retrasa en forma 
considerable su reproceso. 
Las grietas longitudinales en lingotes son un problema común en la industria acerera 
cuando para la fabricación de sus productos utiliza el método tradicional. La causa 
principal son los gradientes térmicos que bajo condiciones desfavorables producen 
esfuerzos superiores al límite de resistencia tensil máxima del material, ocasionando su 
fractura. 
Los factores que intensifican estos esfuerzos térmicos pueden ser internos o externos 
al lingote. Los internos se refiere a todos aquellos factores estructurales inherentes al 
material y al proceso de solidificación, entre ellos, inclusiones endógenas y exógenas, 
1 
precipitados, zonas interdendríticas que presentan heterogeneidades químicas, 
microporosidades, gases, etc. 
Los factores externos involucran deficiencias o imponderables del proceso mismo, 
como son estado de las lingoteras, temperatura y velocidad de colada, condiciones 
ambientales, etc., que inciden directamente en el acabado superficial del lingote, en su 
velocidad de enfriamiento, de solidificación, entre otros. 
La determinación de los gradientes térmicos durante el enfriamiento posterior a la 
solidificación, no sólo ayuda a resolver los problemas de lingotes de acero; el 
conocimiento del campo de temperaturas es muy importante para atacar problemas que 
se presentan en planchones obtenidos por colada continua, método que ha desplazado 
al método tradicional, especialmente cuando se trata de aceros al carbono y baja 
aleación. 
Desde el punto de vista metalúrgico, la estructura de colada por su naturaleza, 
presenta muchos puntos o zonas débiles, con diferentes propiedades termomecánicas 
donde se pueden concentrar esfuerzos térmicos y eventualmente generar la fractura. 
1.2 OBJETIVOS. 
El objetivo general de este trabajo es aportar al conocimiento de las condiciones y 
causas que provocan grietas en los lingotes de acero producidos en la empresa 
Industrias CH, S. A. 
Para alcanzarlo, se proponen los siguientes objetivos específicos: 
a. Estudiar la tecnología de producción de lingotes en CH, S. A. Estudiar la 
importancia de los diversos defectos que se presentan durante su fabricación y 
determinar el tipo de lingotes y marca de aceros donde es más significativa su 
aparición. 
2 
b. Hacer un análisis de las causas de dichos defectos (el estudio confirmó que 
entre los principales se hallan las grietas longitudinales). Este análisis se hará 
desde dos puntos de vista: 
- Determinando las variables del proceso de fabricación aplicado en CH que 
tienen incidencia en la aparición de grietas. 
- Haciendo una revisión bibliográfica sobre el mecanismo de la formación de 
grietas durante el enfriamiento y sobre las causas residentes en las 
propiedades físicas y químicas del material que influyen en la aparición del 
mencionado defecto. 
c. Determinar el campo de temperaturas del lingote producido en CH, S. A., 
durante su solidificación y posterior enfriamiento, puesto que la forma y la 
evolución en el tiempo de dicho campo son los factores decisivos para la 
aparición de los esfuerzos internos los que, a su vez, son una de las causas 
primarias para la formación de grietas. 
1.3 METODOLOGÍA. 
Se analizaron los antecedentes de fabricación de los productos de CH, S. A. revisando 
las hojas de proceso de un semestre, para caracterizar, desde el punto de vista 
estadístico, la aparición de grietas en lo que se refiere a: 1. material y producto con 
mayor incidencia de grietas y 2. identificar parámetros de fabricación. 
Posteriormente se hicieron seguimientos de unas 20 coladas para evaluar parámetros 
de fabricación e identificar aquellos que pudieran influir en el origen de_ las grietas. 
3 
Paralelamente con los trabajos anteriores, se hizo una revisión bibliográfica en muy 
diversas fuentes para presentar el estado actual del conocimiento sobre los 
mecanismos y posibles causas de la aparición de grietas en lingotes de acero. 
Este estudio se complementa con el análisis teórico del proceso de enfriamiento del 
lingote durante la solidificación y antes del deslingoteo por un tiempo total de 11 O min., 
tiempo estándar para este tamaño de lingotes, calculando las temperaturas en la parte 
media de las caras del lingote, como base para un cálculo futuro de esfuerzos térmicos, 
bajo las siguientes condiciones: 
- Las temperaturas se calculan aplicando la ecuación de conservación de energía 
utilizando las bases que se describen a continuación: 
- El método explícito de diferencias finitas, 
- proceso no estacionario con cambio de fase en dos dimensiones, 
- material continuo e isotrópico, 
- coeficientes de conductividad térmica correspondientes al lingote y a la 
lingotera, variables en función de la temperatura para fase sólida, 
- coeficiente de conductividad térmica constante para el acero líquido, 
- coeficiente equivalente de transferencia de calor al medio en función de la 
temperatura, 
- se considera la formación de la rendija entre lingote y lingotera desde el primer 
minuto después de la colada, para lo cual se calculan: 
a. Coeficiente equivalente de transmitividad entre lingote y lingotera 
b. Distancia de separación entre lingote y Hngotera con el paso del tiempo 
según el método desarrollado por Lubomír Smrha, 1241. 
- De igual forma se calcula la distribución de temperatura en la pared del molde, 
considerando el coeficiente de conductividad térmica y coeficiente equivalente de 
transferencia al medio en función de la temperatura. 
4 
Por otro lado, se calcula la deformación causada por el cambio de temperatura en ese 
punto para el paso en el tiempo fijado, con el fin de dar una idea de la magnitud de 
esas deformaciones. 
5 
CAPÍTULO 2. 
SITUACIÓN EN LA EMPRESA 
2.1 INTRODUCCIÓN 
Industrias CH, S. A., se dedica a la producción de aceros al carbono y de baja 
aleación en forma de: 
. barras de diversas longitudes y secciones transversales 
. semiproductos en forma de billets 
. barras forjadas. 
El problema objeto de este estudio es la aparición de grietas longitudinales y tipo aguja 
en los semiproductos obtenidos por laminación. Su análisis requirió del conocimiento 
de las etapas de proceso, de una revisión de los archivos y del seguimiento de algunas 
coladas para evaluar parámetros de fabricación. 
2.2 SECUENCIA DEL PROCESO DE FABRICACIÓN DE BILLETS EN INDUSTRIAS 
CH, S. A. 
Las instalaciones son típicas de las empresas de su clase, cuenta con un área de 
aceración eléctrica donde funden chatarra y refinan el acero, pisos de vaciado, hornos 
para calentamiento de lingotes, área de desbaste vía laminación y vía forja y un área 
de acondicionado. 
6 
El resto de la planta se dedica a la producción de perfiles de diversas secciones 
transversales y dimensiones vía laminación con sus respectivos hornos de tratamiento 
térmico. 
La Fig. 2.1 muestra la secuencia de fabricación de los billets. Una descripción somera 
de los pasos del proceso se presenta a continuación, donde los números corresponden 
a los que aparecen en los bloques de la Figura. 
1 y 2.- HORNO ELÉCTRICO DE ARCO.- Se funde chatarra para las diferentes 
calidades de acero, la carga consiste en chatarra, cal, grafito, y molibdeno 
principalmente. La carga se calienta hasta alcanzar la temperatura especificada. 
En esta etapa se ajusta el carbono, se eliminan parcialmenteel fósforo por 
oxidación y el azufre con adiciones de cal. 
En el vaciado se agregan ferroligas, carbono para compensar el que se oxida en 
el trayecto, cal para formar la capa de escoria y polvo exotérmico para aislar. 
3.- METALURGIA DE OLLA (LF).- En este horno cuchara se hacen ajustes de 
temperatura por arco eléctrico, y composición química por adición de ferroligas, 
grafito y cal. 
4.- VACÍO (VD).-Se someten a este tratamiento aquellos aceros que por su 
composición química, son susceptibles a retener hidrógeno como son: 8620, 
4140, etc. El vacío se mantiene por 18 min. a una presión menor a 5 torr. 
7 
MATERIAS PRIMAS(1) 
FUSIÓN HORNO ELÉCTRICO DE ARC0(2) 
METALURGIA EN HORNO CUCHARA (3) 
NO 
PISO DE VACIADO (5) 
SI 
HORNO DE DES 
GASIFICACIÓN (4) 
AL VACÍO 
ÁREA DE DESLINGOTE0(6) 
Fig. 2.1 Secuencia del proceso de producción de palanquillas (billets). 
8 
CARGA EN 
CALIENTE 
Cent. Fig.2.1 
A 
FORJA 
B 
AIRE 
SÍ PASA 
FOSAS DE 
CALENTAMIENTO (9) 
LAMINACIÓN 
MOLINO 34 (10) 
CARGA EN 
FRÍO 
BOTE 
NO PASA 
ALMACÉN 
Fig. 2.1 Secuencia del proceso de producción de palanquillas (billets). 
9 
Cent. Fig.2.1 
EN FOSA AL AIRE 
ACONDICIONADO (13) 
NO PASA 
CLIENTE (16) MOLINO 14-18(16) CHATARRA (17) 
Fig. 2.1 Secuencia del proceso de producción de palanquillas (billets). 
5.- PISO DE VACIADO.- La empresa cuenta con 5 pisos de vaciado. El vaciado se 
realiza en lingoteras distribuidas en una estrella de 6 brazos y coladas por el 
fondo, las lingoteras tienen diferentes capacidades, aunque el grueso de su 
producción se limita a aquellas con capacidad de 3.1 t (lingotes L31). El sistema 
10 
de canales verticales, "popotes" y de alimentación está armado de refractarios 
básicos, unidos con una mezcla de mortero y agua. La mazarota se arma en la 
parte superior de las lingoteras con placas exotérmicas y el fundente ("flux") 
contenido en bolsas de papel de 6 kg se suspende en barras en forma de T. 
El vaciado se debe terminar en los tiempos establecidos en las hojas de proceso, 
en el caso de los lingotes L31 su tiempo estándar es de 9 min. La mazarota se 
llena en 3 min. Al final el metal se protege con polvo exotérmico. 
6 y 7.- DESLINGOTEO Y ENFRIAMIENTO.- Una vez completado el tiempo 
especificado de permanencia del metal en los moldes, se procede al deslingoteo. 
Si el material es para carga en caliente, pasa inmediatamente a las fosas de 
calentamiento (9). Si se trata de carga en frie, (7), el enfriamiento se puede hacer 
por dos métodos: 
a) al aire, en cuyo caso, únicamente se apilan los lingotes en un área para este 
fin, 
b) en bote, después de acomodados los lingotes se tapan con una caja metálica 
para suavizar la rapidez de enfriamiento. 
8.- Los lingotes en el almacén de enfriamiento son sometidos a una inspección 
visual de la superficie para detectar grietas o determinar si su acabado superficial 
permitirá el laminado posterior. 
NOTA.- Cabe hacer notar que el deslingoteo se lleva a cabo en un área expuesta 
a fuertes corrientes de aire, donde no hay ninguna pared en el extremo norte de 
la nave. 
9.- FOSAS DE CALENTAMIENTO.- La empresa cuenta con 6 fosas de 
calentamiento con una capacidad de 15 lingotes cada una. En estos hornos los 
lingotes son calentados hasta temperatura de trabajado en caliente y reciben el 
calor por quemadores de gas colocados en un extremo de la fosa. 
11 
10.- MOLINO 34.- El material es deformado hasta una sección de dimensiones ya 
establecidas, mediante una secuencia de 18 a 24 pases. 
11.- El billet se corta con soplete a la longitud deseada y pasa a las mesas de 
enfriamiento si éste se realizará al aire o, en caso contrario, a las fosas. 
12.- Las barras se inspeccionan, en caso de no presentar defectos superficiales 
se envía directamente al cliente si asi lo requirió, se pasa a los laminadores 
subsecuentes o se envía a acondicionado. Otro caso es cuando el cliente 
requiere "viboreado" su producto, entonces forzosamente pasa al departamento 
de acondicionado 1 /. 
13.- ACONDICIONADO.- Se "zig-zaguea" todo el material que es remitido a esta 
área, se elimina el defecto grietas, incrustaciones, etc., siempre que sea posible. 
14.- Se inspecciona nuevamente si el defecto se pudo eliminar sin perder 
dimensiones; si es así entonces se libera, en caso contrario el material se utiliza 
para un semiproducto de menor sección o se manda a chatarra. Si se encuentran 
copos de hidrógeno se rechaza la colada y el material se manda a chatarra. 
15 y 16.- Una vez aprobado el material, se envía directamente al cliente o pasa a 
la siguiente etapa del proceso para obtener productos terminados de diferentes 
secciones transversales. 
1/ "Viboreado".- Producto que fue sometido a una limpieza superficial por medio de un 
esmerilado. Este deja una huella superficial semejante a una víbora. 
12 
2.3 CLASIFICACIÓN, NOMENCLATURA Y SIMBOLOGÍA DE LOS DEFECTOS EN 
INDUSTRIAS CH. 
Puesto que más adelante serán utilizados, se presenta una lista de los símbolos que 
utiliza la empresa. 
H ... 
A) Fuera de especificación en análisis químico. 
B) Fuera de tamaño de grano especificado. 
C) Fuera de templabilidad. 
D) Estructura metalográfica no deseada. 
l... Defectos Internos 
A) Porosidad y/o falta de reducción. 
B) Copos de hidrógeno 
C) Inclusiones 
D) Segregaciones 
E) Rechupe 
F) Grietas en el núcleo 
G) Arrastre de refractario 
S... Defectos de Superficie. 
A) Grieta longitudinal tipo aguja (pequeña y fina) por enfriamiento 
B) Grieta longitudinal (no de choque térmico) por flux 
C) Grietas de quemado (longitudinal y transversal) 
D) Grietas transversales 
E) Reforjaduras o traslapes 
F) Grieta de choque térmico 
G) Grieta por falta de plasticidad en caliente. 
H) Esmerilado profundo (debido a la eliminación de defectos de superficie) 
1) Incrustaciones metálicas por salpicaduras en el lingote 
13 
J) Mala superficie por incrustaciones de caspa excesiva - Acondicionar 
(cacarizo y grieta por falta de llenado): 
K) Material descarburado fuera de tolerancia 
L) Lingote con mala superficie 
M) Marcas de calibre o suaje - Acondicionar 
O) Marcas de enderezado 
R) Superficie rayada (proveniente de laminación) - Acondicionar 
P... Defectos en el maquinado del material 
A) Superficie maquinada no completamente limpia 
B) Superficie maquinada con enterrones de herramental o rayas 
C) Superficie maquinada con acabado burdo no permisible 
D) Inclusiones de flux después del maquinado 
G... Defectos de geometría 
A) Bigote -Acondicionar 
B) Descentrada - Acondicionar 
C) Descuadrado 
D) Torcido 
E) Chueca o mal enderezado 
F) Tableado o mala laminación 
H) Ovalado o cuadrado con cantos muertos. 
M... Defectos de medida 
A) Alto de sección 
B) Bajo de sección 
C) Fuera de longitud. Corto 
D) Fuera de longitud. Larga 
T... Defectos de propiedades mecánicas. 
A) Dureza alta 
B) Dureza baja 
C) Dureza no uniforme en la pieza 
D) Dureza no uniforme en el lote. 
14 
E) Propiedades de resistencia, límite de cedencia, reducción de área y 
elongación fuera de especificación 
F) Prueba Charpy fuera de especificación. 
C... Revolturas en materiales 
A) Revoltura de calidad iguales pero diferentes vaciadas 
8) Revoltura de distintas calidades 
C) Calidad equivocada. 
CALIFICACIÓN 
1) Chatarra 
2) Defectos no aceptables para la orden programada pero aceptables para orden 
con o sin reproceso 
3) Defectos aceptables par~ la orden programada sólo si se reprocesa 
4) Defectos aceptables para la orden programada sin necesidad de reproceso. 
2.4 REVISIÓN HISTÓRICA DE DATOS. 
Esta parte consistió en la revisión de las hojas de proceso de las áreas de Aceración, 
Fosas de Calentamiento y de Habilitación (estas últimas recopilan datos del Molino 34, 
y Acondicionado) del primer semestre de 1993, con la finalidad de establecer los tipos 
de aceros con mayores problemas, aislar las vaciadas con mayor rechazo y conocerlas condiciones bajo las cuales fue procesado ese material. Los resultados se anotan a 
continuación. 
2.4.1. Identificación e incidencia del problema. 
l. La revisión de las hojas de acondicionado permite hacer las siguientes observaciones 
y conclusiones. 
a). La cantidad de material rechazado por los diferentes tipo~ de defectos en los billets 
se muestran en la Tabla 2.1 y en la Fig 2.2. Las claves se muestran en el punto 
anterior. 
15 
Volumen de material rechazado por diferentes defectos 
60000 
o 
-e 
~50000 , 
ca 
' J: ~40000 1J L.. r;, ca ~¡ ·c:30000 ?h 
Q) i~ 
~20000 
,,¡ 
~ 
Q) 
-e 10000 ¡ 
~ 
~ 
o 
SA1 511 SF1 MA3 SH1 IE1 SA2 MB2 SB1 SK2 IA1 GF1 MA2 MC1 GD1 FF1 RES 
Tipo de defecto 
Fig. 2.2 Cantidad de material rechazado por defectos durante el primer semestre de 1993.(RES = resto, 
suma de otros defectos). 
Se debe hacer notar que aún cuando hay otros defectos que representan un porcentaje 
muy alto, estos sólo afectaron una colada, no así SA 1 y SI 1 que aparentemente se 
presentan en la mayoría de las coladas, provocando la necesidad de acondicionado, 
como se muestra en la Fig. 2.3 y Tabla 2.2. 
Tabla 2.1 Tipo de defecto y cantidad rechazada durante 
el primer semestre de 1993. 
DEFECTO kg. RECHAZO RES kg 
RECHAZO 
SA1 59034 IC1 900 
811 55150 SE1 510 
SF1 21735 SA2 450 
MA3 14790 IA2 420 
SH1 13290 GD3 300 
IE1 8591 SH3 300 
SA2 7450 MC2 250 
MB2 6682 GC1 200 
SB1 6406 101 215 
SH2 4640 181 210 
IA1 3921 CC1 200 
GF1 3840 IG1 30 
MA2 2806 TOTAL 
MC1 1970 RES 3995 
GD1 1520 
FF1 1273 
RES 3995 
16 
f 400 
r 350 
e 300 
e 250 
u 200 
e 
n 150 
e 100 
1 50 
a O 
Tabla 2.2, Frecuencia con que se encontraron 
coladas con defectos. 
DEFECTO FRECUENCIA KG. DE RECHAZO 
$11 382 55150 
SA1 329 59034 
IE1 43 8591 
SH1 30 13290 
$81 10 6406 
GF1 10 3840 
MC1 7 1970 
MA3 5 14790 
GD1 4 1520 
SE1 4 510 
MB2 3 6682 
IC1 3 900 
RES 21 
Frecuencia de coladas con rechazo 
Sl1 SA1 IE1 SH1 SB1 GF1 MC1 MA3 GD1 SE1 MB2 IC1 RES 
Tipo de defecto 
Fig. 2.3. Frecuencia de aparición de defectos en coladas. 
De la Tabla 2.2, se puede determinar que el 44.89% del material rechazado durante el 
primer semestre de 1993, se debe a grietas longitudinales, y el 38.66% a 
incrustaciones; sin embargo, debido a que es más costosa la eliminación de grietas, es 
éste problema el que requiere mayor atención. Paralelamente, se empezó un estudio, 
desde el punto de vista práctico, para detectar posibles fuentes de incrustaciones. 
17 
Tabla 2.3 Descomposición del "resto" de 
defectos poco frecuentes. 
DEFECTO FRECUENCIA 
SF1 2 
IA1 2 
IA2 2 
181 2 
MA2 1 
MC2 1 
SH3 1 
101 1 
FF1 1 
101 1 
GC1 1 
SA2 1 
GD3 1 
SH2 1 
CC1 1 
SA2 1 
IG1 1 
De acuerdo a lo anterior, la frecuencia con que ocurren grietas o incrustaciones en las 
coladas es muy alta comparada con la de los demás defectos. 
b. Los aceros con mayor volumen de rechazo por grietas se muestran en la Tabla 2.4 y 
laFig. 2.4. 
Tabla 2.4 Aceros con mayor rechazo por 
grietas durante el primer semestre 
de 1993. 
ACERO Kg DE RECHAZO 
1018 1978 
4140 4222 
1046 11740 
1552 5740 
1045 4186 
8620 3097 
1524 1265 
PS16RH 935 
1541 6806 
1035 840 
4130 850 
18 
Kg de rechazo por grietas 
12000 
10000 
8000 
Kg. 6000 
4000 
2000 
~~~~ o 
1018 4140 1046 1552 1045 8620 1524 PS16RH 1541 1035 4130 
acero 
Fig. 2.4 Pesos rechazados por grieta longitudinal tipo aguja en billets. 
Como se puede observar de la Tabla 2.5, todos estos aceros son de bajo y medio 
carbono, y su contenido de aluminio especificado se encuentra en el rango de 0.02 a 
0.05%. 
Tabla 2.5 Contenido de Al, especificado en los aceros 
con mayor problema. 
ACERO % DEAI 
1046 .02- .035 
1552 .02- .035 
1045 .022- .035 
8620 .03 - .045 
1018 .03 - .045 
1524 .025 - .045 
PS16RH .025 - .045 
1541HP .025 - .04 
1035 .02- .035 
4140 .015- .02 
4130 .025- .04 
El acero 1045 es el que presentó el mayor número de coladas con grietas. 
2.4.2 Condiciones de producción de las coladas problema. 
Una vez localizadas las coladas con mayor rechazo por grietas, se revisaron sus hojas 
de proceso de aceración, para conocer las condiciones bajo 1a·s cuales fueron 
procesadas, con los siguientes resultados: 
19 
acero 
1046 
1552 
1045 
8620 
1018 
1524 
a. Composición Química: 
No se observa un comportamiento generalizado en este rubro, excepto para 
contenidos de Al y S, en los que su cantidad está fuera del rango como se puede 
observar en la Tabla 2.5: 
Tabla 2.6. Desviación respecto a la composición química (fuera del límite máximo o mínimo) 
estándard de las coladas problema. 
%C %Mn %Si %P %S %Cr %Ni %Mo %Cu %Al %Ti %Sn 
.02 .06 
.002 .02 .01 .005 .001 
.005 
.002 
.01 .002 .2 .009 
.06 .002 
.06 
.01 .03 .01 
.01 
%8 
.0001 
.0001 
.006 
PS16R .01 
H 
1541 
1035 
4140 
4130 
.01 -.04 .002 .012 .01 .017 .012 
-.08 .017 
.006 .003 .013 
.003 .001 
.005 
Coladas cuya composición estuvo fuera de lo establecido: 15 
En 5 coladas el contenido de azufre está por arriba de lo normal en .002 a .017 = 
33% 
En 9 coladas el contenido de aluminio estuvo por encima del estándard en .002 a 
.017 = 60% 
b. Velocidad de Colada: 
En la Tabla 2. 7 se registran los número de estrellas con tiempos de vaciado 
menores, iguales o mayores que 9 minutos, que es el tiempo especificado en la 
planta para este tipo de lingotes. 11 B L I O T BCI Á 
20 
Tabla 2. 7. Cantidad de Estrellas (E) llenadas dentro y fuera del 
tiempo (t) especificado en las coladas problema. 
Colada Cantidad de Estrellas 
oroblema E: t < 9 min E t=9 min E t>9 min s/registro 
1584 - - - 2 
1997 2 - - -
2133 - - 1 1 
1624 - - - 2 
1625 1 - 1 -
1676 2 - - -
2115 1 - 1 -
1998 2 - - -
1621 - - 1 1 
1056 - - - 2 
1238 - - - 2 
2130 - 1 1 -
2136 2 - - -
1657 2 - - -
1604 2 - - -
1607 2 - - -
1733 2 - - -
2078 2 - - -
2039 1 1 - -
2070 2 - - -
2134 1 - 1 -
1945 2 - - -
1439 - - - 2 
1952 2 - - -
1697 2 - - -
1944 2 - - -
1889 - - 2 -
1607 2 - - -
1779 2 - - -
1638 - - 2 -
1735 2 - - -
1758 1 - 1 -
Coladas analizadas 32 (64 estrellas)= 100% 
Fueron vaciadas 39 estrellas a velocidad alta (tiempo de vaciado menor a 9 min) 
= 60.94% 
Se vaciaron 2 estrellas a un tiempo correcto. = 3.13% 
Se vaciaron 11 estrellas a bajas velocidades (tiempo de vaciado mayor a 9 min) = 
17.19% 
21 
El 18. 75% de las estrellas (12) restantes no presentan registro de tiempo de 
vaciado. 
c. Temperatura de Colada: 
Las desviaciones de la temperatura de colada respecto a la establecida, se 
muestran en la Tabla 2.8: 
Tabla 2.8. Desviaciones de la temperatura respecto 
a la temperatura estándar de las coladas 
problema. 
Cant.colada No.colada .:iT 
1 1584 11 
2 1997 1 
3 2133 21 
4 1621 24 
5 2130 12 
6 2136 4 
7 1657 o 
8 1607 25 
9 1733 5 
10 2078 5 
11 2039 5 
12 2134 25 
13 1945 12 
14 1952 7 
15 1697 10 
16 1944 5 
17 1889 15 
18 1607 25 
19 1779 -1 
20 1638 13 
21 1735 18 
22 1758 23 
23 1624 26 
24 1625 29 
25 1676 11 
26 1998 11 
9 coladas fueron coladas a temperatura especificada± 5ºC = 28.125% 
17 coladas se realizaron a temperatura mayor a la especificada = 53.125% 
Las coladas restantes se hallaron SIN REGISTRO= 18.75% 
No se realizaron coladas con temperatura menor a la especificada, 0% 
22 
30 
25 
20 
"C 15 
10 
5 
Desviación de T de colada 
O+----~-+-----...---+~~~+-~~-+-~~--+~~~ 
o 5 10 15 
No.de Colada 
20 25 30 
Fig. 2.5. Desviaciones en la temperatura de vaciado de las coladas problema. 
d) Tiempo de deslingoteo. 
Se analizaron un total de 43 coladas, de las que se registraron datos, se muestran 
en la Tabla 2.8 y en la Fig. 2.6 la gráfica de dispersión: 
Dispersión en tiempo de deslingoteo 
e e 
Cantidad de Estrellas 
Fig. 2.6. Diferencia de tiempos de deslingoteo de 28 estrellas (14 coladas con registro de tiempo). 
23 
Tabla 2.9. Diferencia de tiempos de deslingoteo 
de 28 estrellas ( 14 coladas con registro 
de tiempo). 
Cantidad de dif. en tiempo 
estrellas de deslingoteo 
en min. 
1 -40 
2 o 
3 10 
4 -6 
55 
6 o 
7 -7 
8 o 
9 -5 
10 o 
11 48 
12 75 
13 14 
14 15 
15 -36 
16 4 
17 11 
18 -5 
19 14 
20 -1 
21 -5 
22 11 
23 -2 
24 1 
25 48 
26 85 
27 15 
28 190 
Se deslingotearon antes de lo especificado 4 coladas= 9.52% 
Se deslingotearon después del tiempo especificado 15 coladas = 28.57% 
Solamente 11 coladas se deslingotearon en el tiempo especificado ± 5 min = 26.19% 
Las otras 15 coladas restantes no tienen registro alguno de tiempo de deslingoteo = 
35.17% 
24 
2.5 SEGUIMIENTO DE COLADAS. 
Como se ha hecho notar, las grietas ocurren porque el esfuerzo aplicado supera el 
límite máximo a la tensión del material, ya sea que éste se vea disminuido por la 
presencia de defectos o porque el esfuerzo real es muy alto. 
Algunos defectos (inclusiones y porosidades) se originan durante el tratamiento del 
acero líquido y su colada, así que se hicieron las observaciones en hornos LF, VD y 
piso de vaciado. 
El esfuerzo a que se somete el material se debe a diferencias de temperaturas durante 
solidificación, y enfriamiento dentro y fuera de la lingotera, es decir, que se ve influido 
por la temperatura de colada, el tiempo de permanencia en lingoteras, temperatura 
del molde y las condiciones de enfriamiento después del deslingoteo. 
Tomando en cuenta lo anterior se realizaron seguimientos de algunas coladas que 
incluyeron observaciones desde Horno LF, VD, piso de vaciado hasta patio de 
deslingoteo. Las etapas subsecuentes hasta acondicionado no se analizaron en esta 
tesis, pués debido a la programación de la planta no se pudieron obtener datos, se 
anota sin embargo que para el defecto que nos ocupa, dichas etapas no revisten 
interés. 
Los parámetros que se contemplaron durante estos seguimientos son: 
- Limpieza de lingoteras 
- Posición de lingotera 
- Altura de Flux 
- Temperatura de vaciado 
- Velocidad de llenado 
- Tiempo de permanencia en lingotera 
- Tipo de enfriamiento. 
25 
Los resultados de estos seguimientos se anotan a continuación. 
2.5.1 Hornos LF y VD: 
a) Hornos LF y VD.- Esta área es una etapa final del procesamiento del acero líquido, 
donde se adicionan elementos de aleación y desoxidantes y se desgasifica en caso 
necesario; con la consecuente precipitación de productos de la desoxidación y/o 
inclusiones, por la interacción del líquido con el medio ambiente y con los refractarios. 
Además, las inclusiones también se pueden generar inclusiones por el atrapamiento de 
escoria y por la erosión del refractario de las ollas. Los tipos de inclusiones 
mencionadas se conocen como inclusiones exógenas. Por otro lado, durante el 
enfriamiento y solidificación, precipitan la mayoría de los sulfuros y nitruros se 
precipitan, y en estado sólido, carburos, carbonitruros y otros, y son conocidas como 
inclusiones endógenas. 
En el caso práctico, se oxida para ajustar composición y temperatura, lo que hace 
necesaria su desoxidación posterior con Al, esto incrementa la probabilidad de que se 
generen inclusiones en esa etapa del proceso, así como atrapamiento de escoria 
durante su procesamiento. Más tarde, durante la colada, el metal entra en contacto 
con el aire, adquiriendo una cierta cantidad de oxígeno, lo que puede generar la 
precipitación de inclusiones durante el enfriamiento y solidificación. 
2.5.2 Piso de Vaciado. 
a. Lingoteras: 
- Limpieza. Generalmente es inadecuada, aunque su evaluación se realiza en 
forma cualitativa. Se espera que la condición superficial del molde afecte la 
calidad superficial del lingote, y si los defectos no son muy profundos, se eliminen 
con el tratamiento de recocido posterior previa al desbaste por laminación, en 
caso contrario, podrían servir como núcleos de grietas o incrustaciones. 
26 
- Temperatura de lingoteras.- No se controla. Típicamente estuvo por debajo de 
80°C, la cual se considera mínima para la vaciada. 
- Posición.- Se relaciona con la velocidad de enfriamiento, ya que las lingoteras 
del extremo sur de los pisos de vaciado se enfrían rápidamente. 
Flux.- No se encontró relación de su altura con la generación de grietas. En 
cuanto a su humedad, se ha establecido un porcentaje máximo del 4%, sin 
embargo, en ningún momento se analiza para verificar que se encuentra dentro 
de especificación. En principio, ésta podría ser una fuente de gases que 
quedarían atrapados cerca de la superficie del lingote, sumado a su contenido de 
carbono de aproximadamente 4.5%. 
b. Metal. 
Composición qu1m1ca.- No se encontró contenido de elementos fuera de lo 
especificado, excepto por los contenidos de Al, están por arriba del 0.02%, para 
algunas coladas está ligeramente arriba del estándar. 
Temperatura de vaciado.- La última temperatura que se conoce es la de salida de 
LF o VD. Estas temperaturas en general están por arriba de lo especificado como 
se aprecia en la Tabla 2.10 y la Fig. 2.7. En mediciones realizadas 
posteriormente, se observó que la pérdida de temperatura en el metal es de 1 a 
1.5 ° C por minuto en la olla. 
Velocidad de colada.- Esta variable también se encuentra fuera de control. 
Ligeramente arriba del 50% de las estrellas observadas, se llenaron en tiempos 
más cortos que el estándar. Véase Tabla 2.1 O, y Fig. 2.8. 
27 
Dispersión de Temperaturas de vaciado 
50 
40 
30 
20 
TºC 
10 
o 
-10 
-20 
No. de Lectura 
Fig. 2. 7 Dispersión de Temperaturas de vaciado. 
Tabla 2.10 Desviaciones de temperatura y tiempo de vaciado. 
Colada Cant. de L\T ºC Cant. de mediciones L\t min. sec 
mediciones 
2241 1 15 1 3,21 
2246 2 11 2 3,35 
2250 3 45 3 -0,48 
2256 4 25 4 -1,25 
2260 5 10 5 0,18 
2269 6 5 6 -2,4 
2270 7 10 7 1,45 
2273 8 o 8 0,1 
2274 9 -15 9 1, 16 
2278 10 o 10 1,03 
2280 11 -4 11 -0,4 
2283 12 10 12 -1,48 
13 o 
14 1,43 
15 -0,2 
16 -4 
17 -2,2 
18 -1 
19 -2,3 
20 -1,1 
21 2,3 
22 -1,1 
23 -0,3 
24 0,1 
28 
4 
3 
2 
1 
Dispersión en tiempos de llenado 
e 'e O-r--t-'t-+-:J'l-t-+t---'IP-t--lt---'tlr-1--tl--t-..lJ:~-+-+-+--+i,-+-\-+---±:::.,,.,. 
-1 
-2 
-3 
-4 
No. de lectura 
Fig.2.8 Dispersión en los tiempos de llenado. 
Tiempo de permanencia en lingotera.- Para los lingotes L31, el tiempo especificado es 
de 110 minutos en la planta, el tiempo real pocas veces es menor, y tiende 
generalmente a ser mayor. 
Tipo de enfriamiento.- Se lleva a cabo conforme a lo establecido, ya sea al aire o 
cubiertos con una caja metálica para protegerlos de las corrientes de aire. 
Tiempo de deslingoteo.- Como ya se mencionó, típicamente es ~ a 110 min. Cabe 
hacer notar que la temperatura de los lingotes está por arriba de los 850°C, ver Tabla 
2.1 O aunque sólo se analizó una colada. Es decir, dependiendo del contenido de 
carbono, se está en región austenítica o en la bifásica y/o arriba o ligeramente abajo de 
Ac3 , zona considerada crítica para el agrietamiento por Mintz 1 5 ¡. Obviamente el 
enfriamiento generará gradientes térmicos. 
Tabla 2.11. Temperaturas de deslingoteo a un tiempo de 150 min. Acero 1541. 
LINGOTE T DE DESLI NGOTEO LINGOTE T DE DESLINGOTEO 
1 876 7 850 
2 851 8 890 
3 890 9 895 
4 920 10 885 
5 893 11 870 
6 876 12 862 
29 
is OBSERVACIÓN DE ALGUNAS GRIETAS EN LINGOTES DE CH. 
Se tomaron muestras de billets de 4 coladas diferente y distintos materiales en las que 
se detectaron grietas longitudinales en la etapa de acondicionado, cuyas micrografias 
se mestran a continuación: 
Fig. 2.9. Acero 8620, atacado con nital 2%. Se observa una grieta ancha en la superficie y 
profundidad de .91 mm, rodeada de una zona descarburada. 90X. 
Fig. 2.10 Acero 4137, atacado con nital 2%. Se observa una grieta ancha poco profunda, 
típicamente localizada en un depresión superficia. Se aprecia el óxido generado a altas 
temperaturas. 133X 
30 
.. 
. - ... 
. . · ' . ./ 
···~· ' , : . . ~~ 
. ........ ~ 
... ~ . . . . ., . 
·• ···. "'_. · . ~. j . .. ,. -~ ·. ·~#~ 
Fig. 2.11. Acero 4140, atacado con nital 2%. En esta pieza no se localizó grieta pero si un traslape 
profundo, defectogenerado durante el proceso de laminado, como se puede apreciar con el 
"atrapamiento" de la cascarilla de óxido. 133X. 
Fig. 2.12. Acero 4137, atacado con nital 2%. Se observa una grieta ancha proco profunda, donde 
igualmente se "atrapó" óxido. 133X. 
31 
2.7 RESUMEN. 
La mayor pérdida por defectos en el proceso de fabricación de billets por laminación 
se debe a grietas, debido al reproceso que exigen y la frecuencia con que se dan. Sin 
embargo, no está completamente comprobado que todas las grietas que aparecen en 
los semiproductos tengan su origen desde la generación del lingote, pues ha sido muy 
esporádica la ocasión en que se hace evidente una grieta en el lingote y cuando esto 
sucede se desecha. 
Las características de los aceros donde se presenta con más frecuencia el problema 
coinciden con los antecedentes revisados, es decir: contenido medio de carbono, y 
contenidos de Al > 0.02%, considerado por Desai 141 como un contenido crítico para la 
formación de grietas. 
Se detectaron problemas de proceso que obviamente inciden en la generación del 
defecto, en lo que se refiere a: 
altas. 
- Temperatura y velocidad de vaciado fuera de control, en general, éstas son 
- Temperatura de la lingotera, tipicamente por abajo de lo especificado y no 
controlada. 
- Cantidad de carbono y humedad en los materiales lubricantes y aislantes no 
conocida ni controlada 
- Falta de control en la cantidad de humedad en los canales de alimentación, y 
no conocida. 
- No se controla la calidad de materias primas 
- Existe una falta de suministro de insumos 
- Carecen de mantenimiento los equipos de la planta, principalmente el 
preventivo. 
Los dos primeros puntos tienen que ver directamente con la distribución de 
temperaturas dentro del lingote. Es decir, en determinado momento tienen que ver con 
32 
los gradientes térmicos y por tanto con las tensiones térmicas internas generadas. Los 
demás puntos se relacionan con los defectos internos del lingote, que bajo cientas 
condiciones pueden actuar como concentradores de esfuerzos y servir como inicio de 
grietas. 
Por los motivos expuestos, se estudiarán principalmente los mecanismos de fractura en 
estructuras de colada, bajo condiciones de enfriamiento, y para eso se deben conocer 
las distribuciones de temperaturas a lo largo de la sección del lingote. 
33 
CAPITULO 3 
GRIETAS 
3.1 INTRODUCCIÓN: 
Las grietas longitudinales en lingotes, como su nombre lo dice, son un tipo particular de 
grietas que aparecen en las caras longitudinales del lingote. Se encuentran en 1 ó 2 
caras y rara vez en 3. Generalmente son observadas durante el desbaste primario del 
lingote, aunque algunas veces en el lingote mismo 131, i. e. son casi superficiales. 
De acuerdo al estudio realizado por Desai 141, es más frecuente que aparezcan en los 
lingotes con un rango de contenido de carbono, donde las colonias de perlita están 
rodeadas de una red de ferrita. 
La investigación realizada por Desai ha mostrado la naturaleza intergranular de las 
grietas y la probabilidad de que ocurran a temperaturas abajo de 850 ºC. Asimismo, 
este autor señala una pérdida de ductilidad del material a temperaturas alrededor de 
600 ºC 141. 
En todo caso, se involucra el desarrollo de una fractura en el material, con la 
nucleación y crecimiento de grieta en el sitio donde la estructura es inestable, cuando 
la fuerza impulsora para la extensión de I~ grieta excede la resistencia del material 
34 
provocándose así la propagación rápida de la grieta; de otra forma, si la fuerza 
impulsora es menor o igual a la resistencia del material la grieta será estable. 
3.2 PRINCIPIOS DE FRACTURA. 
La fractura es la separación o fragmentación de un sólido en 2 ó más partes bajo la 
acción de esfuerzos, cuyo desarrollo se puede considerar en dos partes. 
a) La iniciación de la grieta 
b) La propagación. 
En la etapa de propagación se identifican dos fases de crecimiento de una 
grieta: 
1. Flujo plástico de la matriz aledaña al sitio de nucleación. 
2. Flujo plástico acrecentado por la decohesión de pequeñas partículas. El 
paso final que lleva a la falla involucra la coalescencia de cientos de 
microcavidades en grandes grietas. 
Por su mecanismo de crecimiento más que por su inicio, las fracturas se clasifican en: 
Fractura Dúctil, Fractura Frágil, Fractura por fatiga, Fractura por corrosión. 
3.2.1. Fractura Dúctil.- Generalmente se produce por sobrecarga, y está 
caracterizada por: la apariencia de desgarre del material, una gran cantidad de 
deformación plástica previa y por la energía consumida. La propagación de la grieta 
puede ser trans o intergranular siguiendo las interfases. 
La fractura intergranular dúctil puede ocurrir como resultado de varios procesos que 
incluyen: nucleación y coalescencia de microcavidades en inclusiones o partículas de 
segundas fases en límites de grano, grietas en límites de grano y. formación de 
cavidades asociadas con esfuerzos a elevadas temperaturas, decohesión entre granos 
contiguos asociadas con impurezas en los límites y su asociación con medios 
agresivos, entre otros. 
35 
La coalescencia de microcavidades se lleva a cabo por la nucleación de éstas, seguido 
por su crecimiento y eventual coalescencia. La iniciación de cavidades se atribuye al 
agrietamiento de partículas o a una falla interfacial que puede presentarse, entre 
inclusión o precipitados y la matriz adyacente. Su nucleación depende de los 
siguientes factores: tamaño de las inclusiones y su distribución, niveles de esfuerzos y 
niveles de deformación y su estado de esfuerzos local. 
El proceso que lleva a la falla final involucra la coalescencia de cientos de 
microcavidades en grandes grietas lo que significa el consumo considerable de 
energía. 
3.2.2. Fractura Frágil .- Se caracteriza por un rápido crecimiento de grieta y mínima o 
nula deformación plástica previa a la falla. La fractura frágil intergranular y 
generalmente se presenta en cerámicos. Ocurre por carencia de sistemas de 
deslizamiento. Este tipo de fractura es ocasionada por la presencia en el límite de 
grano de grandes fases de precipitados, por segregación de un elemento o compuesto 
específico, en esa región donde una red delgada de átomos como son oxígeno en 
níquel o hierro de alta pureza o antimonio en cobre, son suficientes para fragilizar el 
material. 
La fractura frágil transgranular, común en hierro y aceros bajo carbono y muchos otros 
metales bcc y hcp, se puede originar por envejecimiento por deformación. Este tipo de 
fractura se ve favorecida por pequeñas no coincidencias en el límite de grano y entre 
más grande sea esa desacomodos entre granos, la fractura ocurre con mayor facilidad. 
3.2.3. Fractura por fatiga.- Resulta de la aplicación de esfuerzos cíclicos, donde cada 
uno de éstos disminuirá el esfuerzo de cedencia del material. Las variables que 
influyen son: la magnitud y frecuencia de aplicación del esfuerzo, la presencia de un 
esfuerzo medio, temperatura, tamaño y forma del espécimen, estado de esfuerzos, de 
36 
los esfuerzos residuales, acabado superficial, microestructura, entre otros. En general 
las fracturas de este tipo son transcristalinas. 
3.2.4. Fractura por corrosión.- En este proceso se combinan un esfuerzo mecánico y 
ataque químico en la iniciación y propagación de la grieta. Se da como un proceso 
discontinuo donde se alternan el crecimiento mecánico de la grieta y la disolución 
química en la punta de la grieta. 
No es objetivo de este trabajo estudiar todos los tipos de fractura, una mejor 
descripción de estos dos últimos tipos de fractura se encuentra en las referencias 1361 y 
1371. 
El estudio del proceso de fractura implica las siguientes propiedades del material: 
3.2.5. Esfuerzo Cohesivo.- En términos básicos, el esfuerzo se debe a las fuerzas 
cohesivas entre átomos. Los materiales con grandes esfuerzos cohesivos presentan 
también grandes constanteselásticas, altos puntos de fusión y bajos coeficientes de 
expansión térmica puesto que dichas propiedades se relacionan con las características 
energéticas del enlace: ver Fig. 2.1. Cuanto más profundo es el "pozo energético" 
(mayor la energía de enlace), mayores son las fuerzas cohesivas entre át~mos.l 11. 
Considerando que la curva de las fuerzas externas para deformar un enlace (curva 4) 
puede aproximarse por una simetría de: 
donde: 
P = Pmáx sen (
2
; x) (3.1) 
). es el período de la sinusoide (~ 2 a o) 
x es la elongación del enlace, medida a partir del punto de equilibrio. 
Pmáx es la Fuerza máxima que soporta el enlace antes de su ruptura. 
37 
se obtiene: 
E l 
e = 2 JrC1o 
es la separación atómica de equilibrio. 
E es el Módulo de Young. 
Tomando en cuenta la energía requerida para formar las 2 nuevas superficies Ys : 
r s es la energía superficial 
U,P ' 1 
1 
1 
1 
1 
1 
1 
cr, = r:: 
\,í] 
\ 1 
1 \ 
\ 
\ 
\ 
' \ 
,, 1 
',, 
,/ -
l 
PMClX 
r 
(3.2) 
(3.3) 
Fig. 3. 1. Energía y fuerzas de enlace con respecto a la distancia interatómica. 1. Campo energético de 
átomos con "pozo energético" poco profundo. (baja energía de enlace). 2. Campo energético de átomos 
con mayor energía de enlace. 3. Fuerza de enlace (Pen1aca). 4. Fuerza externa para deformar el enlace 
(P). Tomada de apuntes de clase del Dr. Liebermann. 
38 
La concentración de esfuerzos en la punta de la grieta generalmente eleva el esfuerzo 
aplicado alcanzando valores por arriba del nivel necesario para una deformación 
plástica irreversible. Esta región se encuentra rodeada por una zona de deformación 
elástica. 
3.2.6. Factor de intensidad de esfuerzos.- Este parámetro describe el efecto de la 
geometría de la grieta en los niveles de los esfuerzos locales en la punta. En todos los 
casos este factor se incrementa al aumentar la longitud de la grieta y al disminuir su 
radio en la punta. La propagación de la grieta depende de su geometría y es función 
del esfuerzo y su longitud. Se han propuesto varias soluciones en forma polinomio en 
función del esfuerzo aplicado y/o estado de esfuerzos en la punta de la grieta y de su 
geometría. Feddersen l 2 I propone la siguiente expresión: 
K= (~)~ 
W es la dimensión del espécimen a través del cual corre la grieta. 
a representa V! de la longitud de la grieta. 
(3.4) 
En la vecindad de la grieta se desarrolla una zona de deformación plástica, rodeada de 
una zona de deformación elástica, cuando se excede el esfuerzo de cedencia a una 
distancia ry. Tomando en cuenta esta zona de deformación plástica, el factor de 
intensidad de esfuerzos efectivo está dado por: 
/ü.t+r.) 
K = Y\ W y a ~ü.t + ry (3.5) 
Y es el factor de calibración que depende de la geometría de la grieta y del esfuerzo 
aplicado. 
En la ref. 12 1 vienen enunciados estos factores para diferentes geometrías de grieta. 
3.2.7.-Condiciones de Fractura.- Griffith estableció las relaciones necesarias de 
esfuerzos para la falla: 
39 
Esfuerzo plano: (3.6) 
Deformación plana: a= 
2Ers 
(3.7) 
JZ"Cv(l - v) 
donde v es el Módulo de Poisson. 
Para metales la energía de fractura es varias veces más grande que la energía 
superficial, así que Orowan incluye la energía de deformación plástica YP en el proceso 
de fractura: 
2E (Ys + Yp) 2E Ys Yp 
(3.8) (j = = 1+-
JZ"ÜJ JZ"ÜJ Ys 
como YP >> Ys :::::) <1" ~2Eyp (3.9) 
JZ"ÜJ 
Sin embargo, su aplicabilidad depende de la agudeza de la grieta y la deformación 
plástica relativa. Si el esfuerzo máximo es igual al esfuerzo cohesivo, el esfuerzo 
aplicado necesario para la fractura será: 
a = ~Er, ( p J 
a a, Q¡ 
o 
(3.10) 
p es el radio en la punta de la grieta. 
De acuerdo con la teoría de lrwin 14 I , la solución de la distribución de esfuerzos en la 
punta de la grieta está asociada con la forma de carga, dando los tres modos 
principales se muestran en la Fig. 2.2, donde: 
Modo l. Abierto o tensil, donde las superficies de las grietas se mueven 
apartándose entre sí. 
40 
Modo 11. Deslizamiento o corte en un plano, las superficies de la grieta se 
deslizan una sobre otra en dirección perpendicular al borde principal de la grieta. 
Modo 111. Desgarramiento o modo de corte. 
El modo 1, es el de mayor importancia, ya que es el más común en los componentes 
ingenieriles. 
Fig. 3.2. Modos básicos de carga. 
En este caso, la distribución de esfuerzos en la vecindad de la punta de la grieta está 
dada por las siguientes expresiones y de acuerdo a la convención de la Fig. 3.3: 
<rx = _K_ cos~(l + sen~ sen 
3
(}) 
~21rr 2 2 2 
(3.11) 
K B ( O 3(}) 
<ry = ~Z1rr cos2 1- sen 2 sen 2 (3.12) 
K ( O B 3B) 
'txy = ~Z,r r cos2 sen 2 sen 2 (3.13) 
Como se puede observar, los esfuerzos locales se incrementan a valores muy altos 
conforme r se aproxima a O, precedido por el inicio de la deformación plástica en la 
punta de la grieta. 
41 
z cry 
<Jx 
~<Jx 
1'xy 
?0, <Jz cry y 
e 
X 
Fig. 3.3 Distribución de esfuerzos en la vecindad de la punta de la grieta. 
3.3 GRIETAS EN LINGOTES. 
Las grietas ocurren debido a esfuerzos tensiles que se generan durante el enfriamiento 
del lingote. Según J. Brimacombe y otros l 17 I , las regiones interdendríticas están 
asociadas a segregaciones durante la solidificación y al menos en el caso de colada 
continua, está comprobado que las grietas longitudinales están asociadas a estas 
regiones. 
De acuerdo a los resultados obtenidos por Desai l 4 1 , las grietas longitudinales se 
presentan en aceros perlíticos con una red continua de ferrita en límites de grano de la 
austenita, a temperaturas menores a Ac3. Su naturaleza es intergranular, lo que sugiere 
que la capa delgada de ferrita es incapaz de soportar los esfuerzos desarrollados 
durante el enfriamiento. Los principales factores que limitan al material para resistir los 
esfuerzos térmicos, se enumeran a continuación. 
3.3.1 Factores que influyen en la nucleación de grietas en estructuras de colada. 
Algunos autores sugieren analizar estos factores por su origen 1351. En forma general 
los factores estructurales que influyen directamente en la formación de grietas son: 
42 
Segregación. 
Puede tener su origen en el periodo de oxidación o reducción. El P, H y N se 
relacionan con la oxidación. El P facilita la nucleación y propagación de las grietas, 
mientras que el H y N sólo influyen en la nucleación. Sin embargo, su efecto se suma al 
de otros elementos, principalmente el S y otros como Mn, C y Ni. Los fosuros segregan 
en forma interdendrítica como eutécticos de bajo punto de fusión (950 a 970ºC) en 
forma de islas alargadas, las cuales debilitan los límites de grano austeníticos 
primarios que coinciden con las fronteras de los dendritas. 
Microporosidad. 
Debido a la geometría en forma de "árboles" de las dendritas, éstas atrapan líquido con 
una concentración alta de elementos segregados entre sus ramas. Cuando estas 
porciones líquidas pierden contacto con el líquido de la parte central, o los canales de 
comunicación entre dendritas tienen una forma muy intrincada, se quedan sin la 
posibilidad de contrarrestar la contracción al solidificar, generándose pequeñas 
microcavidades que son la base de la microporosidad. Además, los canales líquidos 
siempre contienen gases disueltos, que bajo condiciones adecuadas de presión 
nuclearán burbujas de gas. 
La microporosidad está en función de a) gases disueltos y b) de la diferencia de 
presiones entre el centro de la pieza y las regiones interdendríticas. La microporosidad 
se ve favorecida por un gran cambio de volumen y de longitud muy grande de las 
dendritas (canales muy largos y sinuosos). 
Esta microporosidad se puede presentar de 2 tipos: dispersa y en capas. Su efecto 
perjudicial se debe a: 
- Concentración de esfuerzos en los poros y 
- Reducción del área que soporta la carga, lo cual depende de la fracción 
volumétrica de la porosidad. Su principal efecto es disminuir la ductilidad y laresistencia a la tensión. 
43 
Inclusiones. 
Hasta la fecha no existe un acuerdo en la comunidad científica respecto a su 
clasificación, que las englobe todas y explique su origen. 
La clasificación más común las agrupa como endógenas, exógenas y recientemente se 
habla de inclusiones de interacción cuyas características son 1351: 
Exógenas: Surgen de: a) los productos de reoxidación, b) de atrapamiento de 
partículas tanto de la olla como del horno, o de los polvos lubricantes, c) por la erosión 
química y mecánica de la olla y de los refractarios del sistema de colada. La mayoría 
de este tipo de inclusiones se generan por estos fenómenos. 
Endógenas: Se generan durante el enfriamiento y solidificación (óxidos y sulfuros) y 
aún en estado sólido por la precipitación de segundas fases (carburos, carbonitruros y 
nitruros) y del oxígeno y azufre disueltos (óxidos y sulfuros). Se ha demostrado 1351 que 
su densidad es mínima. Al parecer no se trata sólo de un pedazo de ladrillo o escoria, 
sino de algún producto de reacción entre el metal líquido y el medio (escoria, 
revestimientos, etc.). 
Inclusiones de interacción: Resultantes de la interacción entre endógenas y exógenas 
como son las espinelas, algunos aluminatos, silicatos, entre otras, las cuales son más 
comunes en aceros comerciales. Algunos autores las clasifican como 
submicroscópicas, microscópicas y macroinclusiones 1351. 
Submicroscópicas: Su concentración puede ser del orden de 1 O 11 /cm3 y se considera 
que en la mayoría de los casos estas inclusiones no son perjudiciales, sin embargo en 
algunos aceros, por ejemplo al Si, impiden el crecimiento de grano. 
Macroinclusiones: Su fracción es muy pequeña y ocupan menos del 0.01 % del volumen 
total de inclusiones de todas las dimensiones, con un efecto negativo en las 
propiedades superficiales e internas de los aceros. 
44 
Microscópicas: Influyen en las propiedades de fatiga y de impacto, y su relación 
volumétrica y deformabilidad, en relación con la matriz, juegan el papel más importante. 
El grado de influencia de las inclusiones depende de su tipo, es decir de sus 
propiedades en relación con la matriz circundante. Las propiedades básicas son: 
a) El módulo de elasticidad y deformabilidad plástica de la inclusión a diferentes 
temperaturas 
b) La concentración de tensiones alrededor de la inclusión en el acero, debido a 
las diferencias en el coeficiente de dilatación térmica o de contracción entre la 
matriz y la inclusión correspondiente 
c) Tipo y propiedades de la interfase. 
Algunos autores sugieren que para medir la plasticidad se puede utilizar el índice de 
deformabilidad dado por: 
µ = Ee IEM 
donde 
Ee · es la Deformación real de la inclusión 
EM es la deformación real de la matriz. 
De acuerdo a este índice, las inclusiones se pueden clasificar en 5 grupos 1351. 
1. Aluminatos de Calcio y Al203 que no se deforman a ninguna temperatura 
2. Óxidos dobles del tipo de las espinelas, Ai 803 que no se deforman a las 
temperaturas correspondientes al tratamiento del acero. 
3. Silicatos. No se deforman a temperatura ambiente, sin embargo lo hacen 
fuertemente a temperaturas elevadas, dependiendo de su composición química. 
4. FeO, MnO y Fe,Mn(O), se mantienen plásticos a temperatura. ambiente, pero 
gradualmente pierden plasticidad a temperaturas mayores de 400 ºC. 
5. El MnS se deforma fuertemente hasta 1000 ºC pero no así a mayores 
temperaturas. 
45 
Independientemente de esta clasificación, los aluminatos y silicatos de calcio poseen 
una plasticidad similar a la del acero a elevadas temperaturas, en cambio los sulfuros 
tienen una resistencia a la deformación que disminuye con la temperatura menos 
marcadmente que la del acero, por eso a elevadas temperaturas, los sulfuros son 
partículas más duras y frágiles que la matriz, situación que las hace centros propicios 
para generar grietas (fragilidad en caliente). 
Algunos autores han demostrado que la concentración de tensiones alrededor de la 
inclusión se produce por la diferencia en los coeficientes de dilatación térmica, entre 
matriz-inclusión, conocidas como tensiones tipo mosaico 1351. 
Para conocer las tensiones alrededor de la inclusión, se define ae y aM como 
coeficientes de dilatación térmica de la inclusión y de la matriz respectivamente, cuyo 
efecto será de acuerdo a las siguientes relaciones: 
a. ae > aM (MnS, MnSe), se forman huecos entre inclusión y matriz. 
b. ae ~ aM (MnO, Zr20), no hay influencia 
c. ae < aM Se forma un campo de tensiones mecánicas alrededor de la inclusión. 
La región afectada de la matriz es = 4r, considerando una inclusión esférica de 
radio r. Esta zona conduce a la zona de prefalla. 
Las tensiones tangenciales tipo mosaico en la frontera inclusión-matriz se representan 
por: 1341 
[ 1.3Ee + ~] 
(3.14) 
ao es el esfuerzo externo. 
E8 y EM son Módulos de Young de la inclusión y matriz respectivamente. 
46 
Para analizar la dimensión crítica de la inclusión, se trata como si fuera análoga a una 
grieta bajo la acción de un esfuerzo externo a0 , que en el caso de estudio será debido a 
cambios de temperatura, entonces las tensiones tangenciales están dadas: 
f3 es el "coeficiente de concentración de tensionesn, depende de la relación de módulos 
de elasticidad Es!EM. Según datos de la ref. 1351 la relación entre Es y EM es: 
Es se mueve entre 0.5 EM y 2EM y por tanto: 
Por otro lado, las tensiones totales están dadas por: O"y = a1 + a 2 
~ Ee ) 
O"y = 2ao ~ + Ee + ~ + 1.3Ee = 2aoy (3.15) 
Para: 0.5EM < Es < 2EM , y = 0.97 - 0.88 
Entonces: 
O"y ~ 2ao 
Especialmente cuando estas tensiones son térmicas, muestran un efecto decisivo en la 
nucleación de microdefectos que conducen más tarde a fracturas. 
En cada caso, la matriz se deforma alrededor de la inclusión creando cavidades por la 
decohesión matriz-partícula, o causando zonas de deformación, las cuales actúan 
como zonas débiles o sitios de falla. 
3.3.2 Principales factores que generan grietas en los lingotes. 
La complejidad de todos los factores que influyen en la formación de grietas y fracturas 
hacen difícil explicar su origen. Levícek y Stránsky 1361 dan un enfoque cualitativo y 
47 
semicuantitativo de las relaciones causa-efecto que determinan la tendencia de un 
acero a las grietas y fracturas, fundamentado en la teoría de semejanza física. Para 
esto se basan en el Teorema 1t, según el cual cada relación entre las magnitudes 
físicas puede ser transformada a una función de criterios adimensionales, los cuales se 
pueden considerar como magnitudes independientes. 
La solución del problema, considerando los actuales conocimientos sobre la formación 
de grietas y fracturas conduce a los criterios de semejanza enunciados más adelante, 
de los siguientes parámetros: 
a es la tensión superficial del acero líquido [N/m] 
y es la energía superficial del acero líquido [J/m2) 
Rp es el Límite de fluencia [MPa]. 
crr representa las tensiones internas [MPa]. 
a' es el Coeficiente de transferencia de calor en la frontera pieza-molde [W/m2K]. 
R es el espesor relativo de la pieza. [m]. 
,._ es la conductividad térmica específica [W/mK]. 
rr es la difusividad térmica específica del acero [m2/s). 
-r es el tiempo de solidificación de la pieza [s]. 
a es la dilatación térmica lineal [1/K] 
~ T1 s es el intervalo de temperaturas líquidus y sólidus del acero dado [ºC]. 
E es el Módulo de elasticidad a la tensión [MPa]. 
T1 es la Temperatura de colada del acero [°C]. 
L es la mitad de la distancia entre los ejes de los dendritas [m]. 
Ds es el valor medio del coeficiente de Difusión en la solución sólido [m2/s] 
e representa el tiempo local de solidificación [s). 
ves la viscosidad cinemática del acero [m2/s] 
01 es el valor medio del coeficiente de difusión en estado líquido [m
2/s] 
X es la longitud media de los dendritas, ver fig. 3.4 [m]. 
Pm es la presión metalostática del acero [MPa] 
48 
y' es elpeso específico del acero [N/m3]. 
e es el tamaño del defecto preexistente relacionado con los procesos metalúrgicos [m]. 
p es la densidad del acero [kg/m3]. 
Kc y Kic son la tenacidad a la fractura del acero ( coeficiente de concentración de 
tensiones) [Mpa/m 112]. 
oc es el valor crítico de la apertura de la grieta [m]. 
RM es la resistencia máxima del acero [MPa]. 
Los criterios resultantes son: 
Criterio 1t1 (Hook) = Rp = H Si H ~ 1 puede formarse una grieta de tamaño estable y 
O" T 
se puede producir falla por fractura estable o inestable. 
a'R 
Criterio x2 (Criterio de Biot) = --¡-- = Bi Si Bi crece, se eleva la tendencia del acero a 
las grietas. Involucra la transferencia de calor de la pieza al molde. 
R2 
Criterio 1t3 (Criterio de Fourier) = - = Fo Si Fo aumenta, igual pasa con la 
G..rr 
tendencia del acero a las grietas. Relaciona la conducción de calor en la pieza, el 
tiempo de solidificación y enfriamiento. 
Criterio 1t4 = al\ T,.. Involucra la contracción relativa e influye en la tendencia al 
agrietamiento interdendrítico. 
Criterio 1t1 = e; . Expresa la Ley de Hook y la representa también la deformación 
relativa. Igualando los criterios 4 y 5, se tiene la expresión para aproximar las tensiones 
internas: 
crr = aLiT*E 
. . Liljs 
Cnteno 1t1 =--=r¡. Para un valor óptimo de temperatura de colada, aumenta la 
tendencia del acero a la formación de grietas si crece este criterio. 
L2 
Criterio x7 (Ley de Fick) = 0 0 = Fi. Si Fi se incrementa aumenta marcadamente la s 
tendencia del acero al agrietamiento interdendrítico. Es decir la velocidad de difusión 
influye en el intervalo de temperaturas de solidificación, debido a la segregación. 
49 
Criterio 1t8 (Criterio de Prandtl) = v = Pr Da la relación entre viscosidad cinemática y 
a 
difusividad térmica del acero. 
V 
Criterio 1t1 (Criterio de Schmidt) = -= Se Si Se aumenta, disminuye el ·grado de o, 
segregación y por tanto disminuye la inclinación del acero a las grietas. 
a 
Criterio 1t10 (Criterio de Lewis) = 0 = Le Expresa la relación entre la conductividad s 
térmica media del acero y el coefici.ente de difusión de elementos en la fase sólida. 
L 
Criterio 1t11 = X Tiene que ver con la forma de los dendritas, Fig. 3.3, puesto que el 
L 
ángulo en la raíz del dendrita. m = 2 are tg( X). Si m disminuye, entonces se incrementa 
la tendencia a la formación de grietas. 
R 
Criterio 1t12 =L. Expresa la relación entre espesor y tamaño de los dendritas. Si la 
relación crece, disminuye la inclinación a las grietas. 
P. 
Criterio 1t13 = mR = EuFr. Relación entre presión metalostática y espesor de la pieza. 
r' 
Si EuFr aumenta, disminuye la tendencia a las grietas. 
L 
Criterio 1t1, = 1. Relación entre el tamaño de un defecto preexistente y la dimensión 
del dendrita. La segregación interdendrítica influye en forma especial en la formación 
de defectos interdendríticos. 
P. 
Criterio 1t11 = __!!!_ =EuFrRe/51. Si el valor de este criterio aumenta, hay una mayor 
vy'r 
tendencia del acero a la formación de grietas. 
Criterio 1t11 = _r_. Si el valor de este criterio crece, de igual forma aumenta la 
r'vr 
tendencia a la formación de grietas. 
50 
2L 
s 
X X 
Fig. 3.4 Geometría de las dendritas. 
P. e 
Criterio 1t17 = __.!!!._____ = Eu Fo Pr Re2. Expresa la posibilidad de que se llenen de líquido 
vp 
las grietas, aunque su influencia en la tendencia a la formación de grietas no ha sido 
comprobada. 
<rJL 
Criterio 1t11 = K. Se deduce a partir de la mecánica lineal de fractura. Valores 
e 
crecientes de este criterio indican una mayor tendencia a las grietas. 
8 
Criterio 1t11 = f. Se relaciona con la magnitud de la deformación en la punta de la 
grieta. Si el valor del criterio crece más difícilmente se propagará el defecto a través del 
acero y/o crece la resistencia del material contra la propagación de las grietas. 
K 2 
Criterio 1t20 = Óc~Rr, Relaciona el coeficiente de concentración de esfuerzos 
(tenacidad a la fractura), el límite de fluencia y el Módulo de Young del material, con la 
apertura critica de la punta de la grieta. 
Por su parte Desai, 14 1 señala algunos factores de proceso que inciden directamente 
en el defecto: 
-Tratamiento con Aluminio. 
-Contenido de Carbono de 0.4% a O. 7%. 
51 
-Proceso: en orden de frecuencia: Horno Eléctrico de Arco > Reverbero Básico 
> Reverbero ácido. 
-Tamaño del lingote 
-Velocidad de enfriamiento 
-Condiciones de colada: velocidad y temperatura 
-Ductilidad en caliente. Los lingotes agrietados presentan una menor 
ductilidad en caliente que los no agrietados en un rango de temperaturas de 600 
a 700 ºC. 
-En los lingotes agrietados, los contenidos de Al y N son mayores. 
3.3.3 Mecanismos de formación de grietas en caliente. 
Según el trabajo realizado por Mintz, Yue y Jonas, 1 5 1 , en el comportamiento de la 
ductilidad en caliente de los aceros en el rango de temperaturas de 700 a 1100 ºC, se 
distinguen tres zonas de acuerdo a la Fig. 3.2. que son: zona de fragilización, zona 
dúctil de alta temperatura (DAn y zona dúctil de baja temperatura (DBn. 
a. Zona de fragilización.- Ocurre a temperaturas intermedias, ocurren fallas 
intergranulares, como resultado de concentraciones de esfuerzos y deformaciones en 
los límites de grano austenítico, por la presencia de ferrita en esa región, esto provoca 
el deslizamiento del mismo límite. 
La falla se ve favorecida por precipitados o inclusiones en el límite, por granos muy 
bastos y por bajas velocidades de deformación. Las facetas de la fractura pueden 
presentar microcavidades o bien ser lisas sugiriendo dos mecanismos de fractura: 
a.1 Coalescencia de microcavidades. La deformación. preferencial, cerca de los 
límites de grano, inicia las cavidades en precipitados o inclusiones 
intergranulares, lo que produce una fractura intergranular vía coalescencia de 
cavidades. 
52 
Hay dos características del límite de grano austenítico que conllevan a 
concentraciones localizadas de deformación: 
%RA 
ZONA 
FRÁGIL 
A1 A3 
TEMPERATURA ºC 
Fig. 3.5 Curva de ductilidad en caliente para aceros. 
1. Formación de capas delgadas de ferrita durante la transformación austenita-
ferrita. Debido a la recuperación dinámica más baja de la ferrita, se concentran 
las deformaciones en las capas de esa fase. Esto conduce a cavidades dúctiles, 
generalmente nucleadas en las inclusiones de sutfuro de manganeso. 
Teóricamente estas capas de ferrita pueden ser inducidas por deformación a 
temperaturas por encima de Ar3. 
Las teorías propuestas para explicar la aceleración de la nucleación de la ferrita 
son: 
- La deformación causa la migración local del límite de grano, generando 
pliegues en esa región que actúan como núcleos. 
- Los subgranos se forman cerca de los límites de grano, lo cual incrementa la 
energía gastada localmente. 
53 
- El aumento en la densidad de dislocaciones en la austenita deformada 
aumenta la energía de deformación, favoreciendo la nucleación de la ferrita. 
En la interfase de los granos primarios de austenita y las redes de ferrita están 
presentes las grietas en forma de cuña, supuestamente formadas por 
desplazamientos cortantes de los granos de austenita a lo largo de las bandas 
más suaves de ferrita, más que por deslizamiento convencional. 
2. Zonas libres de precipitados.- La precipitación en límites de grano, 
generalmente es acompañada por la formación de zonas relativamente débiles en 
ambos lados del límite (con ancho de ~ 500 nm). En el caso de precipitados 
transgranulares, la formación de cavidades se da en los precipitados. El 
mecanismo de la fractura se muestra en la Fig. 3.6. 
a.2. Deslizamiento de Límites de Grano. Ocurre en la región monofásica de 
austenita, seguida por la aparición de grietas en los bordes, debido a la 
recuperación dinámica limitada de la ferrita, se elevan los esfuerzos y velocidades 
de endurecimiento, evitando el acomodo por deformación de la red, 
incrementando

Continuar navegando