Logo Studenta

TEMA 26

¡Este material tiene más páginas!

Vista previa del material en texto

www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
1/35
TEMAS DE FÍSICA Y QUÍMICA
(Oposiciones de Enseñanza Secundaria)
-------------------------------------------------------------------------------
TEMA 26
ÓPTICA GEOMÉTRICA. PRINCIPIO DE FERMAT. FORMACIÓN DE
IMÁGENES EN ESPEJOS Y LENTES. ANÁLISIS Y CONSTRUCCIÓN DE LOS
INSTRUMENTOS ÓPTICOS. EL OJO Y LOS DEFECTOS DE LA VISIÓN.
Esquema
1. Introducción a la Óptica Geométrica.
1.1. Postulados de la óptica geométrica.
1.2. Índices de refracción absoluto y relativo.
2. El principio de Fermat.
2.1. Ley de la reflexión por el principio de Fermat.
2.2. Ley de la refracción por el principio de Fermat.
2.3. Reflexión total. Ángulo límite.
3. Imágenes en superficies planas y curvas.
3.1. Superficie plana: Dioptrio plano, Lámina plana y Prisma.
3.2. Superficie esférica: Focos, Distancias Focales y Plano Focal.
3.2.1. Formación de imágenes en superficie esférica.
3.2.2. Puntos conjugados. Fórmula de Gauss: su deducción.
3.2.2.1. Convenio de signos.
3.2.3. Construcción de imágenes: método del rayo paralelo.
4. Imágenes en espejos.
4.1. Focos. Distancias focales.
4.2. Construcciones gráficas de imágenes.
4.3. Fórmula de los espejos.
5. Imágenes en lentes delgadas.
5.1. Focos. Distancias focales. Puntos y planos conjugados.
5.2. Fórmula de las lentes delgadas. Deducción.
5.3. Formación de imágenes: método del rayo paralelo.
5.4. Imágenes virtuales.
5.5. Aumento lateral.
5.6. Potencia de una lente.
6. Instrumentos ópticos.
6.1. Microscopio simple o Lupa.
6.2. Microscopio compuesto.
6.3. Anteojos: astronómico y terrestre. Prismáticos.
6.4. Telescopio.
6.5. Espectrómetro.
7. El ojo humano.
7.1. Anatomía básica del ojo y su función.
7.2. Defectos de la visión.
7.3. Corrección de los defectos visuales.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
2/35
TEMA 26
ÓPTICA GEOMÉTRICA. PRINCIPIO DE FERMAT. FORMACIÓN DE
IMÁGENES EN ESPEJOS Y LENTES. ANÁLISIS Y CONSTRUCCIÓN DE LOS
INSTRUMENTOS ÓPTICOS. EL OJO Y LOS DEFECTOS DE LA VISIÓN.
1. INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA
La óptica, que estudia la luz, se divide convencionalmente en tres partes que re-
quieren métodos diferentes de estudio: 1) la óptica geométrica, basada en el concepto
puramente geométrico del rayo de luz, 2) la óptica física, referida a la teoría ondulatoria
y 3) la óptica cuántica, concerniente a la interacción de la luz con las partículas atómi-
cas.
1.1. Postulados de la Óptica Geométrica.
Los postulados en los que se basa la óptica geométrica están establecidos a partir
de la observación experimental y son:
a) Propagación rectilínea de la luz en un medio homogéneo.
b) Leyes de la reflexión.
c) Leyes de la refracción.
d) Independencia de los rayos de luz.
La propagación rectilínea de la luz en un medio
homogéneo y transparente queda confirmada por la
sombra que un cuerpo opaco forma al iluminarlo por
un foco luminoso. Se representa mediante rayos e luz,
es decir, rectas dibujadas desde el foco luminoso en la
dirección de propagación de la luz y distinguimos entre
el rayo de luz (a), el pincel de rayos (b) y el haz de luz,
(c). Fig.l. 
 FIG. 1
Las leyes de la reflexión y la refracción hacen referencia a que cuando un rayo de
luz, se propaga en línea recta en un medio homogéneo e isótropo indefinido y llega a la
superficie de separación de dos medios transpa-
rentes (fig.2) se divide en dos partes: una, que
continúa propagándose en el mismo medio, sufre
un cambio de dirección (reflexión) dando lugar al
rayo reflejado, OR, y otra, que penetra en el se-
gundo medio, experimenta también, salvo en la
incidencia normal, un cambio de dirección (re-
fracción) dando lugar al rayo refractado, OT. El
ángulo φ recibe el nombre de ángulo de inciden-
cia y el plano determinado por el rayo incidente
IO y la normal ON, es el plano de incidencia. 
El estudio experimental de estos n fenómenos permite establecer las siguientes le-
yes generales:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
3/35
a) Los rayos incidente IO, reflejado OR y refractado OT, están en el mismo plano
normal a la superficie de separación de los dos medios en el punto de incidencia.
b) El ángulo de incidencia φ es igual al ángulo de reflexión φ″ (ángulo formado
por la normal y el rayo reflejado OR):
 "φφ = (1)
c) La relación entre el seno del ángulo de incidencia φ y el seno del ángulo de re-
fracción φ' (ángulo formado por la normal ON' y el rayo refractado OT) es una cons-
tante característica de los dos medios, o sea:
 cte=
'sen
sen
φ
φ
(2)
o bien, de acuerdo con la teoría ondulatoria:
 
''sen
sen
v
v=
φ
φ
(3)
donde v y v’ representan las velocidades de propagación de la luz en los respectivos
medios.
1.2. Índices de refracción absoluto y relativo.
El índice de refracción absoluto de un medio se define como la relación entre la
velocidad de la luz en el vacío (o bien, en el aire) y la velocidad de la luz en el medio
considerado:
v
c
n = (4)
donde c representa la velocidad de la luz en el vacío y v la velocidad de la luz en el me-
dio. Por ser cociente de dos velocidades, el índice de refracción es adimensional.
Según la anterior definición, si n y n’ son los índices de refracción absolutos de
dos medios cualesquiera, en contacto:
 
v
c
n = y 
'
'
v
c
n = (5)
la ley de la refracción, dada por la ecuación (3) se escribirá:
 
n
n
nc
nc
v
v '
'''sen
sen ===
φ
φ
 o bien 'sen'.sen. φφ nn = (6)
es decir, en la refracción de la luz, es constante el producto del índice de refracción por
el seno del ángulo que el rayo forma con la normal en un medio.
La relación:
'
'
v
v
n
n = (7)
recibe el nombre de índice de refracción relativo del segundo medio respecto al primero.
Por tanto, la constante característica de la ecuación (3) es igual al índice de refracción
del segundo medio con respecto al primero.
Cuando el ángulo de incidencia es muy pequeño, la ecuación (6) nos indica que
también el ángulo de refracción es muy pequeño, por lo que podremos sustituir los se-
nos por los ángulos (en radianes) y resulta:
n
n'
'
=
φ
φ
(8)
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
4/35
Si n'>n, el segundo medio se dice que es más refringente que el primero y si n'<n,
el segundo medio es menos refringente que el primero.
Como consecuencia de la simetría de la ecuación (1), el rayo incidente y el rayo
reflejado son recíprocos, es decir, si un rayo se propaga según RO se reflejará según OI.
También, a consecuencia de la simetría de la ecuación (6), si un rayo se propaga según
TO, se refractará según OI. Así pues, la trayectoria seguida por el rayo de luz no depen-
de del camino de propagación, o dicho de otra manera, las trayectorias son reversibles.
2. EL PRINCIPIO DE FERMAT
Los cuatro principios básicos de la óptica geométrica pueden condensarse en uno
único establecido por Fermat. El camino óptico de un rayo de luz, que atraviesa dife-
rentes medios (fig.3), es igual la suma de los productos de cada índice de refracción, n1,
n2, n3, por la longitud geométrica recorrida en el
medio correspondiente, s1, s2, s3. El principio de
Fermat establece que de "todos los caminos geo-
métricos posibles, entre dos puntos dados, el ca-
mino óptico real descrito por el rayo de luz tiene
un valor máximo o mínimo", es decir:
 extremosn ii =∑ o bien ( ) 0=∑ iisnδ (9) FIG. 3
donde δ representa la variación que experimenta el camino óptico cuando se pasa de un
camino a otro infinitamente próximo.
El principio de Fermat se puede expresar así: "La luz sigue aquel camino por el
que tarda más o por el que tarda menos" .
La propagación rectilínea de la luz en un mediohomogéneo e isótropo es conse-
cuencia de dicho principio, ya que el camino óptico mínimo corresponde a la longitud
geométrica y dicha longitud es la recta que une los dos puntos dados.
2.1. Ley de la reflexión por el principio de Fermat.
Consideremos dos puntos fijos P1 y P2 de un rayo de luz antes y después de su re-
flexión en la superficie reflectante n (fig.4). Los puntos P1 y P2 quedan determinados
por las coordenadas (y1,z1) y (y2,z2) y las variables son y1 e y2 o bien los ángulos φ y φ″
que los rayos incidente, P1P, y reflejado, PP2 forman con la normal, N. Se cumple:
 "tgtg 2121 φφ zzyyy +=+= (10)
si t1 es el tiempo tardado por el rayo
en ir de P1 a P y t2 es el tiempo tardado
por el rayo para ir de P a P2, tendre-
mos que: t=t1+t2. Como P1P=vt1 y
PP2=vt2, sustituyendo t1 y t2:
v
PPPP
t 21
+= 
 FIG. 4
ahora bien, como: φcos.11 PPz = y "cos.22 φPPz =
despejando PP1 y 2PP y sustituyendo en t, resulta:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
5/35
 
"cos.cos.
21
φφ v
z
v
z
t += (11)
Diferenciando las ecuaciones (10) y (11) resulta:
0"
"coscos 2
2
2
1 =+ φ
φ
φ
φ
d
z
d
z
 y "
"cos
"sen
cos
sen
2
2
2
1 φ
φ
φφ
φ
φ
d
v
z
d
v
z
dt ⋅+⋅=
y como la condición de mínimo es que dt=0, las ecuaciones quedan:
"
"coscos 2
2
2
1 φ
φ
φ
φ
d
z
d
z −=
"
"cos
"sen
cos
sen
2
2
2
1 φ
φ
φφ
φ
φ
d
v
z
d
v
z ⋅−=⋅
y dividiendo ordenadamente las dos ecuaciones y simplificando, resulta:
"sensen φφ = es decir "φφ = c.q.d.
El ángulo de incidencia es igual al ángulo de reflexión (ley de la reflexión).
2.2. Ley de la refracción por el principio de Fermat.
Para deducir la ley de la refracción
por el principio de Fermat se procede como
en el caso anterior
'tgtg 2121 φφ zzyyy +=+= (10’)
teniendo en cuenta que ahora:
2
2
1
1
v
PP
v
PP
t +=
donde v1 y v2 representan las velocidades
de la luz en los medios de índices de re-
fracción n1 y n2 respectivamente, siendo
en este caso, n2>n1. 
FIG. 5
Como: φcos.11 PPz = y "cos.22 φPPz =
despejando PP1 y 2PP y sustituyendo en t en este caso, resulta:
 
'cos.cos. 2
2
1
1
φφ v
z
v
z
t += (11’)
Diferenciando las ecuaciones (10’) y (11’) resulta:
0'
'coscos 2
2
2
1 =+ φ
φ
φ
φ
d
z
d
z
 y '
'cos
'sen
cos
sen
2
2
2
2
1
1 φ
φ
φφ
φ
φ
d
v
z
d
v
z
dt ⋅+⋅=
y como la condición de mínimo es que dt=0, las ecuaciones quedan:
'
'coscos 2
2
2
1 φ
φ
φ
φ
d
z
d
z −=
'
'cos
'sen
cos
sen
2
2
2
2
1
1 φ
φ
φφ
φ
φ
d
v
z
d
v
z ⋅−=⋅
y dividiendo ordenadamente las dos ecuaciones y simplificando, resulta:
21
'sensen
vv
φφ = o sea: n
v
v ==
2
1
'sen
sen
φ
φ
 c.q.d.
que es la expresión matemática de la ley de la refracción.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
6/35
2.3. Reflexión total. Ángulo límite.
Un caso especial de gran importancia se produce cuando el segundo medio es me-
nos refringente que el primero, es decir, cuando n'<n. La fig.6, representa varios rayos
que parten de un foco puntual P situado en el medio más denso e incide, bajo varios
ángulos de incidencia, sobre la superficie del medio menos denso.
Cuando el rayo forma el ángulo de inci-
dencia φ=0, el rayo refractado forma un ángulo
φ'=0 y pasa al medio menos denso sin desviarse
(rayos de incidencia normal). Para rayos que
forman ángulos φ1, φ2, φ3, los rayos refractados
forman ángulos φ1’, φ2’, φ3’. De acuerdo con la
ley de refracción, el ángulo de refracción au-
menta a medida que aumenta el ángulo de inc i-
dencia en el medio más denso. Sin embargo, ya
que φi’>φi, existe un ángulo de incidencia λ, que
se llama ángulo límite o crítico, para el cual el
ángulo de refracción λ’ es de 90°. De la fig.6, se
deduce:
'sen
'sen
n
n=
φ
φ
 y para 



=
=
o90'φ
λφ
 luego 
n
n
nn
'
'
1
sen ==λ (12)
Si se conocen los índices de refracción de ambos medios, la ecuación (12) permite
determinar el ángulo límite. Toda la luz procedente de los rayos luminosos que forman
ángulos mayores que el límite se reflejan en el medio más denso como indican los rayos
PA y AQ.
3. IMÁGENES EN SUPERFICIES PLANAS Y CURVAS.
3.1. Superficie Plana: Dioptrio Plano. Lámina Plana. Prisma.
Un dioptrio plano está formado por dos medios transparentes separados por una
superficie plana. Sean n y n' los índices de refracción de los dos medios (n'>n) y P un
punto objeto en el medio de índice de refracción n'. Para obtener su imagen, considere-
mos el rayo PA, normal al dioptrio, que se refracta sin cambiar de dirección, y un se-
gundo rayo PB, que se refracta según BC, (fig.7). Su prolongación corta al rayo PA en
P', que es la imagen virtual del foco P.
Sea PA=s, P'A=s' y AB=h. Entonces, de la
expresión h=s.tg φ =s'.tg φ’ se obtiene:
φ
φ
φ
φ
φ
φ
cos
'cos
'sen
sen'
'tg
tg ⋅==
s
s
Ahora bien, aplicando la ley de refracción:
 
φ
φ
cos
'cos'
' ⋅=
n
n
ss (13)
Ya que la relación de los cosenos es fun-
ción del ángulo de incidencia φ la ecuación ante-
rior indica que la posición del punto P (imagen)
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
7/35
depende del ángulo de incidencia. Esto significa que en el dioptrio plano, todos los ra-
yos que proceden de un punto objeto no se reúnen en un punto imagen. Se dice enton-
ces, que "el dioptrio plano es un sistema astigmático". Ahora bien, si consideramos
rayos de ángulos de incidencia muy pequeños, (φ≅0º), los cosenos valdrán aproxima-
damente la unidad, y la ecuación anterior se reduce a:
s
n
n
s
'
' = (14)
En este caso, la posición del punto P' no depende del ángulo sino de la posición
del punto P. Por tanto la imagen de un punto P es otro punto P'. El dioptrio plano es un
sistema estigmático para rayos que formen ángulos de incidencia pequeños.
Una lámina de caras plano-paralelas es un medio transparente limitado por dos
superficies planas y paralelas. Supongamos que el índice de refracción de la lámina sea
n y que el medio exterior sea aire, cuyo índice de refracción es la unidad. Un rayo de luz
monocromática AB que incide con un ángulo φ, experimenta dos refracciones, una a la
entrada y otra a la salida (fig.8) de la lámina plana. Aplicando la ley de refracción, se
tiene:
 



=
=
11 'sensen.
'sen.sen
φφ
φφ
n
n
 (15)
Ahora bien, como φ’=φ1 resultará:
1sen.'sen φφ n=
e igualando en las ecuaciones (15):
 1'sensen φφ = → 1'φφ = (16)
por tanto "un rayo luminoso que emerge de
una lámina de caras plano-paralelas, es
paralelo al rayo incidente, aunque no es
prolongación de él". La distancia ∆=BP re- 
cibe el nombre de desplazamiento lateral. Para una lámina muy delgada, o para una
incidencia normal a la lámina el desplazamiento lateral es despreciable o nulo.
El Prisma óptico se define como todo medio transparente limitado por dos super-
ficies planas no paralelas, llamadas caras del prisma. La intersección de estas dos caras
es la arista del prisma y el ángulo que forman las dos caras es el ángulo refringente.
Toda sección del prisma, perpendicular a la arista, recibe el nombre de sección princi-
pal.
Estudiaremos a continuación la óptica geométrica del prisma para un rayo de luz
monocromática. Supongamos, además, que el medio situado a ambos lados del prisma
es el aire y representaremos por n' el índice de refracción relativo del prisma con res-
pecto al aire que le rodea.
Un rayo luminoso PQ, que incide so-
bre la cara AB del prisma, bajo un ángulo
de incidencia φ1, experimenta dos refrac-
ciones, una a la entrada del mismo, según la
dirección QR, acercándose a la normal y
con ángulo de refracciónφ1’ y otra refrac-
ción en la cara de salida AC a la que incide
bajo un ángulo de incidencia φ2’;y se refrac- FIG.9
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
8/35
ta según la dirección del rayo RS alejándose de la normal con un ángulo de refracción
φ2 como se indica en la fig.9. Las leyes de la refracción aplicadas a cada una de las caras
del prisma, nos permiten escribir:
 11 'sen'sen φφ n= (17)
 22 'sen'sen φφ n= (18)
y de ellas se obtiene: αφφ =+ 21 '' (19)
 ∆=−+ αφφ 21 (20)
que demostraremos a continuación.
Considerando que los ángulos del cuadrilátero Q1R2 suman 360º se escribe:
ο3602̂1̂21 =+++φφ siendo 




∆−=
−=
ο
ο
1802̂
1801̂ α
sustituyendo: οοο 36018018021 =∆−+−++ αφφ
resulta finalmente: ∆=−+ αφφ 21 c.q.d.
donde a representa el ángulo refringente del prisma y ∆ la desviación total del rayo, es
decir, el ángulo formado por el rayo incidente y el rayo emergente.
Estas fórmulas, llamadas ecuaciones del prisma, determinan completamente la
marcha del rayo considerado y nos permite, conociendo tres de las siete variables impli-
cadas en el proceso, calcular las cuatro restantes.
3.2. Superficie esférica: Focos, Distancias Focales y Plano Focal.
La mayoría de los instrumentos ópticos contienen, aparte de espejos y prismas de
superficies planas pulimentadas, ciertos medios transparentes limitados por superficies
esféricas de curvaturas muy variables, llamados lentes. Tales superficies esféricas, a
diferencia de las planas, son capaces de producir imágenes reales.
En la fig.10 se han dibujado las secciones transversales de los tipos más comunes
de lentes. Las tres lentes convergentes o positivas se denominan: a) equiconvexa.. b)
planoconvexa y c) cóncavo-convexa o menisco positivo y son más gruesas en el centro
que en los extremos. Las tres lentes divergentes o negativas, que son más gruesas en los
extremos que en el centro, son: d) equicóncava.. e) planocóncava y f) convexo-cóncava
o menisco negativo. Estas lentes están fabricadas de vidrios ópticos homogéneos y sus-
tancias transparentes tales como el cuarzo, la fluorita y cristal de roca. Aunque la forma
esférica puede no ser la ideal, proporciona, sin embargo, imágenes aceptables y facili-
dad para el tallado y el pulimento.
 FIG. 10
Estudiaremos el comportamiento de la luz al atravesar una sola superficie esférica
que separa dos medios de diferente índice de refracción y posteriormente lo aplicaremos
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
9/35
a dos o más superficies. Estas combinaciones de superficies esféricas constituyen la
base del estudio de las lentes tanto delgadas como gruesas.
En la fig.11 se han trazado diagramas que muestran el comportamiento de la luz al
refractarse en superficies esféricas cóncavas y convexas. Todos los rayos al refractarse
siguen la ley de la refracción (ley de Snell). En cada uno de los diagramas, el eje princ i-
pal se representa por una línea recta que pasa por el centro de curvatura C. El punto A
en el que el eje principal corta a la superficie se llama vértice.
 FIG. 11
En el diagrama (a) los rayos divergen desde un manantial puntual F situado sobre
el eje, en el primer medio, formando al pasar al segundo medio un haz paralelo al eje.
En el diagrama (b) los rayos convergen en el primer medio hacia un punto F, y antes de
llegar a ese punto se refractan en la superficie formando al refractarse un haz de rayos
paralelos al eje en el segundo medio. En ambos casos el punto F se denomina foco ob-
jeto, y la distancia f, distancia focal objeto.
En el diagrama (c) un haz de rayos paralelos al eje inciden sobre la superficie es-
férica y al refractarse convergen hacia un punto F', y en el diagrama (d) el haz paralelo
al refractarse diverge en el segundo medio, desde un punto F'. En los dos casos, F' se
llama foco imagen y la distancia f' se llama distancia focal imagen.
Volviendo a los diagramas (a) y (b), diremos que "el foco objeto F es un punto del
eje que tiene la propiedad de que cualquier rayo que se origina en él o se dirige hacia
él, tras refractarse, se propaga paralelo al eje". Y refiriéndonos a los diagramas (c) y
(d) diremos que "el foco imagen F' es un punto del eje que tiene la propiedad de que
cualquier rayo incidente que se propague paralelo al eje, convergerá en él o divergirá
desde él, después de refractarse".
Un plano perpendicular al eje en un foco, se llama plano focal. En la fig.12 puede
verse su significado para el caso de una superficie convexa. Un haz de rayos paralelos
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
10/35
que forme un ángulo θ con el eje, convergerá al refractarse, en un punto Q' situado en el
plano focal. Nótese que el único rayo no desviado, que pasa por el centro de curvatura
C, pasa también por Q'.
Es usual en los diagramas ópticos re-
presentar los rayos luminosos propagándose
de izquierda a derecha. Por tanto, una super-
ficie convexa es aquella cuyo centro de cur-
vatura está situado a la derecha del vértice,
mientras que si está a la izquierda será cón-
cava. 
 FIG. 12
Aplicando el principio de reversibilidad a los diagramas de la fig.11, habremos
invertido el papel de cada una de las superficies. El diagrama (a), por ejemplo, repre-
sentará entonces una superficie cóncava con propiedades convergentes, mientras que el
diagrama (b) pasaría a representar una superficie convexa con propiedades divergentes,
y en estos ambos casos, los rayos incidentes estarían en el medio más denso, es decir, en
el de mayor índice de refracción.
3.2.1. Formación de imágenes en superficie esférica.
La fig.13 ilustra la formación de imágenes por una superficie refringente única. Se
ha dibujado para el caso en el que el primer medio es aire, n=1, y el segundo medio es
vidrio, n'=1'60. Por tanto, las distancias focales están en la razón 1/1'60. Se observa
experimentalmente que al acercar el objeto al plano focal-objeto, la imagen se aleja de
F' hacia la derecha, ampliándose su tamaño. Alejando el objeto de F hacia la izquierda,
la imagen se aproxima a F', disminuyendo su tamaño.
 FIG. 13
Todos los rayos procedentes del punto objeto Q convergen a Q'. Los rayos proce-
dentes de otro punto cualquiera, tal como el M, convergerán análogamente en un punto
imagen M'. En la práctica, nunca se cumple exactamente este caso ideal. Las desviacio-
nes originan pequeños defectos de la imagen, conocidos como aberraciones. Su elimi-
nación constituye el principal problema de la Óptica Geométrica.
Si nos limitamos a los rayos paraxiales se podrá obtener una buena imagen usando
luz monocromática. "Los rayos paraxiales son aquellos que forman ángulos muy pe-
queños con el eje, separándose muy poco de él a través de todo su recorrido de objeto a
imagen". Las fórmulas obtenidas en el siguiente apartado, sólo son válidas para imáge-
nes formadas por rayos paraxiales.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
11/35
3.2.2. Puntos conjugados. Fórmula de Gauss: su deducción.
Como consecuencia del principio de reversibilidad, si Q'M' fuera un objeto,
(fig.13) su imagen sería QM. Es decir, si un objeto ocupa la posición de su imagen, la
nueva imagen estará situada en la posición previamente ocupada por el objeto. El objeto
y la imagen son, por tanto, intercambiables o conjugados. Cualquier par de puntos, ob-
jeto e imagen, como los M y M' se llaman puntos conjugados, y los planos perpendicu-
lares al eje por esos puntos, planos conjugados.
Dado el radio de curvatura r de una superficie esférica que separa dos medios de
índices de refracciónn y n', así como la posición de un objeto s, existen tres métodos
generales para determinar la posición y tamaño de la imagen. El primero es el método
gráfico, aplicando gráficamente las leyes de la refracción; el segundo es el método expe-
rimental, utilizando el banco de óptica; y el tercero es el método analítico, utilizando la
fórmula de Gauss:
 
r
nn
s
n
s
n −=+ '
'
'
(21)
En ella s representa la distancia objeto y s' la distancia imagen. Esta ecuación,
fórmula de Gauss para una sola superficie esférica, será deducida posteriormente.
Acercando un objeto M al foco-objeto, la fórmula de Gauss demuestra que la dis-
tancia imagen s=AM' aumenta continuamente y que en el límite, cuando el objeto llega
a F, los rayos refractados son paralelos y la imagen se forma en el infinito. En este caso
s'=∞ y la ecuación toma la forma:
 
r
nnn
s
n −=
∞
+ '' → 
r
nn
f
n −= ' (22)
Análogamente, si aumentamos la distancia objeto hasta que llegue a ser infinita, la
distancia imagen disminuye y se hace, en el límite, igual a f', distancia focal-imagen,
para S=∞. Entonces:
 
r
nn
s
nn −=+
∞
'
'
'
 → 
r
nn
f
n −= '
'
'
(23)
Igualando los primeros miembros de estas ecuaciones, se obtiene:
 
'
'
f
n
f
n = o sea 
f
f
n
n '' = (24)
Cuando sustituimos en la ecuación (21), (n'-n)/r por n/f ó n'/f' en virtud de las
ecuaciones (22) y (23) resulta:
 
f
n
s
n
s
n =+
'
'
 ó 
'
'
'
'
f
n
s
n
s
n =+ (25)
Ambas ecuaciones dan las distancias conjugadas para una superficie esférica. Da-
da la importancia de la ecuación de Gauss, vamos a realizar su deducción con algún
detalle:
En la fig.14, un rayo oblicuo procedente del punto objeto axial M, incide sobre la
superficie esférica (dioptrio esférico) con un ángulo de incidencia φ y se refracta bajo un
ángulo φ’. El rayo refractado corta al eje en el punto imagen M'. Si los rayos incidentes
(MT) y refractado (TM') son paraxiales, es decir, los ángulos α y γ que forman con el
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
12/35
eje son muy pequeños y los ángulos de incidencia (φ) y refracción (φ’) serán suficien-
temente pequeños para poder sustituir los senos por los ángulos, poniendo, en virtud de
la ley de Snell de la refracción:
 FIG. 14
 
n
n'
'sen
sen =
φ
φ
 o sea: 
n
n'
'
=
φ
φ
(26)
como φ es un ángulo exterior del triángulo MTC, será igual a la suma de los ángulos
interiores opuestos:
βαφ += (27)
y análogamente β es exterior en el triángulo TCM', por lo que:
γφβ += ' → γβφ −=' (28)
y sustituyendo estos valores de φ y φ’ en la ecuación (26) resulta:
n
n'=
−
+
γβ
βα
 → ( )βγα
γββα
nnnn
nnnn
−=+
−=+
''..
'.'...
Tratándose de rayos paraxiales, α, β y γ son muy pequeños y puede escribirse:
s
h=α 
r
h=β y 
's
h=γ
que sustituyendo en la última ecuación resultará:
 ( )
r
h
nn
s
h
n
s
h
n −=+ '
'
'.. (29)
y dividiendo por h se obtiene finalmente la fórmula de Gauss:
 
r
nn
s
n
s
n −=+ '
'
'
 (30)
que es la fórmula del dioptrio esférico.
3.2.2.1. Convenio de signos.
El convenio de signos que vamos a adoptar para la correcta aplicación de la fó r-
mula de Gauss en el dioptrio esférico, es el siguiente:
1. En todos los esquemas ópticos, la luz se propaga de izquierda a derecha.
2. Todas las distancias objeto (s) se consideran positivas cuando se miden a la iz-
quierda del vértice y negativas cuando se miden a la derecha del mismo.
3. Todas las distancias imagen (s’) son positivas cuando se miden a la derecha del
vértice y negativas cuando se miden a la izquierda del mismo.
4. Las dos distancias focales son positivas para los sistemas convergentes y nega-
tivas para los sistemas divergentes.
5. Las dimensiones del objeto y de la imagen son positivas cuando se miden por
encima del eje y negativas cuando se miden por debajo del mismo.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
13/35
6. Los radios de las superficies convexas alcanzadas por la luz se consideran po-
sitivos y los de las superficies cóncavas alcanzadas por la luz se consideran
negativos.
3.2.3. Construcción de imágenes: método del rayo paralelo.
Las expresiones deducidas sólo se aplican a los rayos paraxiales. Tales rayos se
refractan en el vértice o muy cerca de él, de tal modo que en las construcciones gráficas
podrán hallarse relaciones geométricas correctas considerando que los rayos se refractan
en un plano normal al eje, trazado por el vértice A.
En la fig.15 puede verse la construcción de imágenes por el método del rayo pa-
ralelo para superficies convexas y en la fig.16 para las superficies cóncavas. Conside-
remos en la fig.15, los rayos emitidos por el extremo superior, Q, del objeto. De los ra-
yos emitidos en todas direcciones consideremos el QT, paralelo al eje, que al refractarse
pasará por el foco imagen F'. El rayo QC que pasa por el centro de curvatura no se des-
vía por atravesar la superficie normalmente.
FIG. 15
Estos dos rayos bastan para localizar el extremo superior, Q', de la imagen, en-
contrándose el resto de la misma en el plano conjugado que pasa por este punto. Todos
los demás rayos paraxiales que parten de Q pasarán también por Q' .Como comproba-
ción, obsérvese que el rayo QS, que pasa por el foco objeto F, se refracta paralelamente
al eje, cortando a los otros rayos en Q'. A este método se llama método del rayo parale-
lo. Los números 1,2,3, etc. indican el orden en que normalmente, se trazan las rectas.
 FIG. 16
Cuando se aplica este método a un sistema divergente, fig.16, el procedimiento es
muy similar. El rayo QT, paralelo al eje, se refracta y diverge como si procediera de F';
el rayo QS, dirigido hacia el foco F, se refracta paralelamente al eje; por último, el rayo
QW, que pasa por el centro de curvatura, no se desvía. La prolongación hacia la iz-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
14/35
quierda de todos los rayos refractados pasa por el punto Q'. Por tanto Q'M' es la imagen
de QM. Obsérvese que Q'M' no es una imagen real, ya que no puede obtenerse sobre
una pantalla.
En estas dos figuras, el medio situado a la derecha de la superficie esférica es el de
índice mayor, n'>n. Si en la fig.15, el medio a la izquierda fuera el de mayor índice de
refracción, n'<n, la superficie tendría un efecto divergente, y F y F' ocuparían posicio-
nes en el lado opuesto del representado, tal como aparecen en la fig.16. Análogamente,
si en la fig.16, fuera n'<n, la superficie tendría un efecto convergente y los focos esta-
rían situados como en la fig.15.
Dado que todo rayo que pasa por el centro de curvatura, no se desvía y además
tiene todas las propiedades del eje principal, se le llama eje auxiliar o eje secundario.
4. IMAGENES EN ESPEJOS
Una superficie esférica reflectante forma imágenes de un modo análogo a las su-
perficies esféricas refringentes o a las lentes delgadas. La imagen formada por los es-
pejos es de más calidad, en ciertos aspectos, que la producida por las lentes, sobre todo
por la ausencia de efectos acromáticos que siempre acompañan a la refracción a causa
de la dispersión. Ello hace que se utilicen espejos en vez de lentes en algunos instru-
mentos ópticos, aunque sus aplicaciones no son tan amplias como las de éstas por no
ofrecer la misma facilidad para corregir el resto de las aberraciones de la imagen.
Debido a la mayor sencillez de la ley de la reflexión comparada con la de la re-
fracción, el estudio de la formación de imágenes por los espejos es más fácil que en el
caso de las lentes. Hay muchas características comunes a ambos casos, a las quepresta-
remos poca atención, destacando aquellas en que difieren. Para empezar, nos limita-
remos a considerar las imágenes formadas por rayos paraxiales.
4.1. Focos. Distancias Focales.
La fig.15 muestra diagramas de la reflexión de un haz luminoso paralelo por un
espejo cóncavo y por otro espejo convexo. Un rayo que incide en un punto tal como el
T obedece la ley de la reflexión φ=φ" . En la figura todos los rayos pasan por un punto
común F, aunque esto sólo se cumple para los rayos paraxiales. El punto F se denomina
foco ya la distancia FA distancia focal. En el segundo diagrama, los rayos divergen co-
mo si procedieran de un punto común F.
FIG. 17
En ambos diagramas, puesto que el ángulo TCA=φ, el triángulo TCF es isósceles
y, en general se cumple que CF=FT, pero para ángulos φ muy pequeños (rayos paraxia-
les), FT es casi igual a FA. Por tanto:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
15/35
 CAFA
2
1= o sea: rf
2
1−= (31)
y la distancia focal es igual a la mitad del radio de curvatura.
Se ha introducido el signo negativo en la expresión anterior de modo que la dis-
tancia focal de un espejo cóncavo, el cual se comporta como una lente positiva, sea
también positiva. De acuerdo con el convenio de signo expuesto antes, el radio de cur-
vatura es negativo en este caso. La distancia focal de un espejo convexo, que tiene radio
positivo, será por tanto negativa. Este convenio de signos es consecuente con el utiliza-
do en las lentes; da propiedades convergentes a un espejo de f positiva y propiedades
divergentes aun espejo de f negativa. En la fig.17, se observa que, por el principio de
reversibilidad, coinciden los focos objeto e imagen de un espejo, lo que quiere decir que
sólo existe un foco en el espejo.
Un plano transversal que pase por el
foco se llama plano focal y sus propiedades,
como se ve en la fig.18, son similares a las
del plano focal de un dioptrio. Un haz de
rayos paralelos que forme un cierto ángulo
con el eje, convergerá en un punto de este
plano. La imagen Q' de un punto objeto
extraaxial, alejado, se formará en la inter-
sección con el plano focal de un rayo que
pase por el centro de curvatura C. FIG. 18
4.2. Construcciones gráficas de imágenes.
En la fig.19 se ilustra la construcción, por el método del rayo paralelo, en el caso
de un espejo cóncavo. Tres rayos procedentes del punto objeto Q, después de reflejarse,
coinciden en el punto conjugado Q'. La imagen es real, invertida y menor que el objeto.
El rayo 4, paralelo al eje, se refleja hacia el foco F. El rayo 6 que pasa por el foco F, se
refleja paralelamente al eje, y el rayo 8, dirigido hacia el centro de curvatura, incide
normalmente a la superficie y se refleja sobre sí mismo. El punto en que se cortan dos
cualesquiera de los rayos mencionados basta para determinar la posición de la imagen.
FIG. 19
Si aproximamos el objeto MQ al centro, la imagen se aproxima también a C, au-
mentando de tamaño hasta que alcanza C, donde su tamaño es igual al del objeto. Apli-
cando el principio de reversibilidad puede deducirse lo que ocurre cuando el objeto está
en C y F. Si el objeto está entre el foco F y el espejo, la imagen es virtual, como en el
caso de las lentes convergentes.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
16/35
FIG. 20
Un procedimiento similar se aplica al espejo convexo de la fig.20. Los rayos pro-
cedentes del punto objeto Q divergirán después de reflejarse desde el punto Q', conju-
gado del anterior. El rayo 4, paralelo al eje, se refleja como si procediera de F. El rayo
6, por pasar por el centro de curvatura, se refleja sobre sí mismo, mientras que el rayo 7,
dirigido hacia el foco, se refleja paralelo al eje. Puesto que los rayos no pasan en ningún
caso por Q', lugar donde confluyen las prolongaciones de los rayos reflejados, la imagen
Q'M' es una imagen virtual.
Las imágenes en los espejos cóncavos se resumen en el siguiente cuadro:
Las imágenes de los objetos reales en los espejos convexos son siempre virtuales,
menores, derechas y situadas entre el foco F y el espejo S.
4.3. Fórmula de los espejos.
Con objeto de poder aplicar las fórmulas de los espejos se ha adoptado el si-
guiente convenio de signos:
1. Las distancias medidas de izquierda a derecha son positivas, y las medidas de
derecha a izquierda, negativas.
2. Los rayos incidentes se desplazan de izquierda a derecha y los reflejados, de
derecha a izquierda.
3. La distancia focal se mide desde el foco al vértice. Esta hace a f positiva en los
espejos cóncavos y negativa en los convexos.
4. El radio se mide desde el vértice al centro de curvatura. Esto hace a r negativo
en los espejos cóncavos y positivo en los convexos.
5. Las distancias objeto e imagen, s y s’, se miden desde el objeto e imagen, res-
pectivamente al vértice. Esto hace que s y s’ sean ambas positivas y el objeto e
imagen reales cuando se encuentran a la izquierda del vértice, mientras que
son negativas y virtuales cuando están a la derecha.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
17/35
El último punto de este convenio implica que, en los espejos, los espacios objeto e
imagen coinciden totalmente, estando los rayos luminosos reales siempre a la izquierda
del espejo. Dado que el índice de refracción del espacio imagen es el mismo que el del
espacio objeto, la n’ de las ecuaciones anteriores es igual a n.
Deduciremos la fórmula que expresa las relaciones conjugadas de un espejo. En la
fig.21 se observa que, por la ley de la reflexión, el radio CT es la bisectriz del ángulo
MTM'. Utilizando una propiedad geométrica bien conocida, podemos escribir:
TM
CM
MT
MC
'
'=
FIG.21
Ahora bien, para rayos paraxiales, sMAMT =≈ y ''' sAMTM =≈ . Del dia-
grama se deduce también que:
( ) rsrsCAMAMC +=−−=−=
y ( )rssrAMCACM +−=−−=−= ''''
y sustituyendo en la proporción anterior, resulta:
'
'
s
rs
s
rs +−=+
que puede ponerse fácilmente en la forma siguiente:
'
11
s
r
s
r −−=+ → 2
'
11 −=



 +
ss
r
resultando la fórmula del espejo: 
rss
2
'
11 −=+ (32)
Se define el foco objeto como el punto objeto situado en el eje cuya imagen se
forma en el infinito, por lo que, sustituyendo s=f y s’=∞ en la ecuación (32) tendremos:
rf
211 −=
∞
+ de donde: 
rf
21 −= o bien: 
2
r
f −= (33)
Se define el foco imagen como la imagen de un punto objeto infinitamente aleja-
do. Esto es, s’=f’ s=∞, de tal modo que:
rf
2
'
11 −=+
∞
 de donde: 
rf
2
'
1 −= o bien: 
2
'
r
f −= (34)
por lo tanto, los focos objeto e imagen coinciden y la distancia focal es la mitad del ra-
dio. Reemplazando en (32) resulta:
 
fss
1
'
11 =+ (35)
ecuación idéntica a la de las lentes delgadas, como veremos.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
18/35
5. IMÁGENES EN LENTES DELGADAS
La fig.l0 representa formas típicas de lentes delgadas, limitadas por superficies es-
féricas que son cóncavas, convexas y planas. Cuando la luz atraviesa una de estas len-
tes, ambas superficies contribuyen a la formación de la imagen. Además de los dos fo-
cos que pertenecen a cada una de estas superficies, existen otros dos focos, correspon-
dientes a la lente considerada en conjunto.
Una lente delgada es aquella cuyo espesor es despreciable frente a las longitudes
asociadas con sus propiedades ópticas. Algunas de estas longitudes son, por ejemplo,
los radios de curvatura de ambas superficies esféricas, las distancias focales y las dis-
tancias objeto e imagen.
5.1. Focos. Distancias focales. Puntos y Planos conjugados.
La refracción de la luz en una lente delgada (equiconvexa una y equicóncava la
otra)se representa en la fig.22. En ambos casos el eje se representa mediante una recta
que pasa por el centro geométrico de la lente y es perpendicular a sus dos caras en los
puntos de intersección con ellas. En las lentes esféricas esta recta pasa por los centros de
curvatura de ambas superficies. El foco objeto F es un punto del eje tal que cualquier
rayo procedente de él o que se dirija hacia él se propaga paralelamente al eje una vez
refractado.
 FIG. 22
Toda lente delgada rodeada de aire tiene dos focos, uno a cada lado de ella y equi-
distantes del centro. Esto es fácil de comprobar por simetría en el caso de las lentes
equicóncavas y equiconvexas, pero puede probarse también en los demás casos. El foco
imagen F' es un punto axial tal que cualquier rayo paralelo al eje, después de la re-
fracción se dirige hacia él o diverge desde él. En los dos diagramas inferiores de la
fig.22 se ilustra esta definición. Por analogía con el caso de una superficie esférica úni-
ca, los planos focales son trazados por los focos perpendiculares al eje.
En la fig.23, puede verse el significado del plano focal, en una lente convergente.
Un haz de rayos paralelos, que forma un ángulo θ con el eje, converge en un punto Q'
situado en el rayo principal, que es el rayo que pasa por el centro de la lente.
La distancia entre el centro de la lente, y cada uno de sus focos es la llamada dis-
tancia focal.Estas distancias, designadas por f y f' tienen signo positivo en las lentes con-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
19/35
vergentes y negativo en las divergentes. Obser-
var que el foco objeto, F, se encuentra a la iz-
quierda en las lentes convergentes y a la derecha
en las lentes divergentes. Debido a la reversibili-
dad de los rayos, para una lente que se encuentre
rodeada del mismo medio a ambos lados, se veri-
fica que: 'ff = 
 FIG.23
Obsérvese atentamente la diferencia entre una lente delgada inmersa en el aire,
cuyas dos distancias focales son iguales, y una superficie esférica única (dioptrio esféri-
co), cuyas distancias focales están en la proporción de sus índices de refracción.
Aplicando el principio de reversibilidad a la fig.24, se observa que Q'M' se con-
vierte en objeto y QM en imagen. Objeto e imagen son, por tanto, conjugados, tal como
ocurría para una sola superficie esférica. Cualquier par de puntos objeto e imagen, tales
como M y M' se llaman puntos conjugados, y los planos que pasan por esos puntos y
son perpendiculares al eje se denominan planos conjugados.
Conocida la distancia focal de una lente delgada y la posición de un objeto, exis-
ten tres métodos para determinar la posición de la imagen. El primero utiliza una cons-
trucción gráfica, el segundo es el método experimental mediante el banco de óptica y el
tercero es el analítico o matemático, empleando la fórmula de las lentes delgadas:
 
fss
1
'
11 =+ (35)
en la que s representa la distancia objeto, s' la distancia imagen y f la distancia focal,
medidas todas ellas a partir del centro de la lente.
5.2. Fórmula de las lentes delgadas. Deducción.
En la fig.24 se muestra la formación de la imagen M'Q' de un objeto MQ a través
de una lente delgada equiconvergente ya partir de este diagrama se puede obtener la
fórmula de las lentes. Consideremos dos rayos procedentes del objeto, de altura y, que
van hasta la imagen, de altura y'. Sean s y s' las distancias objeto e imagen contadas
desde el centro de la lente y x y x' las respectivas distancias a los focos F y F'.
 FIG. 24
De la semejanza de los triángulos Q'TS y F'TA, se deduce:
''
'
f
y
s
yy =−
observar que escribimos y-y' en lugar de y+y’ por ser y' negativa. De la semejanza de
los triángulos QTS y FAS, resulta:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
20/35
f
y
s
yy '' −=−
Sumando ambas ecuaciones, obtenemos:
f
y
f
y
s
yy
s
yy '
'
'
'
' −=−+−
Dado que f=f’, pueden agruparse los dos términos del segundo miembro y dividir
después por y-y’, lo que conduce a la ecuación:
fss
1
'
11 =+
que es la forma gaussiana de la ecuación de las lentes.
Otra forma de dicha ecuación es la de Newton, que se obtiene utilizando otros pa-
res de triángulos semejantes. De los triángulos QMF y FAS, de una parte y TAF' y
F'M'Q' de otra, se obtienen:
 
f
y
x
y '−= y 
f
y
x
y =−
'
'
(36)
y multiplicando ambas ecuaciones se obtiene:
 2'. fxx = (37)
En la fórmula de Gauss, las distancias objeto e imagen se miden desde el centro
de la lente y en la de Newton, a partir de los focos. Las distancias objeto (s o x) son po-
sitivas si el objeto está a la izquierda de su punto de referencia (A o F respectivamente),
mientras que las distancias imagen (s’ o x’) son positivas cuando la imagen está a la
derecha de tales puntos (A ó F', respectivamente en este caso).
El aumento lateral viene dado a partir de la semejanza de los triángulos AMQ y
AM'Q', entre los que se establece la relación:
 
s
s
y
y
m
'' =−= (38)
corresponde a la forma de Gauss.
Si las distancias se cuentan a partir de los focos, deberá usarse la forma de New-
ton, que se obtiene directamente a partir de las ecuaciones (36) que se ponen así:
 
''
'
'
f
y
x
y
f
y
x
y
=−
−=
 
→
→
 






−=
−=
'
''
'
f
x
y
y
x
f
y
y
 
'
''
f
x
x
f
y
y
m
−=−== (39)
En el caso más general, cuando los medios que rodean cada lado de la lente son
diferentes, se demostrará que las distancias focales f y f' son diferentes, y están en la
razón de sus respectivos índices de refracción y la fórmula de Newton para las lentes
toma, entonces, la forma siguiente:
'.'. ffxx = (40)
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
21/35
5.3. Formación de imágenes: método del rayo paralelo.
Colocando un objeto a un lado o a otro de una lente convergente y a mayor dis-
tancia de la focal, se forma una imagen en el lado opuesto (fig.24). Si se acerca el objeto
al plano focal objeto, la imagen se alejará del plano focal imagen, aumentando su tama-
ño. Si, por el contrario, se aleja el objeto de F, la imagen se aproxima a F' disminuyendo
su tamaño. En el esquema de la fig.24, todos los rayos procedentes de un punto objeto Q
convergen en un punto imagen Q' y de un modo similar, los originados en otro punto
objeto M se cortan en el punto imagen M'. Estas condiciones ideales sólo son válidas
para rayos paraxiales.
El método del rayo paralelo permite construir la imagen de un objeto a través de
una lente. Consideremos la marcha de los rayos emitidos por el extremo superior de un
objeto MQ, apoyado en el eje. Por definición de foco, el rayo QT, paralelo al eje, pasará
por el foco imagen F'. El rayo QA, que atraviesa el centro de la lente, donde las caras
son paralelas, no se desvía y corta al anterior rayo en un cierto punto Q'.
Estos dos rayos bastan para determinar el extremo Q' de la imagen, el resto de la
cual estará en el plano conjugado que pasa por Q'. Todos los demás rayos que parten de
Q pasarán también por Q' .Como comprobación, observamos que el rayo QF, que pasa
por el foco objeto, tras refractarse, debe emerger paralelamente al eje y cortar a los de-
más rayos en Q'. Los números 1, 2, 3, etc., indican el orden en que deben trazarse las
rectas.
Las imágenes en lentes convergentes se sintetizan en el siguiente cuadro sinóptico:
Las imágenes de los objetos reales producidas por las lentes divergentes son
siempre imágenes virtuales, menores, derechas y situadas entre el foco y la lente.
5.4. Imágenes virtuales.
La imagen formada por lentes convergentes, como la de la fig.24 es una imagen
real, pues puede recogerse en una pantalla que la hace visible. Las imágenes reales se
caracterizan por el hecho de que los rayos luminosos convergenrealmente en puntos del
plano de la imagen. Una imagen virtual, por el contrario, no se puede recoger en una
pantalla. Los rayos procedentes de un punto dado del objeto no se cortan en el punto
correspondiente de la imagen, debiendo ser prolongados hacia atrás para cortarse en
dicho punto imagen. Las imágenes virtuales son producidas por las lentes convergentes
cuando el objeto está situado entre el foco y la lente, y por las lentes divergentes para
cualquier posición del objeto. Las figuras 25 y 26 muestran dos ejemplos de ésto.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
22/35
 FIG.25
La fig.25 ilustra la construcción de la imagen para el caso de una lupa, o lente
convergente. Los rayos procedentes de Q se refractan en la lente, pero no se desvían lo
suficiente para llegar a converger en un punto real. Al ojo E del observador le parece
que estos rayos provienen de un punto Q' situado a la izquierda de la lente en la prolon-
gación de los rayos refractados. Este punto representa la imagen virtual, pues los rayos
no pasan, de hecho, por él, sino que sólo lo parece. En este caso la imagen es derecha y
mayor. Para construir la figura, el rayo QT, paralelo al eje, al refractarse, pasa por F',
mientras que el QA, que pasa por el centro de la lente, no se desvía. Prolongando hacia
atrás estos rayos, se cortan en Q'. El tercer rayo, QS, que parece proceder de F, no pasa
en realidad por la lente, pero si ésta fuera mayor, se refractaría paralelamente al eje,
como se ha representado y prolongado hacia atrás, corta a las otras prolongaciones en el
punto Q'.
 FIG. 26
En el caso de la lente divergente o negativa, representada en la fig.26, la imagen
es virtual para todas las posiciones del objeto, siempre será menor que el objeto y tam-
bién será más próxima a la lente. Como puede verse en el diagrama, los rayos que di-
vergen del punto objeto Q, se hacen más divergentes al atravesar la lente. Al ojo del
observador, situado en E, le parecen proceder de Q', al otro lado de la lente, pero más
cerca de ésta. Al aplicar la fórmula, ha de tenerse en cuenta que las distancias focales de
las lentes divergentes son negativas.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
23/35
5.5. Aumento lateral.
A partir del diagrama de la fig.24 es fácil obtener una expresión para el aumento
lateral de una lente única. De la semejanza de los triángulos rectángulos QMA y Q'M'A
se deduce la proporcionalidad de sus lados:
AM
AM
MQ
QM ''' =
donde AM' es la distancia imagen s’ y AM es la distancia objeto s. Tomando positivas
las distancias hacia arriba y negativas las distancias hacia abajo, y=MQ y –y’=M'Q' con
lo que sustituyendo resulta:
 
s
s
y
y
m
'' −== (41)
Si s y s’ son ambos positivos como en la fig.24, el signo negativo de m indica que
la imagen es invertida.
5.6. Potencia de una lente.
La potencia de una lente delgada viene determinada por la inversa de su distan-
cia focal. Cuando ésta se mide en "metros", la potencia se expresa en "dioptrías".
 
f
P
1= 
).(
1
)(
−−
=
metrosfocaldistf
dioptríasP (42)
Así, por ejemplo, una lente de distancia focal +50 cm, tiene una potencia de:
2
50'0
1 +==
m
P Dioptrías
mientras que una lente de distancia focal -20 cm tiene una potencia de:
5
20'0
1 −=
−
=
m
P Dioptrías
Las lentes convergentes tienen potencias positivas y las divergentes negativas.
Utilizando la ecuación del constructor de lentes, se puede escribir:
 ( ) 



−−=
21
11
1
rr
nP (43)
donde r1. y r2 son los dos radios de curvatura medidos en metros y n es el índice de re-
fracción del vidrio de la lente.
Las lentes para gafas se construyen con potencias que difieren en un cuarto de
dioptría para reducir el número de herramientas de tallado y pulido en los talleres de
óptica. Además, los lados próximos al ojo son siempre cóncavos para permitir el libre
movimiento de las pestañas y conseguir una mayor proximidad y alineamiento con el
eje ocular.
6. INSTRUMENTOS ÓTICOS
Los instrumentos ópticos son, en esencia, sistemas ópticos de complejidad varia-
ble formados por lentes (sistemas dioptrios) unas veces y por espejos y lentes (sistemas
catadioptrios) otras, diseñados para cumplir unas funciones específicas.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
24/35
Su empleo ha permitido al hombre salvar las limitaciones del ojo humano, tanto
para lo muy pequeño como para lo muy distante, ampliando enormemente sus posibili-
dades como sistema óptico. El diseño de tales aparatos constituye la mayor aplicación
de la óptica geométrica como ciencia física.
6.1. Microscopio simple o Lupa.
El tamaño aparente de un objeto se determina por el tamaño de su imagen retinia-
na, la que, a su vez, si se mira a simple vista, depende del ángulo subtendido por el ob-
jeto desde el ojo. Cuando se desea examinar con detalle un objeto pequeño, se le acerca
al ojo, para que el ángulo subtendido y la imagen retiniana sean lo más grandes posi-
bles. Puesto que el ojo no puede ver perfectamente los objetos que están situados a me-
nor distancia que el punto próximo, un objeto dado subtiende el ángulo máximo posible
cuando está situado en este punto. (Supondremos en lo sucesivo que el punto próximo
se encuentra a 25 cm del ojo). Colocando una lente convergente delante del ojo se au-
menta la acomodación, puesto que el objeto puede acercarse al ojo a una distancia infe-
rior a la del punto próximo y, en consecuencia, subtenderá un ángulo mayor. Una lente
utilizada con este fin se denomina lente de aumento, microscopio simple o lupa.
La lupa forma una imagen virtual del objeto, y el ojo mira esta imagen virtual.
Puesto que un ojo (normal) puede ver con claridad cualquier objeto situado entre el
punto próximo y el infinito, la imagen se verá igualmente clara si se forma dentro de
este intervalo. Supondremos que la imagen se forma en el infinito.
La lupa está representada en la fig.27.
En (a) el objeto se encuentra en el punto pró-
ximo, donde subtiende desde el ojo un ángulo
u. En (b), una lente colocada frente al ojo,
forma una imagen en el infinito, y el ángulo
subtendido desde la lupa es u’. El tamaño de
la imagen retiniana es en cada caso propor-
cional a la tangente del ángulo subtendido, y
el aumento angular (que no ha de confundirse
con el aumento lateral m) se define así: FIG. 27
u
u
tg
'tg=γ
Cabe expresar el aumento angular de la forma siguiente: sea y el tamaño del ob-
jeto y f la distancia focal de la lupa, ambas expresadas en centímetros. De (a) se deduce:
25
tg
y
u =
y de (b) se deduce: 
f
y
u ='tg
por tanto, sustituyendo en la expresión del aumento angular:
 
25y
fy=γ de donde 
f
25=γ (44)
Esto es, el aumento angular de una lupa o microscopio simple de distancia focal l0
cm es de 2'5 X (2'5 veces). El tamaño de la imagen retiniana de un objeto visto a través
de la lupa, es 2'5 veces mayor que cuando se mira a simple vista a la distancia mínima.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
25/35
Aunque a primera vista, parece que el aumento angular puede hacerse tan grande
como se desee, disminuyendo la distancia focal f, las aberraciones de una sola lente bi-
convexa imponen un límite a γ que es aproximadamente, 2X ó 3X. Si se corrigen estas
aberraciones, el aumento puede alcanzar hasta 2OX.
6.2. Microscopio compuesto.
Cuando se desea un aumento angular mayor que el que se puede obtener con una
lupa, es necesario utilizar un microscopio compuesto, de ordinario denominado sim-
plemente microscopio. Los elementos esenciales de un microscopio están representados
en la fig.28. El objeto a examinar se coloca justamente delante del foco objetoF de una
lente convergente llamada objetivo, el cual forma una imagen real y aumentada en el
plano focal objeto del ocular. Este último forma, de esta imagen, otra imagen virtual en
el infinito. Aunque tanto el objetivo como el ocular de un microscopio son en la prácti-
ca, lentes compuestas muy corregidas de aberraciones, se han representado en la figo28,
para mayor claridad, como lentes sencillas.
 FIG. 28
El aumento total M de un microscopio compuesto, al igual que el aumento angular
de un microscopio simple, se define como la razón de la tangente del ángulo u' subten-
dido desde el ojo por la imagen final a la tangente del ángulo u que subtendería directa-
mente el objeto colocado a la distancia de 25 cm. Sea y el tamaño del objeto e y' el ta-
maño de su imagen formada por el objetivo. Se tendrá entonces:
25
tg
y
u = y 
2
'
'tg
f
y
u =
donde f2 es la distancia focal del ocular, por consiguiente:
2
25'
25
'
tg
'tg
fy
y
y
fy
u
u
M ⋅===
Pero y'/y es el aumento lateral m producido por el objetivo, y 25/f es el aumento
angular γ producido por el ocular. El aumento total M es, por consiguiente, el producto
del aumento lateral del objetivo, por el aumento angular del ocular:
γ.mM = (45)
6.3. Anteojos: Astronómico y Terrestre. Prismáticos.
El sistema óptico de un anteojo es análogo al de un microscopio compuesto. En
ambos instrumentos, la imagen formada por un objetivo es observada a través de un
ocular. Sin embargo, el anteojo está destinado a observar objetos situados a grandes
distancias, por lo que, a diferencia del microscopio, habrá de poseer un objetivo con una
gran distancia focal.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
26/35
Se distinguen dos tipos de anteojos, el anteojo astronómico y el anteojo terrestre
o catalejo.
El anteojo astronómico está ilustrado en la fig.29. El objetivo forma una imagen
real y reducida I del objeto O. I' es la imagen virtual de I formada por el ocular. En la
práctica, los objetos examinados por un anteojo se encuentran a distancias tan grandes
del instrumento que la imagen I se forma muy cerca del foco imagen del objetivo. Ade-
más, si la imagen I' se encuentra en el infinito, la imagen I se forma en el plano focal
objeto del ocular. (Este no es el caso de la fig.29, la cual se ha dibujado con objeto de
representar todos los elementos esenciales de un diagrama finito). La distancia entre el
objetivo y el ocular, o sea, la longitud del anteojo, es, por tanto, la suma f1+f2 de las
distancias focales del objetivo y del ocular.
 FIG. 29
El aumento angular γ de un anteojo se define como la razón del ángulo subtendido
desde el ojo por la imagen final I' al ángulo subtendido desde el ojo (sin anteojo) por el
objeto. Esta razón se expresa en función de las distancias focales de objetivo y ocular:
2
1
f
f−=γ (46)
El aumento angular de un anteojo es, por tanto, igual a la razón de la distancia fo-
cal del objetivo a la distancia focal del ocular. El signo negativo indica que la imagen
está invertida.
Mientras que una imagen invertida no es una desventaja si el instrumento ha de
utilizarse para observaciones astronómicas, es deseable que el anteojo terrestre forme
imágenes derechas. Esto se puede conseguir intercalando un sistema inversor entre el
objetivo y el ocular, fig.30. Estas lentes sirven para invertir la imagen formada por el
objetivo. El conjunto constituye el sistema óptico del catalejo, que tiene la desventaja de
exigir un tubo muy largo, ya que a la suma de las distancias focales del objetivo y del
ocular hay que sumarse cuatro veces la distancia focal de la lente inversora.
 FIG. 30
Se evita la longitud excesiva del tubo del anteojo te-
rrestre o catalejo, en los llamados prismáticos. En la fig.31
se ofrece el esquema básico de un corte longitudinal del
mismo. En ellos, se intercala entre el objetivo y el ocular
sendos prismas de reflexión total de ángulos 45º-45º-90º de
forma que al emerger de ambos prismas la imagen ha sido
invertida.
 FIG. 31
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
27/35
El anteojo de Galileo debe su nombre a este físico que construyó, en 1609, uno de
los primeros anteojos de este tipo. Se utiliza como ocular una lente divergente en lugar
de una convergente. El sistema óptico está representado en la fig.32. Los rayos que
parten de un objeto distante (no representado en el dibujo) se hacen convergentes al
refractarse en el objetivo O.
La imagen I sirve de objeto virtual
para el ocular E. La imagen final I' es
virtual y derecha, según se indica en el
diagrama. El aumento angular de este
anteojo, está dado también por:
2
1
f
f−=γ
pero como f2 es negativa, γ es positivo y
 FIG. 32
la imagen es derecha. La distancia entre el objetivo y el ocular es la diferencia entre los
valores absolutos de sus distancias focales. En consecuencia, este anteojo puede hacerse
mucho más reducido que el de tipo astronómico. Su principal desventaja es que no pue-
de abarcar un campo visual tan amplio como aquél sin utilizar objetivos de diámetro
excesivamente grande. Los gemelos de teatro son anteojos de Galileo.
6.4. Telescopio.
Los telescopios, como instrumentos ópticos son sistemas catadioptrios (combina-
ción de lentes y espejos), que permiten observar objetos muy distantes. En ellos, un es-
pejo cóncavo sustituye al sistema de lentes como objetivo. Las irregularidades en el ta-
llado de las lentes de gran tamaño se traduce en una pérdida del poder de resolución y
en una deformación de la imagen. Tales inconvenientes se superan mediante los objeti-
vos reflectores, puesto que las superficies de los espejos pueden ser conseguidas con
mayor perfección. Los tipos de reflectores empleados pueden clasificarse en función del
número de superficies reflectoras que presentan.
Existen objetivos reflectores de una
sola superficie reflectora; en ellos el ob-
servador ha de situarse dentro del propio
tubo. Tiene como ventajas que evitan ab-
sorciones. El mayor inconveniente radica
en que la luz es obstruida, parcialmente
por la jaula de observación (fig.33,a). No
se puede utilizar mas que para sistemas
de gran abertura, ya que dentro del tubo
 FIG. 33
es preciso situar los diferentes aparatos de medida y de observación visual. El sistema
de Herschel (fig.33,b), evita el inconveniente anterior, utilizando un espejo parabólico,
cuyo eje no coincide con la dirección de incidencia de la luz, pero esta desviación lateral
da lugar a aberraciones
Los sistemas de telescopios reflectores de dos espejos son los más empleados.
Entre ellos destacamos dos sistemas: el sistema de Newton y el sistema de Cassegrain.
Ambos se representan en la fig.34, (a) y (b) respectivamente.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
28/35
 
El sistema de Newton (a) consiste en un espejo parabólico principal y un espejo
plano inclinado 45° respecto al eje del telescopio. De esta forma se consigue desviar los
rayos hacia el sistema ocular, que está situado fuera del tubo.
El sistema de Cassegrain (b) incorpora como espejo secundario un espejo hiper-
bólico convexo cuyo eje coincide con el eje del espejo principal. Los rayos reflejados en
el espejo principal son recogidos por el espejo secundario que los refleja hacia un orifi-
cio central hecho en el espejo principal, tras el cual se halla situado el sistema ocular y
demás instrumentos de medida y registro.
6.5. Espectrómetro.
Los instrumentos de óptica pueden ser agrupados en dos grandes grupos genera-
les: los que forman imágenes y los instrumentos analizadores. Los instrumentos del
primer grupo, tales como los que acabamos de considerar, sirven para formar una ima-
gen de algún objeto dado, los instrumentos del segundo grupo se utilizan paradetermi-
nar la composición, intensidad o estado de polarización de un haz luminoso.
Vamos a considerar el espectrómetro de prisma y algunas de sus modificaciones.
Es un instrumento analizador utilizado para investigar las longitudes de onda presentes
en un haz luminoso dado.
Los elementos esenciales de un espectrómetro de prisma están representados en la
fig.35. Una estrecha rendija S, iluminada por la luz que se desea analizar, se coloca en el
foco objeto de la lente acromática C, llamada colimador. El haz paralelo de luz que
emerge del colimador incide sobre el prisma P, y es desviado, examinándose la luz
emergente con el anteojo T. Puesto que el índice de refracción de las sustancias ópticas
varía con la longitud de onda, las distintas longitudes de onda presentes en la luz son
desviadas con ángulos diferentes. El observador E, ve un cierto número de imágenes de
la rendija, paralelas y formadas cada una de ellas por luz de una longitud de onda parti-
cular. Si el manantial emite luz de todas las longitudes de onda, las imágenes forman
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
29/35
una sucesión continua de rendijas, denominada espectro continuo. Si el manantial emite
únicamente algunas longitudes de onda determinadas, las imágenes de la rendija están
separadas entre sí y aparecen como una serie de rayas brillantes, cada una con el color
de la luz que la produce. Esto es lo que se llama espectro discontinuo o de rayas.
Al utilizar un espectrómetro se quita primero el prisma y se gira el anteojo T, cuyo
ocular está provisto de un retículo, alrededor de un eje vertical hasta que la imagen de la
rendija, formada por el colimador y el anteojo, coincida con el retículo. El eje óptico del
anteojo coincide ahora con la dirección del haz que emerge del colimador y se lee la
posición del anteojo en el limbo graduado. Se coloca el prisma sobre una plataforma
que gire alrededor de un eje vertical coincidente con el eje de rotación del anteojo y con
las caras del prisma paralelas a dicho eje.
Se gira el anteojo hasta que el haz desviado entre en el campo visual y una vez
conseguido, se gira lentamente el prisma hacia un lado y otro mientras se observa el haz
desviado mediante el anteojo, hasta encontrar una posición tal que haga mínima la des-
viación de la raya cuya longitud de onda se desea observar. A continuación se hace
coincidir el retículo con esta raya y se lee de nuevo la posición del anteojo sobre el lim-
bo graduado. La diferencia entre esta lectura y la primera da el ángulo de desviación
mínima para esta longitud de onda particular.
Para medir el ángulo A del prisma se gira éste hasta la posición representada en la
fig.36 de modo que una parte del haz luminoso procedente del colimador, se refleje en
cada cara. Se encuentra la dirección de cada haz reflejado, observando con el anteojo la
imagen reflejada de la rendija. La diferencia de las lecturas correspondientes a las dos
posiciones del anteojo, es igual al doble del ángulo A del prisma.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
30/35
7. EL OJO HUMANO
El ojo humano constituye, sin duda, el instrumento óptico primordial, puesto que
a través de él, tiene lugar el último proceso de formación y transformación de imágenes:
la visión.
7.1. Anatomía básica del ojo y su función.
Su forma geométrica se corresponde aproximadamente con el de una esfera de 2'5
cm de diámetro (fig.37). Una envoltura o membrana resistente y opaca le protege del
exterior, es la esclerótica. En su parte frontal cambia la curvatura y se hace transparente,
dando lugar a la córnea, que es un casquete esférico de menor radio de curvatura que el
resto del globo ocular. En la región situada tras la córnea se halla un líquido transpa-
rente de índice de refracción igual que el agua que es el humor acuoso. Dicha sustancia
rellena la cavidad comprendida entre la córnea y la lente del ojo o cristalino.
 FIG. 37
El cristalino está formado por una sustancia elástica y gelatinosa. Como lente óp-
tica, cabe señalar dos características singulares: su índice de refracción no es uniforme,
sino que aumenta de forma continua en el sentido de avance de la luz. Los radios de
curvatura de ambos dioptrios, que son variables, son controlados por el músculo ciliar,
que se une al cristalino mediante ligamentos. Detrás de la lente del cristalino, el ojo está
lleno de una gelatina ligera, que contiene en su mayor parte agua y se llama humor ví-
treo. Los índices de refracción de ambos humores y del cristalino no difieren mucho, de
modo que la mayor parte de la refracción de la luz que entra en el ojo es producida en la
córnea.
Entre la córnea y el cristalino actúa un diafragma o iris, que deja un orificio cen-
tral o pupila, de tamaño variable, regulado automáticamente en función de la intensidad
de la luz incidente, por las fibras musculares correspondientes. El diámetro de la pupila
disminuye cuando el brillo crece y aumenta en caso contrario. En virtud de este proce-
dimiento, denominado adaptación, el diámetro de la pupila puede hacerse cuatro veces
mayor por lo que el área puede aumentar 16 veces. Sin embargo, el ojo es capaz de
adaptarse a variaciones relativas de brillo del orden de 1/106, que no pueden ser com-
pensadas por variación en el área del campo.
El conjunto de elementos ópticos hasta ahora considerados constituye un sistema
óptico capaz de producir imágenes reales enfocadas sobre la retina, que es una película
o envoltura interna de la mayor parte del ojo. Sobre la retina se hallan dispuestas las
fibras nerviosas, que son prolongaciones del nervio óptico. La estructura retiniana for-
mada por conos y bastoncillos sensibles, de forma diferencial, a los diferentes compo-
nentes de la luz, codifica las imágenes al generar los impulsos nerviosos correspon-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
31/35
dientes, los cuales son transmitidos por el nervio óptico hasta el cerebro, originándose
allí la sensación visual.
La distribución de conos y bastoncillos por la retina no es uniforme. Así, existe
una ligera depresión en ella, llamada mancha amarilla o mácula, en cuyo centro existe
una región diminuta, de unos 0'25 cm de diámetro, llamada fóvea centralis, que está
formada únicamente por conos. La visión es más aguda en esta región que en cualquier
otra de la retina, de modo que los músculos que regulan el movimiento ocular sitúan el
globo en una posición tal que la imagen se forma sobre la fóvea. En resto de la retina no
es igualmente sensible a la luz y contribuye a la formación del fondo de la imagen con-
creta en la que se está interesado.
Como contrapartida, el punto a través del cual el nervio óptico entra en el ojo no
es sensible a la luz, ya que no existen en él ni conos ni bastoncillos y se denomina punto
ciego. El mecanismo receptor de la retina es el responsable de la enorme capacidad de
adaptación del ojo frente a las variaciones de brillo tan notables. La capacidad de adap-
tación de ojo humano no se puede reducir simplemente aun proceso mecánico.
Para ver un objeto ha de formarse su imagen sobre la retina. Si todos los elemen-
tos del ojo tuvieran una posición rígida, sólo habría una distancia objeto para la cual se
formara una imagen nítida sobre la retina, mientras que en la práctica, el ojo humano
normal puede enfocar con nitidez un objeto a cualquier distancia comprendida desde el
infinito hasta unos 25 cm delante del ojo. Esto resulta posible por la acción del cristali-
no y del músculo ciliar al cual está unido. Cuando el músculo no se encuentra contraído,
está enfocado sobre objetos situados en el infinito, es decir, el foco imagen estará situa-
do en la retina. Cuando se desea ver un objeto más cercano, el músculo ciliar se contrae
y el cristalino toma una forma que se aproxima más a la esférica.Este proceso se llama
acomodación.
Los límites del intervalo dentro del cual es posible la visión se conocen con los
nombres de punto remoto y punto próximo del ojo. El punto remoto de un ojo normal se
encuentra en el infinito. La posición del punto próximo depende del grado en que pueda
aumentarse la curvatura del cristalino por acomodación. El alcance de la acomodación
disminuye gradualmente con la edad de la persona, debido a que el cristalino pierde su
flexibilidad. Por esta razón, el punto próximo se aleja progresivamente con el tiempo.
Este alejamiento del punto próximo con la edad se llama presbicia, y no debe conside-
rarse como un defecto de la visión, ya que se produce en la misma proporción en todos
los ojos normales.
7.2. Defectos de la visión.
Hay un cierto número de defectos de la visión que dependen simplemente de una
relación incorrecta entre las diversas partes del ojo, considerado como sistema óptico.
Un ojo normal forma sobre la retina una imagen de un objeto situado en el infinito
cuando el ojo está en descanso, y se denomina emétrope. Si el punto remoto de un ojo
no se encuentra en el infinito, el ojo es amétrope. Las dos formas más sencillas de ame-
tropía son la miopía y la hipermetropía, que están representadas en la fig.38.
En el ojo miope, el globo del ojo es demasiado largo comparado con el radio de
curvatura de la córnea, y los rayos que proceden de un objeto situado en el infinito, fo r-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
32/35
man la imagen delante de la retina. El objeto más distante para el cual puede formarse
una imagen sobre la retina se halla a una distancia finita, o sea, el punto remoto no está
en el infinito. Por otra parte, el punto próximo de un ojo miope si la acomodación es
normal, está más cerca del ojo que lo que corresponde a una persona con visión normal.
FIG. 38
En el ojo hipermétrope, el globo ocular es corto y la imagen de un objeto situado
en el infinito, se formará detrás de la retina. Mediante acomodación los rayos paralelos
pueden hacerse converger sobre la retina, pero, evidentemente, si el intervalo de aco-
modación es el normal, el punto próximo estará más distante que en el caso de un ojo
emétrope.
Estos defectos pueden describirse de un modo diferente. El ojo miope produce
una convergencia demasiado grande de los rayos paralelos para que la imagen se forme
en la retina y el ojo hipermétrope no la produce en grado suficiente.
El astigmatismo se refiere a un defecto en el cual la superficie de la córnea no es
esférica, sino que tiene una curvatura mayor en un plano que en otro. (No confundir con
la aberración de las lentes que tiene el mismo nombre, y se aplica al comportamiento,
después de atravesar una superficie esférica, de los rayos que forman un ángulo grande
con el eje). El astigmatismo no permite enfocar simultáneamente con nitidez los barro-
tes horizontales y verticales de una ventana.
7.3. Corrección de los defectos visuales.
Todos los defectos de la visión pueden corregirse con el uso de lentes correctoras
como explicaremos a continuación.
Presbicia e Hipermetropía. El punto próximo de un ojo présbita o de un ojo hi-
permétrope, está más lejos del ojo que lo normal. Para ver claramente un objeto situado
a la distancia de lectura normal (esta distancia es de 25 cm) se ha de colocar delante del
ojo una lente convergente de distancia focal tal, que forme una imagen del objeto en el
punto próximo o más allá de él. Así, la lente no hace que el objeto parezca más grande,
sino que aleja el objeto del ojo para que sea enfocado nítidamente sobre la retina.
Miopía.- El punto remoto de un ojo miope está a una distancia finita. Para ver con
claridad los objetos que están más lejos del punto remoto, ha de utilizarse una lente di-
vergente que forme una imagen de tales objetos a una distancia del ojo no superior al
punto remoto.
Astigmatismo.- La corrección del astigmatismo por medio de una lente cilíndrica
está esquematizada en la fig.39, en la cual (a) y (b) representan una vista superior y una
vista lateral respectivamente, de un ojo astigmático. La curvatura de la córnea en un
plano horizontal como en (a) tiene el valor adecuado para que los rayos procedentes del
infinito formen su imagen sobre la retina. Sin embargo, en el plano vertical como en (b)
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
33/35
la curvatura no es suficiente para formar la
imagen nítida sobre la retina.
Colocando delante del ojo una lente cilín-
drica con el eje del cilindro horizontal, según se
indica en (c) y en (d), los rayos situados en un
plano horizontal no son afectados, mientras que
la convergencia adicional de los rayos situados
en el plano vertical, como se indica en (d), hace
que éstos formen una imagen nítida sobre la
retina.
 FIG.39
Para las lentes destinadas a gafas, se expresa el efecto convergente o divergente,
en función de la inversa de su distancia focal, que se denomina potencia de la lente y se
mide en dioptrías si la distancia se expresa en metros como ya hemos explicado.
BIBLIOGRAFÍA RECOMENDADA
Francis W.SEARS. Fundamentos de Física III. Óptica. Editorial Aguilar. 1967.
MADRID.
Francis A.JENKINS y Harvey E.WHITE. Fundamentos de Óptica. Editorial
Aguilar. 1963. MADRID.
Bruno ROSSI. Fundamentos de Óptica. Editorial Reverté. 1966. BARCELONA.
Jesús RUIZ VÁZQUEZ. Física. Editorial Selecciones Científicas. 1975. MA-
DRID.
Santiago BURBANO DE ERCILLA, Enrique BURBANO GARCÍA y Carlos
GRACIA MUÑOZ. Física General. XXXI Edición. Mira Editores. ZARAGOZA.
Juan CABRERA Y FELIPE. Introducción a la Física Teórica. Volumen II. Elec-
tricidad y Óptica. Librería General de Zaragoza. 1967. ZARAGOZA.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 26
34/35
Tratamiento Didáctico
----------------------------------------------------------------------------------------------------------
OBJETIVOS
Establecer los fundamentos de la Óptica Geométrica para explicar la propagación de
la luz en los medios materiales transparentes.
Iniciar al alumno en los métodos geométricos de formación de imágenes por superfi-
cies ópticas, como dioptrios, espejos y lentes.
Aplicar los conocimientos adquiridos a los instrumentos ópticos más familiares para
comprender su funcionamiento y construcción.
UBICACION
En el Bachillerato este tema habrá de introducirse, sólo en sus conceptos elementa-
les, en el l° curso de Bachillerato y desarrollar la óptica con mayor profundidad en 2°
curso.
-El presente tema tal como está estructurado en el guión, no está ubicado en ningún
curso de ESO o Bachillerato. Dado su carácter novedoso y nivel conceptual elevado, es
un tema de Física universitaria por lo que lo ubicaremos, según el guión desarrollado,
en el primer curso de las licenciaturas científicas o técnicas.
TEMPORALIZACIÓN
Puede desarrollarse el tema, en toda la extensión del guión, en un período de 12 ho-
ras para explicar todos sus puntos aunque debe complementarse con 2 ó 3 horas para la
resolución de problemas numéricos y gráficos sobre construcción de imágenes en todos
los casos estudiados. Igualmente requeriría dedicar 2 horas a prácticas de laboratorio
con el banco de óptica.
METODOLOGIA
El tema debe desarrollarse secuencialmente según el guión, para no perder continui-
dad, siguiendo métodos gráficos y geométricos no sólo en la construcción de imágenes
sino también en la realización de cálculos relacionados con estas construcciones.
Debe ayudarse de los medios audiovisuales más idóneos, dado el carácter geométrico
del tema, así es aconsejable utilizar fotocopias en transparencias para retroproyector, de
las múltiples imágenes y figuras que se utilizan en la explicación, lo que evitará tener
que hacer dibujos en el encerado.
La utilización de los instrumentos ópticos más frecuentes, durante

Continuar navegando

Materiales relacionados

2 pag.
3 pag.
8 pag.
introptica

User badge image

cssanchez763