Logo Studenta

TEMA 39

¡Este material tiene más páginas!

Vista previa del material en texto

www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
1/37
TEMAS DE FÍSICA Y QUÍMICA
(Oposiciones de Enseñanza Secundaria)
-------------------------------------------------------------------------------
TEMA 39
SISTEMA SOLAR. FENÓMENOS DE ASTRONOMÍA DE POSICIÓN. OB-
SERVACIÓN Y MEDIDA EN ASTROFÍSICA. EVOLUCIÓN ESTELAR. ESTRUC-
TURA Y COMPOSICIÓN DEL UNIVERSO.
Esquema
1. Introducción a la Astronomía.
1.1. Introducción histórica.
2. El Sistema Solar.
2.1. Estructura del Sistema Solar.
2.2. Movimiento de los planetas.
2.3. El Sol.
2.4. Los planetas interiores.
2.5. El sistema Tierra-Luna.
2.6. Marte y Júpiter
2.7. Los planetas exteriores.
2.8. Cometas.
3. Astronomía de posición.
3.1. Movimientos de la Tierra.
3.2. La esfera celeste.
3.3. Movimiento del Sol.
3.4. La Eclíptica.
3.5. Medida del tiempo: día, semana, mes, año.
3.6. Coordenadas astronómicas.
3.7. Las constelaciones.
4. Observación y medida en Astrofísica.
4.1. Observación en la antigüedad.
4.2. Observación óptica instrumental.
4.3. Cartografía fotográfica.
4.4. Observación en radiofrecuencia.
4.5. Observación supraatmosférica.
4.6. El telescopio espacial.
4.7. Observación en infrarrojo.
5. Origen, evolución y estructura del Universo.
5.1. El origen del Universo.
5.2. Evolución del Universo primitivo.
5.3. Evolución estelar.
5.4. Supernovas y Estrellas de neutrones.
5.5. Evolución planetaria.
5.6. Estructura del Universo.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
2/37
TEMA 39
SISTEMA SOLAR. FENÓMENOS DE ASTRONOMÍA DE POSICIÓN. OB-
SERVACIÓN Y MEDIDA EN ASTROFÍSICA. EVOLUCIÓN ESTELAR. ESTRUC-
TURA Y COMPOSICIÓN DEL UNIVERSO.
1. INTRODUCCIÓN A LA ASTRONOMÍA
La Astronomía estudia los astros que existen en el firmamento, sus movimientos y
sus posiciones, tanto pretéritas, como actuales y futuras, las leyes que rigen sus movi-
mientos y sus causas, su naturaleza y composición, tanto física como química, su origen
y su evolución así como las posibilidades del hombre de interaccionar con ellos.
Para el desarrollo de estos estudios, la Astronomía se apoya en la Matemática así
como en la Física y la Química, ya que el avance de estas ciencias básicas condiciona de
manera especial el avance en el conocimiento del Cosmos, especialmente en las últimas
décadas. Recíprocamente estas ciencias han recurrido a la Astronomía para verificar la
exactitud de sus modelos, como podemos citar la teoría de la relatividad, que incluida en
el ámbito de la Física, recurre a fenómenos astronómicos para su comprobación.
La Astronomía presenta una metodología de estudio diferente de las ciencias bási-
cas como la Física, la Química, la Biología. Éstas, como ciencias experimentales que
son, siguen un itinerario basado en la observación, experimentación, construcción de
modelo y comprobación. En Astronomía obviamente esto es imposible, pues no puede
tener lugar la fase de experimentación. Por tanto el último recurso de que dispone el
astrónomo para desarrollar su ciencia es la observación. Todo el Universo es el labora-
torio del astrónomo y los experimentos son los propios fenómenos cósmicos que acon-
tecen sin solución de continuidad y sin posible repetición. Clasificaremos a la Astrono-
mía como una Ciencia Observacional, separada de las ciencias experimentales.
Las Astronomía puede dividirse en varias ramas de investigación y estudio que
podemos clasificar en:
- Astronomía de posición, llamada Astrometría, estudia las posiciones de los astros y
sus movimientos, tanto los reales como los aparentes motivados por los movimien-
tos de la Tierra que tomaremos como centro de observación.
- Mecánica Celeste, estudia las leyes por las que se rigen los movimientos de los pla-
netas y las estrellas para comprender sus causas que los provocan y determinar sus
posiciones pasadas o futuras.
- Astrofísica, estudia las propiedades físicas de los astros, para elaborar modelos físi-
cos de su comportamiento. Destacan entre sus técnicas, la Fotometría, que estudia la
luz emitida por los astros, la Espectroscopía, que estudia la distribución espectral de
la luz emitida por los astros, la Radioastronomía, que estudia las emisiones de ondas
de los astros, fuera del espectro visible.
- Cosmología y cosmogonía, estudia la primera de ellas la forma y estructura del Uni-
verso, su evolución pasada y futura, etc. y la segunda estudia su origen.
- Astronáutica, estudia mediante el envío de sondas espaciales y satélites especiales,
las características y propiedades del universo cercano y las posibilidades de viajes al
espacio exterior.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
3/37
1.1. Introducción histórica.
La Astronomía nació en los albores de la civilización y es tan antigua como la ra-
cionalidad del hombre. Todas las culturas han alcanzado notables progresos en el cono-
cimiento astronómico, generalmente obligadas por otras necesidades del desarrollo hu-
mano como la orientación para la navegación, el establecimiento de las estaciones, la
elaboración del calendario, actividades agrícolas, etc.
Tanto en Egipto como en Babilonia, la Astronomía alcanzó un importante desa-
rrollo, con objetivos principalmente calendáricos, agrícolas y de predicción (Astrolo-
gía). Un hito importante del calendario egipcio era el orto helíaco de la estrella Sirio, el
cual se produce cuando la estrella sale sobre el horizonte al mismo tiempo que el Sol,
que coincidía con la crecida del Nilo y la inundación de las tierras colindantes, base de
la economía del pueblo egipcio.
En Grecia aparecen las primeras teorías sobre el origen y el funcionamiento del
Universo. Thales de Mileto considera el firmamento como una bóveda de agua y la Tie-
rra, lenticular, flotando en ella. Anaximandro, habla de una Tierra cilíndrica. Filolao de
Tarento, formuló la idea de una Tierra esférica, idea rápidamente aceptada pues expli-
caba la gradual desaparición de los barcos por el horizonte y la formación de los eclip-
ses. Platón elabora una primera teoría geocéntrica que fue completada por Aristóteles
que dividió el Cosmos en dos partes: mundo sublunar (mundo terrestre, con cambios y
movimientos) y el mundo supralunar (armonía perfecta, estático o con movimiento per-
fecto). En el modelo de Aristóteles cada planeta está engarzado en una esfera transpa-
rente con centro en la Tierra y girando alrededor de ella. La esfera más exterior sería la
esfera celeste donde estarían situadas las estrellas fijas. Este modelo necesitaba 55 esfe-
ras para explicar el movimiento del cosmos, es decir, los siete planetas (Sol, Luna, Mer-
curio, Venus, Marte, Júpiter y Saturno) y las estrellas.
Otros astrónomos griegos desarrollaron el modelo geocéntrico, como Aristarco de
Samos, que intentó medir la distancia Tierra-Sol, dedujo que el Sol era mucho más
grande que la Tierra y la Luna y propuso un modelo heliocéntrico del Universo, que no
fue aceptado. Erastótenes, midió el tamaño de la Tierra. Hiparco de Nicea que descubrió
la precesión de los equinoccios y la duración precisa del año.
Claudio Ptolomeo (siglo II) modificó y mejoró el modelo geocéntrico vigente, he-
redado de Platón y Aristóteles, involucrando un mayor número de círculos y esferas
celestes y otros elementos geométricos, como epiciclos, deferentes, ecuantes, etc. Este
modelo ptolemaico perduró hasta final de la edad media, en que apareció el modelo
copernicano.
En la Edad Media, el mayor desarrollo de la Astronomía fue debido a los árabes,
cuyo interés por esta ciencia derivaba del mandato coránico de orar en la salida y puesta
del sol y con sus alturas y en dirección a la Meca, lo que obligaba a un desarrollo en las
observaciones astronómicas. La contribución árabe más importante a la cultura occi-
dental fue una extensa colección de observaciones muy precisas y el haber conservado y
transmitido las grandes obras de laastronomía griega.
Nicolás Copérnico (siglo XV) concibe un modelo heliocéntrico del Universo, con
el Sol en el centro y las planetas y estrellas girando alrededor de él y solo la Luna giran-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
4/37
do alrededor de la Tierra. No fue aceptado inmediatamente, pero las observaciones de
Tycho Brahe y las leyes de Johanes Kepler, confirmaron el modelo de Copérnico. Gali-
leo construye un telescopio y con él observa manchas en el Sol, cráteres, montañas y
valles en la Luna, cuatro satélites en Júpiter y muchas estrellas nuevas de las llamadas
fijas. Galileo proclama y defiende la teoría heliocéntrica lo que le valió un proceso con
la Inquisición.
A partir del modelo heliocéntrico de Copérnico, el desarrollo de la Astronomía fue
lento al principio por la renuencia a su aceptación, y posteriormente muy rápido, al ser
aceptado el modelo y por el considerable avance en las técnicas de observación. Tras
Copérnico y Galileo, Isaac Newton establece la Ley de la Gravitación Universal. Ed-
mund Halley descubre el cometa que lleva su nombre, hace un estudio de estos astros y
descubre el movimiento propio de las estrellas. Willian Herschell aborda el estudio de la
distribución de las estrellas y descubre el planeta Urano.
A lo largo del siglo XIX se perfeccionaron los métodos de observación lo que
permitió múltiples descubrimientos. Se midieron distancias a algunas estrellas por el
método de paralaje. Se descubrió la zona de asteroides entre Marte y Júpiter. Se descu-
brió Neptuno por las irregularidades observadas en la órbita de Urano.
Con la construcción del telescopio de Monte Wilson en 1917, se descubrió que
muchas de las nebulosas observadas hasta entonces eran conjuntos de estrellas agrupa-
das en galaxias exteriores a nuestra galaxia de la Vía Láctea. Edwin Hubble observó que
las galaxias se alejan unas de otras, lo que lleva a la hipótesis de que el Universo se en-
cuentra en fase de expansión. Retrocediendo en el tiempo llegaríamos a un punto en el
cual el Universo se crea a partir una gran explosión o Big-Bang, que hace que el espa-
cio, el tiempo y la materia se expansione. Que siga expansionándose eternamente (uni-
verso abierto) o que esta expansión se detenga alguna vez y comience una compresión
hasta el colapso (universo cerrado), son hipótesis sobre el futuro del universo que ac-
tualmente se discuten a la luz de los nuevos descubrimientos astronómicos.
2. EL SISTEMA SOLAR
2.1. Estructura del Sistema Solar.
El Sistema Solar es nuestro universo más inmediato. Está formado por el Sol, co-
mo estrella central y nueve planetas, Mercurio, Venus, la Tierra, Marte, Júpiter, Satur-
no, Urano, Neptuno y Plutón, girando a su alrededor. Estos planetas cuentan con dece-
nas de satélites girando alrededor de ellos. También alrededor del Sol gira un número
indeterminado de cometas, cinturones de asteroides, así como grandes cantidades de
meteoroides, partículas, polvo y gas interplanetario.
El descubrimiento de los planetas principales del sistema solar se pierde en los
comienzos de la historia ya que aparecen en las teorías de la estructura del Universo en
la mayoría de las civilizaciones, desde Platón hasta Copérnico. Son desde el planeta
Mercurio hasta Saturno. El planeta Urano fue descubierto por Herschell como un pe-
queño disco entre puntos estelares que se desplazaba sobre el fondo de estrellas.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
5/37
En 1778, se publicó la Ley de Bode-Titius, ley empírica que da una representación
bastante buena de las distancias de los diferentes planetas al Sol y que utilizando como
unidad de distancia la Unidad Astronómica, viene dada por la ecuación:
nd 23'04'0 ×+=
siendo n=−∞ para Mercurio, n=0 para Venus n=1 para la Tierra
n=2 para Marte n=3 ??? n=4 para Júpiter
n=5 para Saturno n=6 para Urano
El hueco que aparece para n=3 no se supo interpretar. Los valores para n=7 y n=8
que corresponderían a Neptuno y Plutón difieren considerablemente de los valores ob-
servados. En 1801, el astrónomo siciliano Piazzi, intentando comprobar la ley de Bode-
Titius, descubría un pequeño planeta o asteroide al que llamó Ceres entre Marte y Júpi-
ter. Después se descubrieron muchos más hasta llegar a los miles que componen el cin-
turón de asteroides, actua lmente conocido.
En 1846 se descubrió Neptuno como consecuencia de los cálculos teóricos reali-
zados por Le Verrier basados en las anomalías observadas en la órbita de Urano. Dichas
anomalías se supusieron debidas a la atracción gravitatoria de un planeta desconocido
situado más allá de Urano. La búsqueda de dicho planeta supuesto, dio como resultado
el descubrimiento de Neptuno.
El planeta Plutón, fue descubierto en 1930 por Tombaugh y su búsqueda se inició
también para poder explicar las perturbaciones orbitales de Neptuno. Actualmente se
buscan planetas transplutonianos.
2.2. El movimiento de los planetas.
Las trayectorias de los planetas en sus movimientos alrededor del Sol fue uno de
los problemas más difíciles de la astronomía, resuelto por Johannes Kepler en sus tres
famosas leyes. Las conclusiones de Kepler son producto de minuciosas observaciones
cálculos realizados por Tycho Brahe (su maestro) y él sobre el planeta Marte. Las leyes
de Kepler son:
1ª Ley. Los planetas se mueven describiendo órbitas elípticas en uno de cuyos fo-
cos está el Sol.
2ª Ley. Las áreas barridas por los radios-vectores, trazados desde el Sol al planeta,
en tiempos iguales son iguales, (velocidad areolar constante).
3ª Ley. El cuadrado del período T de revolución de un planeta es proporcional al
cubo del semieje mayor de su órbita:
32 .dkT =
Las conclusiones inmediatas que se extraen de estas leyes son:
- Un planeta se mueve más rápidamente en su órbita cuando está más cerca del Sol
que cuando esta mas lejos.
- Los planetas más próximos al Sol se mueven en sus órbitas con mayor velocidad
angular que los planetas más alejados y por consiguiente el periodo de rotación es
mucho mayor en los lejanos que en los cercanos.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
6/37
- Explica claramente el movimiento
retrógrado de los planetas cuando se
observan desde la Tierra. Basta una
observación detenida de la fig.1 para
comprender el fenómeno. El movi-
miento aparentemente errante de es-
tos astros fue por lo que se le llama-
ron planetas (errante en griego).
Los satélites que giran alrededor de
los planetas, describen también elipses en
uno de cuyos focos se encuentra el plane- FIG. 1
ta respectivo y a ellos son aplicables también las leyes de Kepler. Las excentricidades
(achatamientos) de las órbitas de planetas y satélites, son muy variables. Así por ejem-
plo, la órbita de Venus es prácticamente circular mientras que la de Plutón es manifies-
tamente elíptica.
Las máximas excentricidades orbitales se presentan en los cometas, que, además
de órbitas fuertemente elípticas pueden presentarse con órbitas abiertas parabólicas e
hiperbólicas.
Las leyes de Kepler resuelven el aspecto geométrico de las trayectorias planetarias
pero no resuelven el aspecto dinámico. Isaac Newton al emitir la ley de gravitación uni-
versal establece la causa por la que los planetas giran alrededor del Sol. Dicha causa es
la fuerza gravitatoria que mantiene ligados los planetas al Sol y que actuando como
fuerza centrípeta obliga a los planetas a describir órbitas curvas. La fuerza gravitatoria
es inherente a la masa y proporcional a ella, es una fuerza de atracción y se desconoce
su fundamento.
2.3. El Sol.
La primera característica del Sol es su enorme masa, tan grande que todos los pla-
netas juntos sólo representan el 1'3% de la masa solar. Se encuentra a una distancia tan
grande de la Tierra que la luz tarda 8m 19sen llegar a nosotros. El Sol posee un movi-
miento de rotación alrededor de su propio eje que tiene un período de unos 25 días y 5
horas, período fácilmente determinable mediante el estudio de la evolución de las man-
chas solares que aparecen en la superficie.
El Sol está constituido por 75% de hidrógeno y 23% de helio y porcentajes míni-
mos de otros elementos del sistema periódico. La fuente de energía del Sol procede de
los procesos de fusión termonuclear entre los núcleos de hidrógeno para dar núcleos de
helio, proceso en el cual se produce una pérdida de masa que se transforma en energía
según la ecuación de Einstein E=mc2. La cantidad total de energía que produce e irradia
el Sol es de 3'8.1023 Kw, lo que supone que cada segundo que transcurre, 580.000 mi-
llones de Kg de hidrógeno se transforman en helio.
De las características observables del Sol destacamos, las Manchas solares, la
Protuberancias solares, y las Fulguraciones solares.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
7/37
Manchas Solares. Observadas por los chinos, Galileo las consideró como fenó-
menos de la superficie solar. Son en realidad, zonas de la superficie solar (fotosfera)
más frías (5000 K) que las zonas calientes a su alrededor (5785 K) y están rodeadas de
un reborde o playa de la mancha que es más caliente que la mancha aunque más fría que
la fotosfera.
La observación prolongada de las manchas pone de manifiesto que se producen
cambios en la forma, número y extensión de las manchas debido a las transformaciones
reales de las mismas y proximidad al borde solar por efecto de perspectiva visual pero
también se observan desplazamientos más rápidos en las manchas próximas al ecuador
solar que en las manchas situadas a mayores latitudes, lo que indica que el Sol presenta
una rotación diferencial.
Las manchas solares son fenómenos causados por los campos magnéticos del Sol
que impide que la materia caliente situada bajo la fotosfera, acceda a ella, originándose
regiones locales más frías.
Protuberancias Solares. Fenómeno observable en el Sol con instrumentos espe-
ciales y también causado por sus campos magnéticos, las protuberancias solares tienen
el aspecto general de enormes surtidores de materia que se proyectan muy por encima
de la cromosfera solar, hasta alcanzar en algunos casos hasta un millón de kilómetros.
Los eclipses totales de Sol son excelentes momentos para observar las protuberancias
solares así como la envoltura solar llamada corona cuyo espesor es del orden de 10 Km.
Fulguraciones Solares. Son unas protuberancias especiales causadas, por la brus-
ca liberación de energía magnética, que se desencadena en determinadas áreas de la
cromosfera, no necesariamente asociadas a las manchas solares y cuya duración media
viene a ser de unos 20 minutos. Durante dichas tormentas magnéticas, numerosas partí-
culas atómicas cargadas, son lanzadas desde el Sol al espacio. Esta gigantesca emisión
de partículas, constituye el viento solar, que recorre todo el sistema solar, y al alcanzar
la Tierra, producen perturbaciones en las transmisiones de radio y auroras polares.
Según los modelos estudiados por la Astronomía, el Sol presenta una estructura en
capas que permite explicar cumplidamente la mayoría de los fenómenos observados en
él. Según este modelo de capas, el Sol está formado de las siguientes partes:
1. Núcleo: región central donde se pro-
ducen las reacciones de fusión termonu-
clear del hidrógeno en helio, estimándose
una temperatura de unos 15.106 K.
2. Zona radiativa: donde se produce el
transporte de la energía por radiación.
3. Zona convectiva: donde se trans-
porta la energía por fenómenos de con-
vección térmica.
4. Fotosfera: es una capa delgada, (400
km) observada al mirar el Sol con el teles- FIG. 2
copio, Su temperatura es de 5785 K y en ella se producen las fáculas (regiones bri-
llantes) y las manchas (regiones oscuras).
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
8/37
5. Cromosfera: capa (unos 8000 Km) cuya densidad disminuye al alejarse del nú-
cleo, mientras que su temperatura aumenta notablemente. La Cromosfera puede ob-
servarse mediante los espectroheliógrafos y ocasionalmente durante los eclipses to-
tales de Sol.
6. Corona Solar: capa de composición y morfología variable, observable durante
los eclipses totales de Sol, donde la temperatura existente es 2 millones de K.
El Sol terminan en la Corona, pero es preciso mencionar el Viento Solar, que con-
siste en un gigantesco flujo de partículas elementales cargadas (1010 partículas/s.cm2)
emitidas por el Sol a gran velocidad durante las fulguraciones solares, y que se extiende
hasta los confines del Sistema Solar. Este viento solar representa una pérdida de materia
solar equivalente a 2.000.000 de toneladas/s.
2.4. Los Planetas interiores.
Mercurio y Venus son los planetas situados entre el Sol y la Tierra. El primero
aparece cerca del Sol 2h15m antes de su salida y tras la puesta, hecho que produce gran
dificultad para la observación telescópica, pues la luz solar lo dificulta fuertemente. El
segundo se observa durante un mayor tiempo (unas 4 horas) antes del orto y después del
ocaso solar. Ambos planetas presentas fases como la luna, es decir, la superficie ilumi-
nada observable desde la Tierra es variable según el punto de la órbita en que se en-
cuentren.
Mercurio. Es el primer planeta, el más próximo al Sol. Su observación por teles-
copio indujo a creer que tenía atmósfera y que sus movimientos de rotación y traslación
tenían el mismo período (siempre presentaría la misma cara al Sol), pero las últimas
investigaciones han demostrado que no tiene atmósfera y que su período de rotación es
2/3 de su período de traslación alrededor del Sol.
Las investigaciones sobre este planeta se han realizado por radioexploración y por
naves espaciales (Mariner 10). La primera consiste en enviar impulsos de radar al pla-
neta donde son reflejados y devueltos a la Tierra. Las variaciones de frecuencia por
efecto Doppler debido al acercamiento o alejamiento de la superficie del planeta nos
indica el sentido de su rotación y permite medir su período. Las fotografías del Mariner
10 se obtuvieron con una resolución de 250 m.
De estas investigaciones, se deduce que Mercurio es un planeta desolado con tem-
peraturas de 700 K en el ecuador a mediodía y a 100 K a medianoche. No posee atmós-
fera. Su superficie es semejante a la de la luna, con cráteres numerosos debidos a im-
pactos de meteoritos y vulcanismo. Posee un importante campo magnético debido, qui-
zás, a un núcleo central de hierro, lo que se confirma por su elevada densidad.
Venus. Planeta llamado "lucero del alba" por la elevada magnitud de su brillo. Po-
see una densa atmósfera que impide distinguir detalles de su superficie, incluso con los
más potentes telescopios. En la actualidad, el planeta es investigado por radioexplora-
ción con radar, tanto desde Tierra como desde naves no tripuladas en órbita alrededor
del planeta, lo que ha permitido conocer que la rotación dura 243 días terrestres, supe-
rior por tanto al periodo de traslación alrededor del Sol.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
9/37
Su superficie posee una orografía accidentada semejante a la de la Tierra, sin
grandes accidentes. Posee numerosos cráteres de impactos meteoríticos y estructuras
que parecen ser conos volcánicos con diámetros de hasta 80 km. La temperatura super-
ficial alcanza 475 K, debida a la poderosa atmósfera que actúa capturando la energía
radiante del Sol y que está compuesta por 96% de CO2, 3'5% de N2 y porcentajes meno-
res de H2O, SO2, O2 y gases nobles. La atmósfera está estratificada y sus nubes, com-
puestas de H2SO4, forman una envoltura continua, a 45-60 Km de altura. Por encima
existenvientos a más de 300 Km/hora.
Las sondas Venus 9 y 10, transmitieron imágenes desde la superficie de Venus,
durante unos minutos, demostrando que es un mundo inhóspito y desolador. En masa y
densidad es semejante a la Tierra, aunque posee un campo magnético mucho más débil
que el terrestre.
2.5. El sistema Tierra-Luna.
El planeta Tierra está compuesto por una corteza superficial de 35 Km de espesor
medio, bajo la cual se extiende el manto hasta unos 2900 Km y debajo existe el núcleo
de naturaleza metálica (Fe-Ni). Le rodea una atmósfera de N2, O2, CO2 y otros gases,
estratificada en varias capas denominadas: Troposfera, Estratosfera, Ionosfera y Exosfe-
ra. Dicha atmósfera actúa de filtro selectivo que permite el paso de determinadas fre-
cuencias luminosas, que hacen de la superficie un medio idóneo para la vida que cono-
cemos, sin embargo resulta opaca a las emisiones infrarrojas, ultravioletas y de radia-
ción X y γ que proceden del cosmos, por lo que las observaciones en estas gamas de
frecuencias deben hacerse desde fuera de la atmósfera.
La Tierra posee un fuerte campo magnético cuyos polos no coinciden con los po-
los geográficos y además varía su posición con el tiempo. Las líneas de fuerza del cam-
po magnético forman una cubierta alrededor del planeta llamada magnetosfera que sirve
de escudo a la acción del viento solar. Este viento
solar está constituido por partículas atómicas carga-
das procedentes del Sol y que barren todo el Sistema
Solar. Al llegar a la Tierra, son capturadas por las
líneas del campo magnético, obligadas a describir
trayectorias helicoidales y canalizadas a través de
estas líneas (que actúan como unos gigantescos em-
budos) hacia los polos magnéticos de la Tierra, don-
de se producen auroras polares en su choque con las FIG. 3
moléculas atmosféricas. El fenómeno ocurre en amplias zonas que rodean parcialmente
a la Tierra y que adoptan forma de toroide. Los llamados cinturones de radiación o de
Van-Allen.
La Tierra es el único planeta de los conocidos que tiene vida, consecuencia de que
reúne ciertas condiciones singulares que resumimos en:
- Fuente de energía. El Sol, que permite una temperatura media de 22°C, hace po-
sible la existencia de agua líquida y así mantener activos los materiales constituyentes
de la vida.
- Radiación solar de variada frecuencia. con intensidad adecuada para la activa-
ción de los procesos vitales. Las radiaciones perjudiciales son filtradas por la atmósfera.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
10/37
- Atmósfera que desempeña múltiples funciones, depósito de oxígeno, filtro de ra-
diación, distribuidor de energía térmica y humedad, etc. La masa del planeta es decisiva
para la retención de una atmósfera, los planetas pequeños no pueden retener la atmósfe-
ra por su baja gravedad y su alta temperatura.
- Abundancia de agua y elementos biogénicos, como Carbono, Hidrógeno, Oxíge-
no, Nitrógeno, Fósforo, Azufre y otros.
La Luna, satélite de la Tierra. La Luna es el único satélite del planeta Tierra y tie-
ne una masa considerablemente grande con relación a él, como expresa la relación:
3'81
1=
⋅
⋅
TierraMasa
LunaMasa
que es la segunda más grande entre las relaciones de Masa Satélite/Masa Planeta que se
presentan en el Sistema Solar, tras la del sistema Caronte/Plutón.
La Luna gira alrededor de la Tierra según
una elipse muy poco excéntrica e inclinada unos
5°9' respecto de la eclíptica. La intersección de
ambos planos determina una recta que corta en
dos puntos a la órbita lunar, fig.4, denominados
nodo ascendente y nodo descendente. La línea
que une ambos nodos se llama línea de nodos y
tiene un movimiento de rotación retrógrado con
un período de 18'6 años, dato fundamental para
determinar las fechas de los eclipses. 
FIG.4
El período de traslación de la Luna alrededor de la Tierra o mes lunar, referido al
tiempo solar medio, puede considerarse de diferentes maneras:
- Mes sidéreo. Tiempo transcurrido entre dos
pasos consecutivos de la Luna por el círculo horario
de una estrella. Su duración es de 27d7h43m11'6s. Tie-
ne poca importancia astronómica.
- Mes sinódico. Tiempo transcurrido entre dos
fases lunares iguales. Su duración es 29d12h44m2'9s, y
se denomina lunación.
La Luna gira alrededor de su eje, efectuando un
giro en un período de un mes sidéreo, por lo cual, la
Luna presenta siempre la misma cara a la Tierra, pero
 FIG. 5
gracias al fenómeno de las libraciones, se puede observar hasta un 59% de la superficie
lunar. Existen dos tipos de libraciones:
-Libración en longitud. Siendo el movimiento de traslación no uniforme, pues es
más rápido en el perigeo y más lento en el apogeo, el desfase con el movimiento uni-
forme de rotación, hace que la luna se "ladee" en sentido oeste y esté mostrando algo de
su cara oculta.
-Libración en latitud. Se debe a la inclinación de la órbita lunar sobre el plano de
la eclíptica.
La Luna presenta a la Tierra una iluminación progresiva y periódica que llamamos
Fases y depende de las posiciones relativas del Sol, la Luna y la Tierra. El origen de la
lunación, o mes sinódico, se sitúa en la llamada Luna Nueva o Novilunio que tiene lugar
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
11/37
cuando nuestro satélite se coloca entre el Sol y la Tierra y la cara que nos mira está os-
cura. Edad =0. Se llama Edad de la Luna para un instante dado de la lunación al tiem-
po transcurrido entre el novilunio y dicho instante. A medida que transcurre el tiempo,
el disco lunar comienza a mostrarse iluminado. Para la edad de 7d9h11m0'72s el Sol, la
Tierra y la Luna forman un triángulo rectángulo y aparece iluminado la mitad del disco
lunar, cuarto creciente. La siguiente fase es la de Luna llena o Plenilunio, que tiene
lugar a la edad de 14d18h22ml'45s, y la Tierra está entre el Sol y la Luna. La siguiente
fase es cuarto menguante y finalmente se vuelve a Luna Nueva o Novilunio completan-
do el mes sinódico.
En las fases de Luna Nueva y Luna Llena, si la órbita lunar no estuviera inclinada
respecto de la eclíptica, se producirían eclipses. La inclinación de la órbita hace que los
eclipses sólo se produzcan en los nodos o puntos donde la órbita lunar corta a la eclípti-
ca. Pueden producirse eclipse de Sol (la Luna se sitúa entre el Sol y la Tierra y produce
sombra sobre ella) y eclipse de Luna (la Tierra se sitúa entre el Sol y la Luna y produce
sobra sobre ella, a veces ocultándola totalmente).
La superficie de la Luna, estudiada desde Galileo mediante telescopios cada vez
más potentes y recientemente por las naves tripuladas de la serie Apolo, está compuesta
de Mares y Tierras. Los mares son grandes zonas llanas poco accidentadas, cuyo as-
pecto era, para los antiguos, de mares semejantes a los de Tierra. No existe agua. Son
grandes llanuras formadas al rellenarse por grandes masas de lava, cráteres de impacto
existentes anteriormente.
Las tierras son zonas con grandes accidentes morfológicos, entre los que destaca-
mos: a) Circos o cráteres lunares que son accidentes circulares de hasta varios cientos de
kilómetros de diámetro y elevadas paredes. Presentan prolongaciones o rayos que se
extienden desde sus bordes hasta distancias muy grandes. b) Montañas y cordilleras
longitudinales de hasta 1000 Km de largas con alturas que alcanzan hasta 6500 m. c)
Otros accidentes como valles, fallas y grietas.
La erosión no existe por la falta de atmósfera. La mínima erosión se produce por
el bombardeo meteórico, la radiación cósmica y las variaciones de temperatura. La tem-
peratura lunar fluctúa entre +118°C y −153°C.
Sobre el origen de la Luna, existen varias teorías. Una de ellas postula que la Luna
se originó al ser arrancada de la Tierra por un cataclismo, pero tiene poca aceptación.
Otra afirma que la Lunase formó con el conjunto del Sistema Solar, aunque lejos de la
Tierra siendo capturada por el campo gravitatorio de la Tierra. Y otra establece que la
Luna se formó al mismo tiempo que la Tierra en una región del espacio próximo a ella.
2.6. Marte y Júpiter
Marte. Planeta de color rojizo conocido desde antiguo en todas las civilizaciones,
su observación telescópica evidencia zonas claras y oscuras, dos casquetes polares con
grandes variaciones estacionales y nubes de polvo. En la actualidad, las investigaciones
sobre Marte han experimentado un avance espectacular debido al envío de naves no
tripuladas americanas (Mariner) y soviéticas (Marte). Un importante logro se consiguió,
en 1976 con las naves Viking 1 y 2 que se posaron sobre la superficie del planeta y
transmitieron mucha información. Más recientemente, en Julio de 1997, la sonda ameri-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
12/37
cana Pathfinder se posó en un aterrizaje accidentado sobre la superficie de Marte y des-
cargó un minivehículo todoterreno llamado Sojourner cargado de instrumentos de me-
dida y fotografía, analizó el terreno y envió valiosa información a la Tierra.
Marte presenta dos hemisferios diferenciados. El sur, con morfología tortuosa de
cráteres, escarpaduras y depresiones acanaladas, se cree que es la más antigua. El he-
misferio norte, con llanuras originadas por corrientes de lava y depósitos de polvo, tiene
morfología más moderna. Se han detectado numerosos volcanes (uno de ellos de 24 Km
de alto). Su historia geológica indica que debió pasar por una etapa en la que el agua era
abundante, por los numerosos valles de formas similares a los valles fluviales terrestres
(el Valle Marineris, es un cañón de 5000 km de largo, 6 km de profundo y anchuras de
hasta 200 km). Actualmente el agua de Marte está concentrada en sus casquetes polares,
en forma congelada.
La atmósfera marciana es muy tenue. La presión en superficie se estima entre 2 y
10 milibares (≈ centésima parte de la presión atmosférica terrestre). Está compuesta por
un 95% de CO2, 3% de N2, 1'5% de Ar y trazas de O2, H2O, Kr y Xe. Presenta una to-
nalidad anaranjado-rojiza debido a la existencia de polvo en suspensión hasta los 40 Km
de altura. La temperatura al mediodía en el ecuador alcanza hasta 18°C y durante la no-
che a -90 C, a nivel de superficie, sin embargo a 1’5 m de la superficie (altura de un
hombre bajo), las temperaturas oscilan de –9ºC del día a –80ºC por la noche.
Marte posee dos satélites, Fobos y Deimos, descubiertos en 1877. Por los vehícu-
los Mariner y Viking sabemos que tienen forma irregular como elipsoides de tres ejes,
con superficies machacadas por numerosos impactos que han dejado cráteres y grandes
heridas en la superficie. Fobos tiene un período orbital superior al período de rotación
de Marte (un observador marciano lo vería salir por el oeste y ponerse por el este) y
además se acerca paulatinamente a Marte con el cual se estrellará dentro de unos 100
millones de años.
Júpiter. Es el mayor planeta del Sistema Solar. Visto desde la Tierra presenta es-
tructura de bandas claras y oscuras alternativas, que no constituyen zonas fijas, sino que
frecuentemente sufren cambios de tamaño y posición, fusionándose unas con otras,
formándose y deshaciéndose. Un rasgo llamativo de la superficie del planeta es la lla-
mada mancha roja, una formación muy estable de forma oval de 40.000 km de longitud
por 13.000 km de anchura.
Dos fenómenos llaman la atención sobre Júpiter, la rotación diferencial y el
achatamiento. Respecto de la primera se ha observado que la zona ecuatorial gira en
9h50m30s mientras que latitudes más altas lo hacen en 9h55m40s. El achatamiento del
planeta es considerable pues el radio ecuatorial es 6'5% mayor que el radio polar, lo que
se debe a su elevada velocidad de rotación, a su baja densidad ya su estructura interna.
Las investigaciones sobre Júpiter se han visto impulsadas por las sondas espaciales Pio-
ner 10 y 11 y Voyager 1 y 2.
El planeta tiene una potente atmósfera, cuya parte externa es lo que observamos
desde Tierra. Está compuesta de H2, He, NH3, CH4, H2O, PH3 y también trazas de CO,
CNH, C2H6, C2H4. La atmósfera realiza poderosos fenómenos circulatorios con vientos
de 150 m/seg.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
13/37
La mancha roja y otras estructuras parecidas no han recibido explicación satis-
factoria. Los modelos que las presentan como torbellinos semejantes a las borrascas
terrestres, no parecen consistentes. La mancha roja deriva lentamente hacia el oeste ro-
deada por vientos de elevada velocidad.
Las medidas de temperatura en la atmósfera muestran valores que oscilan entre
110°K (-163°C) en la parte externa y 360°K en las capas profundas. El resto del planeta
puede tener una estructura, que del exterior al interior, sigue el siguiente modelo:
- Capa externa, de H2 y He en estado líquido molecular.
- Capa intermedia, con presión de 3000000 Atm y temperaturas de 30000°K for-
mada por H y He. El H en estas condiciones se comportaría como metal líquido.
- Núcleo de roca y Hielo, formaría el 4% de la masa total.
Júpiter radia al exterior más energía de la que recibe del Sol. Parte de ella es de
origen térmico, es decir, se está enfriando y emite calor. Además, el planeta emite ene r-
gía originada por fenómenos eléctricos de su atmósfera, que se localizan en la mancha
roja y regiones similares y por último, la radiación originada en los cinturones magnéti-
cos demuestran la existencia de un potente campo magnético.
Se le conocen 16 satélites a Júpiter. Los cuatro galileanos, descubiertos por Gali-
leo, son Io, Europa, Ganímedes y Calisto. Destacamos el satélite Io, con volcanes acti-
vos que lanzan chorros de SO2 líquido y azufre a alturas de 270 km, cráteres de origen
volcánico y ríos de lava. Este vulcanismo se debe al calor generado por las mareas de-
formantes inducidas por la masa del cercano planeta Júpiter. Los demás satélites del
gigantesco planeta son: Amalthea, Tebe, Adrastea, Metis, Lisitea, Leda, Himalia, Elara,
Carme, Ananque, Sinope y Pasifae. Además de los satélites, el planeta posee un sistema
de anillos formado por partículas de menos de 1 cm.
2.7. Los planetas exteriores.
Saturno. Su observación desde Tierra presenta una estructura con bandas alterna-
tivamente claras y oscuras que constituyen la atmósfera del planeta. Su achatamiento es
el mayor que presentan los planetas del sistema solar ya que el radio ecuatorial es 9'6%
mayor que el radio polar. Su densidad es 0'69 g/cm3 lo que lo convierte en el menos
denso de todos los planetas. Saturno flotaría en un mar de agua.
Presenta también rotación diferencial. El ecuador gira con un periodo de 10h14m
mientras que a 40° de latitud el período es 10h41m. El planeta presenta un claro sistema
de anillos ya observado por Huygens en 1655, situados en el plano ecuatorial y debido a
la inclinación de dicho plano sobre la órbita de Saturno, los anillos pueden observarse
desde Tierra en diferentes posiciones. Los anillos están formados por partículas de diá-
metros entre 1 µm y 10 m y el grosor del disco es, como máximo, de 1 km.
La atmósfera de Saturno es similar a la de Júpiter. La temperatura en las capas
exteriores es de 85°K aumentando a medida que se profundiza en ella. La dinámica de
la atmósfera es similar a la de Júpiter y los modelos estudiados en Júpiter se han aplica-
do a Saturno. También emite más energía que la que recibe del Sol y sin embargo el
enfriamiento no basta para explicar esta irradiación, por lo que se han propuesto mode-
los en los que los movimientos del helio líquido de una capa a otra generaría el calor
adicional irradiado.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
14/37
Saturno posee 23 satélites, si bien 5 de ellos están pendientes de confirmación.Los principales son Titán, único que posee atmósfera, Encelado, muy brillante, y los
demás, de cerca de lejos del planeta son: Febe, Japeto, Hiperión, Rea, Helena, Dione,
Calipso, Telesto, Tetis, Mimas, Jano, Epimeteo, Pandora, Prometeo, Atlas y Pan.
Urano. Este planeta, descubierto en 1781, dista de la Tierra en su mayor aproxi-
mación, unos 2500 millones de kilómetros, es decir, en el límite de la visión humana.
Posee una singularidad notable: su plano ecuatorial está inclinado 98° con respecto a su
plano orbital por lo que presenta al Sol, alternativamente, sus polos a lo largo de su ór-
bita. Su temperatura se estima en unos –210ºC.
Se le supone una estructura de dentro a fuera, formada por: un núcleo rocoso, una
capa media de hielo, una capa externa de H2 molecular líquido y una atmósfera con CH4
y posiblemente de NH3. En el exterior del planeta le rodean: una capa de anillos, descu-
bierta recientemente y una colección de 15 satélites descubiertos casi todos por las son-
das espaciales, que son Cordelia, Ofelia, Blanca, Cresida, Desdémona, Julieta, Porcia,
Rosalinda, Belinda, Puck, Miranda, Ariel, Umbriel, Titania y Oberón.
Neptuno. Descubierto en 1846, tras intensa búsqueda, basándose su posible exis-
tencia en las perturbaciones que producía sobre la órbita de Urano. Su máxima aproxi-
mación a Tierra es de 4309 millones de kilómetros. Su estructura y composición deben
ser similares a las del planeta Urano, incluidos los anillos. Desde 1979 a 1999 es el pla-
neta más exterior del Sistema Solar, pues Plutón se encuentra más cerca del Sol, ya que
las órbitas de ambos se solapan y se sobrepasan.
Neptuno posee dos satélites: Tritón y Nereida. El primero es una de los mayores
satélites del Sistema Solar, con 4000 km de diámetro y tiene rotación retrógrada. Nerei-
da es pequeño y muy excéntrico.
Plutón. Descubierto en 1930 como consecuencia de las perturbaciones de la órbita
de Neptuno. Tiene un diámetro de unos 4000 km y una órbita muy excéntrica, de forma
que en su perihelio está más cerca del Sol que Neptuno. Existe una atmósfera plutoniana
con presencia de CH4. En 1978 se le descubrió un satélite, de 2000 Km de diámetro y se
le llamó Caronte.
2.8. Cometas.
La palabra "cometa", del griego cabellera, hace referencia a la morfología de es-
tos astros. Fueron considerados fenómenos atmosféricos hasta que Tycho Brahe midió
la distancia de un cometa y concluyó que estaba más alejado que la Luna, luego no eran
fenómenos atmosféricos. Los cometas pueden describir órbitas elípticas, hiperbólicas y
parabólicas. Los cometas de órbitas elípticas tiene carácter periódico, están atrapados
por la gravedad del Sol (energía total negativa) que ocupa un foco de la elipse.
Como los cometas poseen masas muy pequeñas (10-6 de la masa lunar) sus in-
fluencias gravitatorias sobre los planetas son mínimas, sin embargo las influencias gra-
vitatorias de los planetas sobre los cometas son muy importantes, produciéndose cam-
bios en el período orbital de los cometas, capturas y rupturas por los planetas. Los co-
metas de órbitas hiperbólicas o parabólicas (energía total positiva o cero) no son perió-
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
15/37
dicos, puesto que estas curvas son abiertas. Aparecen una sola vez, surgiendo de las
profundidades del espacio exterior, se acercan al Sol y se alejan desapareciendo para
siempre.
Para que un cometa sea visible debe acer-
carse al Sol que le produce unas transformaciones
con lo que queda configurado como se indica en la
fig.6:
-1. Núcleo.
-2. Coma o cabellera.
-3. Cola o colas.
La estructura se explica por el modelo de la
bola de nieve sucia y supone que el núcleo es una
bola de hielo con partículas de polvo de 1 a 100
Km de diámetro. La radiación solar evapora parte
del material helado liberando partículas de polvo
formando una nube de gas y polvo que envuelve
al núcleo; es la coma o cabellera, cuyo diámetro
puede alcanzar 100.000 km. La coma resulta visi- 
FIG. 6
ble porque el polvo refleja la luz solar y las moléculas se disocian y se vuelven fluores-
centes.
Las colas del cometa, desplegadas en dirección opuesta al Sol, pueden ser colas de
polvo y colas iónicas. Las primeras formadas por partículas de polvo arrancadas de la
coma, por la presión de la radiación, están curvadas. Las segundas son rectas y están
formadas por iones producidos por la radiación solar que ioniza las moléculas de la co-
ma y luego los campos magnéticos del viento solar arrastran lejos de la coma, formando
la cola iónica.
El cometa más conocido es el cometa Halley cuya última visita tuvo lugar en
1985-86, tiene un períodos de 76 años y en su anterior aparición en 1910, que fue es-
pectacular, la Tierra llegó a estar dentro de la órbita cometaria.
3. ASTRONOMÍA DE POSICIÓN
La Astrometría estudia los movimientos de los astros y sus posiciones. En ella
distinguimos la astronomía esférica que estudia las posiciones de los astros consideran-
do sus proyecciones sobre una esfera de radio indeterminado y determinándolas con
adecuados sistemas de coordenadas y la mecánica celeste que se ocupa de los movi-
mientos de los planetas alrededor del Sol y los movimientos de las estrellas.
La Astronomía de posición, rama importante de la Astrometría, trata de determi-
nar las coordenadas de las estrellas basándose en observaciones a partir de coordenadas
de estrellas ya conocidas y calculadas. Su importancia se pone de manifiesto, en la re-
solución de los problemas de la navegación terrestre (marítima o aérea) basada en la
posición de las estrellas y la navegación interplanetaria así como en las medidas del
tiempos para el establecimiento correcto del calendario.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
16/37
3.1. Movimientos de la Tierra.
Al principio de los tiempos la Tierra se consideró inmóvil en el espacio ocupando
el centro del Universo, pero la Tierra no se encuentra inmóvil, sino que está sujeta a una
larga serie de movimientos (más de diez, de los que sólo estudiaremos cuatro).
Cada 23 horas 56 minutos, da una vuelta completa alrededor de su eje polar en di-
rección Oeste-Este (antihorario) dando la impresión de que el cielo gira alrededor de
nuestro planeta. Este movimiento, llamado rotación, da lugar a la sucesión de días y
noches y se demuestra claramente mediante el péndulo de Foucault que al ser invariable
el plano de oscilación, la rotación de dicho plano se debe a la rotación de la Tierra.
Mediante el movimiento de traslación nuestro planeta se mueve alrededor del Sol
impulsado por la gravitación y en un tiempo de 365'25 días describe una trayectoria
elíptica de 930 millones de kilómetros de longitud a una distancia media de 150 millo-
nes de kilómetros. Su velocidad lineal es muy elevada, del orden de 106000 Km/hora.
La excentricidad de la órbita elíptica hace variar la distancia Tierra-Sol en el transcurso
del año. Así, a primeros de Enero alcanza su máxima proximidad y pasa por su perihelio
y a primeros de Julio llega a su máxima lejanía y pasa por el afelio.
- Perihelio: 145.700.000 km
- Afelio: 151.800.000 km
Rotación y Traslación serían los únicos movi-
mientos si la Tierra fuera una esfera perfecta, pero al
ser un elipsoide irregular aplastado por los polos, la
atracción gravitatoria conjunta del Sol y de la Luna
sobre el ensanchamiento ecuatorial provocan una espe-
cie de lentísimo balanceo en nuestro planeta en su
traslación alrededor del Sol que se llama precesión y
que se efectúa sentido inverso al de rotación. Por este
movimiento, el eje polar de la Tierra describe un cono
de 47° de abertura con vértice en el centro del planeta.
Este movimiento es idéntico al balanceo de la peonza
cuando gira en posición inclinada.
 FIG. 7
Por el movimiento de precesión, la posición del polo celeste (intersección del eje
polar terrestrecon la esfera celeste) cambia a través de los siglos. Así, la estrella polar
no es siempre la misma estrella. Actualmente es una estrella de la Osa Menor y tras
25.765 años volverá a ser la misma después de recorrer el polo celeste un amplísimo
círculo.
Superpuesta a la precesión se produce la nutación pequeño movimiento de vaivén
del eje de la Tierra debido a que la influencia de la Luna no siempre posee la misma
intensidad, puesto que unas veces se halla sobre el plano de la órbita terrestre y otras por
debajo y, por tanto no ejerce siempre atracción sobre la zona ecuatorial de la Tierra en
la misma dirección en que la ejerce el Sol. El movimiento del eje terrestre no es perfec-
tamente cónico sino levemente ondulado y se repite cada 18'6 años. Este movimiento,
aunque muy débil e imperceptible, puede ser detectado en los observatorios astronómi-
cos ya que afecta a las posiciones de las estrellas.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
17/37
3.2. La esfera celeste.
Se llama esfera celeste a una esfera imaginaria de radio arbitrario, concéntrica con
la Tierra y en la que se consideran proyectadas todas las estrellas y demás astros del
firmamento. Así podemos situar con precisión los astros en el cielo, independientemente
de sus distancias a la Tierra, utilizando un determinado sistema de referencia, aunque
hay que definir una serie de parámetros (puntos, ejes y planos), a partir de los movi-
mientos que observamos y que son consecuencia de los movimientos de la Tierra.
 
FIG. 8
Prolongando la dirección del eje polar terrestre, obtenemos el llamado Eje del
Mundo, porque alrededor de él parece girar toda la esfera. Los puntos de intersección
del eje del mundo con la esfera celeste constituyen los polos celestes. De éstos, el que se
ve desde el hemisferio norte es el Polo Boreal, Artico o Norte, que coincide práctica-
mente con la Estrella Polar y el que se ve desde el hemisferio sur, se llama Polo Austral,
Antártico o Sur, punto en el cual no existe ninguna estrella brillante a destacar.
El plano perpendicular al eje terrestre, por el centro del planeta, forma el ecuador
terrestre y su intersección con la esfera celeste forma el Ecuador celeste. Los planos
paralelos al ecuador determinan sobre la esfera celeste unos círculos menores llamados
Paralelos celestes o Círculos diurnos. De los paralelos que describen las estrellas a lo
largo del día, unos cortan el horizonte del lugar de observación, de modo que las vemos
salir y luego ocultarse. Otros paralelos están enteramente sobre el horizonte y las estre-
llas que describen estos paralelos no salen ni se ponen, están siempre sobre el horizonte
y se llaman estrellas circumpolares. Una de ellas es la estrella Polar, y describe un cír-
culo tan pequeño que parece inmóvil.
El punto que está en la perpendicular del observador se denomina Cenit. El punto
opuesto, situado bajo los pies del observador, se denomina Nadir. El círculo máximo
perpendicular a la vertical del lugar se le llama Horizonte del lugar. Dicho horizonte
divide a la esfera celeste en dos hemisferios: el hemisferio superior o visible y el infe-
rior o invisible.
Todo plano que pasa por del eje del mundo determina sobre la esfera celeste unos
círculos máximos llamados Meridianos Celestes. Cuando dicho meridiano pasa por el
cenit y los polos se llama Meridiano local o Meridiano del lugar. Se llama Meridiana a
la recta que resulta de la intersección del plano meridiano del lugar con el plano hori-
zonte. Esta meridiana corta a la esfera celeste en dos puntos diametralmente opuestos y
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
18/37
el más próximo al polo boreal se llama Norte o Septentrión (designado por N) mientras
que el opuesto se llama Sur o Mediodía (designado por S). La recta perpendicular a la
meridiana determina en la esfera celeste los puntos cardinales Este u Oriente (designado
por E) y Oeste u Occidente (designado por W). El meridiano que pasa por el cenit y por
los puntos este y oeste recibe el nombre de Primer vertical.
A los círculos menores de la esfera celeste paralelos al horizonte se les llama Al-
mucantarates. Finalmente llamamos Orto de un astro a su salida sobre el horizonte y
Ocaso a su puesta. El paso de un astro por el meridiano del lugar se llama Culminación.
Se denomina Orto helíaco al orto de un astro que se produce al mismo tiempo que el
orto del Sol.
Empleando como sistema de referencia el llamado sistema topocéntrico, en el cual
se considera a un observador ocupando el centro del universo, se comprueba que las
estrellas y los demás astros giran a nuestro alrededor. Se ven moverse de Este a Oeste
dando la sensación de que la bóveda celeste está girando alrededor de la Tierra. Si nos
fijamos en el lugar que ocupa en el cielo una estrella o una constelación a una hora de-
terminada, al día siguiente a la misma hora, parece estar en el mismo sitio, pero real-
mente cada día adelanta casi 4 minutos, lo que equivale a un arco de 1°. Cada 15 días
adelanta 1 hora (arco de 15º) y a los 6 meses, la encontramos en posición opuesta. Igual
ocurrirá con las restantes constelaciones. Tomando como punto fijo de orientación, la
estrella Polar, se reconoce que todo el movimiento estelar se realiza con respecto a este
punto, en un sentido antihorario, que a efectos astronómicos se llama sentido directo.
La observación del movimiento estelar permite establecer las siguientes reglas:
a) El movimiento diurno es circular.
b) Es uniforme, o sea en tiempos iguales recorre arcos iguales.
c) Es paralelo, los círculos que describes las estrellas son paralelos.
d) Es isócrono, las estrellas emplean el mismo tiempo en realizar una vuelta.
e) Es invariable, no varían las posiciones relativas entre ellas.
f) Es retrógrado, giran en sentido antihorario.
3.3. Movimiento del Sol.
La duración del día y la noche es diferente a lo largo del año, desde el 22 de di-
ciembre, que es el día más corto (el de menos horas desde el orto al ocaso del Sol) hasta
el 22 de junio, que es el día más largo (el de más horas desde el orto al ocaso del Sol) la
duración del día varía progresivamente. Estas dos fechas se denominan solsticios de
invierno y de verano, respectivamente porque en ellas parece que el Sol finaliza su ca-
rrera para reanudarla en sentido contrario. Otras dos fechas intermedias, el 21 de marzo
y el 23 de septiembre en las cuales, el día y la noche duran el mismo número de horas,
se denominan equinoccios de primavera y otoño, respectivamente.
Estos hechos se deben a que el Sol, participa también en el aparente movimiento
diurno y si bien las estrellas conservan sensiblemente las mismas posiciones en la esfera
celeste, la posición del Sol cambia constantemente por tener además un movimiento
propio, como lo demuestran los siguientes hechos:
a) Los puntos del horizonte por donde sale y se pone el Sol, varían constante-
mente. El 21 de marzo (equinoccio de primavera), el Sol sale por el Este y se pone por
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
19/37
el Oeste. En los días siguientes, estos puntos de orto y ocaso van desplazándose hacia el
Norte, hasta el 21 de Junio (solsticio de verano) que alcanza su posición extrema. En los
siguientes días estos puntos se aproximan al Este
y Oeste, cuyas posiciones vuelven a ocupar el 23
de septiembre (equinoccio de otoño). Luego se
acercan hacia el Sur hasta el 22 de diciembre
(solsticio de invierno) del cual se alejan después
hacia los puntos Este y Oeste, completando el
año.
b) La altura del Sol sobre el horizonte del
lugar va creciendo desde principio de invierno
hasta final de primavera (inicio del verano) y de-
crece luego desde principio de verano hasta final
de otoño (inicio de invierno). El recorrido diurno
del Sol el 22 de diciembre pasa por un paralelo de
latitud Sur23°27' llamado Trópico de Capricor-
nio. En los equinoccios el Sol pasa por el ecuador
 
 FIG. 9
celeste y el 22 de junio pasa por otro círculo paralelo de latitud Norte 23°27'llamado
Trópico de Cáncer.
En un punto de la Tierra a 66°33' (o sea 90º−23°27') de latitud, se pone el Sol du-
rante las 24 horas del día en que se produce el solsticio de verano. Este punto determina
el Círculo Polar Artico y en tal fecha el Sol a medianoche pasa rozando el horizonte
pero vuelve a remontarse sin ocultación. En esta zona, el día o verano polar dura seis
meses y la noche o invierno polar dura otros 6 meses. El Sol no desaparece, en el primer
caso y no aparece en el segundo. Fenómenos iguales, pero en fechas inversas, ocurren
en el Polo Sur, dentro del Círculo Polar Antártico.
b) Paso del Sol a través de distintas conste-
laciones. Si el Sol y las estrellas fueran visibles
simultáneamente, sería fácil comprobar el movi-
miento del Sol en la esfera ce leste, pero a falta de
ello, puede verificarse el fenómeno observando el
aspecto del cielo en diversas épocas del año y en
momentos en que el Sol ocupa una determinada
posición respecto al horizonte. Se aprecia así que
el Sol atraviesa a lo largo del año, zonas con dis-
tintos grupos de estrellas o constelaciones.
 FIG. 10
3.4. La Eclíptica.
La trayectoria que sigue el Sol en el cielo en su movimiento aparente alrededor de
la Tierra recibe el nombre de Eclíptica. Esta trayectoria, en la esfera celeste, es un cír-
culo máximo que forma con el ecuador celeste un ángulo de 23°27' que se llama incli-
nación del Sol u oblicuidad de la eclíptica. La denominación de eclíptica proviene del
hecho de que los eclipses no son posibles más que cuando la Luna se encuentra sobre
dicho círculo o muy próximo a él.
En la eclíptica destacan cuatro puntos ya mencionados, que son:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
20/37
1º. El punto donde el Sol alcanza su máxima altura sobre el ecuador en el hemisfe-
rio Norte. Esto ocurre el 21 de junio y señala el comienzo del verano en el hemisferio
Norte y el comienzo del invierno en el hemisferio Sur. Es el Trópico de Cáncer.
2º. El 22 de septiembre, el Sol corta al ecuador celeste en el llamado punto Libra.
Corresponde a la entrada del otoño en el hemisferio Norte.
3º. El 21 de diciembre llega al Trópico de Capricornio, punto más bajo del Sol,
visto desde el hemisferio Norte. Indica el comienzo del invierno.
4º. El 21 de Marzo, cruza nuevamente el ecuador, y el Sol se encuentra en el
punto Aries. Indica el comienzo de la primavera.
Estos cuatro puntos marcan el inicio de una diferencia de radiación solar que se da
a lo largo del año y que condicionan las estaciones.
La intersección de la eclíptica con el ecuador celeste en el equinoccio de primave-
ra (equinoccio vernal), el 21 de marzo, se llama punto Aries o punto Vernal. Esta deno-
minación se debe a que cuando la astronomía helénica determinó las reglas del movi-
miento aparente celeste, ese punto se encontraba en la constelación de Aries. El punto
Aries de aquella época se ha desplazado más de 30º y ahora se encuentra en la constela-
ción de Piscis, o sea ha retrogradado una constelación entera, debido a la precesión de
los equinoccios y está próximo a entrar en Acuario.
3.5. Medida del tiempo: día, semana, mes, año.
El tiempo puede definirse como aquella variable que expresa la sucesión de un fe-
nómeno y su duración. Ello implica un concepto de movimiento, ya que si todos los
astros se encontraran inmóviles en el Universo careceríamos de referencia para percibir
la existencia de un tiempo astronómico. La Astronomía de posición proporciona un
método de precisión para la medida del tiempo y se basa en considerar el movimiento
continuo de un sistema físico que tenga lugar a velocidad constante (rotación de la Tie-
rra, traslación del Sol, traslación de la Luna, etc.).
La primera unidad de medida del tiempo fue el día, considerado como un ciclo
completo de luz y oscuridad. Más tarde se introdujo el año, referido al Sol y el mes refe-
rido a la Luna.
En términos generales, el Día es el tiempo que nece-
sita la Tierra para dar una vuelta alrededor de su propio eje.
Para su determinación se necesita una referencia. Se pre-
sentan tres puntos de referencia diferentes: el Sol, una es-
trella lejana y el punto Aries. Sin embargo, estos tres pun-
tos dan tres duraciones distintas para el día.
El día sideral es el intervalo de tiempo transcurrido
entre dos pasos consecutivos de una estrella determinada
por el meridiano del lugar. Tiene una duración de 23h, 56m
y 4'091s y coincide con el período de rotación de la Tierra.
El día sidéreo es el intervalo de tiempo transcurrido
entre dos pasos consecutivos del punto Aries por el meri-
diano del lugar. Como dicho punto Aries retrograda 50 seg
 FIG. 11
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
21/37
de arco al año, resulta que el día sideral es 50/365=0'14 s/día mayor que el día sidéreo.
El día solar verdadero es el intervalo de tiempo transcurrido entre dos pasos con-
secutivos del Sol por el meridiano del lugar. Los días solares así definidos, no son todos
iguales a lo largo del año debido al carácter elíptico de la órbita de la Tierra. En la vida
civil, utilizamos el día solar medio, que representa la media aritmética de todos los días
solares verdaderos.
El intervalo de tiempo entre el día solar verdadero y el día solar medio es lo que se
llama Ecuación del tiempo y su valor se puede visualizar comparando la hora del reloj
con la hora marcada por el reloj de sol. En dicha ecuación del tiempo, los valores obte-
nidos unas veces son positivos y otras negativos. Dichos valores están tabulados en las
efemérides astronómicas.
Todos los lugares de igual longitud geográfica tienen su propio tiempo local. Si
nos regimos por el Sol verdadero, hablaremos de tiempo local verdadero, que es el que
marca un reloj de Sol; y si nos regimos por el Sol medio, obtendremos el tiempo local
medio. Con el fin de no tener que atrasar o adelantar relojes, se han introducidos los
husos horarios, resultantes de dividir la Tierra en 24 zonas de 15° que van del polo
Norte al polo Sur y dentro de cada huso rige la misma hora, aunque las líneas divisorias
de los husos no son meridianos exactamente, sino que se adaptan a las fronteras de los
países. Al caminar hacia el Este la hora se va adelantando y el viajero tendría que ade-
lantar continuamente su reloj y al término de su viaje alrededor del mundo se encontra-
ría con un día de ventaja respecto de la localidad de partida.
La Semana de siete días está relacionada con las fases de la Luna. Su origen es ju-
dío y corresponde a los días de la creación según el Génesis. Su empleo en Occidente
fue posterior al siglo III d.C. Los nombres de los cinco primeros días, corresponden a
los astros Luna, Marte, Mercurio, Júpiter y Venus. El Sábado es el día hebreo de igual
nombre y el Domingo (dies dominica) es el día del Señor, si bien esto sucede en los
países latinos pues en los anglosajones es el día del Sol (Sunday).
El Mes nace de los calendarios lunares. Las fases de la Luna dieron lugar a una de
las primeras formas de cómputo del tiempo mediante los calendarios lunares. Todos los
calendarios de la antigüedad, salvo el egipcio, se elaboraron con base al calendario lu-
nar: el mesopotámico (12 meses de 29 días), el judío (que incluía periódicamente un
mes suplementario), el griego (12 meses de 30 días), el musulmán, empleado todavía en
muchos países árabes (12 meses de 29 y 30 días alternativamente) se inicia en la Héjira
o día de la huida de Mahoma de Medina a la Meca, el 15 de Julio de 622.
El Año es el tiempo que transcurre durante una revolución completa de la Tierra
en su órbita alrededor del Sol. Debido a que para mediruna revolución completa hay
que fijar una referencia, la astronomía conoce otros tipos de años, definidos de forma
diferente y con duración diferente.
Se llama año sidéreo al tiempo que transcurre entre dos pasos sucesivos del Sol
por una misma posición entre las estrellas. Su duración es de 365'25636 días solares
medios, o sea, 365 días, 6 horas, 9 minutos y 9'55 segundos.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
22/37
Se llama año trópico al tiempo transcurrido entre dos pasos sucesivos del Sol por
el punto de Aries. Corresponde a nuestro año solar y su duración es de 365'24220 días,
o sea, 365 días, 5 horas, 48 minutos y 45'57 segundos.
Se llama año anomalístico al tiempo que transcurre entre dos pasos sucesivos de
la Tierra por el Perihelio. Su duración es de 365'25954 días solares, o sea, 365 días, 6
horas, 13 minutos y 53'21 segundos.
Se llama año civil al año de uso, que por razones prácticas debe comprender un
número entero de días. Tiene una duración de 365 ó 366 días.
Calendario. Es la distribución del tiempo en períodos adecuados a las necesidades
civiles y religiosas de las sociedades. Dichos períodos son el año, los meses, las sema-
nas y los días. Los egipcios fueron los primeros en establecer un calendario solar y
constaba de 12 meses de 30 días cada uno y 5 días suplementarios llamados días in-
ciertos. El inicio del año era el día en que la estrella Sirio se hacía visible por encima
del horizonte, pues esa fecha coincidía con la crecida del Nilo.
En la época de los romanos, Julio César estableció el llamado calendario juliano,
en el que el año quedó dividido en 12 meses de 30 ó 31 días, excepto febrero, que tenía
28 días, con un total de 365 días a los que se añadía un día más cada 4 años. Ello daba
lugar a 3 años normales y 1 anormal llamado bisiesto. Este año bisiesto tenía 366 días y
el día extra se añadía al final del año, pues los romanos empezaban el año en Marzo.
Este año juliano resultó ser unos 11 minutos más largo que el año trópico, lo que supone
unas 18 horas de más por siglo, diferencia que acumulada siglo a siglo dio lugar a una
diferencia apreciable en el siglo XVI, en que se hizo una reforma.
La reforma del calendario, realizada en 1582 por el papa Gregorio XIII, tuvo por
objeto conseguir la concordancia entre el año juliano y el año trópico puesto que el pri-
mero excedía al segundo en 3 días cada 400 años. En esta época el adelanto del calenda-
rio juliano era de unos 10 días con respecto al año trópico. Así, la reforma consistió en
suprimir 10 días, de forma que el día siguiente al 4 de octubre de 1582 fue el 15 de oc-
tubre de 1582, estableciéndose además que los años seculares (últimos de cada siglo)
sólo fuesen bisiestos si los dos primeros números son múltiplos de 4, como 1600, 2000,
2400... (1700, 1800 y 1900 no han sido por tanto bisiestos). De esta manera, la duración
del año gregoriano quedó fijada en 365'2425 días, o sea, 365 días, 5 horas 49 minutos y
12 segundos, es decir, con un error respecto al año trópico de un día cada 3323 años.
3.6. Coordenadas astronómicas.
El problema que trata de resolver la Astronomía de posición es determinar la posi-
ción de los astros en el firmamento, independientemente de la enorme distancia a la que
se encuentran.
La Tierra puede considerarse como un punto en el espacio, centro de la esfera ce-
leste, sobre cuya superficie se sitúan las posiciones aparentes de los astros. De este mo-
do puede calcularse la distancia angular entre dos astros que es el arco de círculo máxi-
mo comprendido entre ellos. Para ello necesitamos un sistema determinado de coorde-
nadas esféricas, formado por:
a) Un eje llamado eje fundamental o de referencia.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
23/37
b) Un círculo máximo en plano perpendicular al eje, llamado circulo fundamental.
c) Dos coordenadas, una sobre el círculo fundamental y la otra sobre los semicírcu-
los máximos que pasan por los polos celestes.
d) Un sentido de medición de los arcos, que es directo si se efectúa en sentido antiho-
rario y retrógrado en sentido horario.
Coordenadas altacimutales y horizontales. Están referidas al horizonte del obser-
vador. El origen del sistema de coordenadas es un punto de la superficie terrestre y el
eje fundamental es la vertical del lugar (dirección de la plomada). Su intersección con la
esfera celeste se llama cenit y el opuesto nadir. El cír-
culo fundamental es el horizonte del lugar y los círculos
menores paralelos al mismo se llaman almucantarates.
Los círculos máximos que pasan por el cenit, el astro y
el nadir se llama círculo vertical o vertical del astro.
Las coordenadas horizontales son la altura o al-
titud y el acimut. La primera es la distancia angular
entre el horizonte y el astro y se mide de 0° a 90° a
partir del horizonte, tiene signo positivo/negativo para
astros por encima/debajo de éste. Esta representado por 
FIG. 12
h (fig.12). A veces se emplea la distancia cenital Z, distancia angular entre el astro y el
cenit: Z=90°-h. El acimut es el arco de horizonte en sentido retrógrado desde el punto
Sur hasta la vertical del astro. Su valor va de 0° a 360° y está representado por a.
Los instrumentos utilizados para determinar las coordenadas horizontales son el
teodolito, que permite determinar las dos coordenadas simultáneamente, y el sextante.
Coordenadas horarias o ecuatoriales locales.- Con origen en el centro de la Tie-
rra, el eje fundamental es el eje del mundo que corta a la esfera celeste en los polos ce-
lestes. El plano fundamental es el ecuador celeste y los círculos menores paralelos al
mismo son los paralelos celestes o círculos diurnos de declinación.
Las coordenadas horarias son: el ángulo horario y
la declinación. El primero es el arco de ecuador celeste,
medido en sentido retrógrado, desde la intersección del
meridiano del lugar y el ecuador hasta el círculo horario
del astro. Se mide en Horas, Minutos y Segundos desde
0 a 24 horas y se representa por H (fig.13).
La declinación es el arco de circulo horario entre
el ecuador celeste y el astro, medido entre 0º y 90° a
partir del ecuador. Su valor es positivo/negativo para un
astro situado en el hemisferio Boreal/Austral. Se repre-
senta por D.
 FIG. 13
Con frecuencia se mide la distancia polar, en lugar de la declinación, que es el ar-
co de círculo horario desde el polo celeste hasta el astro y está relacionada con la decli-
nación por p+D=90°. Por ser uniforme el movimiento diurno, el tiempo puede ser me-
dido en unidades angulares. Así, como 360° corresponde a 24 horas, 1 hora=15°.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
24/37
Para determinar las coordenadas horarias se utiliza el anteojo meridiano que per-
mite determinar directamente la declinación. El ángulo horario se calcula a partir de la
hora de paso del astro por la vertical del lugar.
Coordenadas ecuatoriales absolutas. Están referidas al ecuador celeste y se lla-
man también coordenadas celestes o uranográficas. Surgieron por la necesidad de obte-
ner unas coordenadas que sean constantes y no dependan del tiempo.
El eje fundamental es el mismo que el del sistema
de coordenadas horarias, así como los demás elemen-
tos. Las coordenadas ecuatoriales absolutas son: la de-
clinación y la ascensión recta. La declinación ya fue
definida en el sistema de coordenadas horarias. La as-
censión recta es el arco de ecuador celeste en sentido
directo a partir del punto Aries hasta el meridiano del
astro. Varía de 0 a 24 horas y se representa por a
(fig.14).
Como el punto Aries es común para todos los ob- 
FIG. 14
servadores, las coordenadas ecuatoriales son universales y permanecen constantes en el
tiempo. Para su determinación se emplea, el anteojo meridiano.Coordenadas eclípticas. Están referidas a la eclíptica y son las más útiles para el
estudio de los planetas ya que éstos se mueven dentro de dicha franja.
El eje fundamental es el eje de la eclíptica que corta
a la esfera celeste en dos puntos llamados polos de la
eclíptica. El círculo fundamental es la eclíptica y los cír-
culos máximos que pasan por los polos se denominan má-
ximos de longitud y de ellos, aquel que pasa por el punto
Aries recibe el nombre de primer máximo de longitud.
Las coordenadas eclípticas son: la longitud celeste y
la latitud celeste. La primera es el arco de eclíptica medi-
do en sentido directo desde el punto Aries (γ) hasta el má- FIG. 15
ximo de longitud de un astro; se mide en grados desde 0º a 360º y se representa por λ.
La latitud celeste es la longitud del arco máximo que pasa por el astro, desde el propio
astro a la eclíptica. Su valor oscila entre 0° y 90º y se representa por β.
Estas coordenadas también son universales pues no dependen del lugar, ni del
instante en que se efectúa la observación. Sus valores se calculan a partir de las coorde-
nadas ecuatoriales utilizando determinadas relaciones entre triángulos esféricos trazados
sobre la bóveda celeste.
3.7. Constelaciones.
Los antiguos vieron en las inmutables posiciones de las estrellas, representaciones
de animales, dioses y cosas, simbolizadas en el cielo, que servían para poderse orientar.
Estas agrupaciones estelares se llaman constelaciones. Todo el cielo está dividido en
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
25/37
áreas con límites precisos y cada área contiene una de las antiguas constelaciones que le
da el nombre a dicha zona.
La constelación no tiene ningún significado físico objetivo, es solamente una re-
gión del cielo con estrellas enmarcadas en unos límites que siguen siempre meridianos y
paralelos celestes. Por comodidad, esta subdivisión del cielo ha perdurado hasta hoy
permitiendo una ventajosa localización y nomenclatura de las estrellas luminosas. Las
constelaciones son en total 88; de éstas 48 han llegado hasta nosotros desde la antigüe-
dad y 40 han sido introducidas en época moderna (casi todas las nuevas constelaciones
se encuentran en el hemisferio austral que era desconocido para las antiguas civilizacio-
nes mediterráneas).
El Zodíaco es el nombre dado a una franja extensa de la esfera celeste limitada por
dos planos paralelos a la eclíptica situados a una distancia angular de ±8'5º y que los
antiguos griegos nombraron así como zona o casa de animales, porque casi todas las
constelaciones de ella recuerdan la figura de un animal. Dentro de esta franja se mueven
aparentemente el Sol, la Luna y los planetas a excepción del Plutón. Esta zona se divi-
dió en 12 sectores de 30° cada uno que se distinguían por el nombre de la constelación
respectiva y se denominaron signos del zodíaco.
4. OBSERVACIÓN Y MEDIDA EN ASTROFÍSICA
4.1. Observación en la antigüedad.
Desde el comienzo de la historia y en todas las civilizaciones, el hombre ha mira-
do al cielo y ha observado y tratado de medir las posiciones de los astros, en un intento
de medir el tiempo, establecer el curso de las estaciones, que servirá de guía a la agri-
cultura, determinar posiciones fijas en el firmamento que le sirviera de orientación en
viajes y expediciones. Ya los egipcios construyeron relojes de sol y de agua, realizaban
observaciones celestes desde las terrazas de los templos recurriendo a métodos geomé-
tricos y utilizando obeliscos y pirámides. Los babilonios poseían puestos fijos de obser-
vación con sencillos instrumentos como la esfera armilar y otros instrumentos rud i-
mentarios para situar estrellas. Los griegos construyeron cuadrantes y esferas armilares,
para enfocar estrellas y así prepararon sus catálogos de estrellas.
El último gran observatorio sin telescopios ópticos fue el del astrónomo alemán
Tycho-Brahe, en la isla Hveen, Alemania, construido en 1576 y disponía de puestos de
observación a las cuatro direcciones celestes.
4.2. Observación óptica instrumental.
El primer instrumento de observación astronómica fue el anteojo astronómico,
que data de 1608, y fue empleado por Galileo que descubrió en 1610, cuatro satélites de
Júpiter, y fue un memorable acontecimiento en la historia de la Astronomía. En adelante
no se interrumpió la cadena de descubrimientos con el anteojo astronómico y los ins-
trumentos derivados de él, más desarrollados.
Los anteojos astronómicos o telescopios utilizados en la observación de la luz vi-
sible, se dividen en dos tipos:
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
26/37
1. Telescopios refractores, construidos con lentes ópticas o sistemas de lentes.
2. Telescopios reflectores, construidos mediante espejos cóncavos.
Al grupo de los primeros pertenece, el anteojo de Kepler, formado esencialmente
por dos lentes, el objetivo y el ocular. El objetivo, que está del lado del objeto a obser-
var, hace converger a un punto, llamado foco, la imagen de un objeto alejado, y dicha
imagen próxima es enfocada por el ojo a través de una lente o lupa, el ocular, que pro-
duce una imagen invertida del objeto. Para la eficacia de un telescopio astronómico no
es decisiva la ampliación, sino el diámetro y abertura del objetivo ya que decide cuánta
luz procedente de un astro quizás muy leja-
no, puede impresionar la placa fotográfica o
la retina del ojo. Cuanto mayor sea el objeti-
vo tantas más estrellas de luminosidad escasa
podremos observar. Sin embargo las mayo-
res ampliaciones se consiguen con objetivos
de largas distancias focales. 
FIG. 16
Los telescopios de la época pionera tenían largas distancias focales pero escaso
diámetro en el objetivo. Johann Hevel construyó en Danzig un telescopio de 45 metros
de largo, que se movía mediante un mástil y un aparejo. Estos aparatos carecían de tubo
y se les llamaron anteojos aéreos. No pudieron eliminar la anomalía de color o sea la
aberración cromática, hasta la época de Joseph Fraunhofer.
Al grupo de los segundos, telescopios reflectores, pertenece el telescopio cons-
truido por Newton en 1671. Está formado por un tubo que dispone de un espejo cóncavo
en su fondo, y a la distancia focal del espejo en el eje del tubo, dispone de un espejo
captor de tal manera que los rayos procedentes del espejo cóncavo, antes de su unión en
el punto focal, son reflejados a un lado en ángulo recto (fig.17). El ocular se disponía
lateralmente.
 FIG. 17 FIG. 18
De los habituales sistemas de construcción empleados hoy, citaremos el telescopio
de Cassegrain, (fig.18), donde el espejo captor enfoca los rayos hacia una perforación en
el centro del espejo principal, donde se sitúa el ocular.
La ventaja del telescopio de reflexión sobre el telescopio de refracción o lenticular
es que no presenta dispersión de colores o aberración cromática. Los telescopios gigan-
tescos son, en general, reflectores, debido a que resulta muy difícil construir lentes de
más de un metro de diámetro. Destacaremos que el mayor telescopio reflector construi-
do está situado en el observatorio del Monte Palomar, en California, a 1700 m de altura,
que posee una cúpula de 41 m de alta, que encierra el telescopio reflector con un espejo
de 5 metros de diámetro. Todo el instrumento pesa 500 Tm, nada en una capa de aceite
muy fina y un diminuto motor sincrónico de sólo 60 watios basta para hacer seguir al
telescopio el curso de las estrellas.
www.eltemario.com Oposiciones Secundaria – Física y Química
© Antonio Abrisqueta García, 1999 Temario Específico – Tema 39
27/37
4.3. Cartografía fotográfica.
El gran avance de la Astronomía en las últimas décadas se debió a la utilización
de la técnica fotográfica. Las ventajas de la exploración fotográfica tienen

Continuar navegando