Logo Studenta

VENTILACIÓN DE MINAS - INGENIERÍA DE MINAS

¡Este material tiene más páginas!

Vista previa del material en texto

EXPLOTACIÓN DE MINAS
VENTILACIÓN DE MINAS
Saber, Saber hacer, Saber ser
Evaluación por Competencias 
VENTILACIÓN DE MINAS
(Explotación de minas)
Nombre del estudiante: _____________________________________________________________
El presente documento es una lista de conocimientos, habilidades y destrezas que representa el 
estándar de las competencias que debe adquirir un trabajador.
Los niveles de competencia se clasifican de acuerdo al porcentaje de las competencias alcanzadas 
(según CETEMIN).
CRITERIOS DE CALIFICACIÓN:
NOTA:
A. Si es necesario, el evaluador puede hacer preguntas durante la evaluación para aclarar cualquier 
detalle en relación a los criterios de competencia.
B. El evaluador debe explicar la metodología antes del examen, y recordarles que las acciones 
o explicaciones deben ser precisas. 
Puntaje Final Total 
VALORES Y ACTITUDES:
Responsabilidad, Respeto, Perseverancia y Proactividad. Saber, Saber hacer, Saber ser
excelente sobresaliente bueno malo deficiente
90 - 100% 80 - 89% 70 - 79% 50 - 69% 0 - 49%
Evaluación por competencia 
1. IDENTIFICA LOS GASES EN EL AIRE CON EL DRAGER
excelente sobresaliente bueno malo deficiente
 » Mide la cantidad de Monóxido de carbono en ppm
 » Mide la cantidad de Bióxido de Carbono en ppm
 » Mide la cantidad de gases nitrosos en ppm
 » Mide la cantidad de Oxígeno en %
Observaciones: .....................................................................................................................................
...............................................................................................................................................................
Puntaje
4. CONTROLA LOS POLVOS EN LA MINERÍA SUBTERRÁNEA
excelente sobresaliente bueno malo deficiente
 » Utiliza agua en la perforación
 » Utiliza ventilación secundaria
 » Utiliza respirador para polvos durante la perforación
Observaciones: .....................................................................................................................................
...............................................................................................................................................................
Puntaje
2. IDENTIFICA EL FLUJO DEL AIRE CON EL ANENÓMETRO
excelente sobresaliente bueno malo deficiente
 » Mide la cantidad de aire en CFM
Observaciones: .....................................................................................................................................
...............................................................................................................................................................
Puntaje
3. MIDE EL RUIDO CON EL SONÓMETRO
excelente sobresaliente bueno malo deficiente
 » Mide el ruido en dB
Observaciones: .....................................................................................................................................
...............................................................................................................................................................
Puntaje
Ventilación de Minas
3Saber, Saber Hacer, Saber Ser
TABLA DE CONTENIDOS
1. HIGIENE OCUPACIONAL MINERA ............................................................................................. 7
1.1 El AIRE ATMOSFÉRICO ...................................................................................................... 7
1.2 COMPOSICION DEL AIRE .................................................................................................. 7
1.3 LOS GASES DE MINA ......................................................................................................... 9
1.4 LOS POLVOS DE MINA ....................................................................................................... 17
1.5 RUIDO .............................................................................................................................. 22
1.6 VIBRACIONES ................................................................................................................... 24
1.7 EL CALOR Y LA HUMEDAD ................................................................................................ 25
2. VENTILACIÓN MINERA ............................................................................................................ 33
2.1 CONCEPTO ....................................................................................................................... 33
2.2 PRINCIPIOS BASICOS DE VENTILACION DE MINAS ............................................................ 33
2.3 CALCULO DE LAS NECESIDADES DE AIRE EN LAS LABORES SUBTERRANEAS ...................... 48
2.4 NECESIDADES DE AIRE EN MINAS A DIFERENTES ALTITUDES ............................................ 49
2.5 SISTEMAS DE VENTILACION ............................................................................................. 50
2.6 VENTILACION EN LUGARES DE TRABAJO .......................................................................... 55
Ventilación de Minas
5Saber, Saber Hacer, Saber Ser
 l propósito de este curso es adquirir conocimientos básicos de 
 “Ventilación de Minas subterráneas” para poder aplicarlos en los di-
ferentes problemas que se presentan en cada mina que les toque laborar. Ac-
tualmente la ventilación de una mina como el control ambiental, es cada día 
más complejo debido a las condiciones ambientales desfavorables que ocurre 
en cada momento; debido principalmente al consumo de explosivos, al uso de 
equipos diesel, a la presencia de material particulado (polvo) debido al mani-
puleo del material roto (mineral y desmonte; a la diversidad de labores (ga-
lerías, piques, chimeneas, cruceros, tajeos, etc.); a la profundidad de las 
minas; a la cantidad de personal que labora en cada una de ellas, etc.
Proveer a estas minas de aire fresco y de buena calidad, libre de contaminantes 
que circule por los ductos hasta llegar a los lugares donde el personal traba-
ja; es cada vez más difícil y costoso por cuanto, se tiene que utilizar ventilado-
res (principales, secundarios y auxiliares, etc.) para impulsar grandes flujos 
de aire y vencer altas resistencias que presentan los diferentes ductos o 
conductos por donde circula el aire. La ventilación natural por si sola no es ca-
paz satisfacer las necesidades requeridas de aire, ayuda en ciertos momentos 
siempre y cuando se le utilice adecuadamente en las corrientes de aire; por 
esta razón el uso de ventiladores en las minas es fundamental y necesarios 
para crear altas y bajas presiones, las que nos permitirán mover los flujos de aire 
de acuerdo a las necesidades requeridas.
El uso de fórmulas matemáticas en el cálculo de los diferentes parámetros de ven-
tilación, complementado con la utilización de instrumentos de medición 
de los diferentes contaminantes físicos y químicos presentes en cada mina 
subterránea, son elementos importantes que cada uno de los alumnos debe 
conocer.
INTRODUCCIÓN
E
7Saber, Saber Hacer, Saber Ser
• Por qué debemos conocer el aire atmosférico. 
• Características del aire atmosférico.
• El aire en la altura. 
• La respiración humana y la cantidad de aire para mantener el O2 y CO2 dentro de límites permisibles
• La densidad del aire, densidad relativa del aire, volumen especifico del aire y relación del volumen del aire con 
la temperatura. 
• El oxígeno, características, detección del oxígeno, deficiencia de oxígeno, origen de la deficiencia de oxígeno. 
• Los gases fundamentales que forman la atmósfera son: Nitrógeno (78.084%), Oxígeno (20.946%), Argón 
(0.934%) y Dióxido de Carbono (0.033%). Otros gases de interés presentes en la atmósfera son el vapor de 
agua, el ozono y diferentes óxidos.
• La mezcla de gases que llamamos aire mantiene la proporción de sus distintos componentes casi invariable 
hasta los 80 km, aunque cada vez más enrarecido (menos denso) conforme vamos ascendiendo. A partir de los 
80 km la composición se hace másvariable.
• El aire tiene una mezcla casi perfecta de 78% de nitrógeno y 21% de oxígeno (en volumen) al menos en todos 
los niveles de la tropósfera.
• Lo que ocurre es que la cantidad absoluta del aire disminuye con la altura, y por tanto la cantidad absoluta de 
oxígeno también disminuye con la altura, pero la proporción es siempre la misma.
EL NITRÓGENO:
El nitrógeno es un gas inerte, incoloro, inodoro, e insípido. No es venenoso y no sostiene la vida ni la combustión. 
Su gravedad específica es 0.971, por lo cual es más ligero que el aire. Cuando se encuentra mezclado con un poco 
de oxígeno o sólo, produce sofocamiento sobre el organismo humano. Se encuentra por desprendimientos de los 
estratos de roca en algunas minas y también por el consumo del oxígeno del aire por alguna forma de combustión, 
especialmente la combustión de explosivos.
Cuando los gases irrespirables, más ligeros que el aire; se acumulan en chimeneas ó lugares altos de trabajo, están 
formados generalmente por nitrógeno. Cuando se mezcla con oxígeno en una proporción aproximada de 79 a 21 
como en el aire ordinario, su acción es diluir el oxígeno. El nitrógeno puro apaga la llama de lámparas, de combus-
tibles diversos, velas o fósforos inmediatamente.
Este gas causa la muerte por sofocación, cuando el porcentaje de nitrógeno sube o cuando el porcentaje de oxíge-
no baja, lo cual en realidad es lo mismo y se encuentra dentro del aire que inhalamos dentro o fuera de mina, y 
no nos ocasiona nada si está dentro de su Limite permisible.
EL OXIGENO:
CARACTERÍSTICAS FÍSICAS.
Es un gas en su estado normal. Es la fuente de la vida y la fuente de la combustión. Es incoloro, inodoro, e insípido, 
es un elemento del aire, que el hombre inhala para subsistir.
El aire al ingresar a los pulmones deja el oxígeno que es absorbido por los glóbulos rojos al entramado pul-
monar, de los cuales se lleva esté combustible a las diferentes partes del cuerpo mediante la sangre, reaccio-
nando con las sustancias grasas produciéndose la combustión y el calor en forma de energía que mantiene la 
temperatura del cuerpo y con ello la vida misma y como consecuencia de esta combustión se genera el anhídrido 
carbónico que es eliminado del circuito por la exhalación.
HIGIENE OCUPACIONAL MINERAICAPÍTULO
1 EL AIRE ATMOSFÉRICO
2 COMPOSICIÓN DEL AIRE
Manual del Estudiante
Saber, Saber Hacer, Saber Ser8
DETECCIÓN DEL OXÍGENO:
Este gas se detecta mediante instrumentos electrónicos 
y mediante detectores múltiples que detectan 02, C02, 
C0 y metano a un mismo tiempo, indicando; median-
te alarmas de primero, segundo y tercer sonido que las 
concentraciones han aumentado, observándose que el 
C02 va incrementándose y el 02 va bajando, más aún si 
hay monóxido de carbono, que también es detectado 
por el aparato detector.
Otro método para detectar el oxígeno es a través de 
la lámpara de seguridad la cual se apaga cuando el 
contenido de oxigeno baja por debajo del 16% que indi-
ca que hay deficiencia de oxígeno.
Otro método es la llama de la luz de un fósforo, la cual 
también se apaga cuando el oxígeno está por debajo del 
16% y esta llama se reduce a un mínimo tamaño de 
color totalmente azul, pero el fósforo tiene la des-
ventaja que de uno tiene que estar seguro, de que no haya 
un gas explosivo, como el metano y el hidrogeno.
DEFICIENCIA DE OXIGENO
Hay deficiencia de oxigeno cuando el oxígeno baja de 20.99% que tiene el aire a nivel del mar y se va reduciendo a 
19.5% y cuando baja del 19.5% que es su límite mínimo permitido se puede seguir viviendo por debajo hasta el 
18.5%, pero viene los efectos en el cuerpo humano, como dolor de cabeza, desgano, sueño, agitación frecuen-
te o zumbidos a los oídos, nunca se debe estar por debajo del 16% donde ocurre el desvanecimiento, y cuando el 
oxígeno baja a 13% y la exposición es prolongada viene la pérdida total de conocimiento.
En cualquier caso de deficiencia del oxígeno en mina, el tratamiento es sacarlos al aire limpio, proveerle oxígeno, 
abrigarlo y hacerle respiración boca a boca o bajarlo a una altitud inferior.
ORIGEN DE LA DEFICIENCIA DE OXÍGENO EN LA MINA:
Esta es:
• Por descomposición de la madera por hongos y humedad, que consumen oxígeno.
• Por qué hay una llama que consume el 02, como soldar tuberías de plásticos dentro de la mina ó incendios.
• Por Oxidación del mineral como el caso de las piritas que lentamente quita el oxígeno del aire.
• Por la emanación de gases de estratos geológicos que desplazan el 02 
• Por la explosión de las voladuras en los frente, que libera C02 y aísla el 02.
• Por el consumo de 02, debido a la respiración de los hombres que hay en mina y que evacuan C02. Como el 
caso cuando hay mayor cantidad de hombres que la cantidad de aire asignada para ellos.
EFECTOS EN LA SALUD POR FALTA DE OXIGENO:
• Un hombre trabaja mejor con 21 % de oxigeno
• 17 % los efectos son dolor de cabeza
• 16 % la respiración es agitada, aceleración de los latidos del corazón, 
• Zumbidos en los oídos y desvanecimiento.
• 12 % se produce desvanecimiento, perdida del conocimiento.
• 9 % Se produce desvanecimiento, hay inconsciencia.
• 7 % La vida peligra,
• 5 % Convulsiones momentáneas, muerte.
Ventilación de Minas
9Saber, Saber Hacer, Saber Ser
LIMITES MÁXIMOS PERMISIBLES DE LOS GASES QUE MAS FRECUENTEMENTE SE ENCUENTRAN EN LAS 
MINAS PERUANAS
Los límites máximos permisibles de los gases con las concentraciones límites por ocho horas de trabajo más allá del 
cual el gas ocasiona daño al trabajador. Estos límites que indicamos son los que están en uso y está de acuerdo al 
TLVs and Bels For Chemical substances and physical agents de 1998. (DS 046 - RSHM JULIO 2001
Límites Permisibles
Gas En ppm %
O2 19.5% mínimo.
CO 25 ppm. 0.0025%
N02 5 ppm. 0.0005%
CO2 5,000 ppm. 0.5%
SO2 5 ppm. 0.0005%
H2S 10 ppm. 0.001%
CH4 5,000 ppm. 0.5%
Aldehídos 5 ppm. 0.0005%
LOS CONTAMINANTES EN MINA:
Los contaminantes más frecuentes en las minas peruanas son: 
• Contaminantes químicos: gases, vapores, polvos humos, neblinas.
• Contaminantes físicos: ruido, temperaturas extremas, presión barométrica, vibraciones, humedad extre-
ma, iluminación y radiación.
• Contaminantes biológicos: mohos, hongos, bacterias, parásitos gastrointestinales, etc
ORIGEN DE LOS GASES:
Los diferentes gases que encontramos dentro de la mina, se genera por las siguientes causas:
GASES ACUMULADOS EN LOS ESTRATOS DE LAS ROCAS.
La acumulación de gases en los estratos rocosos, se presenta generalmente cuando al correr una galería o explo-
tar un tajeo se atraviesa zonas falladas, en muchos casos con presencia de agua, en otros casos rocas fracturadas 
donde a través de ellas emanan gases que se forman debido a las reacciones químicas que se producen por la 
presencia de minerales sulfurosos que reaccionan con el oxígeno, a presiones y temperaturas favorables, en otros 
casos puede ocurrir que cuando se formó el yacimiento de mineral, algunos gases quedaron atrapados y que 
con el fracturamiento de las rocas ocasionada por los disparos estos gases emanan a través de las fracturas. Ejem-
plo: CO, CO2, SO2, metano, N2 y H2S
GASES QUE SE GENERA POR LA DESCOMPOSICIÓN DEL MATERIAL ORGÁNICO (MADERA).
La mayoría de las minas metálicas usan madera de diferente tipo para sostenimiento. En lugares donde la tem-
peratura es elevada, la madera tiende a albergar una serie de hongos, los cuales son los causantes del consumo 
de oxígeno, asimismo en lugares donde hay demasiada humedad relativa la madera tiende a descomponerse 
liberando anhídrido carbónico.
GASES QUE SE GENERAN POR EL USO DE EXPLOSIVOS Y AGENTES DE VOLADURA.
El consumo de explosivos y agentes de voladura son también los causantes en generar gases, especialmente en 
el momento de la detonación, la cantidad de gases liberados, está en función a la composición, tipo y cantidad 
de explosivo que se use. Los gases más conocidos que se forman son los siguientes: NO2, NO3, CO, H2S, SO2, etc.
3 LOS GASES DE MINA
Manual del EstudianteSaber, Saber Hacer, Saber Ser10
GASES QUE SE GENERAN POR EL USO DE EQUIPOS DIESEL.
 El uso de equipos que son accionados por Diesel es otro de los causantes de la generación de gases y humos los cuales 
contaminan el ambiente. Hay un gran número de minas que usan equipos diesel en el interior de la mina y mucho de 
estos equipos no utilizan catalizadores o filtros los cuales son los causantes de la generación de gases como son: CO, 
NO2, CO2
GASES MÁS FRECUENTES EN MINAS PERUANAS
Este referido a los diferentes gases que se producen en la mina, en forma natural o los que se producen debido al 
uso de explosivos, equipos diesel, uso de material orgánico, soldaduras, etc.
Los gases que encontramos con mayor frecuencia en las minas peruanas son:
 – MONOXIDO DE CARBONO (CO)
 – ANHÍDRIDO CARBONICO (CO2)
 – ANHÍDRIDO SULFUROSO (SO2)
 – ÁCIDO SULFHIDRICO ( H2S)
 – VAPORES NITROSOS (NO + NO2)
 – METANO NH4
1. MONOXIDO DE CARBONO (CO)
Formula : CO
Gravedad específica : 0.967
Límite de Exposición Permisible : 25 partes por millón (ppm) o 0.0025 %
Propiedades físicas:
Es un gas incoloro, inodoro e insípido, extremadamente venenoso y es el causante del 90 % de accidentes fatales 
de la mina. Pesa aproximadamente igual que el aire por lo que es difícil diferenciarlo.
Efectos en la salud:
Disminuye la capacidad que tiene la sangre para transportar el oxígeno a los tejidos. El monóxido de carbono tiene 
una gran afinidad por la sangre, normalmente la sangre en personas no expuestas al CO contiene aproximada-
mente 1 % de CO como resultado del metabolismo normal de la hemoglobina.
% de saturación de COH en la sangre Síntomas
0 a 10 Nada
15 a 25 Dolores de cabeza palpitaciones en la sien, nauseas.
60 a mas Fatal.
De 0.0025% ( 25 ppm) Límite Máximo Permisible
De 0.020 % (200 ppm) Produce ligero dolor de cabeza en muchas horas.
De 0.040 % (400 ppm) Produce dolor de cabeza, e incomodidad en 2 1/2 horas 
De 0.120 % (1200 ppm) Produce palpitaciones aceleradas del corazón en 30 minutos con tendencia a tamba-learse en 1 ½ horas.
De 0.20 % (2000 ppm) Produce inconsciencia en 3 minutos y Muerte. 
La inhalación produce dolor de cabeza, náuseas, mareos, debilidad, agitación, inconsciencia y muerte de acuerdo 
a la siguiente escala.
Ventilación de Minas
11Saber, Saber Hacer, Saber Ser
Altas concentraciones pueden ser fatales y sin producir sintamos de advertencia significativos.
La exposición a este gas puede agravar enfermedades al corazón arterias como también provocar dolores de pe-
cho en las personas que padecen de enfermedades cardiacas pre existentes.
Detección de CO
• Antiguamente se detectaba la presencia de CO con canarios y ratones.
• Actualmente se dispone de monitores digitales (Monitor Scientific, Modelo CO 260, aprobado por MSHA de 
USA).
Formula: CO2
Gravedad específica: 1.529
Límite máximo permisible: 5000 ppm o 0.5 %
Con el detector enatas Draguer, que usa tubos detectores.
2. ANHÍDRIDO CARBONICO (CO2) DIOXIDO DE CARBONO, GAS DE AGUA
CARACTERÍSTICAS
 – Detección simultanea de 04 gases (LEL (gases combustibles), O2, H2S, y CO)
 – Dos alarmas audibles (95 db a 30 cm)
 – Tres alarmas visuales LEDs
 – Alarma con vibrador
Es más pesado que el aire, incoloro, inodoro, tiene un ligero sabor a ácido, no es combustible ni mantiene la com-
bustión. En las minas es producido por la respiración de los hombres, cualquier tipo de combustión (soldadu-
ras, etc.), por el uso de los explosivos. En forma natural lo encontramos en los estratos de rocas.
Efectos en la salud
 – La presencia de anhídrido carbónico en exceso reduce la cantidad de oxígeno en el aire.
 – En ausencia de aire el anhídrido carbónico puede causar el siguiente efecto en el organismo:
Manual del Estudiante
Saber, Saber Hacer, Saber Ser12
de 0.5 % Límite Máximo Permisible no produce malestar.
3.0 % Causa ligera dificultad en la respiración.
5.0 a 6.0 % Causa palpitaciones.
6.0 a mas Es peligroso
15 % Fatal en la mayoría de los casos.
Tratamiento de los Pacientes
 – El paciente debe ser sacado al aire fresco lo más pronto posible.
 – Mantener al paciente abrigado todo el tiempo.
Si el paciente no respira su respiración es intermitente, dar respiración artificial.
Detección del anhídrido carbónico
 – Como el anhídrido carbónico no mantiene la combustión, y por tanto extinguirá sus llamas, entonces en 
forma práctica se puede detectar a través de una llama de un fósforo o de una vela. Como es más pesado 
que el aire, se le encuentra generalmente en el piso de las galerías.
 – Mediante el indicador Fyrite de anhídrido carbónico.
 – Mediante el detector Drager
 – Mediante instrumentos digitales.
3. ANHÍDRIDO SULFUROSO (SO2):
Formula: SO2
Gravedad específica: 2.21
Límite Máximo Permisible: 5 ppm o 0.0005 %
Es incoloro, pero sofocante e irritante con fuerte olor sulfuroso.
En las minas lo encontramos en labores donde hay abundante sulfuro de fierro o pirita en el mineral y en lugares 
donde hay altas temperaturas. Se forma a veces por la combustión del azufre en el carbón o en los minerales en 
altas temperaturas. Durante incendios o explosiones en la mina. Se produce también por el uso de explosivos en 
el disparo de ciertos minerales que contienen un alto porcentaje de sulfuros. También debido a la explosión de los 
explosivos. 
Efectos en la salud:
 – No es combustible ni mantiene la combustión, pequeñas cantidades de SO2 en el aire, puede causar la muerte.
 – Su acción tóxica en el organismo es similar al monóxido de carbono de acuerdo a la siguiente escala:
0.001 % Causa irritación de la nariz y la garganta.
0.04 % Causa congestión en el pecho, inflamación de la nariz y la garganta
0.1 % Causa la muerte en pocos minutos.
Tratamiento de los pacientes 
 – El paciente que ha sufrido asfixia por Anhídrido Sulfuroso, mantenerlo abrigado todo el tiempo.
 – Trasladarlo a un lugar donde haya aire fresco.
 – Solicitar ayuda de un medico lo más pronto posible.
Detección del Anhídrido Sulfuroso
 – El método más práctico de detectar este tipo de gas es por el olfato, es un gas irritante con fuerte olor 
repugnante a la garganta, también irrita a los ojos y a los pasajes respiratorios, es intolerable respirar antes 
de alcanzar concentraciones peligrosas.
 – A través de monitores digitales 
 – A través del detector Drager.
Ventilación de Minas
13Saber, Saber Hacer, Saber Ser
4. ÁCIDO SULFHIDRICO (H2S), HIDROGENO SULFUROSO, GAS APESTOSO:
Formula: H2S
Gravedad Específica: 1.191
Límite Máximo Permisible: 10 ppm o 0.001 %
Este gas comúnmente se le llama gas apestoso debido a su olor característico de putrefacción a huevo podrido.
En las minas lo encontramos en los charcos de agua estancada, desagües de áreas inundadas, en los disparos de 
minerales sulfurosos. Se le encuentra en cantidades apreciables en la combustión de la pólvora negra. Cantidades 
peligrosas se encuentra en las minas de yeso, minas de carbón, etc.
Este gas es más venenoso que el monóxido de carbono, pero no es considerado tan peligroso por su olor caracte-
rístico de putrefacción que denuncia fácilmente su presencia. Se debe tener cuidado de no agitar charcos de agua, 
cuando se sospecha que puede contener ácido sulfhídrico, debido a que un pie cúbico de agua, puede liberar 3 
pies cúbicos de ácido sulfhídrico.
 Efectos en la salud
 – Este gas es muy irritante a los ojos y a la garganta.
 – Su acción tóxica se manifiesta de acuerdo al siguiente orden:
0.001 % Límite Máximo Permisible.
0.02 % Concentración peligrosa después de 1 hora de exposición.
0.04 % Extremadamente peligroso después de 30 minutos.
0.1 % Muerte instantánea.
Tratamiento de los pacientes
El tratamiento es el mismo que se aplica para el envenenamiento por monóxido de carbono, pero además los ojos 
deben ser cubiertos por una compresa húmeda para prevenir los efectos de la luz.
Todos los pacientes deben ser atendidos por un facultativo y mantenerlos bajo observación por lo menos24 horas.
Detección de ácido sulfhídrico
 – Olfato
 – Por su olor característico es la manera más fácil de detectar bajas concentraciones, aunque uno no debe 
confiarse, y que altas concentraciones tiende a destruir el sentido del olfato, que hace creer a la persona 
que el peligro ha pasado. Por esta razón es necesario que cuando se detecte presencia de ácido sulfhídrico 
se debe abandonar inmediatamente el lugar y reportar al momento.
 – Monitores digitales 
 – Detectores Drager. 
5. VAPORES NITROSOS (NO + NO2):
Formula NO2, N2O3
Límite Máximo Permisible 5 ppm o 0.0005 %
Estos gases son fácilmente percibidos por el olfato, tienen un color rojizo (NO2)
Los vapores nitrosos formados por óxidos nitrosos, se encuentran normalmente en minas, después de habré reali-
zado una voladura con dinamita o anfo. Estos vapores son más peligrosos que el ácido sulfhídrico.
También lo encontramos en la soldadura, se desprende óxido nítrico y este por oxidación pasa a dióxido de nitró-
geno. En los laboratorios cuando se ataca muestras orgánicas y minerales con ácido nítrico.
Manual del Estudiante
Saber, Saber Hacer, Saber Ser14
0.0005 % Concentraciones Máximas Permisibles para 8 horas.
0.006 % Causa irritación a la garganta.
0.01 % Causa tos.
0.015 % Peligroso para corta exposición (1/2 a 1 hora).
0.02 a 0.07 % Fatal para una corta exposición.
Tratamiento a los pacientes
 – Darle atención medica de inmediato
 – Reposo absoluto con aparatos de respiración controlada.
 – La recuperación se logra de 3 a 4 días
 – En casos graves, la secuela e la siguiente: Bronquitis aguda, Proceso obstructivo restrictivo, fibrosis pulmo-
nar, insuficiencia respiratoria y cardiaca crónica.
Detección de vapores nitrosos.
 – Se le identifica fácilmente por su color pardo rojizo.
 – A través de detectores digitales.
 – A través del Drager.
6. EL METANO NH4
El metano tiene una gravedad específica de 0.554, es comúnmente llamado “gas de los pantanos”, “Grisú”. Es uno 
de los gases de los hidrocarburos más ligeros. Es incoloro, inodoro, sin olor, sofocante y no venenoso. Este gas 
cuando se mezcla con el aire en una proporción de 5 á 15% es altamente explosivo.
Se encuentra en forma natural, pero puede ser generado por la descomposición de la madera bajo el agua, debe 
tenerse cuidado cuando se desagua trabajos viejos de mina. Es también generado por la descomposición de substan-
cias vegetales. Es encontrado prácticamente en todas las minas de carbón y con alto maderamen y, también en 
algunas minas de mineral de fierro, en túneles de roca y en varios otros tipos de minas de mineral, donde los 
esquistos carbonosos se encuentren demasiado cerca.
Debido a su baja gravedad específica, es encontrado generalmente en el techo de las labores o en el final de las galerías 
o chimeneas, etc. Los sistemas de desagüe de las ciudades son también lugares donde se encuentra este gas.
Si hay suficiente metano para reducir el contenido de oxígeno en el aire a un punto más bajo que el necesario para 
mantener la vida, puede ser asfixiante, no se puede percibir porque no tiene ni olor, ni color, ni gusto.
Tratamiento
Los pacientes con síntomas de asfixia con metano, deben ser sacados al aire fresco. Si ha cesado la respiración 
debe iniciarse inmediatamente respiración artificial. Los pacientes no presentan efectos posteriores, y general-
mente reviven tan pronto como son sacados al aire fresco.
Detección del Metano
Los métodos aceptados más ampliamente son: Lámpara de flama de seguridad y detectores eléctricos que hoy en 
día se usan. Así como también los detectores múltiples.
Efectos sobre la salud
 – Produce conjuntivitis, edema de párpados, ulceraciones de córnea.
 – En la piel produce coloraciones pardo rojizas lo mismo que en dientes y cabello.
 – Produce también dolor en el pecho, disneas DIFICULTAD PARA RESPIRAR, tos con aspecto amarillo o san-
gre, cianosis fiebre, respiración asmática, bronconeumonía, edema pulmonar.
 – Dolor de cabeza, vértigo, delirio, convulsiones.
 – La toxicidad se da en el siguiente orden:
Ventilación de Minas
15Saber, Saber Hacer, Saber Ser
GASES QUE EVACUAN LOS EQUIPOS DIESEL
Desde que el combustible diesel pasó hacer un elemento de uso común, mejor que la gasolina, ha generado una 
serie de impactos en el ambiente, producido por los humos que emanan por los tubos de escape de los equipos. 
El motor diesel es más confiable más fuerte, exige menos mantenimiento que los motores convencionales, es 
menos costoso, además dura más.
Los equipos con motores diesel, tienen mejores ventajas que el motor de gasolina, por las siguientes razones:
• Aumenta en el doble el kilometraje.
• Es más barato que la gasolina.
• Es más económico desde el punto de vista del consumo.
• Control de los gases que evacuan los equipos diesel
Detecta el metano a 100 metros de distancia
Los gases de escape del diesel, tiene los siguientes componentes:
• Óxidos de nitrógeno
• Monóxido de carbono
• Anhídrido sulfuroso.
• Aldehídos
• Partículas microscópicas de sólidos y líquidos.
Cada una de estos gases tiene efectos potencialmente perjudiciales para los seres humanos. Por ejemplo el óxido 
de nitrógeno puede causar irritación en los ojos, y en la garganta. El dióxido de nitrógeno está clasifica-
do como un irritante fuerte para los pulmones, esta vinculado con el desarrollo de bronquitis, enfisema, El CO es 
peligroso para los conductores porque disminuye la eficiencia mental, afecta la atención, la percepción, el razona-
miento y el control motor 
Una de las formas como se controlan estos gases, es a través de la instalación en los escapes de los equipos diesel 
filtros o catalizadores, que. En el mercado abundan, también pueden controlarse estos gases a través de una ven-
tilación eficiente, es decir contar con fuertes flujos de aire que. Puedan arrastrar estos humos y evitar que perma-
nezcan durante mucho tiempo en el ambiente 
Un equipo Diesel nuevo con PTX y scrubber evacua bajas concentraciones de C0, N02 y aldehidos. Se han hallado 
30 a 70 ppm de C0 en la superficie
Medido el flujo que evacua un equipo diesel sin scrubber o PTX se medido 1,000 ppm de N02 y 500 ppm de C0, los 
cuales debe ser diluidos obligadamente por el flujo de ventilación que atraviesa el lugar de operaciones.
No siempre la ventilación principal y la ventilación auxiliar son suficientes en volumen, para determinadas aéreas 
debido a obstáculos o diseños inadecuados o incompletos en el laboreo minero, razón por la cual el límite máximo 
permisible del C0 debe ser 1000 ppm para los nuevos equipos y para los equipos reparados sin ninguna discrimi-
nación.
Manual del Estudiante
Saber, Saber Hacer, Saber Ser16
HUMOS
En las minas, los humos consisten en la presencia de partículas muy finas de hollín, generado por los escapes de 
los equipos Diesel, por los trabajos de soldaduras, o cuando quemamos materiales diversos, etc.
El hollín que se origina, es irritante a la respiración pero no asfixiante, aunque en muchos casos si se hace más 
notorio, en lugares donde hay una deficiente ventilación es posible observar ambientes oscuros saturados por el 
hollín que hace suponer a muchas personas que es el gas Monóxido de carbono. 
CONTROL DE LOS GASES PRODUCIDOS EN LAS MINAS
Las medidas de control de los gases que se producen en las minas se debe hacer siguiendo una secuencia y orden.
• Prevención
 – Control en la voladura
 – Ajustar el mantenimiento de una maquina
 – Evitar el uso de materiales inflamables
• Remover
 – Drenar las aguas estancadas en galerías o lugares abandonados.
 – Utilizar purgadores o filtros en los equipos.
 – Utilizar ventilación exhaustiva localizada.
• Absorción
 – Cuando hay reacciones químicas, usar equipos acondicionadores
 – Después de una voladura de rocas, usar atomizadores en el material derribado.
• Aislamiento
 – Taponar labores abandonadas o no utilizables.
 – Realizar voladuras controladas.
scrubber
Ventilación de Minas
17Saber,Saber Hacer, Saber Ser
• Dilución
 – Usando ventilación auxiliar.
 – Diluir gases usando mangas de ventilación.
Este control preventivo está en función de los costos, la disponibilidad de los materiales, personal capacitado etc. 
Una forma práctica de llevar un control de los gases de mina es a través de un monitoreo de estos gases, en forma 
continua, lo cual nos indicara el grado de concentración en que se encuentran en el aire de mina. Si las concentra-
ciones de estos gases se encuentran sobre los Límites Máximos Permisibles, es de urgente necesidad ventilar 
las labores.
Se denomina Límites Permisibles de una sustancia a la concentración de esta sustancia en el ambiente atmos-
férico de un lugar de trabajo, por debajo de la cual existe una razonable seguridad de que un trabajador podrá 
desempeñar su labor durante las 8 horas de trabajo, sin sufrir molestias ni daño a su salud. Los Límites Permisibles 
están sujetos a revisiones periódicas, de acuerdo a estudios o normas técnicas .La concentración de los agentes 
químicos y los Límites Permisibles, se expresan de acuerdo a su naturaleza en:
g. Proporción volumétrica
h. Peso de agentes químicos por unidad de volumen de aire.
i. Numero de partículas por unidad de volumen de aire. 
Así los gases y vapores se expresan en partes de gas por millón de partes de aire ambiental o un tanto por ciento.
CASOS DE MUERTES POR INTOXICACIÓN CON GASES EN LAS MINAS DEL PERU.
A continuación se exponen algunos casos de accidentes con consecuencias fatales ocurridas en diferentes minas 
del Perú, de estos casos debemos sacar algunas conclusiones que nos permitan evitar la ocurrencia en el futuro de 
algún incidente o accidente. Las respuestas los iremos conociendo a medida que vayamos analizando este tipo de 
casos, que han ocurrido en diferentes labores como son:
• En chimeneas.
• En galería o labor abandonada.
• En tajeos.
• En galería a la hora de los disparos
• Al regresar a los frentes de disparado
ORIGEN:
Los polvos que se presentan en las diferentes operaciones de minado y Plantas de beneficio de minerales son 
partículas sólidas finamente divididas que se originan por: Las perforaciones de roca, en la voladura de la roca y 
minerales, así como también; en la limpieza de mineral derribado y en las transferencias de este mineral hacia los 
echaderos y en las descargas de las tolvas de estos echadores hacia los carros metaleros.
ASENTAMIENTO DE LOS POLVOS:
Los polvos, que son un conjunto de partículas pequeñas que flotan y se mantienen en el ambiente durante buen 
tiempo para asentarse y en otros casos son diluidos, dispersados o transportados mediante la velocidad del aire de 
la ventilación natural o forzada que hay en el punto de generación de polvos.
Técnicamente polvo asentado se considera a todo aquel que tiene más del 90% de material terroso y que pasa por 
malla menos 200 equivalente a 0.075 milímetros, que es mucho menos que un milímetro.
¿QUE OCASIONAN LOS POLVOS?:
Los polvos son contaminantes, que crean condiciones de falta de visibilidad, riesgo de accidentabilidad, pér-
dida de tiempo en la velocidad de transferencia para su transporte, dañan los equipos y daña los bronquios y 
pulmones de los operadores, dependiendo del tamaño de las partículas, composición química y tiempo de expo-
sición a estos.
4 LOS POLVOS DE MINA
Manual del Estudiante
Saber, Saber Hacer, Saber Ser18
Estos polvos son los causantes de las enfermedades ocupacionales que se adquieren cuando se trabaja durante 
mucho tiempo en las labores mineras.
TAMAÑO DE LAS PARTICULAS DE POLVO:
Cuando estamos dentro de mina y observamos el As de luz de nuestra lámpara eléctrica, dirigida hacia la di-
rección de la galería, podemos ver un aire limpio sin particular flotantes o podemos ver que hay una serie de 
partículas flotantes en el ambiente. Las que flotan y las vemos son de más de un milímetro de diámetro y por eso 
las vemos; mientras que las de menor tamaño a un milímetro, nos las vemos y este es el polvo fino que se asienta 
después de muchas horas en las paredes de la galería y está constituido por partículas del tamaño de 75, 50, 20, 10 
y 5 micras a menos equivalentes a 0.075, 0.05, 0.02, 0.01 y 0.005 milímetros respectivamente.
Los Higienistas y Médicos de salud ocupacional han determinado que las partículas de 5 micras a menos, que son 
las que no vemos y son las causantes de las enfermedades ocupacionales; son las que atraviesan el tracto respira-
torio superior del hombre y se alojan en los pulmones ocasionando daño, mientras que la de mayor tamaño a 5 
micras van quedándose en la fosas nasales o bronquios.
COMPOSICIÓN QUÍMICA DE LAS PARTICULAS:
Los polvos en minas son generalmente una mezcla de varios minerales pueden estar constituidos por partículas 
del mineral que explotamos como la pirita, los sulfuros, el carbón, la calcopirita, la galena, la blenda, la cuprita, y 
además por el cuarzo y sílice y por partículas de ortosa, crisocola, caolín, biotita, que también contienen sílice y 
que son la ganga que está dentro del mineral o en otras ocasiones están al costado del mineral y que al momento 
de volar y extraer la se pulverizan ocasionando ambientes polvorientos que contiene sílice o sílice libre (SiO2) la 
cual daña si la respiramos por mucho tiempo, sufriendo la enfermedad profesional denominada silicosis; razón por 
la cual hay necesidad de realizar la determinación química de los polvos mostrados, empleando métodos químicos 
y petrográficos a fin de conocer el porcentaje del sílice libre que hay en la muestra tomada en el campo.
MOVIMIENTO DE LAS PARTICULAS DE POLVO DE TAMAÑO PEQUEÑO:
El movimiento del material particulado en la mina tiene que ser bien comprendido para evaluar los daños y darles 
a estas partículas el adecuado medio de supresión o control. La velocidad de sedimentación de estas partículas es 
muy lento porque siguen un movimiento zig-zag ante o casi nunca se asientan. La velocidad de asentamiento de 
las partículas de sílice se muestra en el siguiente cuadro:
Tamaño de partículas (Micrómetros) Tiempo para caer (Pies por minuto)
0.25 590.00
0.50 187.00
1.0 54.00
2.0 14.50
5.0 2.50
DAÑO QUE CAUSAN LAS PARTICULAS DE POLVO:
Las partículas cuyo tamaño es mayor a 10 micras o sea mayores a 0.01 milímetros no tienen tanta importancia en 
el daño humano porque estas no se mantienen por tiempo prolongado en suspensión ni en la corriente de aire que 
hay en las galerías, aun cuando la velocidad sean bajas; porque estas siendo grandes precipitan debido a su masa 
o gravedad o se van quedando en el tracto respiratorio superior del hombre como son las fosas nasales y tráqueas 
y no ingresan a los pulmones.
Las partículas de polvo con patología de efecto dañino, son las que miden menos de 5 micras. Estas son las que 
no vemos y viajan en el aire de las corrientes de la mina y van a parar a los alvéolos pulmonares siendo estas las 
partículas que un Ingeniero de ventilación de mina tiene que suprimirlas o colectarlas en su origen o diluirlas rá-
pidamente para que no estén en altas concentraciones en los diferentes flujos de aire de las diferentes labores 
de la mina como chimeneas y galerías.
Ventilación de Minas
19Saber, Saber Hacer, Saber Ser
Las partículas de polvo de menos de 5 micras no tienen peso o densidad significativa ni tampoco inercia y por es-
tas razones se mantienen suspendidas indefinidamente e invisiblemente a nuestros ojos en las corrientes del aire 
minero y sólo se asienta en muchas horas si no hay velocidad de aire.
Los polvos en la minería y en la industria tienen principalmente un tamaño de 0.5 a 3 micras y tienen una composi-
ción química, diferente que pueden o no, según su composición afectar los pulmones y ocasionar daño permanen-
te. En observaciones de pulmones abiertos, las partículas de 5 micras para abajo son las que en mayor porcentaje 
se han encontrado diseminados en estos órganos y que son de sílice, carbón, fierro u otros.
Es importante conocer mediante muestreo ambientaly análisis químico; primero la composición química del polvo 
que hay en un ambiente, y la concentración de los componentes, segundo conocer mediante microscopio el 
mayor % del tamaño de partícula para decidir el grado de peligrosidad del polvo muestreado de un determinado 
lugar de la mina.
Por lo tanto, las partículas de pequeño diámetro, tenemos que encerrarlas y colectarlas en su fuente, precipitarlas, ais-
larlas o diluirlas en volúmenes de aire grandes para que no formen concentraciones dañinas.
CONCENTRACIONES MAXIMAS PERMISIBLES:
La Concentración Máxima Permisible para polvo con contenido de sílice se calcula de acuerdo a la fórmula:
CMP = 
250
= mpppca
% SiO2 + 5
Dónde:
• CMP = Concentración Máxima Permisible (mpppca) millones De partículas por pie cúbico de aire.
• % de SIO2 = Este porcentaje de SIO2, debe encontrarse en Laboratorio, de una muestra extraída de la mina
El límite Máximo Permisible para polvo de acuerdo al Reglamento de Seguridad y Salud Ocupacional. en el ambien-
te de trabajo no debe haber más de 3 miligramos por metro cúbico de aire, pero si el polvo es cuarzo puro ósea 
sílice libre; el LMP es de 0.1 miligramos por metro cúbico de aire.
Si el polvo es cristobalita el LMP es de 0.05 miligramos por metro cúbico de aire. Si hay polvos y mezclas de partí-
culas de cobre es de 1.0 mgr/metro cúbico.
Es decir, este LMP no reconoce composición química pero si analiza la composición química.
MONITOREO DE POLVOS DE MINA.
Para realizar un monitoreo de polvo en una mina, debemos contar con instrumentos tales como:
1. Frascos Mig impinger, acompañados de una bomba se succión Gelman, la que nos permitirá captar polvo a 
través de succión y el polvo es depositarlos en las botellas Big impinger por impacto, Las botellas deberán 
contener una sustancia alcoholica diluida. Este método antiguo, poco se usa.
2. Muestreador gravimétrico FLOWLITE M.S.A., con la utilización de filtros que vienen pesados de fábrica y gra-
bados con su peso para luego de muestreado ver el incremento de peso colectado de partículas de menos de 
5 micras en una balanza electrónica. La diferencia de peso será el que se genera en la toma de cada muestra.
Usando un Muestreador digital Sibata, Aquel que nos proporciona el número de partículas en cada muestreo.
EJEMPLOS DE MUESTREO DE POLVOS POR EL MÉTODO GRAVIMÉTRICO.
• Zona de muestreo : Nivel 1415 – Tajo 38
• Fecha de muestreo : sábado, 12 Abril 1999
• Hora de muestreo : 15:20 horas
Manual del Estudiante
Saber, Saber Hacer, Saber Ser20
0.136 mgr.
= 1.700 mgr/m3.
0.080 m3
Si 1 mgr /m3 equivale experimentalmente a 212 mp/m3 = millones de partículas por metro cúbico, los 1,700 mgr./
m3 tendrán: 360 mp/m3.
1,700 mgr /m³ x 212 = 360 mp/m³.
Siendo el limite permisible = 200 mp/m3 en el código de minería.
Estamos con 70% sobre el límite permisible.
EL CONTROL DE POLVOS EN MINERIA SUBTERRANEA
Los polvos de mina, se pueden controlar a través de los siguientes métodos:
• Utilizando agua para humedecer el mineral o desmonte en los diferentes procesos de trabajo (perforación, 
limpieza y manipuleo, hasta llegar a la tolva de gruesos.
• Utilizando ventilación secundaria, auxiliar y localizada, con la ayuda de ventiladores, aparatos que son los que 
permiten succionar o impeler aire que a través de la velocidad, se puede evacuar atmósferas contaminadas 
de polvo. 
CONTROL DE POLVOS MEDIANTE EL AGUA: 
La supresión de polvos mediante el agua se efectúa por sprays o pulverizadores de agua que es efectiva, por ejem-
plo, en los echaderos de mineral o descarga de carros mineros, para esto se requiere escoger el tamaño y forma 
de la boquilla del sprays o pulverizador. El tamaño de la boquilla de spray está en función del diseño del spray, y 
del chorro de agua, el cual puede salir en abanico, en línea o según nos convenga y también está en función de la 
presión del agua y del volumen de ésta.
Se pueden obtener hasta 600 psi de presión, produciendo pequeñísimas partículas de gotas de agua con altas 
velocidades, que pueden ser captadas por un ventilador para disipare las neblinas de agua y estas pueden ser 
dirigidas a galerías abandonadas o poco transitadas.
Para la limpieza del mineral o desmonte debemos usar spray de agua y de aire que es más efectivo que cuando 
usamos agua solamente. El volumen de agua que sale en forma atomizada lo obtenemos a través de varias expe-
riencias o practicas afín de evitar que se produzcan ambientes con neblina. El consumo de agua por las aberturas 
de los sprays es el siguiente:
• De 0.01 a 1 gpm
• De 1.00 a 10 gpm, y 
• De 10 a 70 gpm.
Para el caso de perforación la práctica demuestra que se debe utilizar 1 galón de agua por minuto, para cada má-
quina perforadora, la que nos proporciona aproximadamente una presión de 30 libras x pulgada cuadrada.
PARÁMETROS DE CÁLCULO
• Peso Inicial de Filtro : 13.880 mg.
• Peso Final de Filtro : 14.016 mg. Perforando con una máquina leopardo 
• Diferencia de Peso : 0.136 mgr.
• Volumen succionado en el muestreo : 2 Litros/min. = 0.002 m3/minuto
• Tiempo de muestreo : 40 min.
• Volumen total succionado : 0.002 m3/minuto x 40 min. = 0.080 m3.
Concentración de polvo: si en 0.080 m3 succionados hay un incremento de peso de 0.136 mg. En 1 m3 habrá un 
incremento de:
Ventilación de Minas
21Saber, Saber Hacer, Saber Ser
Es necesario anotar que la educación y capacitación del personal y la labor de supervisión de los supervisores, ca-
pataces, caporales, Jefes de guardia, jefes d e sección, capitanes de minas y personal profesional de diferentes áreas 
juegan un papel primordial para que se cumplan este método de control de polvo.
CONTADOR DE POLVO
El contador de partículas laser detecta a través de su 
tecnología láser los contaminantes del aire más peque-
ños, en un rango de grosor de 0,0003 mm (0,3 µm) has-
ta 0,005 mm (5 µm). La gran pantalla a color permite 
visualizar simultáneamente tres grosores de partículas. 
A pesar de su escaso peso y dimensiones compactas, el 
contador de partículas láser proporciona resultados fia-
bles y es especialmente fácil de usar. Las 8.000 series de 
datos se muestran en la gran pantalla a color y permiten 
ser transmitidos fácilmente mediante cable USB a un 
ordenador. Las series de datos son almacenadas como 
archivos *.csv y permiten ser leídas y editadas en Excel. 
CONTROL DE POLVOS MEDIANTE VENTILACIÓN:
La ventilación por medios mecánicos es un método que permite controlar los polvos en las minas, el uso de ventiladores 
nos permite succionar o desplazar atmósferas con concentraciones de polvo, para luego ser dirigidas a chimeneas de 
evacuación o a galerías abandonadas o poco transitadas, donde se puede instalar sistemas de lavado del aire, para que 
nuevamente este aire sea recuperado y ser utilizado en otras labores. El Reglamento de Seguridad y Salud Ocupacional 
establece la velocidad de transporte del aire que está comprendida entre 20 y 25 m/in como mínimo y 250 m/min 
como máximo, pero estos valores están permitidos cuando las condiciones de la mina se desarrollan sin problemas de 
polvo. Cuando la mina es muy polvorienta a causa de su método de explotación usado, es necesario considerar un flujo 
mayor de aire por las zonas de ingreso, para evacuar las partículas de polvo que se encuentren en suspensión
Para evacuar concentraciones de polvo, se usa ventilación auxiliar o ventilación localizada.
La ventilación auxiliar
La utilización de ventiladores de volúmenes moderados y el uso de mangas de ventilación, nos permiten controlar 
altas concentraciones de polvo que se generan a consecuencia del manipuleo del mineral, en la mina podemos 
encontrar estos lugares en galerías próximas a echaderos principales de mineral o desmonte o en lugares donde 
trabajan equipos mecanizados en el movimiento del material derribado (palas mecánicas, scoops, etc.). En estos lu-
gares se deben utilizar los ventiladores auxiliares para el control de los polvos, mediante una técnica adecuada.
Ventilaciónlocalizada
Este tipo de ventilación generalmente se utiliza cuando las fuentes de polvo son muy frecuentes y constantes, cons-
tituyéndose en focos de contaminación, por contener altas concentraciones de polvo. Para diseñar un sistema 
localizado se requiere de ciertos parámetros, los cuales deben estar de acuerdo a standares ya establecidos, 
donde las partículas de polvo deben ser capturadas.
LA NEUMOCONIOSIS
La neumoconiosis es una enfermedad ocupacional, en término genérico se utiliza para denominar todos los tipos 
de daños ocasionados por diferentes polvos. Cuando el daño es ocasionado por un determinado elemento pre-
dominante, toma el nombre de este compuesto, así; si el polvo de mina es abundante en sílice se llama silicosis.
Si los polvos son de carbón se le llama antracosis.
Si los polvos son fierro se le llaman siderosis y así sucesivamente.
LA SILICOSIS:
El hombre adquiere silicosis cuando ha estado expuesto a polvos de sílice por mucho tiempo y el daño ocurre 
cuando las partículas llegan a los alvéolos pulmonares en concentraciones por encima del límite máximo per-
misible, ocasionando en el trabajador un esfuerzo para respirar que le quita capacidad para realizar trabajo y 
ello es debido a que las partículas han recubierto áreas de los pulmones en buen tiempo de exposición y estos 
alvéolos no cogen el oxígeno para purificar la sangre.
Manual del Estudiante
Saber, Saber Hacer, Saber Ser22
Técnicamente es cualquier sonido indeseable, es una forma de vibración que puede conducirse a través de sólidos, 
líquidos o gases. Es una forma de energía en el aire, vibraciones invisibles que entran al oído y crean una sensación. 
Actualmente el ruido es el riesgo laboral de mayor prevalencia, por lo que se señala como un verdadero problema 
de salud pública, tanto por sus efectos auditivos como por los extra auditivos.
PROPIEDADES DEL RUIDO
1. Intensidad o Presión
2. Frecuencia
3. Duración
La Intensidad o Presión de los sonidos, sigue una ley de la inversa del cuadrado. Es decir según aumenta la distancia 
desde la fuente, disminuye el nivel del sonido como el cuadrado de la distancia.
La frecuencia del ruido, es el número de variaciones en la presión sonora por unidad de tiempo, expresada gene-
ralmente en ciclos por segundo (cps). Ejemplo,. Los sonidos que se producen en la industria son de gran número 
de frecuencia, y una persona que goza de buena salud auditiva puede percibir sonidos con frecuencia entre 20 a 
15000 cps o Hertz (hz)
La duración del ruido está en función del tiempo de exposición a que está sujeto la persona.
EFECTOS DEL RUIDO EN EL HOMBRE
Incluye los siguientes:
4. Efectos Psicológicos. Cuando el ruido ocasiona malestar o irritación, interrumpe la concentración, el sueño o el 
descanso.
El daño altera la función del pulmón, el cual inicialmente se inflama y tiende a enfermarse la persona. Las partícu-
las de sílice libre reaccionan químicamente en el tejido alveolar pulmonar y en los fogositos, muriendo las células y 
ubicándose en su lugar nódulos o pigmentaciones de SIO2 alrededor o dentro de los vasos del pulmón, paralizando 
el drenaje o desagüe de las impurezas, no pudiendo el individuo respirar porque ya el pulmón no es elástico y en-
tonces se cansa y se le ha producido una incapacidad para realizar un trabajo.
FACTORES QUE OCACIONAN SILICOSIS:
1. La composición química de la ganga y mineral o de solamente uno de estos, con alto porcentaje de con-
centración de SiO2.
2. Cantidad de partícula SiO2 presente en el ambiente expresado en millones de partículas por pie cúbico (mp-
ppca) y del tamaño de las partículas sílice menores a 5 micras.
3. Tiempo de exposición del trabajador a estas partículas de sílice en su área de trabajo, que pueden ser de 10, 
15 a 20 años o menos, si son canteras o estratos de sílice.
4. Susceptibilidad del trabajador a contraer esta enfermedad, está en función al estado físico, alimentación, etc.
EL CONTROL DE LA SILICOSIS POR EL MEDICO DE SALUD OCUPACIONAL:
Los médicos de salud ocupacional llevan a cabo la prevención de la silicosis, ayudados por los químicos, radió-
logos y microscopistas de higiene industrial y por los ingenieros de minas y de ventilación minera.
El control médico de la silicosis lo inician en el turno de los trabajadores, mediante un examen o estudio radio-
lógico de las radiografías tomadas antes de que ingrese al trabajo para formar su historial médico de silicosis y 
tuberculosis para que después de un tiempo de 8 a 12 meses realice en el otro examen radiológico de los pulmo-
nes e ir formando su historial de exámenes médicos periódicos que revelen o no la presencia de nódulos de sílice 
o tuberculosis en los pulmones del trabajador a fin de recomendar las mejoras ambientales del lugar o lugares 
donde labora el trabajador, Estas recomendaciones son de gran importancia para el ingeniero de minas y de 
ventilación minera.
5 RUIDO
Ventilación de Minas
23Saber, Saber Hacer, Saber Ser
5. Interferencia en las comunicaciones orales y como consecuencia interferencia en el rendimiento 
6. y seguridad en el trabajo.
7. Efectos Fisiológicos. Cuando el ruido induce perdida de las facultades auditivas, dolor aural, náuseas y reduc-
ción del control muscular (cuando la exposición es intensa)
PERDIDAS DE LAS FACULTADES AUDITIVAS:
Puede clasificarse en dos categorías:
1. Disminución temporal del poder auditivo por la exposición a los ruidos intensos durante unas horas. El periodo 
de recuperación puede ser de unos minutos, hora, días o hasta más, dependiendo de la persona, severidad y 
tiempo de exposición.
2. La pérdida permanente del sentido del oído, que se puede deber a: envejecimiento (Presviacucia), en-
fermedades, lesiones o la exposición de ruidos penetrantes durante periodos prolongados (Trauma acústico).
3. MEDICION DEL RUIDO
La medición del ruido puede lograse con un SONOMETRO que sirve para registrar la intensidad o presión, cuyos 
valores nos da en decibeles (dB) 
Niveles de ruido permisibles 
El Reglamento de Seguridad y Salud Ocupacional en el artículo No 82 nos muestra que el tiempo de exposición al 
ruido debe estar bajo la siguiente escala:
Nivel de ruido en la es-
cala “A”
Tiempo de exposición
82 decibeles 16 horas/día
85 decibeles 08 horas/día
88 decibeles 04 horas/día
91 decibeles 1 ½ horas/día
94 decibeles 01 hora/día
97 decibeles 1/2hora/día
100 decibeles ¼horas/día
CONTROL DEL RUIDO EN LAS MINAS:
Se debe considerar que la salud auditiva de los trabajadores en las minas subterráneas, debe incluir programas de con-
trol para evitar enfermedades ocupacionales, Estos programas deben incluir lo siguiente:
 – Audiometrías. 
 – Controles de niveles de ruido. 
 – Supresión de los ruidos utilizando la ingeniería. 
 – Mediante el uso de protectores auditivos.
1. Las Audiometrías Miden la capacidad que una persona tiene al oír varias frecuencias de sonido y de-
termina su grado de pérdida auditiva (si la tiene). Se recomienda desarrollar programas de Audiometrías pre 
ocupacional y periódico bajo supervisión médica. Esto nos servirá para evaluar el desempeño de un trabajador 
en su máxima eficiencia, para colocar a un trabajador en ambientes menos ruidosos para que no continúe 
avanzando su enfermedad y para llevar un registro sobre el historial del trabajador.
Medidor de sonidos (sonómetro)
Manual del Estudiante
Saber, Saber Hacer, Saber Ser24
2. Debe incluir análisis de la exposición al ruido, monitoreos frecuentes de niveles de ruido en las ope-
raciones o zonas sospechosas, donde operan las perforadoras neumáticas que están entre 90 y 120 dB(A), 
scoops, compresoras, bombas, ventiladores, etc.
3. Utilizando la ingeniería, Controles aplicando por ejemplo encerramientos acústicos, adquirir equipos más si-
lenciosos, e instalar silenciadores en algunos equipos, utilizando materiales como caucho. Sobre todo en per-
foradoras neumáticas que pueden colocarse silenciadores al escape del equipo o instalarle una tubería en el 
escape para que descargueel sonido en un lugar más alejado. Para el caso de los ventiladores se debe colocar 
silenciadores, que abundan en el mercado. , 
4. Referente a Protección personal, en muchos casos, el uso de tapones auditivos o las orejeras constituyen 
un obstáculo para la confiabilidad que debe tener el minero, de poder escuchar sonidos bruscos y leves que 
podrían advertirle sobre un peligro. Cuando usamos protectores auditivos correctamente ajustados, puede 
lograrse una reducción de 10 y 40 decibeles (dB) en una frecuencia de 300 a 400 Hertz (Hz), estos protectores 
son los tapones, para lo cual se recomienda los que son fabricados con caucho blando preformados, de polí-
mero expandido, de neopreno o de plástico. También pueden usarse tapones moldeados de algodón impreg-
nado con cera o los de silicona moldeados a medida del usuario. Las orejeras generalmente ofrecen una mejor 
atenuación debido a que ofrecen un mejor ajuste. Estas orejeras se recomiendan en zonas de perforación.
PERDIDA DE LAS FACULTADES AUDITIVAS
Puede definirse como la reducción de la capacidad auditiva en comparación con una persona normal.
1. Disminución temporal del poder auditivo por la exposición a ruidos intensos durante unas horas, volviéndose 
normal al cabo de un periodo de descanso, este periodo puede ser de unos minutos, horas, días o hasta más, 
dependiendo de la persona y de la severidad y tiempo de exposición.
2. La pérdida permanente del sentido del oído, que puede ocurrir como resultado del proceso de envejecimien-
to (presbiacusia), enfermedad, lesiones o la exposición a ruidos penetrantes durante periodos prolongados 
(hipoacusia).
La mayoría de las Hipoacusias, evolucionan gradualmente debido a muchas causas, siendo la principal la expo-
sición a ruidos en forma prolongada. A veces los niveles de ruido pueden ser inofensivos para algunas personas 
pero pueden causar pérdida auditiva en otras. También puede ser causada por drogas, enfermedades, factores 
hereditarios, etc.
Los factores que contribuyen a una pérdida auditiva son: 
• Nivel total de ruido (medido en decibeles)
• Composición de la exposición al ruido, (frecuencia, impacto y tono)
• Duración de la exposición.
• Susceptibilidad individual.
• Edad de la persona.
El ruido es excesivo y perjudicial cuando los niveles generales de presión sonora excede de 90 dB(A). Una pérdida 
auditiva solo se puede determinar con certeza mediante una Audiometria.
Muchos trabajadores piensan que las vibraciones pueden resultar perjudiciales para la salud, no solo por lo que 
son molestas, sino cuando estas son constantes causando dolores de espalda, síndrome del túnel carpiano y tras-
tornos vasculares, etc . 
Podemos considerar en dos categorías:
Vibraciones de cuerpo entero y vibraciones de las manos y los brazos.
1. Las vibraciones de cuerpo entero son aquellas que se trasmiten a todo el cuerpo a través de las sentadas o 
de los pies, o de ambos, con frecuencias al manejar o ir sentados en vehículos de motor o al estar parados en 
pisos que vibran (cerca de máquinas como compresoras, bombas, etc.
6 VIBRACIONES
Ventilación de Minas
25Saber, Saber Hacer, Saber Ser
2. Las vibraciones en brazos y manos, que se producen normalmente cuando se usan herramientas o maquinas 
que vibran como perforadoras.
Los efectos ocupacionales de las vibraciones en la salud son el resultado de los periodos prolongados de contacto 
entre l trabajador y la superficie que vibra, siendo los siguientes efectos crónicos:
Vibración en el cuerpo entero:
• Dolor de espalda 
Vibración en brazos y manos:
• Debilitación de la capacidad de agarre
• Disminución de la capacidad de agarre.
• Disminución de la sensación y habilidad de las manos.
• Blanqueo de los deseos o “dedos blancos”
• Síndrome del túnel carpiano.
En la actualidad no existen normas legales que limiten la exposición de las vibraciones. Sin embargo es urgente y 
necesario desarrollar técnicas para evitar que las vibraciones sea perjudicial a la salud del trabajador. Estas vibra-
ciones pueden reducirse frecuentemente aislando el sistema mediante el uso de elementos de amortiguación, o 
en su defecto realizando programas de balanceo de equipos estacionarios como compresoras, bombas, ventila-
dores, etc.
Referente a las vibraciones en brazos y manos puede resultar más difícil de controlar, pero la selección y el mante-
nimiento apropiado de las herramientas pueden reducir drásticamente la exposición a las vibraciones. Otro de los 
aspectos que debemos considerar es la rotación de trabajadores en estas actividades (perforación) o la reducción 
de la intensidad y duración de la exposición, o la capacitación referente al mantenimiento de las herramientas o 
maquinas.
ORIGEN DEL CALOR EN LAS MINAS:
El origen del calor en las minas puede ser: 
• Por el auto compresión del aire al hacer ingresar aire por las galerías donde sufre fricción con las paredes de 
roca, del techo, costados y piso que pueden estar fríos o calientes.
• Por la emanación de calor de la roca u oxidación del mineral que genera calor y se trasmite al aire por convec-
ción o en otros casos ocasionado por la oxidación de la madera
• Por las actividades que realizan los hombres cuyo metabolismo se acelera y libera calor al ambiente de 36.6 
ºC a 37.6 ºC 
• Por la profundidad del yacimiento aumentando 1.5 °C por cada 100 metros verticales, llamado también grado 
geotérmico.
Transferencia del calor
El calor se transmite por conducción, por convección y por radiación, en mina subterránea generalmente la trans-
ferencia ocurre por .convección y conducción.
EL CALOR ESPECÍFICO DEL AIRE:
El calor específico se entiende como la cantidad de calor (medido en calorías) que se necesita para elevar la tem-
peratura en un grado la unidad de masa del aire. Para elevar de 0 grados a 1 grado centígrado la temperatura de 
1 Kg. De aire (a presión constante), se necesitan 0.23751 calorías (ver tabla No)
W = G. C (T2 – T1)
7 EL CALOR Y LA HUMEDAD
Manual del Estudiante
Saber, Saber Hacer, Saber Ser26
Donde :
 – W = Calor especifico (calorías)
 – c = Calor especifico del aire (cv,cp)
 – G = Masa del aire (kg)
 – T = Temperatura del aire (°C)
La cantidad de calor:
La cantidad de calor que absorbe una sustancia cuando se caliente o que sede calor cuando se enfría está directa-
mente relacionado con su peso o masa, el cambio de temperatura que ocurre y su calor específico de la sustancia, 
siendo la ecuación térmica que señala la cantidad de calor ganada o cedida: la siguiente formula nos permite cal-
cular la cantidad de calor:
H = m. S (T2 – T1), 
Donde:
 – H = cantidad de calor en calorías,
 – m = es la masa de kilogramos, 
 – s = es el calor específico de la sustancia y 
 – (T2 – T1) = es la diferencia del cambio de temperatura,
 Ecuación muy importante cuando tenemos que enfriar el aire o cuando tenemos que calentar el aire.
Por ejemplo en una mina con ventilación forzada se envía 40 m3 / m de aire seco, cuyo volumen específico es de 
0.773 m3 / kg y cuya temperatura fría es de 2º C se pregunta ¿Cuántos kilo - calorías por hora se necesita proveer 
para llevar este aire a la temperatura de 45º C.
Para resolver esto, primero tenemos que calcular el peso del aire que debemos calentar por hora, para lo cual 
aplicamos el criterio de volumen especifico visto en la parte de densidad del aire: 
Y el peso será:
Peso =
40m3/min x 60min/hora
= 3,120 kilos / hora
0.770 m3/kg
Y la cantidad de calor que debemos dar a este aire será : 
H = 3,120 x 0.24 x (45-2) = 32,200 kcal/hora, y como un kilo caloría < > a 3.97 Btu/hora, necesitaremos dar una 
calefacción de 127,834 Btu / hora para que alcance 45º C
EL CALOR SENSIBLE:
Es el calor que podemos determinar mediante nuestros sentidos en el ambiente y lo determinamos mediante un 
termómetro simple o el bulbo seco del psicrómetro, y podemos decir que es el calor suministrado a una sustancia 
o aire o sustraído de ella.
EL CALOR LATENTE:
Es la cantidad de calor que suministramosa una sustancia o aire o extraemos de ella para producir un cambio 
de estado sin, variar la temperatura como es el caso del agua al pasar al estado de vapor.
CALOR TOTAL:
El contenido de calor total de una mezcla de aire y vapor de agua es la suma de calor sensible más el calor latente 
y a esto se le llama entalpia y en el aire acondicionado se extrae o se agrega calor al aire, al agua, al refrigerante, 
o a un ambiente.
Ventilación de Minas
27Saber, Saber Hacer, Saber Ser
PSICRÓMETRO Y EL BULBO HÚMEDO:
Un psicrómetro es un aparato para determinar la temperatura seca y húmeda de un lugar, para poder determinar 
el porcentaje de humedad relativa posteriormente con la ayuda de tablas o vacos. El uso del psicrómetro se efec-
túa haciendo girar éste por 1 minuto en el aire de la galería para recién leer la temperatura de los termómetros, 
habiendo mojado antes el bulbo húmedo leyendo primero después de guiar el termómetro de bulbo húmedo.
El bulbo húmedo de un psicrómetro siempre marca la menor temperatura. Si el ambiente no es 100% húmedo que 
indica que el ambiente no está saturado de humedad de lo contrario si es igual al bulbo seco el ambiente estará 
saturado de humedad.
El calor total depende únicamente de la temperatura del termómetro de bulbo húmedo, si la temperatura dada 
por este bulbo es alta el contenido de calor es alto, en cambio si es baja el contenido de calor es bajo, por lo tanto 
para lograr ambientes no calurosos debemos siempre lograr que la diferencia entre la temperatura del bulbo seco 
y bulbo húmedo sea mayor a 4ºF o más para tener ambientes frescos o buenos.
Para mejorar lugares calientes esta diferencia debe ser grande y la velocidad del aire debe estar entre 200 a 550 pie 
por minuto a lo mucho, de lo contrario l velocidades más altas ya no logran ningún efecto de confort.
Esto nos hace ver que en la mina siempre debemos medir y reconocer la temperatura del bulbo húmedo que es 
el más importante factor en determinar el confort del lugar y establecer la diferencia y ver si ésta permite o no 
capacidad de trabajo al trabajador, ya que el confort humano depende de la vaporización del sudor.
Cuando uno está en ambiente caliente con porcentaje de humedad alta, el bulbo húmedo es alto y ya no puede 
vaporizarse el sudor por más que haya mayor velocidad de aire de ventilación, pues la máxima temperatura del 
bulbo húmedo es de 90ºF de < > 31ºC
EL AIRE Y EL VAPOR DE AGUA O HUMEDAD:
El aire atmosférico es una mezcla de aire seco mezclado con cantidades variables de vapor de agua y este conteni-
do de agua depende de la temperatura que tenga el aire o reciba el aire afuera o dentro de la mina. Es decir, en 
el aire hay gramos de vapor de agua por 1 kilogramo de aire seco. 
El aire a bajas temperaturas o con baja temperatura necesita poco vapor de agua o humedad para saturarse de 
vapor de agua.
El aire a altas temperaturas o con alta temperatura necesita considerable cantidad de vapor de agua para saturarse 
de vapor agua o humedad.
Es decir el aire es afectado por el calor y la humedad y no hay aire totalmente seco. 
• Cuando el aire está totalmente húmedo decimos que tiene 100% de humedad relativa.
• Cuando el aire está un tanto seco decimos que el aire tiene 30% de humedad relativa.
• Cuando el aire tiene 65% de humedad relativa decimos que hay un buen ambiente para trabajar ó decimos 
que hay confort.
LA HUMEDAD RELATIVA:
Una masa de aire no puede contener una cantidad ilimitada de vapor de agua. Hay un límite a partir del cual el 
exceso de vapor se licúa en gotitas. Este límite depende de la temperatura ya que el aire caliente es capaz de conte-
ner mayor cantidad de vapor de agua que el aire frío. Así, por ejemplo, 1 m3 de aire a 0ºC puede llegar a contener 
como máximo 4,85 gramos de vapor de agua, mientras que 1 m3 de aire a 25ºC puede contener 23,05 gramos de 
vapor de agua. Si en 1 m3 de aire a 0ºC intentamos introducir más de 4,85 gramos de vapor de agua, por ejemplo 
5 gramos, sólo 4,85 permanecerán como vapor y los 0,15 gramos restantes se convertirán en agua. Con estas ideas 
se pueden entender los siguientes conceptos muy usados en las ciencias atmosféricas: 
Humedad de saturación.- Es la cantidad máxima de vapor de agua que puede contener un metro cúbico de aire en 
unas condiciones determinadas de presión y temperatura.
Humedad absoluta.- Es la cantidad de vapor de agua por metro cúbico que contiene el aire que estemos analizando. 
Manual del Estudiante
Saber, Saber Hacer, Saber Ser28
Humedad relativa.- Es la relación entre la cantidad de vapor de agua contenido realmente en el aire estudiado 
(humedad absoluta) y el que podría llegar a contener si estuviera saturado (humedad de saturación). Se expresa 
en un porcentaje. Así, por ejemplo, una humedad relativa normal junto al mar puede ser del 90% lo que significa 
que el aire contiene el 90% del vapor de agua que puede admitir, mientras un valor normal en una zona seca puede 
ser de 30%.
La humedad relativa del aire es el grado de saturación de vapor de agua en el aire a la temperatura que tiene el 
aire, dato muy importante que determinar en minas frías o en minas calientes, para ver la forma técnica de crear 
un ambiente de trabajo confortable al trabajador que le permita hacer sus actividades sin mucho frío que lo pone 
nervioso y lo entumece o trabajar sin mucho calor que lo agota hasta ciertos límites después de los cual entra 
directamente la calefacción o refrigeración respectivamente como parte del acondicionamiento del aire: ó aire 
acondicionad.
De lo anterior podemos decir que otros contaminantes del aire son también la alta humedad y la alta o baja tem-
peratura que afectan la capacidad y eficiencia de trabajo.
La humedad y baja temperatura causa disconformidad, nerviosismo y tumefacción en el hombre y fomenta la 
proliferación de bacterias, en cambio el calor causa deshidratación, aceleración del pulso y trabajo forzado al co-
razón y que si no se restituye las sales y el agua que se pierde por la sudación, el obrero siente vértigo, sensación 
de que se le va la vida y luego viene el colapso o desmayo siendo necesario bajar la temperatura por ventilación 
forzada lo cual tiene un límite, después de lo cual entra el aire acondicionado; para dar una sensación de frescura 
en la piel del trabajador y en todos los casos siempre hay necesidad de bajar el porcentaje de humedad relativa 
del ambiente.
CONFORT HUMANO:
Es la relación estrecha entre la humedad relativa y el calor, los valores óptimos de humedad relativa para la ma-
yoría de las personas, está comprendido entre 55 a 65% de humedad relativa. Cuando está por debajo del 20% la 
mayoría de las personas encuentran el aire demasiado seco, si está por encima de 65% demasiado húmedo y en 
cuanto al calor los valores óptimos de confort están entre los 18º a 21ºC
TEMPERATURA EFECTIVA DE TRABAJO:
En la minería peruana encontramos frecuentemente lugares de trabajo calurosos más que los fríos, que llegan a 
veces a 39ºC que nos obliga a aplicar este concepto de temperatura efectiva de trabajo, en el cual el porcentaje de 
humedad relativa existente debemos bajar siempre.
La temperatura efectiva es una medida de confort que involucra la temperatura del bulbo seco, la humedad relati-
va existente y el movimiento del aire en el recinto.
Se ha determinado que para una velocidad de aire en el recinto hay un sin número diferente de temperatura de 
bulbo seco y porcentaje de humedad relativa que dan la misma sensación de confort o frescura para el 90% de los 
trabajadores en actividad dentro el recinto.
Y afín de poder solucionar este problema de calor en ambientes de trabajo se han confeccionado cuadros que indi-
can diferentes velocidades para diferentes temperaturas y porcentajes de humedad relativa que adjuntamos y así 
Humedad de saturación del vapor de agua en el aire
Temperatura
ºC
Saturación
gramos/m3
- 20 0.89
-10 2.16
0 4.85
10 9.40
20 17.30
30 30.37
40 51.17
Ventilación deMinas
29Saber, Saber Hacer, Saber Ser
mismo adjuntamos el chart de temperatura efectiva del Us.Bur, Mines Bull 385 (1935) mediante el cual conocido 
el DB y el WB del lugar problema se puede hallar la velocidad que debe imprimirse en el lugar problema y la cual se 
compara con la velocidad hallada en el lugar de trabajo, la cual debe ser elevada a la velocidad hallada en el chart 
para mejorar el ambiente de trabajo.
MEDIDOR DE TEMPERATURA Y HUMEDAD
Temperatura
del aire
Humedad Relativa (%)
°C 50 55 60 65 70 75 80 85 90 95 100
30° C ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
31° C ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ 30
32° C ӿ ӿ ӿ ӿ ӿ ӿ ӿ 30 60 90 ӿ ӿ
33° C ӿ ӿ ӿ ӿ ӿ ӿ 25 50 90 140 ӿ ӿ
34° C ӿ ӿ ӿ ӿ ӿ 30 50 100 150 ӿ ӿ ӿ ӿ
35° C ӿ ӿ ӿ ӿ 45 90 140 ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
36° C ӿ ӿ 35 95 140 ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
37° C ӿ 50 105 ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
38° C 55 100 150 ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
39° C 150 ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
40° C ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ ӿ
VELOCIDAD DEL AIRE (en metros por minuto) NECESARIA PAR OBTENER UNA TEMPERATURA 
EFECTIVA DE 30 °C.
Para lograr este aumento de velocidad hay que multipli-
car el área de la sección transversal del lugar de trabajo 
por la velocidad hallada en el chart que nos da un volu-
men nuevo que debemos hacer fluir por el lugar, el cual 
comparado con el que fluía nos da una diferencia que 
indica el incremento de volumen que debe aumentarse 
por ventilación.
Manual del Estudiante
Saber, Saber Hacer, Saber Ser30
Altitude above
Sea Level
(ft)
Atmospheric
Pressure
(psi)
Barometer
Reading
( in. mercury)
Relative
Air
Density
0 14.69 29.92 1.000
500 14.42 29.38 0.981
1,000 14.16 28.86 0.964
1,500 13.91 28.33 0.947
2,000 13.66 27.82 0.930
2,500 13.41 27.31 0.913
3,000 13.16 26.81 0.896
3,500 12.92 26.32 0.880
4,000 12.68 25.84 0.864
4,500 12.45 25.36 0.848
5,000 12.22 24.89 0.832
5,500 11.99 24.43 0.816
6,000 11.77 23.98 0.799
6,500 11.55 23.53 0.786
7,000 11.33 23.09 0.774
7,500 11.12 22.65 0.758
8,000 10.90 22.22 0.739
8,500 10.70 21.80 0.728
9,000 10.50 21.38 0.715
9,500 10.30 20.98 0.701
10,000 10.10 20.58 0.687
10,500 9.90 20.18 0.674
11,000 9.71 19.75 0.661
11,500 9.52 19.40 0.648
12,000 9.34 19.03 0.636
12,500 9.15 18.65 0.624
13,000 8.97 18.29 0.611
13,500 8.80 17.93 0.599
14,000 8.62 17.57 0.587
14,500 8.45 17.22 0.576
15,000 8.28 16.88 0.564
TABLA DE LA PRESION ATMOSFERICA; A DETERMINADA ALTITUD Y PRESION BAROMETRICA Y LA 
DENSIDAD RELATIVA DEL AIRE
Based on standard air; temperature constant at 70 F.
Sources: F.W-O Neil, ed., compresedd air data ( 5 th ed.; New York: Ingersoll Rand Co., 1954) , p. 102; R.D. Madison, 
ed., Fan Engineering ( 5 th ed.; ed Bufflo: Buffalo Forge Co., 1949), p.28.
Ventilación de Minas
31Saber, Saber Hacer, Saber Ser
°F °C 
-80 -62.2 
-70 -56.7 
-60 -51.1 
-50 -45.6 
-40 -40.0 
-30 -34.4 
-20 -28.9 
-10 -23.3 
 
-0 -17.8 
 
1 -17.2 
2 -16.7 
3 -16.1 
4 -15.6 
5 -15.0 
6 -14.4 
7 -13.9 
8 -13.3 
9 -12.8 
10 -12.2 
 
11 -11.7 
12 -11.1 
13 -10.6 
14 -10.0 
15 - 9.4 
16 - 8.9 
17 - 8.3 
18 - 7.8 
19 - 7.2 
20 - 6.7 
 
21 - 6.1 
22 - 5.6 
23 - 5.0 
24 - 4.4 
25 - 3.9 
26 - 3.3 
27 - 2.8 
28 - 2.2 
29 - 1.7 
30 - 1.1 
°F °C 
31 -0.6 
32 0 
33 0.6 
34 1.1 
35 1.7 
36 2.2 
37 2.8 
38 3.3 
39 3.9 
40 4.4 
 
41 5.0 
42 5.6 
43 6.1 
44 6.7 
45 7.2 
46 7.8 
47 8.3 
48 8.9 
49 9.4 
50 10.0 
 
51 10.6 
52 11.1 
53 11.7 
54 12.2 
55 12.8 
56 13.3 
57 13.8 
58 14.4 
59 15.0 
60 15.6 
 
61 16.1 
62 16.7 
63 17.2 
64 17.8 
65 18.3 
66 18.9 
67 19.4 
68 20.0 
69 20.6 
70 21.1 
°F °C 
71 21.7 
72 22.2 
73 22.8 
74 23.3 
75 23.9 
76 24.4 
77 25.0 
78 25.6 
79 26.1 
80 26.7 
 
81 27.2 
82 27.8 
83 28.3 
84 28.9 
85 29.4 
86 30.0 
87 30.6 
88 31.1 
89 31.7 
90 32.2 
 
91 32.8 
92 33.3 
93 33.9 
94 34.4 
95 35.0 
96 35.6 
97 36.1 
98 36.7 
99 38.2 
100 37.8 
 
101 38.3 
102 38.9 
103 38.4 
104 40.0 
105 40.6 
106 41.1 
107 41.7 
108 42.2 
109 42.8 
110 43.3 
°F °C 
111 43.9 
112 44.4 
113 45.0 
114 45.6 
115 46.1 
116 46.7 
117 47.2 
118 47.8 
119 48.3 
120 48.9 
 
121 49.4 
122 50.0 
123 50.6 
124 51.1 
125 51.7 
126 52.2 
127 52.8 
128 53.3 
129 53.9 
130 54.4 
 
131 55.0 
132 55.6 
133 56.1 
134 56.7 
135 57.2 
136 57.8 
137 58.3 
138 58.9 
139 59.4 
140 60.0 
 
141 60.6 
142 61.1 
143 61.7 
144 62.2 
145 62.8 
146 63.3 
147 63.9 
148 64.4 
149 65.0 
150 65.6 
 
TABLA PARA CONVERTIR GRADOS CENTÍGRADOS A FAHRENHEIT
33Saber, Saber Hacer, Saber Ser
Se puede definir como Ventilación de una Mina, al conjunto de trabajos que se realiza para suministrar aire que 
debe circular por las diferentes labores subterráneas; ya sea por medios naturales o mecánicos, con la finalidad, 
de obtener un ambiente seguro, saludable y cómodo para los trabajadores durante su jornada de trabajo.
OBJETIVOS:
1. La distribución racional de la corriente de aire puro dentro de la mina, a fin de suministrar a los Trabajadores 
aire limpio y fresco en cantidades suficientes para su respiración normal.
2. Reducir las concentraciones de los contaminantes ambientales a niveles tolerables y permisibles.
3. Regular las condiciones termo-ambientales manteniéndolos en un grado confortable.
4. Ubicación y determinación de las características que deben tener los ventiladores, principales, secundarios y 
auxiliares.
5. Ubicación y determinación de las propiedades que deben tener los reguladores y Puertas de ventilación.
6. Evaluación del papel que desempeña la Ventilación Natural.
7. Diseño y actualización de planos de ventilación.
AIRE

Continuar navegando