Logo Studenta

U3

¡Este material tiene más páginas!

Vista previa del material en texto

Matemáticas 
 
 
Introducción al Pensamiento 
Matemático 
 
 
Primer Semestre 
 
 
Unidad 3. 
 Teoría de Conjuntos 
 
 
Clave 
05141103/06141103 
 
 
Universidad Abierta y a Distancia de México 
 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 2 
1 Contenido 
Unidad 3. Teoría de conjuntos .......................................................................... 3 
Introducción .............................................................................................................. 3 
Competencia Específica ........................................................................................... 4 
Propósitos de la unidad ......................................................................................... 4 
Problema Prototípico .............................................................................................. 5 
3.1 Concepto de conjunto ..................................................................................... 6 
3.1.1 _____________________________________________________ Conjunto vacío 10 
3.1.2 ________________________________________________________ Cardinalidad 11 
3.1.3 ________________________________________________________ Subconjuntos 12 
3.1.4 _____________________________________________ Igualdad de conjuntos 13 
3.1.5 _______________________________________________ Conjuntos disjuntos 15 
3.1.6 ________________________________________________ Conjunto universal 16 
3.1.7 ___________________________________________ Diagramas de Venn Euler 17 
3.2 Operaciones de conjuntos ......................................................................... 19 
3.2.1 ................................................................................................................................... Unión19 
3.2.2 .................................................................................................................. Intersección24 
 ............................................................................................................................................. 24 
3.2.3 Complemento ................................................................................................... 26 
3.3.4 ........................................................................................................................Diferencia30 
 ............................................................................................................................................. 30 
3.2.5. ............................................................................................ Producto cartesiano36 
Cierre de la unidad .................................................................................................. 42 
Recursos didácticos ................................................................................................ 43 
Fuentes de consulta ................................................................................................ 43 
 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 3 
Unidad 3. Teoría de conjuntos 
 
Introducción 
 
La mayoría de las personas utilizan indistintamente la palabra conjunto para 
referirse a una colección de objetos, por ejemplo, el conjunto de lápices, bolígrafos, 
libros, libretas, televisiones, videojuegos, refrigeradores, por mencionar algunos. Es 
decir, agrupas por medio de una característica común, en este caso, sabes que 
todos se llaman lápices, bolígrafos y demás, pero hay diferencias entre ellos y 
pueden llegar a ser muy grandes. Si eres más estricto, los lápices pueden ser de 
madera o de otro material, los bolígrafos pueden ser de gel o de diferentes colores. 
Por lo tanto, no basta con que tengan una característica común, aunque te estés 
refiriendo a números, personas, figuras, ideas y conceptos. 
 
Lo esencial de un conjunto es estar bien definido, es decir, a partir de una 
característica particular, debes determinar si un elemento pertenece o no al 
conjunto. Por ejemplo, el conjunto de los números naturales pares; -2 es un número 
entero y aunque es par no pertenece al conjunto porque no cumple con la 
característica que se está pidiendo. Por otro lado, si te refieres al conjunto de las 
personas altas, para empezar debes preguntarte qué tan alto es alto, qué estatura 
estás pidiendo, de qué lugar son las personas, el color de piel, el color de ojos, la 
nacionalidad, entre muchos más. 
 
En esta unidad trabajarás el concepto de conjunto y las operaciones que puedes 
realizar con ellos, siempre y cuando estén bien definidos. 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 4 
Competencia Específica 
 
Analizar proposiciones simples y compuestas empleando las operaciones 
proposicionales para expresarlas en un lenguaje lógico. 
 
Propósitos de la unidad 
 
 
 Identificar lo que es un conjunto y la 
dificultad de definirlo. 
 
 Realizar las construcciones de conjuntos 
como resultados de las operaciones de 
unión, intersección, diferencia, 
complemento y producto cartesiano de 
distintos conjuntos. 
 
 Realizar demostraciones usando 
conjuntos, lógica proposicional y los 
diferentes métodos de demostración. 
 
 Demostrar un enunciado matemático 
empleando conjuntos y aplicando los 
elementos de la lógica proposicional y 
algún método de demostración. 
 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 5 
Problema Prototípico 
 
Unidad 3: Durante esta unidad aplicarás lo aprendido para resolver un problema 
con operaciones de conjuntos basado en una encuesta a 95 personas con respecto 
a su género de película favorito. 
 
 
 
3. ¿Cuál es tu película favorita? 
Esta pregunta es muy frecuente entre todos los ámbitos sociales y educativos. 
Todas las personas tienen un género preferido de película e incluso, muchas de ellas 
prefieren dos géneros o ni uno. La encuesta se ha realizado acotando los géneros de 
películas a: drama, comedia y acción, ya que son los más comunes y permitirá al 
alumno un mejor manejo de los datos. 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 6 
3.1 Concepto de conjunto 
Conjuntos 
 
Conjunto es una palabra familiar, que conoces de cursos anteriores. Una 
constelación es un conjunto de estrellas; una circunferencia es un conjunto de 
puntos que verifican equidistar de otro punto llamado centro; el abecedario es el 
conjunto de todas las letras. Sin embargo, si quieres contestar a la pregunta: ¿qué 
es un conjunto? responderías: ¿una colección de objetos, una agrupación? Tendrías 
otros similares, y entrarías en 
definición. 
 
 En matemáticas eludes estos problemas, eligiendo algunos conceptos que se 
de partida, suponiendo que todos tienen una noción intuitiva de lo que quieren 
decir. Entonces, para los efectos del desarrollo de este tema, vas a partir de los 
siguientes conceptos primitivos: 
 
Conjunto 
Elemento 
Pertenece 
 
Aproximadamente a la mitad del siglo XIX, el matemático alemán Georg Cantor 
creaba la primera teoría de conjuntos. Hasta fines de ese siglo nadie se había 
preocupado por una definición rigurosa de conjunto, hasta que en 1895 Cantor 
expresa: 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 7 
 
 
 
Esta definición n
Cantor quería expresar la idea que dado un conjunto siempre es posible, ante un 
objeto cualquiera, decidir si dicho objeto pertenece o no al conjunto. Al exigir que 
estos elementos fuese
elementos del mismo conjunto debían ser diferentes; es decir, un conjunto no debía 
tener elementos repetidos. Cantor nunca llegó a utilizar esta definición. Él mismo 
hizo una fuerte crítica a su teoría en 1897 y 1899. 
 
problemas de la teoría de conjuntos y provocó una de las mayores crisis de la 
lógica. ¿Qué dice la Paradoja de Russell? Es claro que un conjunto A de lápices no es 
un lápiz, y puesto que A contiene sólo lápices, es inmediato que A no es elementode A. Análogamente, el conjunto N de los números naturales no es un número 
natural. 
 
Bertrand Russell: filósofo británico nacido en el País de Gales, vivió entre 1872 y 
1970, y es considerado el último sabio universal. Ganó el Premio Nobel de 
Literatura en 1950. 
 
Dado que en N sólo encuentras números naturales, N no se pertenece a sí mismo. 
Según la definición de Cantor, parecería acertado afirmar que si agrupas todos los 
conjuntos que no son elementos de sí mismos, como A y N, obtendrías un 
conjunto. 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 8 
 
desarrolló su teoría, estaba planteada la llamada crisis de los fundamentos de la 
matemática de comienzos del siglo XX. 
 
En 1908, el matemático Ernst Zermelo (1871-1953) desarrolla un enfoque 
axiomático que elimina lo del conjunto de los elementos que no se pertenecen a sí 
mismos, y busca retener la riqueza operativa de la teoría de Cantor. 
 
Escande A. (2008). Conjuntos. Uruguay. Recuperado de: 
http://www.x.edu.uy/conjuntosteorico.pdf 
 
Lipschutz (1991) explica 
ramas de la matemática. Intuitivamente, un conjunto es una lista o clase de objetos 
bien definidos, objetos que, como se verá en los ejemplos, pueden ser cualesquiera: 
números, personas, letras, ríos, etc. Estos objetos se llaman elementos o miembros 
 
 
Un conjunto es una colección de objetos que pueden o no tener alguna 
característica en común y se representa por medio de letras mayúsculas: 𝑈, 𝑉, 𝑊, 𝑅, 
𝑆, 𝑇, por decir algunos. 
 
Ejemplos de conjuntos: 
 
El conjunto de los números naturales se representa con la letra 𝑵 y sus elementos 
son: 
http://www.x.edu.uy/conjuntosteorico.pdf
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 9 
𝑵 = {1, 2, 3, … } 
 
El conjunto de los números enteros se representa con la letra 𝒁 y sus elementos 
son: 
𝒁 = {… − 3, −2, −1, 0, 1, 2, 3, … } 
 
El conjunto de los números racionales se representa por 𝑸 y sus elementos son de 
la forma 
𝑝
𝑞
 donde 𝑝 y 𝑞 son números enteros. 
𝑸 = {
𝑝
𝑞
, 𝑑𝑜𝑛𝑑𝑒 𝑝 𝑦 𝑞 𝑠𝑜𝑛 𝑛ú𝑚𝑒𝑟𝑜𝑠 𝑒𝑛𝑡𝑒𝑟𝑜𝑠 𝑦 𝑞 ≠ 0 } 
 
El conjunto de los números irracionales se denota por 𝑰 y sus elementos son: 
𝑰 = {√𝑝, 𝑑𝑜𝑛𝑑𝑒 𝑝 𝑒𝑠 𝑢𝑛 𝑒𝑛𝑡𝑒𝑟𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑜} 
 
El conjunto de los números reales que se denota por 𝑹 está formado por los 
números racionales e irracionales. 
 
Para definir un conjunto es necesario describir de una manera precisa, cuáles son los 
elementos de dicho conjunto. 
 
Los objetos o elementos que forman un conjunto se representan por medio de 
letras minúsculas encerrados entre un par de llaves. Cuando un objeto pertenece a 
un conjunto se utiliza el símbolo de pertenencia ∈, por ejemplo, si 𝑎 es un elemento 
del conjunto 𝐴, se representa por 𝑎 ∈ 𝐴 y significa que 𝑎 𝐴. 
 
Ejemplo 1. El conjunto de los enteros positivos incluido el 0, cuyo símbolo es 𝑍+, 
tiene los siguientes elementos: 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 10 
𝒁+ = {0, 1, 2, 3, 4, … } 
 
Los puntos suspensivos indican que la serie o secuencia de números continúa, en 
este caso no hay ningún número después de los puntos suspensivos lo cual significa 
que la serie continua infinitamente. 
 
Ejemplo 2. El conjunto de los números enteros del 1 al 100. 
 
Sea 𝐴 el conjunto, entonces: 
 
𝐴 = {1, 2, 3, … , 100} 
 
Como puedes observar en este ejemplo, el conjunto está muy bien definido. El 
0, −1, −2, 1/2, 1/4 y otros no pertenecen al conjunto. 
 
3.1.1 Conjunto vacío 
 
Se le llama conjunto vacío a aquel que no posee ningún elemento. Siempre que 
utilices este conjunto debes recordar el porqué de su nombre, ya que esto ofrece 
una herramienta de demostración muy importante, más adelante se detallará esta 
situación. 
El conjunto vacío se representa por el símbolo ∅ o un par de corchetes vacíos { }. 
 
Puedes encontrar el conjunto vacío en muchas partes, por ejemplo: 
 
El conjunto de todos los dragones que habitan en el Distrito Federal. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 11 
Si representas al conjunto con la letra 𝐷, entonces tienes que; 
𝐷 = ∅ 
 
Ya que no existe ningún dragón en el mundo y por ende en el Distrito Federal. 
 
El conjunto de todas las panteras que habitan en el fondo del mar. 
 
Si representas a este conjunto por 𝑃, tienes: 
 
𝑃 = ∅ 
 
Puesto que ninguna pantera habita en el fondo del mar. 
 
3.1.2 Cardinalidad 
 
La cardinalidad se refiere a la cantidad de elementos que tiene un conjunto. De 
esta manera, si un conjunto 𝐴 tiene una cantidad finita de elementos, entonces 𝐴 es 
un conjunto finito y su cardinalidad se representará por el número de elementos 
que posee. 
 
Si un conjunto 𝐵 tiene una cantidad infinita de elementos, entonces, dices que el 
conjunto es infinito y que tiene una cardinalidad infinita. 
 
Representarás la cardinalidad de un conjunto, como el conjunto delimitado por un 
par de barritas, por ejemplo: si 𝐴 es un conjunto, su cardinalidad la representarás 
por |𝐴|. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 12 
El conjunto vacío tiene cardinalidad 0, por lo cual puedes decir que |∅| = 0. 
 
Ejemplos: 
 
Sea 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 
 
La cardinalidad del conjunto 𝐴 es: |𝐴| = 8 
 
Sea 𝐵 = {1, 2, 3, 4, 5, 6, … , 500} 
 
La cardinalidad del conjunto 𝐵 es: |𝐵| = 500 
 
3.1.3 Subconjuntos 
 
Para explicar en qué consiste un subconjunto analiza el siguiente ejemplo. 
 
Sea 𝐴 = {1, 2, 3, 4, 5, 6} y sea 𝐵 = {2, 4, 6} 
 
En este ejemplo puedes notar que los elementos del conjunto 𝐵, los cuales son: 
2, 4 𝑦 6, también son elementos del conjunto 𝐴, por esta razón, puedes decir que 𝐵 
es un subconjunto de 𝐴. 
 
Definición de subconjuntos 
 
Un conjunto 𝐵 es subconjunto de un conjunto 𝐴 si todo elemento del conjunto 𝐵 es 
un elemento del conjunto 𝐴. Lo representas por 𝐵 ⊆ 𝐴 𝐵 es un 
subconjunto de 𝐴 𝐴 ⊃ 𝐵, lo cual significa que 𝐴 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 13 
contiene a 𝐵. Para cualquier conjunto 𝐶 tienes que 𝐶 ⊆ 𝐶, es decir, que cualquier 
conjunto es un subconjunto de sí mismo. 
 
Ejemplos: 
 
Si 𝑍 es el conjunto de los números enteros y el conjunto de los números naturales 
𝑁, entonces 𝑁 ⊆ 𝑍. 
 
Si 𝑅 es el conjunto de los números reales y 𝑍 el conjunto de todos los números 
enteros, entonces 𝑍 ⊆ 𝑅. 
 
El conjunto vacío es un subconjunto propio de todo conjunto. 
 
El conjunto de los números naturales 𝑁 es un subconjunto propio de los números 
reales 𝑅, esto es, 𝑁 ⊂ 𝑅. 
 
3.1.4 Igualdad de conjuntos 
 
Dos conjuntos 𝐴 y 𝐵 son iguales si tienen los mismos elementos, es decir, los 
conjuntos 𝐴 y 𝐵 son iguales si cada elemento de 𝐴 es un elemento de 𝐵 y viceversa, 
cada elemento de 𝐵 es un elemento de 𝐴. 
 
Simbólicamente, la igualdad de dos conjuntos 𝐴 y 𝐵 ocurre cuando 𝐴 ⊆ 𝐵 y 𝐵 ⊆ 𝐴, 
entonces dices que 𝐴 = 𝐵. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 14 
Si 𝐴 y 𝐵 son dos conjuntos distintos, y 𝐴 ⊆ 𝐵, dices que 𝐴 es un subconjunto propio 
de 𝐵. Este subconjunto lo denotas de igual manera que cuando se denota un 
subconjunto normal, es decir, como 𝐴 ⊆ 𝐵. 
 
Por otra parte, si tienes que 𝐴 ⊆ 𝐵 y 𝐵 ⊆ 𝐴, dices que 𝐴 es un subconjunto 
impropio de 𝐵 o bien, que 𝐵 es un subconjunto impropio de 𝐴. Esta clase de 
subconjunto lo denotas con el símbolo ⊂, de esta manera estableces que 𝐴 ⊂ 𝐵. 
 
Con lo anterior puedes decir que si 𝐶 es un conjunto, entonces 𝐶 es un subconjunto 
impropio de sí mismo, es decir, 𝐶 ⊂ 𝐶. 
 
Para que dos conjuntos 𝐴 y 𝐵 sean distintos basta con que exista un elemento en 𝐴 
que no esté en 𝐵 o viceversa. 
 
Hasta este momento, conoces los conjuntos y subconjuntos, una manera de 
representar a los conjuntos es la siguiente: 
 
𝐴 = {𝑥 | 𝑥 𝑡𝑖𝑒𝑛𝑒𝑐𝑖𝑒𝑟𝑡𝑎 𝑝𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑} 
 
Lo anterior significa: el conjunto 𝐴 que consta de todos los 𝑥, tales que 𝑥 tiene cierta 
propiedad, como puedes observar, el símbolo “|” significa tal que. 
 
Esta es una forma abreviada de representar un conjunto, por ejemplo: 
 
Si 𝐴 es el conjunto de todos los números cuyo cuadrado es un entero positivo. 
 
Este conjunto lo puedes representar de la siguiente manera: 
𝐴 = {𝑥 | 𝑥2 ∈ 𝑍+} 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 15 
 
Si 𝐵 es el conjunto de todos los números naturales comprendidos entre el 0 y el 100, 
incluyendo el 0 y el 100. 
 
Este conjunto lo puedes representar como: 
 
𝐵 = { 𝑥 | 1 ≤ 𝑥 ≤ 100} 
 
Si 𝐶 es el conjunto de todas las pelotas contenidas en un enorme costal. 
 
Este conjunto lo representas de la siguiente manera: 
 
𝐶 = {𝑥 | 𝑥 𝑒𝑠 𝑢𝑛𝑎 𝑝𝑒𝑙𝑜𝑡𝑎 𝑑𝑒𝑙 𝑐𝑜𝑠𝑡𝑎𝑙} 
 
3.1.5 Conjuntos disjuntos 
 
Dos conjuntos 𝐴 y 𝐵 son disjuntos si no tienen ningún elemento en común, es decir, 
para cualquier elemento 𝑥 de 𝐴 se tiene que 𝑥 no está en 𝐵 y para cualquier 
elemento 𝑦 de 𝐵 se tiene que 𝑦 no está en 𝐴. Puedes representarloasí: 𝐴 y 𝐵 son 
disjuntos si 𝑥 ∈ 𝐴, entonces 𝑥 ∉ 𝐵 y si 𝑦 ∈ 𝐵, entonces 𝑦 ∉ 𝐴. 
 
Para comprender cuando los conjuntos son disjuntos, analiza lo siguiente. 
 
Ejemplo: 
 
Sean los conjuntos 𝐴 = {1, 2, 3, 4} y 𝐵 = {−1, 0, 10, 15} 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 16 
Los conjuntos 𝐴 y 𝐵 son disjuntos, ya que ninguno de ellos tiene elementos en 
común, es decir, si tomas algún elemento de 𝐴, éste no se encuentra en 𝐵 y si 
tomas un elemento de 𝐵, éste no se encuentra en 𝐴. 
 
3.1.6 Conjunto universal 
 
Se le llama conjunto universal al conjunto que contiene a todos los conjuntos, es 
decir, un conjunto es universal si contiene a todos los conjuntos con los que estás 
trabajando. Por ejemplo, si tienes los conjuntos 𝐴, 𝐵 y 𝐶, los cuales son: 
 
𝐴 = {1, 2, 3, 4}; 𝐵 = {𝑎, 𝑏, 𝑐, 𝑑} 𝑦 𝐶 = {𝑥 | 𝑥 > 4} 
 
Si construyes el conjunto 𝐷 de la siguiente manera: 
 
𝐷 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑥 | 𝑥 > 0} 
 
Entonces tienes que de entre los conjuntos 𝐴, 𝐵, 𝐶 y 𝐷, el conjunto 𝐷 es el conjunto 
universal de los cuatro ya mencionados, esto se debe a que todos son subconjuntos 
de 𝐷. 
 
Todo conjunto puede considerarse como un subconjunto de sí mismo, por esta 
razón, puedes decir que un conjunto puede considerarse como el conjunto universal 
de sí mismo. 
 
Generalmente representas al conjunto universal por 𝑈. 
 
Ejemplo: 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 17 
 
Si 𝐴 = {𝑥 | 𝑥 ∈ 𝑁}, entonces el conjunto 𝐵 = {𝑦 | 𝑦 ∈ 𝑅} es un conjunto universal 
de 𝐴. 
 
Si 𝐴 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑚, 𝑧}, entonces el conjunto 𝐵 = {𝑥 | 𝑥 𝑒𝑠 𝑢𝑛𝑎 𝑙𝑒𝑡𝑟𝑎 𝑑𝑒𝑙 𝑎𝑏𝑒𝑐𝑒𝑑𝑎𝑟𝑖𝑜} es 
un conjunto universal de 𝐴. 
 
3.1.7 Diagramas de Venn Euler 
 
En muchas ocasiones se tiende a confundir los diagramas de Venn con los 
diagramas de Euler. Los diagramas que utilizas en la teoría de conjuntos son 
representaciones graficas de los conjuntos por medio de círculos, en el sentido que 
un círculo representa a cierto conjunto. 
 
El diagrama de Euler es un diagrama que se utiliza para representar la inclusión 
de conjuntos, es decir, cuando un conjunto se encuentra incluido dentro de otro. 
También se utiliza para representar a conjuntos disjuntos, esto los verás más 
adelante en la sección de complemento. 
 
Se ha dicho anteriormente que en el diagrama de Euler utilizas círculos para 
representar conjuntos, para completar el diagrama, éstos van encerrados dentro de 
un rectángulo al cual le colocas la letra 𝑈, debido a que se le considera como un 
conjunto universal que contiene aquéllos que se están representando dentro de él. 
 
Para comprender mejor el diagrama de Euler se darán algunos ejemplos. 
 
Sean 𝐴 y 𝐵 dos conjuntos. 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 18 
 
Si 𝑵 es el conjunto de los números naturales y 𝑹 el de los números reales, el 
diagrama de Euler que representa estos conjuntos es el siguiente: 
 
 
Figura 1. Los números naturales son un subconjunto de los números reales. 
 
𝑆𝑖 𝐴 = {1, 5, 10, 15}, 𝐵 = {1, 15} y 𝐶 = {2, 4, 6, 8}, el diagrama de Euler que 
representa estos conjuntos es: 
 
 
Figura 2. El conjunto 𝑩 es un subconjunto de 𝑨 y 𝑪 es un conjunto ajeno a 𝑨 y 𝑩. 
 
Puedes decir que el diagrama de Venn es el perfeccionamiento del diagrama de 
Euler y se desarrolló para poder representar de manera esquemática muchas 
situaciones más que se presentan con los conjuntos. Por ejemplo, cuando dos 
conjuntos tienen elementos en común sin que ocurra necesariamente que uno este 
contenido dentro de otro. Este tipo de diagrama es el que vas a utilizar para 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 19 
desarrollar algunos de los conceptos más importantes que se presentarán a lo largo 
de esta sección, con el objeto de identificarlos y para comprenderlos a fondo. 
 
3.2 Operaciones de conjuntos 
 
Si tienes dos conjuntos 𝐴 y 𝐵, puedes realizar diferentes operaciones entre ellos a 
partir de sus elementos, ya sea que los conjuntos sean finitos o infinitos. Esto 
generalmente se realiza para construir nuevos conjuntos más complejos, 
descomponerlos en otros más simples, encontrar sus características en común y 
deshacerse de ellas o reutilizarlas, por mencionar algunos. 
 
En esta sección se definirán las operaciones entre conjuntos, así como su 
representación gráfica. 
 
3.2.1 Unión 
 
Sean 𝐴 y 𝐵 dos conjuntos, se define a la unión de 𝐴 y B como un nuevo conjunto, 
denotado por 𝐴 ∪ 𝐵. Dicho conjunto está formado por todos los elementos 
contenidos en 𝐴 y todos los elementos contenidos en 𝐵. 
 
La unión de conjuntos la representas de la siguiente manera: 
 
𝑨 ∪ 𝑩 = {𝒙 | 𝒙 ∈ 𝑨 ˅ 𝒙 ∈ 𝑩} 
 
Por medio de los diagramas de Venn puedes representar la unión de conjuntos de la 
siguiente manera: 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 20 
 
 
Figura 3. La región sombreada representa la unión de los conjuntos A y 𝑩. 
 
Como puedes observar en el diagrama anterior, la unión representa la fusión de los 
elementos de los conjuntos 𝐴 y 𝐵. 
 
Cuando se efectúa la unión de dos conjuntos, digase 𝐴 y 𝐵, el resultado es un 
conjunto que contiene tanto a 𝐴 como a 𝐵. Esta afirmación es demasiado obvia, 
pero para no omitir casos, vas a demostrarlo. 
Ejemplo.: 
Si 𝐴 y 𝐵 son dos conjuntos, entonces 𝐴 ⊆ 𝐴 ∪ 𝐵 y 𝐵 ⊆ 𝐴 ∪ 𝐵 
 
 
Primero identifica las hipótesis: 
 
 𝐴 es un conjunto 
 𝐵 es un conjunto 
 
Debes llegar a la conclusión de que 𝐴 ⊆ 𝐴 ∪ 𝐵 y que 𝐵 ⊆ 𝐴 ∪ 𝐵. 
 
Demostración: 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 21 
Sea 𝑥 ∈ 𝐴, esto implica que 𝑥 ∈ 𝐴 ˅ 𝑥 ∈ 𝐵, esto es posible por la ley de la adición 
para operadores lógicos. 
 
Como tienes que 𝑥 ∈ 𝐴 ˅ 𝑥 ∈ 𝐵, significa que 𝑥 ∈ 𝐴 ∪ 𝐵. 
 
Como esto ocurre con un elemento 𝑥 cualquiera de 𝐴, lo mismo ocurrirá para 
cualquier otro elemento de 𝐴, por lo tanto, puedes concluir que todo elemento de 
𝐴 es un elemento de 𝐴 ∪ 𝐵, es decir, que 𝐴 ⊆ 𝐴 ∪ 𝐵. 
 
Ahora, sea 𝑦 ∈ 𝐵, esto implica que 𝑦 ∈ 𝐵 ˅ 𝑦 ∈ 𝐴, esto es posible por la ley de la 
adición para operadores lógicos. 
 
Como 𝑦 ∈ 𝐵 ˅ 𝑦 ∈ 𝐴, entonces 𝑦 ∈ 𝐴 ˅ 𝑦 ∈ 𝐵. Esto se puede realizar debido a la 
(˅). 
 
Tienes que 𝑦 ∈ 𝐴 ˅ 𝑦 ∈ 𝐵, lo cual significa que 𝑦 ∈ 𝐴 ∪ 𝐵. 
 
Como esto ocurre con un elemento 𝑦 cualquiera de 𝐵, lo mismo ocurrirá para 
cualquier otro elemento de 𝐵, por lo tanto, puedes concluir que todo elemento de 𝐵 
es un elemento de 𝐴 ∪ 𝐵, es decir, que 𝐵 ⊆ 𝐴 ∪ 𝐵. 
 
Por lo tanto, para cualquier par de conjuntos 𝐴 y 𝐵, se verifica que 
𝐴 ⊆ 𝐴 ∪𝐵 y 𝐵 ⊆ 𝐴 ∪ 𝐵. 
 
Ejemplo: 
 
Sean 𝐴, 𝐵 y 𝐶 tres conjuntos, donde: 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 22 
 
𝑨 = {𝒙 | 𝒙 > 0}, 𝑩 = {𝒚 | 𝒚 < 0} y 𝑪 = {𝟎} 
 
Tienes que: 
 
𝐴 ∪ 𝐵 ∪ 𝐶 = {𝑥 | 𝑥 ∈ 𝑍}, donde 𝑍 es el conjunto de los números enteros. 
 
Es obvio que 𝐴, 𝐵 y 𝐶 son subconjuntos de 𝐴 ∪ 𝐵 ∪ 𝐶, o bien del conjunto de los 
números enteros 𝑍. 
 
El siguiente diagrama de Venn representa la unión de los conjuntos 𝐴, 𝐵 y 𝐶. 
 
 
 
Figura 4. La unión de los conjuntos 𝑨, 𝑩 y 𝑪 es la región representada por cada uno 
de ellos. 
 
Demuestra el siguiente enunciado: Sea 𝐴 un conjunto, entonces 𝐴 ∪ 𝐴 = 𝐴. 
 
La hipótesis es que 𝐴 es un conjunto. 
 
Si 𝐴 = { }, es obvio que la unión de conjuntos vacíos es el vacío, por lo que, supón 
que 𝐴 es no vacío. 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 23 
 
Sea 𝑥 ∈ 𝐴, esto significa que 𝑥 ∈ 𝐴 ˅ 𝑥 ∈ 𝐴, es decir que 𝑥 ∈ 𝐴 ∪ 𝐴. 
 
Lo anterior expone que 𝐴 ⊆ 𝐴 ∪ 𝐴. 
 
Ahora bien, sea 𝑥 ∈ 𝐴 ∪ 𝐴, esto significa que 𝑥 ∈ 𝐴 ˅ 𝑥 ∈ 𝐴, es decir que 𝑥 ∈ 𝐴, lo 
cual es 𝐴 ∪ 𝐴 ⊆ 𝐴. 
 
Has obtenido entonces que para cualquier conjunto 𝐴 se verifica que: 
 
 𝐴 ⊆ 𝐴 ∪ 𝐴 y 
 𝐴 ∪ 𝐴 ⊆ 𝐴 
 
Significa que 𝐴 = 𝐴 ∪ 𝐴. 
 
Esto demuestra que el enunciado establecido es verdadero. 
 
Para finalizar esta sección vas a demostrar otra de las propiedades que tiene la 
unión de conjuntos. 
 
Sea 𝐴 un conjunto cualquiera, entonces 𝐴 ∪ ∅ = 𝐴. 
 
Demostración: 
 
La hipótesis es que 𝐴 es un conjunto vacío. 
 
Si 𝐴 es un conjunto vacío, entonces la unión sería un conjunto vacío y la igualdad se 
cumple. 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 24 
 
Supón que 𝐴 es no vacío. 
 
Sea 𝑥 ∈ 𝐴 ∪ ∅, esto significa que 𝑥 ∈ 𝐴 ˅ 𝑥 ∈ ∅ , por supuesto que x ∉ ∅ ya que el 
vacío no tiene elementos, esto quiere decir que 𝑥 ∈ 𝐴, lo cual muestra que 𝐴 ∪ ∅ ⊆
 𝐴. 
 
Sabes que todo conjunto es un subconjunto de sí mismo, en particular, 𝐴 ⊆ 𝐴, por 
lo tanto, 𝐴 ⊆ 𝐴 ∪ 𝐵, para cualquier conjunto 𝐵. 
 
Si tomas el caso particular de 𝐵 = ∅, tienes que: 
 
𝐴 ⊆ 𝐴 ∪ 𝐵, es decir, que 𝐴 ⊆ 𝐴 ∪ ∅. 
 
Entonces tienes que: 
 
1. 𝐴 ∪ ∅ = 𝐴 y 
2. 𝐴 ⊆ 𝐴 ∪ ∅. 
 
Por lo tanto, puedes concluir de 1 y 2 que: 
 
𝐴 = 𝐴 ∪ ∅. 
 
3.2.2 Intersección 
 
Sean 𝐴 y 𝐵 dos conjuntos, se le llama intersección de 𝐴 y 𝐵, al conjunto de todos 
los elementos de 𝐴 que pertenecen a 𝐵, es decir, que la intersección de dos 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 25 
conjuntos es un nuevo conjunto formado por todos los elementos que pertenecen 
simultáneamente a 𝐴 y 𝐵. 
 
La intersección de dos conjuntos 𝐴 y 𝐵 la representas como: 
 
𝑨 ∩ 𝑩 = {𝒙 | 𝒙 ∈ 𝑨 ˄ 𝒙 ∈ 𝑩} 
 
El diagrama de Venn que representa la intersección es el siguiente: 
 
Figura 5. La región sombreada representa la intersección de los conjuntos cuando 
tienen elementos en común. 
 
Para comprender mejor el concepto de intersección de conjuntos, realiza la 
demostración de algunas propiedades particulares que posee ésta. 
 
Ejemplo: 
 
1. Sean 𝐴 y 𝐵 dos conjuntos, entonces 𝐴 ∩ 𝐵 ⊆ 𝐴 y 𝐴 ∩ 𝐵 ⊆ 𝐵. 
 
Sea 𝑥 ∈ 𝐴 ∩ 𝐵, esto indica por definición que 𝑥 ∈ 𝐴 ˄ 𝑥 ∈ 𝐵, es decir, que 𝑥 ∈ 𝐴, 
por lo que 𝐴 ∩ 𝐵 ⊆ 𝐴. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 26 
Sea 𝑦 ∈ 𝐴 ∩ 𝐵, por definición de intersección 𝑦 ∈ 𝐴 ˄ 𝑦 ∈ 𝐵, es decir que 𝑦 ∈ 𝐵, 
por lo que 𝐴 ∩ 𝐵 ⊆ 𝐵. 
 
Entonces, el enunciado es verdadero. 
 
Vas a finalizar esta sección demostrando el siguiente ejemplo. 
 
2. Sea 𝐴 un conjunto, entonces 𝐴 ∩ ∅ = ∅. 
 
Supón que 𝐴 ∩ ∅ ≠ ∅. Entonces, sea 𝑥 ∈ 𝐴 ∩ ∅, esto significa que 𝑥 ∈ 𝐴 ˄ 𝑥 ∈ ∅. 
Aquí tienes una contradicción, ya que no existe ningún elemento en el ∅, entonces 𝑥 
no existe, es decir, que no existe ninguna 𝑥 ∈ 𝐴 tal que 𝑥 ∈ ∅, por lo tanto, 𝐴 ∩ ∅ 
no tiene ningún elemento, lo cual significa que 𝐴 ∩ ∅ = ∅. 
 
3.2.3 Complemento 
 
Para comprender el complemento de un conjunto 𝐴, se debe tomar en cuenta el 
conjunto universal 𝑈, que en este caso sería aquel conjunto que contiene a 𝐴. 
 
Definición de complemento 
 
Se le llama complemento de 𝐴 con respecto a 𝑈, denotado por 𝐴𝑐, al conjunto 
formado por todos aquellos elementos de 𝑈 que no pertenecen al conjunto 𝐴. 
 
La representación simbólica del complemento de 𝐴 con respecto de 𝑈 es: 
 
𝐴𝑐 = {𝑥 ∈ 𝑈| ¬(𝑥 ∈ 𝐴)} 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 27 
Dado que ¬(𝑥 ∈ 𝐴), tiene el mismo significado que 𝑥 ∉ 𝐴, utiliza esta última 
representación para indicar que 𝑥 no está en 𝐴. Así, la representación anterior de 𝐴𝑐 
es la que se presenta a continuación: 
 
𝑨𝒄 = {𝒙 ∈ 𝑼| 𝒙 ∉ 𝑨)} 
 
El siguiente diagrama de Venn representa el complemento del conjunto 𝐴 con 
respecto al conjunto universal 𝑈. 
 
 
 
Figura 6. La región de color rosa es el complemento del conjunto A. 
 
A continuación, demuestra una de las propiedades del complemento: 
 
Si 𝐴 es un conjunto, entonces (𝐴𝑐)𝑐 = 𝐴. 
 
La hipótesis es que A es un conjunto. 
 
Sea 𝑥 ∈ 𝐴, esto significa que 𝑥 ∉ 𝐴𝑐, de lo contrario, 𝑥 no estaría en 𝐴. 
 
Como 𝑥 ∉ 𝐴𝑐, entonces 𝑥 ∈ (𝐴𝑐)𝑐. 
 
𝐴𝑐 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 28 
Lo anterior quiere decir que 𝐴 ⊆ (𝐴𝑐)𝑐. 
 
Sea 𝑦 ∈ (𝐴𝑐)𝑐. 
Entonces, 𝑦 ∉ 𝐴𝑐, porque 𝑦 está en el complemento de 𝐴𝑐. 
 
Como 𝑦 ∉ 𝐴𝑐, significa que 𝑦 ∈ 𝐴, porque que 𝑦 no está en el complemento de 𝐴. 
 
Lo anterior expone que (𝐴𝑐)𝑐 ⊆ A. 
 
Por lo tanto, (𝐴𝑐)𝑐 = 𝐴. 
 
Antes de desarrollar otro ejemplo, recuerda los cuantificadores que viste en la 
Unidad 1. Los cuantificadores permiten representar de manera particular o general 
alguna proposición que se utiliza para demostrar un enunciado, en este caso, verás 
cómo se utilizan cuando se trabaja con conjuntos. 
 
Cuantificador universal 
 
Este cuantificador se utiliza para generalizar alguna proposición, se representa por 
el símbolo ∀ que significa para todo. 
 
Ejemplo: 
 
Sean 𝐴 y 𝐵 dos conjuntos. Si 𝑥 ∈ 𝐴, entonces 𝑥 ∈ 𝐵. 
 
Se trata de una proposición compuesta cuyo conectivo principal es una implicación 
lógica, utilizando cuantificadores, puedes escribirla de la siguiente manera: 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 29 
 
∀ 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵 
 
𝑥 que pertenece a 𝐴, 𝑥 pertenece a 𝐵. 
 
Cuantificador existencial 
 
Este cuantificador se utiliza para particularizar alguna proposición, se representa 
por el símbolo ∃ 
 
Ejemplo: 
 
Sean 𝐴 y 𝐵 conjuntos. Si 𝑥 ∈ 𝐴, entonces 𝑥 ∉ 𝐵 
 
Esta proposición es una implicación lógica, por medio del cuantificador existencial, 
puedes escribirla de la siguiente manera: 
 
∃ 𝑥 ∈ 𝐴, tal que 𝑥 ∉ 𝐵 
 
𝑥 en 𝐴, tal que 𝑥 ∉ 𝐵. 
 
Los cuantificadores universal y existencial pueden obtenerse negándose uno o el 
otro. 
 
Ejemplo: 
 
∃𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵, Significa: Existe un 𝑥 en 𝐴, tal que 𝑥 ∉ 𝐵. 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 30 
Negar esta afirmación quiere decir: No existe un 𝑥 en 𝐴, tal que 𝑥 ∉ 𝐵. 
 
Para finalizar la sección vas a demostrar el siguiente enunciado, el cual relaciona al 
conjunto universal con el conjunto vacío. 
 
Sea ∅ el conjunto vacío, entonces ∅𝑐 = 𝑈. 
 
Es obvio que ∅𝑐 ⊆ 𝑈, porque 𝑈 contiene a todos los conjuntos. 
 
Sea 𝑥 ∈ 𝑈, entonces 𝑥 ∉ ∅, puesto que el vacío no contiene elementos, entonces 
debe pertenecer a su complemento, es decir, 𝑥 ∈ ∅𝑐. 
 
Como tomaste un elemento cualquiera 𝑥 𝑑𝑒 𝑈, tienes que 𝑈 ⊆ ∅𝑐. 
 
Por lo tanto, el enunciado es verdadero. 
 
3.3.4 Diferencia 
 
Sean 𝐴y 𝐵 dos conjuntos. Se define la diferencia de los conjuntos 𝐴 y 𝐵, y se 
denota por 𝐴 – 𝐵, como el conjunto de todos los elementos que pertenecen al 
conjunto 𝐴 y no pertenecen a 𝐵. 
 
La diferencia de los conjuntos 𝐴 y 𝐵 la representas simbólicamente como: 
 
𝑨 – 𝑩 = {𝒙| 𝒙 ∈ 𝑨 ˄ 𝒙 ∉ 𝑩} 
 
El diagrama de Venn que representa la diferencia entre los conjuntos 𝐴 y 𝐵 es: 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 31 
 
 
Figura 7. La parte naranja del diagrama es la que representa la diferencia de 
conjuntos 𝐴 – 𝐵. 
 
Al conjunto 𝐴 – 𝐵 también se le conoce como complemento relativo de 𝐵 con 
respecto de 𝐴. 
 
La diferencia de conjuntos tiene algunas propiedades muy interesantes, las cuales 
se presentan a continuación. 
 
Sean 𝐴, 𝐵 y 𝐶 conjuntos, sus propiedades son: 
 
1. Propiedad conmutativa 
 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 
 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 
 
2. Propiedad asociativa 
 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶 
 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶 
 
3. Propiedad distributiva 
 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 
A – B 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 32 
 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 
 
4. Leyes de Morgan 
 (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 
 (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 
 
Las cuatro propiedades anteriores, las utilizarás muy a menudo al realizar algunas 
demostraciones sobre la teoría de conjuntos, por esta razón, se presentan. En el 
siguiente ejemplo verás el uso de algunas de las propiedades anteriores. 
 
Ejemplo: 
 
Sean 𝐴, 𝐵, 𝐶, y 𝐷 conjuntos. Si 𝐶 = 𝐷, entonces (𝐴 ∩ 𝐵)𝑐 ∪ (𝐴 ∪ 𝐶) = 𝐷 ∪ 𝐶𝑐. 
 
Por hipótesis tienes que 𝐶 = 𝐷. 
 
La conclusión es: (𝑨 ∩ 𝑩)𝒄 ∪ (𝑨 ∪ 𝑪) = 𝑫 ∪ 𝑪𝒄. 
 
Para realizar esta demostración existen dos métodos: el primero consiste en 
demostrar que el primer miembro es un subconjunto del segundo y viceversa, de 
esta manera tendrías que son iguales, aplicando la definición de igualdad de 
conjuntos. El segundo consiste en trabajar el primer miembro y llegar al segundo o 
viceversa. En este caso, vas a realizar la demostración por el segundo método. 
 
Trabajando progresivamente sobre el primer miembro, tienes que: 
 
(𝐴 ∩ 𝐵)𝑐 ∪ (𝐴 ∪ 𝐶) = (𝐴𝑐 ∪ 𝐵𝑐) ∪ (𝐴 ∪ 𝐶) por las leyes de Morgan 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 33 
 
 = (𝐵𝑐 ∪ 𝐴𝑐) ∪ (𝐴 ∪ 𝐶) por la propiedad conmutativa 
 
 = 𝐵𝑐 ∪ (𝐴𝑐 ∪ 𝐴) ∪ 𝐶 por la propiedad asociativa 
 
 = 𝐵𝑐 ∪ (𝑈) ∪ 𝐶 es el resultado de la unión de 
un conjunto y su 
complemento 
 
 = 𝑈 por la unión del conjunto 
universal con cualquier otro 
conjunto 
 
Entonces: (𝐴 ∩ 𝐵)𝑐 ∪ (𝐴 ∪ 𝐶) = 𝑈. 
 
Ahora, trabaja con el segundo miembro. 
 
𝐷 ∪ 𝐶𝑐 = 𝐶 ∪ 𝐶𝑐, por hipótesis, porque 𝐶 = 𝐷 
 
 = 𝑈, porque la unión de un conjunto y su complemento es el conjunto 
universal. 
 
En ambos miembros, has llegado a que 𝑈 = 𝑈, por esta razón, el enunciado: 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 34 
Si 𝐶 = 𝐷, entonces (𝑨 ∩ 𝑩)𝒄 ∪ (𝑨 ∪ 𝑪) = 𝑫 ∪ 𝑪𝒄 , es verdadero. 
 
Ejemplo: 
 
Sean 𝐴, 𝐵 y 𝐶 conjuntos. Si 𝐵 = 𝐶, entonces ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶𝑐)) – 𝐴 = ∅. 
 
De igual manera, trabaja con los miembros de la igualdad para encontrar un 
resultado que te aproxime o lleve a la conclusión. 
 
 ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶𝑐)) – 𝐴 
= [((𝐴 ∩ 𝐵) ∪ 𝐴) ∩ ((𝐴 ∩ 𝐵) ∪ 𝐶𝑐)] – 𝐴 
por la propiedad asociativa 
 
 
 = [(𝐴 ∪ (𝐴 ∩ 𝐵)) ∩ (𝐶𝑐 ∪ (𝐴 ∩ 𝐵))] – 𝐴 por la propiedad 
conmutativa 
 
 = [((𝐴 ∪ 𝐴) ∩ (𝐴 ∪ 𝐵)) ∩ ((𝐶𝑐 ∪ 𝐴) 
∩ (𝐶𝑐 ∪ 𝐵))] – 𝐴 
por la propiedad 
distributiva 
 
 
 
= [((𝐴) ∩ (𝐴 ∪ 𝐵)) ∩ ((𝐶𝑐 ∪ 𝐴) ∩ (𝐶𝑐 
∪ 𝐵))] − 𝐴 
por la unión de conjuntos 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 35 
 = [(𝐴 ∩ (𝐴 ∪ 𝐵)) ∩ ((𝐵𝑐 ∪ 𝐴) ∩ (𝐵𝑐 ∪
 𝐵))] – 𝐴 
por hipótesis de 𝐵 = 𝐶 
 
 
 = [ 𝐴 ∩ ((𝐵𝑐 ∪ 𝐴) ∩ (𝐵𝑐 ∪ 𝐵))] – 𝐴 por intersección de 
conjuntos 
 
 = [ 𝐴 ∩ ((𝐵𝑐 ∪ 𝐴) ∩ (𝑈))] – 𝐴 porque la unión de un 
conjunto y su 
complemento es el 
conjunto universal 
 
 = [𝐴 ∩ (𝐵𝑐 ∪ 𝐴)] – 𝐴 porque la intersección de 
cualquier conjunto 𝑃 con el 
conjunto universal da 
como resultado 𝑃 
 
 = [𝐴] – 𝐴 por intersección de 
conjuntos 
 
 = ∅ por diferencia de conjuntos 
Por lo tanto, el enunciado es verdadero. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 36 
La mayoría de las ocasiones, trabajar con conjuntos puede llevar a desarrollar un 
proceso complicado, el cual puede simplificarse al utilizar las propiedades de los 
conjuntos y algunos resultados previos, ya que algunas operaciones aparecen 
repetidamente en diferentes procesos. 
 
3.2.5. Producto cartesiano 
 
El producto cartesiano surge básicamente de la necesidad de establecer relaciones 
entre diferentes tipos de conjuntos. Por ejemplo, relacionar un conjunto de 
personas por su apellido con otro que represente las diferentes edades que una 
persona pueda tener y a su vez, se relacione con otro que represente los diferentes 
sexos, es algo que con las operaciones de unión, intersección, diferencia o 
complemento no se puede realizar. Sin embargo, el producto cartesiano permite 
construir un conjunto tal, que si permite la relación, los resultados de sus elementos 
para los conjuntos mencionados serían de la siguiente manera. 
 
𝐴 = (𝑎𝑝𝑒𝑙𝑙𝑖𝑑𝑜, 𝑒𝑑𝑎𝑑, 𝑠𝑒𝑥𝑜) 
 
Tal y como se observa, el producto cartesiano permite establecer una relación 
entre los elementos de los conjuntos mencionados. 
 
Definición de producto cartesiano 
 
Sean 𝐴 y 𝐵 conjuntos no vacíos. Se define al producto cartesiano de 𝐴 y 𝐵, 
representado por 𝐴 𝑥 𝐵, al conjunto formado por todos los pares ordenados (𝑎, 𝑏), 
tales que 𝑎 ∈ 𝐴 y 𝑏 ∈ 𝐵. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 37 
La representación del producto cartesiano de 𝐴 y 𝐵 es: 
 
𝑨 𝒙 𝑩 = {(𝒂, 𝒃)| 𝒂 ∈ 𝑨 𝒚 𝒃 ∈ 𝑩} 
 
Ejemplo: 
 
1.-Sean 𝐴 y 𝐵 conjuntos. Si 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} y 𝐵 = {1, 2, 3, 4}, entonces, ¿cuál es el 
producto cartesiano de 𝐴 𝑦 𝐵? 
 
Para contestar la pregunta, únicamente utiliza la definición de producto cartesiano. 
 
𝐴 𝑥 𝐵 = {(𝑎, 𝑏)| 𝑎 ∈ 𝐴 𝑦 𝑏 ∈ 𝐵} 
 
Para este caso tienes que: 
 
𝐴 𝑥 𝐵 
= {(𝑎, 1), (𝑎, 2), (𝑎, 3), (𝑎, 4), (𝑏, 1), (𝑏, 2), (𝑏, 3), (𝑏, 4), (𝑐, 1), (𝑐, 2), (𝑐, 3), (𝑐, 4), (𝑑, 1), (𝑑, 2), (𝑑, 3), (𝑑, 4)}. 
 
Una de las características del producto cartesiano que puedes encontrar a simple 
vista, es, si tienes el producto cartesiano de dos conjuntos 𝐴 𝑥 𝐵, donde 𝐴 y 𝐵 tienen 
una cantidad finita de elementos, entonces, puedes encontrar la cantidad de 
elementos del producto cartesiano. Esto puedes hacerlo multiplicando la 
cardinalidad de 𝐴 por la cardinalidad de 𝐵 y el resultado será la cardinalidad de 𝐴 𝑥 𝐵. 
 
Otra de las características que puede obtenerse del producto cartesiano es la 
siguiente: 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 38 
2. Sean 𝐴 y 𝐵 dos conjuntos tales que 𝐴 = {𝑎, 𝑏, 𝑐} y 𝐵 = {𝑐𝑎𝑚𝑎𝑟ó𝑛, 𝑝𝑜𝑙𝑙𝑜, 𝑣𝑒𝑟𝑑𝑢𝑟𝑎}. 
Encontrar 𝐴 𝑥 𝐵 y 𝐵 𝑥 𝐴. 
 
Comienza con 𝐴 𝑥 𝐵 
 
𝐴 𝑥 𝐵 = {(𝑎, 𝑐𝑎𝑚𝑎𝑟ó𝑛), (𝑎,𝑝𝑜𝑙𝑙𝑜), (𝑎, 𝑣𝑒𝑟𝑑𝑢𝑟𝑎), (𝑏, 𝑐𝑎𝑚𝑎𝑟ó𝑛), (𝑏, 𝑝𝑜𝑙𝑙𝑜), 
(𝑏, 𝑣𝑒𝑟𝑑𝑢𝑟𝑎), (𝑐, 𝑐𝑎𝑚𝑎𝑟ó𝑛), (𝑐, 𝑝𝑜𝑙𝑙𝑜), (𝑐, 𝑣𝑒𝑟𝑑𝑢𝑟𝑎)} 
 
Ahora encuentra a 𝐵 𝑥 𝐴 
 
𝐵 𝑥 𝐴 = {(𝑐𝑎𝑚𝑎𝑟ó𝑛, 𝑎), (𝑐𝑎𝑚𝑎𝑟ó𝑛, 𝑏), (𝑐𝑎𝑚𝑎𝑟ó𝑛, 𝑐), (𝑝𝑜𝑙𝑙𝑜, 𝑎), (𝑝𝑜𝑙𝑙𝑜, 𝑏), 
 (𝑝𝑜𝑙𝑙𝑜, 𝑐), (𝑣𝑒𝑟𝑑𝑢𝑟𝑎, 𝑎), (𝑣𝑒𝑟𝑑𝑢𝑟𝑎, 𝑏), (𝑣𝑒𝑟𝑑𝑢𝑟𝑎, 𝑐)} 
 
El ejemplo anterior se desarrolló para que observes que el producto cartesiano no 
es conmutativo, es decir, que 𝐴 𝑥 𝐵 ≠ 𝐵 𝑥 𝐴, aunque los pares ordenados tienen la 
misma cantidad en ambos productos, los obtenidos difieren uno del otro. 
 
Con esto, has finalizado la sección que comprende al producto cartesiano y 
realizarás algunos ejemplos que muestren los usos que tienen los elementos de la 
teoría de conjuntos en relación con otras áreas. 
 
Ejemplo: 
Sea 𝐴 un conjunto, donde 𝐴 = {𝑥| 𝑥 ∈ 𝑁}. 
 
Demuestra que: Si 𝑥 es par, entonces 𝑥 no es impar. 
 
Hipótesis: 
 𝑥 es un número natural 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 39 
 𝑥 es par 
 
Conclusión: 𝑥 no es impar 
 
Como 𝑥 es par, entonces ∃𝑘 ∈ 𝑍 tal que 𝑥 = 2𝑘. 
 
Supón que 𝑥 es impar, entonces ∃𝑐 ∈ 𝑍 tal que 𝑥 = 2𝑐 + 1. 
 
Igualando ambos resultados tienes que: 
 
𝑥 = 𝑥, sustituyendo los dos valores de 𝑥 
 
2𝑘 = 2𝑐 + 1 
 
2𝑘 – 2𝑐 = 1 
 
2(𝑘 – 𝑐) = 1 
 
𝑘 – 𝑐 = 
1
2
 
 
Has llegado a una contradicción, ya que 𝑘 – 𝑐 representa la diferencia de dos 
números enteros, pero la diferencia de dos enteros es un número entero, esto 
significa que lo que supusiste verdadero, ∃𝑐 ∈ 𝑍, 𝑥 = 2𝑐 + 1, es falso. 
 
Entonces, tienes que ∀𝑐 ∈ 𝑍, 𝑥 ≠ 2𝑐 + 1. Por lo tanto, si 𝑥 es par, no puede ser 
impar, tal y como lo querías demostrar. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 40 
En este ejemplo, utilizas el conjunto 𝐴, 𝑁 y 𝑍, los cuantificadores existencial y 
universal y el método de demostración por reducción al absurdo, es decir, utilizas 
elementos que has estudiado en las diferentes unidades de este curso. 
 
Antes de trabajar con el siguiente ejemplo, necesitas las siguientes definiciones 
para realizar una demostración. 
 
Definición de punto límite 
Un punto 𝑝 es un punto límite del conjunto 𝐸 si toda vecindad de 𝑝 contiene un 
punto 𝑞, con 𝑞 ≠ 𝑝, tal que 𝑞 ∈ 𝐸. 
 
Definición de vecindad 
Una vecindad de un punto 𝑝 es un conjunto 𝑉𝑟(𝑝) formado por todos los puntos 𝑞, 
tales que 𝑑(𝑝, 𝑞) < 𝑟, donde 𝑟 es el radio de 𝑉𝑟(𝑝). 
 
Con las definiciones anteriores demuestra el siguiente enunciado: 
 
Si 𝑝 es un punto límite de un conjunto 𝐴, entonces toda vecindad de 𝑝 contiene 
infinitos puntos de 𝐴. 
 
Hipótesis: 
 𝑝 es un punto límite de 𝐴 
 
Conclusión: 
 
 Toda vecindad de 𝑝 contiene infinitos puntos de 𝐴 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 41 
Demuestra este enunciado por reducción al absurdo. 
 
En la conclusión tienes que toda vecindad de 𝑝 contiene infinitos puntos de 𝐴, al 
negarla queda: 
 
No toda vecindad de 𝑝 contiene una cantidad infinita de puntos de 𝐴. 
 
Es decir, existe una vecindad de 𝑝 que contiene una cantidad finita de puntos de 𝐴. 
 
Supón que dicha vecindad es 𝑉𝑟(𝑝) 
 
Ahora, toma aquel punto que se encuentra más cerca de 𝑝, distinto de 𝑝 y llámalo 𝑞, 
esto es posible gracias a que dentro de la vecindad 𝑉𝑟(𝑝) hay una cantidad finita de 
puntos. 
 
Ahora como 𝑝 ≠ 𝑞, puedes formar la vecindad 𝑊𝑟(𝑝), con radio 𝑟 = 𝑑(𝑝, 𝑞). 
 
Es obvio que dentro de 𝑊𝑟(𝑝) no existe ningún 𝑐 ≠ 𝑝, de lo contrario, 𝑞 no hubiera 
sido el punto más cercano a 𝑝, entonces: 
 
Existe 𝑊𝑟(𝑝), tal que 𝑝 ∈ 𝑊𝑟(𝑝) , pero 𝑊 no tiene ningún otro elemento distinto de 
𝑝. 
 
Por definición, tienes que 𝑝 es un punto límite de 𝐴 si toda vecindad de 𝑝 contiene un 
punto 𝑞 ≠ 𝑝, tal que 𝑞 ∈ 𝐴. Pero 𝑝 tiene una vecindad 𝑊𝑟(𝑝) que no contiene un 
punto 𝑞 ≠ 𝑝, lo cual es una contradicción. 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 42 
Esto significa que la suposición: Existe una vecindad de 𝑝 que contiene una cantidad 
finita de puntos de 𝐴, es falsa. 
 
Como la suposición anterior proviene de negar la conclusión, significa que ésta es 
verdadera, es decir, que el enunciado es verdadero. 
 
El ejemplo anterior generalmente es utilizado en topología y análisis, sin embargo, 
utiliza elementos de la teoría de conjuntos, métodos de demostración y por 
supuesto la equivalencia lógica. Tal y como puedes apreciar, este curso puede ser 
de gran ayuda para poder comprender las diferentes ramas de la matemática. De 
igual manera, se puede utilizar de ayuda en ramas como el álgebra lineal, el cálculo 
y en el álgebra moderna, entre otras. 
 
Cierre de la unidad 
 
Has estudiado la asignatura de Pensamiento matemático, en donde aplicaste la 
lógica, las demostraciones y los conjuntos. Durante todo tu estudio te encontrarás 
con materias en donde aplicarás lo aprendido, ya que la lógica matemática es la 
base necesaria para comprender la teoría y aplicaciones de asignaturas como 
Álgebra lineal, Cálculo diferencial, integral y Topología. Ya que en dichas 
asignaturas se trabaja con conjuntos y demostraciones, y para dar una 
demostración como verdadera lo haces con la lupa de la lógica. 
 
 
 
 
 
Unidad 3. Teoría de conjuntos 
UNADM | DCEIT | MAT | IPM 43 
Recursos didácticos 
Para comprender mejor la teoría de conjuntos, puedes ver los siguientes video 
tutoriales. 
http://www.youtube.com/watch?v=NzcyLx0U0jM 
http://www.youtube.com/watch?v=Qsq439_I6fw 
 
Fuentes de consulta 
 
Lipschutz, S. (1991). Teoría de conjuntos y temas afines. México: Editorial McGraw-
Hill. 
Kisbye P. (2008). Elementos de lógica y teoría de conjuntos. Colombia. Recuperado 
de: http://ocw.unc.edu.ar/facultad-de-matematica-astronomia-y-
fisica/cursillo-de-ingreso/actividades-y-materiales/elementos-de-logica-y-
teoria-de-conjuntos 
 
 
 
http://www.youtube.com/watch?v=NzcyLx0U0jM
http://www.youtube.com/watch?v=Qsq439_I6fw
http://ocw.unc.edu.ar/facultad-de-matematica-astronomia-y-fisica/cursillo-de-ingreso/actividades-y-materiales/elementos-de-logica-y-teoria-de-conjuntos
http://ocw.unc.edu.ar/facultad-de-matematica-astronomia-y-fisica/cursillo-de-ingreso/actividades-y-materiales/elementos-de-logica-y-teoria-de-conjuntos
http://ocw.unc.edu.ar/facultad-de-matematica-astronomia-y-fisica/cursillo-de-ingreso/actividades-y-materiales/elementos-de-logica-y-teoria-de-conjuntos

Continuar navegando