Logo Studenta

Unidad I

¡Este material tiene más páginas!

Vista previa del material en texto

Video Filmación Página 1 
 
 
Unidad I: Introducción al Lenguaje Audiovisual 
 
 
1.1 ¿Qué es lo audiovisual? 
 
El Lenguaje audiovisual, básicamente, está compuesto por la imagen, el sonido y las reglas de 
combinación técnico-retórica. 
 
Si algo caracteriza a lo audiovisual, en el sentido de diferenciarlo de los otros lenguajes, es que 
se desarrolla en torno a dos sentidos simultáneamente: la vista y la audición. Así, como 
posibilidad más acabada de comunicación, implica un proceso evolutivo que no ha hecho más 
que perfeccionarse: del lenguaje hablado al escrito y luego su reproducción mecánica 
(imprenta) ; de la transmisión del sonido a través de un cable (teléfono) a su transmisión a 
través de las ondas hertzianas (radio); de la imagen fija (fotografía) a la imagen móvil (cine 
mudo); y de éste a la combinación con el audio (cine sonoro); de la película de celuloide (cine) 
a la transmisión por medio de ondas (televisión) y así podríamos detenernos en el color, la 
posibilidad de grabar los mensajes, el cable, el video y las múltiples posibilidades que brinda la 
combinación del lenguaje audiovisual con la informática. 
 
Aunque hay autores que incluyen en lo audiovisual; tanto lo auditivo puro (como la radio) 
como lo visual solo (la diapositiva) y también la combinación de ambos (el cine y la TV), 
atendiendo más a características técnicas de los medios que a la naturaleza del lenguaje, o 
incluso a quienes incluyen en lo audiovisual a productos propios de la gráfica como la 
fotonovela (como el semiólogo Christian Metz), en nuestro caso optaremos por llamar 
audiovisual a "la conjugación de la imagen con el sonido" mediante una "transformación 
técnica y retórica” que opera sobre la realidad que reproducimos generando un relato que 
constituye una nueva realidad. 
 
Desde una perspectiva semiótica, Herreros (1978) propone distinguir los sistemas parciales que 
conforman el sistema audiovisual y las redes relacionales entre ellos: 
 
 Sistema de la realidad sonora: incluye los elementos acústicos de todo tipo "tanto 
naturales como creados por el hombre, presentes o ausentes del interior del encuadre": 
lo verbal hablado; los ruidos o efectos; el silencio y la música. 
 
 Sistema visual: más amplio, "incluye todos los sistemas de comunicación y 
significación relacionados con la vista y la psicología de la percepción visual": el 
lenguaje escrito en sus variantes gráficas y las imágenes visuales. 
 
 Sistema de la transformación técnico-retórica audiovisual: todo lo que se refiere a 
la selección visual y sonora de la realidad, al movimiento de cámara y al montaje. "Tal 
vez sea el sistema más movedizo a la hora de codificarlo, pero también el más 
específico y el que de verdad da sentido y aglutina a los dos anteriores". 
 
A lo largo de la Cátedra Video Filmación nos detendremos a estudiar el sonido, la imagen y la 
transformación técnico-retórica con todas sus particularidades para así poder aplicarlo tanto a 
Video Filmación Página 2 
 
 
la video filmación en el lugar del hecho como así también al análisis de una grabación de un 
robo u homicidio. 
 
 
Por una cuestión operativa relacionada con la necesidad de facilitar el proceso de aprendizaje, 
centraremos la atención en la imagen fija. En este sentido, nos concentraremos en las 
características de la imagen: 
 
 
 Iconicidad 
 Simplicidad/Complejidad 
 Monosemia/Polisemia 
 Originalidad/Redundancia 
 Literalidad 
 
Iconicidad (como opuesto a abstracción). 
 
Abraham Moles define la iconicidad a partir de considerar a la imagen como "La imagen de un 
objeto real".La imagen no es el objeto. Dado que la iconicidad es una cuestión de grados, 
diremos que una imagen es más icónica (o más figurativa) en la medida en que se parece más al 
objeto original. Que se parezca más al objeto quiere decir que la imagen será más icónica si 
comparte con el objeto más propiedades comunes que saltan a la vista en el momento en que 
son percibidas. En consecuencia, no hay nada más icónico que el objeto mismo. 
 
Ejemplo de grados de Iconicidad: 
 
 
 
 
Fotografía Pintura Dibujo Descripción Lingüística 
 
 
 
La iconicidad es lo opuesto a la abstracción, una foto es icónica un símbolo es abstracto (como 
la bandera). Moles dice que "un símbolo es un signo que retiene en muy poca medida 
elementos del objeto que designa: en otros términos, se le parece poco" 
 
Cuanto mas icónica es una imagen, menos ambigüedades o asimetrías se generan en su 
reconocimiento o su decodificación. Como así también, cuanto más abstracta la imagen la 
ambigüedad es mayor. 
bodegón: 
 
 
cuadro donde se 
representan frutos, 
viandas u objetos 
usuales 
Video Filmación Página 3 
 
 
 
En este sentido, la fotografía, el cine y la TV en general y técnicamente hablando, están en 
condiciones de representar la realidad con un alto grado de iconicidad. Pero, representar la 
realidad no quiere decir que sea la realidad misma. Puede ser muy icónico pero no es la 
realidad. 
 
 
 
Simplicidad/Complejidad 
 
Las imágenes complejas, una pintura vanguardista por ejemplo (el ‘Guernica’ de Picasso), 
requieren de mucho más tiempo para ser comprendidas por el receptor. 
 
Sin embargo, una botella de vino con el fondo de un viñedo, solo nos comunica la publicidad 
del vino, ahora bien, el escote de la mujer con la sugerente imagen de las manos sosteniendo 
una copa que no se muestra, nos sugiere otro significado a parte de la publicidad del vino, hace 
referencia a la sensualidad de la mujer, la sexualidad, etc. es decir es, mucho mas compleja. 
 
Cuando hablamos de simplicidad nos referimos a un alto grado de Iconicidad y un bajo nivel 
de ambigüedad. 
 
 
 
 Simple Compleja 
 
 
Monosemia/Polisemia 
 
La imagen del vino a través de la botella, la marca y el tipo de diseño, muy icónico, tienden a 
generar un solo significado: estoy promocionando este vino, se llama Santa Julia, cómprelo y 
punto. Así, más o menos, funcionan las campañas publicitarias cuando lanzan un producto 
nuevo al mercado. 
 
Sin embargo, la segunda publicidad utiliza imágenes polisémicas cuando asocia un producto, el 
vino, con otras cuestiones: la belleza femenina; el buen nivel de vida; el confort; la 
autosatisfacción, la sexualidad etc. 
Video Filmación Página 4 
 
 
 
La polisemia o ambigüedad es riesgosa, porque bien puede ocurrir que el receptor entienda 
exactamente lo opuesto a lo que el emisor ha querido decir. 
 
El arte, en general, utiliza imágenes polisémicas. En cambio, la educación tiende a las 
monosémicas, para garantizar que ciertos contenidos sean comprendidos por los alumnos. 
 
 
 
 
 
Polisemia Monosemia 
 
 
 
Originalidad/redundancia 
 
Tiene que ver con el grado de familiaridad de lo que muestra la imagen. En general las imágenes 
publicitarias son redundantes en el sentido de que utilizan elementos comunes para facilitar la 
comprensión y la identificación del receptor. Ahora, la redundancia se transforma en 
‘estereotipo’ cuando "se utiliza para establecer modelos o formas de comportamiento que 
puedan resultar reconocibles y fáciles de asumir por el espectador". 
 
Las imágenes más originales son las artísticas y sobre todo las del arte no figurativo, vanguardista, de 
tono experimental. La originalidad, que puede incluso desconcertar al público ( "y eso ¿qué 
quiere decir?"), tiene directa relación con alguna de estas circunstancias: una operación 
compleja de desciframiento o de codificación, un bajo grado de iconicidad, un contraste poco 
común de elementos, la forma en que está organizada espacialmente, la distribución de los 
objetos, la presentación ‘extraña’ o ‘rara’ de un objeto conocido, el uso de colores diversos a 
los del objeto real, un punto de vista poco común, la finalidaddel mensaje y la creatividad de 
los autores. 
 
 Originalidad Redundancia 
 
Video Filmación Página 5 
 
 
 
 
 
 
Literalidad 
 
Una lectura literal de la imagen es aquella que se limita a describir lo que se ve en ella. Es lo 
que comúnmente se ve en Lengua como nivel denotativo, pero toda imagen es susceptible de 
ser decodificada más allá de su apariencia, lo que se conoce como nivel connotativo. 
 
 
La fe Cristina Benjamin Menéndez-1984 
 
Lo denotativo de cada imagen se reduce a describir lo que vemos. Lo connotativo hace 
referencia a la Fe Cristiana en la primera imagen y al Golpe de Estado en Argentina, en la 
segunda imagen. 
 
1.2 Televisión 
 
La televisión, en su acepción más sencilla, consiste en la emisión de imágenes en movimiento 
desde un sistema transmisor hacia un receptor situado en el área de cobertura de dicho sistema 
transmisor. Es decir, es la emisión y recepción a distancia de imágenes en movimiento. El 
sistema esta fundado en el fenómeno fotoeléctrico que permite transformar las radiaciones 
luminosas en corriente eléctrica. A partir de esta transformación se hace posible la codificación 
y el transporte de la señal hasta un receptor donde se produce la decodificación y nueva 
transformación de la corriente eléctrica en una imagen visible. 
 
Video Filmación Página 6 
 
 
Un sistema de televisión comienza por la imagen óptica de la escena a transmitir que es 
captada por el objetivo de la cámara y que es proyectada sobre un mosaico fotosensible. Este 
desprenderá electrones en forma proporcional a la intensidad de la luz recibida. La imagen 
óptica estará constituida por pequeñas áreas de luz y de sombra o elementos de imagen. La 
definición final será mayor cuanto mas diminutos y numerosos sean estos elementos que 
conforman la imagen. 
 
A partir de la imagen proyectada en el mosaico fotosensible se producirá, en el tubo de 
cámara, la transformación de la imagen en impulsos eléctricos mediante la exploración de un 
haz de electrones proveniente del cañón de electrones. 
 
Desde el cañón de electrones se lanza un chorro de electrones contra cada uno de los 
diminutos elementos de imagen que componen la cara posterior del mosaico fotosensible. El 
movimiento del haz es ordenado y repetitivo, leyendo en forma de líneas, de izquierda a 
derecha y de arriba hacia abajo. 
 
De esta forma, las intensidades de la imagen óptica son analizadas, punto por punto, 
produciéndose una transformación de impulsos eléctricos que seguirán el siguiente camino: 
Esquema Básico 
 
1.2 Persistencia de la visión 
 
La televisión y el cine crean la ilusión de movimiento al presentar ante el ojo una rápida 
sucesión de imágenes. En el caso de la televisión, distinguimos las imágenes porque el ojo es 
incapaz de apreciar el desplazamiento a gran velocidad de un punto brillante sobre la superficie 
de la pantalla. Esta ilusión es posible gracias a la persistencia en la retina, que hace que el ojo 
no aprecie el desplazamiento del punto sino que vea simplemente imágenes completas. Cuando 
el ojo mira a un punto que se mueve rápidamente, el fenómeno aludido hace que la imagen 
persista en el cerebro una fracción de segundos después de que el punto se ha desplazado a 
otro lugar. 
 
La persistencia de la visión, también llamada persistencia en la retina, es el tiempo que tarda el 
cerebro en eliminar la información suministrada. Existen unos límites dentro de los cuales el 
ojo apreciaría este engaño. El ojo aprecia las imágenes formadas por un punto brillante con 
sensación de continuidad, cuando la frecuencia de repetición de esas imágenes es de 
aproximadamente 16 veces en un segundo (16 hertzios) y desaparecería por completo a la 
frecuencia de unos 48 hertzios. 
 
1.3 Exploración sucesiva y entrelazada 
 
El proceso de exploración y análisis de los elementos de imagen presentes en el mosaico 
fotosensible se efectúa de la siguiente manera: un haz electrónico proveniente del cañón de 
electrones barre los elementos de imagen siguiendo un orden de izquierda a derecha y de arriba 
Video Filmación Página 7 
 
 
hacia abajo tal como leemos un libro. Cuando el haz termina la exploración de una línea, 
vuelve rápidamente a la siguiente hasta completar todas las líneas de una imagen. Una vez que 
ha terminado de leer la última línea vuelve de abajo a arriba para comenzar de nuevo en la línea 
primera. Este es el principio de la exploración sucesiva. 
 
Gracias a la persistencia en la retina es posible transmitir 25 lecturas completas de imagen en 
cada segundo, consiguiéndose así la sensación de movimiento. Sin embargo, a esta frecuencia 
de repetición de imágenes por segundo continuaría existiendo el parpadeo que desaparecería a 
la frecuencia de repetición de 48 Hz. Para superar este parpadeo se incorpora la exploración 
entrelazada o progresiva, en al cual se adopta la solución de barrer 25 cuadros o lecturas 
completas de imagen por segundo, previa descomposición de cada cuadro en dos semicuadros 
o campos de imagen. Entonces el haz de electrones lee primero las líneas impares en una 
fracción de 1/50 segundo y luego las líneas pares en otro 1/50 segundo. Se alcanza de esta 
forma una frecuencia de repetición de campo de 50 semiimagenes por segundo que elimina 
definitivamente el parpadeo sin que cambie el número de cuadros de imagen, cada una de los 
cuales se producirá en 1/25 segundo. 
 
 
 
 
1.3. 1 Cuadro y Campo 
 
Un cuadro de televisión es el resultado de la exploración completa de todos lo elementos de 
imagen que componen el mosaico fotosensible sobre el que se enfoca la escena. Es decir, es la 
imagen completa que resulta de la exploración de todas las líneas impares y pares. La 
frecuencia de repetición de cuadro es de 25 Hz y tiene lugar en 1/25 segundo (norma CCIR- 
Comité Consultivo Internacional de Radiocomunicaciones) 
 
Un campo es cada una de las dos exploraciones parciales (líneas impares ó líneas pares) que 
componen un cuadro. Cada campo consta de la mitad de líneas de un cuadro (312,5 líneas en 
Video Filmación Página 8 
 
 
los sistemas de 625 líneas) dos campos constituyen un cuadro. La frecuencia de repetición de 
cuadro es de 50 Hz y tiene lugar en 1/50 segundo (norma CCIR). 
 
1.4 Exploración Progresiva en TV Digital 
En los televisores y pantallas, se denomina escaneo progresivo o exploración progresiva a una 
tecnología en la que se realiza un barrido sucesivo de las líneas de la imagen, una línea después 
de otra. El escaneo progresivo ha reemplazado al método de exploración entrelazada, que 
transmite primero las líneas impares seguidas de las pares, con la finalidad de comprimir la 
imagen y reducir el ancho de banda, pero provocando parpadeos y menor definición. 
Mediante el escaneo progresivo se hace un barrido completo de la imagen línea por línea, de tal 
manera que permite transferir la imagen al completo. De esta manera, el escaneo progresivo 
transfiere 50 imágenes completas por segundo, en lugar de 50 cuadros como sucede con la 
exploración entrelazada. 
El escaneo progresivo transmite imágenes completas en lugar de cuadros, por lo que dobla la 
resolución del escaneo entrelazado, consiguiendo transmitir una imagen mucho más clara y 
detallada, sin parpadeos. 
Las resoluciones conseguidas a partir del escaneo progresivo están marcadas con una "p", 
como por ejemplo la indicación "1080p" que encontraremos en los televisores Full HD con 
escaneo progresivo. 
 El barrido progresivo (progressive scan), a diferencia del entrelazado, escanea la imagen entera 
línea a línea cada 1/16 segundos (NTSC). En otras palabras, las imágenes captadas no se 
dividen en campos separados como ocurre en el barrido entrelazado. 
 
Los monitores de computadoras no necesitan el entrelazado para mostrar la imagen en la 
pantalla, visualizan una línea a la vez en perfecto orden como por ejemplo, 1, 2, 3, 4, 5, 6, 7,etc. Por tanto, ópticamente no existe un efecto de “parpadeo”. En ese sentido, en una 
aplicación de vigilancia puede resultar vital para mostrar al detalle una imagen en movimiento 
como por ejemplo, una persona que está huyendo. Sin embargo, se necesita un monitor de alta 
calidad para sacar el máximo partido de este tipo de barrido. Ejemplo: Captación de objetos en 
movimiento. Cuando una cámara capta un objeto en movimiento, la nitidez de la imagen 
congelada dependerá de la tecnología empleada. Compare las siguientes imágenes JPEG, 
captadas por tres cámaras diferentes usando barrido progresivo y barrido entrelazado. 
 
Tengamos en cuenta lo siguiente: 
 Todos los sistemas de imágenes producen una imagen clara del fondo 
 Bordes irregulares de movimiento con el barrido entrelazado 
 Distorsión de movimiento por falta de resolución en el ejemplo 2CIF 
 Únicamente el barrido progresivo permite identificar la unidad 
Video Filmación Página 9 
 
 
 
BARRIDO PROGRESIVO 
 
BARRIDO ENTRELAZADO 
 
GRABADOR DIGITAL- CON DUPLICADO DE LINEAS 
1.5 La cámara de color 
 
La historia de la televisión comienza en la década de los años treinta, con transmisiones en 
blanco y negro hasta que, en 1953, se introduce la televisión a color en los Estados Unidos. A 
partir de allí, la televisión a color comenzó su expansión compartiendo siempre su existencia 
con la televisión en blanco y negro. Así es que la televisión a color nació con un 
condicionante: la compatibilidad. 
 
La exigencia de la compatibilidad hizo que los sistemas de televisión a color tuvieran que tomar 
necesariamente como base la transmisión de blanco y negro. La información de color 
(crominancia) tiene que ser transmitida de manera que los receptores de color puedan 
decodificarla y no puedan hacerlo, obviamente, los receptores monocromos por su carencia de 
circuitos para tratar la crominancia. 
 
Las cámaras de color emplean el sistema aditivo de color para el análisis de las escenas. Toman 
como referencia a los colores rojo, verde y azul. En la decodificación en el receptor también se 
emplea este sistema. 
 
 
Video Filmación Página 10 
 
 
Cámara color 
 
En la cámara profesional de tres tubos la luz que procede de la escena atraviesa el objetivo y 
después de unos filtrajes es enfocada en la superficie fotosensitiva de cada uno de los tres 
tubos correspondientes uno para coda color primario: rojo, verde y azul. 
 
En el interior de la cámara se alojan los espejos dicroicos que descomponen la luz blanca en 
sus tres componentes primarios. Estos espejos reflejan un color primario y dejan pasar, a su 
través, los otros dos. 
 
A la escena enfocada por el sistema óptico se le antepone en 1er lugar un espejo dicroico que 
refleja la luz azul dejando pasar las otras dos. La componente azul es reflejada hacia el tubo que 
analizara el azul. Luego, sucede lo mismo con la luz roja y por último con la verde. Antes de 
que cada componente cromático incida sobre el 
tubo correspondiente se efectúa un filtraje de purificación del color mediante filtros 
que se corresponden con el color que analiza cada tubo. Finalmente el haz de luz se concentra 
en el tubo previo paso por la lente convergente. 
 
Para que la compatibilidad sea posible y los receptores monocromos puedan reproducir en 
blanco y negro la señal proveniente de una cámara de color es preciso obtener la señal de 
luminancia (blanco y negro). Esto no es problema para las cámaras de blanco y negro. La señal 
de luminancia en las cámaras de color se obtiene restando parte de señal a la señal de salida de 
los tubos. Cada tubo esta diseñado para que proporcione una misma señal de salida cuando se 
analiza el color blanco. En los tubos se realiza un ajuste de forma que la salida de la cámara sea 
de 30% por el rojo, de 59% por el verde y de 11% por el azul. Si sumamos estas cantidades se 
consigue la misma señal que se obtendría con un receptor monocromo. Es la señal de 
luminancia (Y) 
 
Luminancia (Y)= 0.30 rojo+ 0, 59 verde+ 0.11 azul 
 
 
1.6 Normas de Televisión 
 
Video Filmación Página 11 
 
 
 
 
1.6. 1 NTSC (Comité Nacional de Sistemas de Televisión) 
 
Fue adoptado por los Estados Unidos en 1954, cuando la programación en color llegó a ser 
una posibilidad para asegurar que el color pudiera ser aplicado en los aparatos de televisión de 
blanco y negro en uso en ese tiempo. Se presenta en 525 líneas a 30 cuadros por segundo. Es 
utilizado activamente en Estados Unidos, Japón, y otros países. 
 
1.6.2 PAL (Línea Alternada en Fase) 
 
La empresa alemana Telefunken desarrollo este sistema como un refinamiento en la 
reproducción del color del primitivo sistema NTSC. El sistema PAL evita la distorsión de 
color que aparece en la recepción por NTSC. Se suele convenir que el sistema PAL es superior 
a NTSC debido a que es inmune a los problemas de reflexión de la señal en edificios ú 
obstáculos. Este sistema opera a 625 líneas a 50 ciclos por segundo y existe una variación PAL-
M que opera a 60 ciclos por segundo. 
 
1.6.3 SECAM (Memoria de Secuencia en Color) 
 
Es un sistema francés creado por Henri De France, muy distinto de los sistemas anteriores, 
aquí la formación de color es transmitida secuencialmente (rojo menos luminancia R-Y seguida 
por azul menos luminancia B-Y, etc.) para cada línea converge por un subportador de 
frecuencia modulada que evita el aumento de distorsión durante la transmisión. Ofrece 819 
líneas de resolución a 50 ciclos por segundo. Sus ventajas estriban en la mayor sencillez del 
aparato receptor y su inmunidad ante los problemas de fase que afectan al NTSC. Sin embargo, 
el SECAM no es totalmente compatible a los aparatos de blanco y negro y requiere de una 
línea de atraso 1H como en la recepción del sistema PAL. Existen de hecho dos variaciones del 
sistema SECAM, el horizontal y el vertical. 
 
Actualmente todos los TV son multinorma (PALB, PALN, PALM, NTSC), o por lo menos 
trinorma (PALN, PALM, NTSC). 
 
 
1.6.4 HDTV (Televisión de Alta Definición) 
 
 
Video Filmación Página 12 
 
 
 
 
Es un sistema de televisión que transmite video digital y sonido de alta fidelidad. HDTV es 
una imagen de 16:9 con el doble de líneas que generalmente emplea NTSC. El estándar de 
1125 líneas sobre 30 cuadros, frente a las 525 líneas y 30 cuadros tradicionales. 
 
La televisión de alta definición pretende verse con la calidad de cine y escucharse con el sonido 
de un disco compacto. Y viceversa, en el cine podrán verse películas realizadas con la 
tecnología de la televisión y el video, más manejable y barato. En 1992, Sony desarrolló y 
comercializó, su sistema HDVS que consiste de cámaras, monitores, videograbadoras, 
procesadores de señal, islas de edición y convertidores de cintas de video a película de 35 mm; 
todo en alta definición. El objetivo es la transmisión digital de la señal de alta definición, lo que 
permitirá eliminar las interferencias y degradaciones que sufren las señales analógicas. 
 
Actualmente existen diferentes estándares de televisión digital terrestre a escala mundial: el 
ATSC estadounidense, DVB europeo, ISDB-T japonés y DTMB chino. 
 
1.6.4.1 ATSC (Advantaje Television Sistem Commite) 
 
ATSC es el grupo encargado del desarrollo de los estándares de la televisión digital en los 
Estados Unidos. ATSC fue creada para reemplazar en los Estados Unidos el sistema de 
televisión analógica NTSC. 
 
El estándar ATSC de televisión digital terrestre han sido adoptado oficialmente como norma 
en: EE.UU. (1996, incluye Puerto Rico, Islas Vírgenes de los Estados Unidos, Samoa 
Americana, Guam e Islas Marianas del Norte), Canadá (1997), Corea del Sur (1997), México 
(2004), Honduras (2007), El Salvador (2009) y República Dominicana (2010). 
 
La televisión de alta definición es definida por la ATSC, como una imagen panorámica "Wide 
Screen" de 16:9 con una resolución de 1920x1080 pixeles. Esto es más de seis veces superior al 
tamaño de resolución de los anteriores estándares. Sinembargo, también se incluye un 
proveedor de imágenes de distintos tamaños, por lo que hasta seis canales virtuales de 
televisión de resolución estándar pueden emitirse por un solo canal de televisión de 6 MHz de 
ancho de banda. ATSC también contiene calidad de audio "teatral" Dolby Digital con formato 
AC-3 que provee 5.1 canales de audio. El número de líneas de ATSC es 850 a 30 cuadros por 
segundo. 
 
http://es.wikipedia.org/wiki/Samoa_Americana
http://es.wikipedia.org/wiki/Samoa_Americana
http://es.wikipedia.org/wiki/Guam
http://es.wikipedia.org/wiki/Islas_Marianas_del_Norte
http://es.wikipedia.org/wiki/Canad%C3%A1
http://es.wikipedia.org/wiki/Corea_del_Sur
http://es.wikipedia.org/wiki/M%C3%A9xico
http://es.wikipedia.org/wiki/Honduras
http://es.wikipedia.org/wiki/El_Salvador
http://es.wikipedia.org/wiki/Rep%C3%BAblica_Dominicana
http://es.wikipedia.org/w/index.php?title=Wide_Screen&action=edit&redlink=1
http://es.wikipedia.org/w/index.php?title=Wide_Screen&action=edit&redlink=1
http://es.wikipedia.org/wiki/Dolby_Digital
http://es.wikipedia.org/wiki/5.1
Video Filmación Página 13 
 
 
En los países que han adoptado la norma digital, se está llevando a cabo un proceso de 
transición hasta que los televisores analógicos hayan sido reemplazados por digitales o 
conectados a decodificadores de señal. Mientras, las estaciones televisoras transmiten dos 
señales: una analógica-frecuentemente por VHF-y otra digital, transmitida por UHF. 
 
1.6.4.2 DVB-T (Digital Video Broadcasting – Terrestrial) 
 
 Difusión de Video Digital – Terrestre es el estándar para la transmisión de televisión digital 
terrestre creado por la organización europea DVB. Este sistema transmite audio, video y otros 
datos a través de un flujo MPEG-2, usando una modulación COFDM. 
 
El estándar DVB-T forma parte de toda una familia de estándares de la industria europea para 
la transmisión de emisiones de televisión digital según diversas tecnologías: emisiones mediante 
la red de distribución terrestre de señal usada en la antigua televisión analógica tradicional 
(DVB-T), emisiones desde satélites geoestacionarios (DVB-S), por redes de cable (DVB-C) e 
incluso para emisiones destinadas a dispositivos móviles con reducida capacidad de proceso y 
alimentados por baterías (DVB-H). Otra nueva modalidad es la TV por ADSL que también 
posee un nuevo estándar como es el DVB-IPTV y también la modalidad de audio el DAB 
(Digital Audio Broadcasting), utilizado para las emisoras de radio en formato digital. 
 
 
1.6.4.3 ISDB (Integrated Services Digital Broadcasting) 
 
La Transmisión Digital de Servicios Integrados es un conjunto de normas creado por Japón 
para las transmisiones de radio y televisión digital. 
 
ISDB está conformado por una familia de componentes. La más conocida es la de televisión 
digital terrestre (ISDB-T e ISDB-Tb) pero también lo conforman la televisión satelital (ISDB-
S), la televisión por cable (ISDB-C), servicios multimedia (ISDB-Tmm) y radio digital (ISDB-
Tsb). 
 
Además de transmisión de audio y video, ISDB también define conexiones de datos 
(transmisión de datos) con Internet como un canal de retorno sobre varios medios y con 
diferentes protocolos. Esto se usa, por ejemplo, para interfaces interactivas como la 
transmisión de datos y guías electrónicas de programas. 
 
1.6.4.4 DTMB (Difusión Multimedia Digital Terrestre) 
 
DTMB es el estándar de TV creado en 2004 para los terminales móviles y fijos utilizados en la 
República Popular de China, Hong Kong y Macao. Aunque en un principio esta norma fue 
llamado DMB-T / H (Digital Multimedia Broadcast-Terrestrial/Handheld), el nombre oficial 
es el DTMB. 
 
El DTMB es una fusión entre las normas siguientes: antiaérea-T (desarrollado por la Shanghai 
Jiao Tong University, de Shanghai), DMB-T (desarrollado por la Universidad de Tsinghua, 
Beijing) y TIMI (Infraestructura Multiservicio Terrestre Interactiva), que es la norma propuesta 
por la Academia de Ciencias de Radiodifusión en 2002. 
Video Filmación Página 14 
 
 
 
1.6.4.5 Sistema Argentino de Televisión Digital Terrestre (SATVD-T) 
 
Argentina implementará el Sistema Brasileño de Televisión Digital Terrestre (SBTVD-TB), 
basado en el sistema Japonés denominado ISDB-T. Esta norma es la más completa y 
garantizará la aplicación de la nueva tecnología televisiva en todo el territorio nacional, además 
de permitir la recepción portátil y móvil de la señal transmitida. 
 
Televisión Digital Abierta (TDA) 
 
La Televisión Digital Abierta (TDA) es el Plan social del Estado argentino anclado en la 
tecnología de la Televisión Digital Terrestre y la Televisión Directa al Hogar. 
 
Este plan social se propone un incremento en la calidad de la TV respecto de los contenidos 
(educación, cultura y entretenimiento), la calidad de imagen y sonido, la participación 
ciudadana, la inclusión social, la generación de puestos de trabajo, el fortalecimiento de la 
Industria Nacional y la cobertura televisiva en todo el país. 
 
La gratuidad del servicio de la TDA es una decisión del Estado argentino pensada en dar 
acceso a los ciudadanos, independientemente de su situación económica. La idea es que las 
nuevas tecnologías, ancladas en políticas públicas y sociales, puedan realmente ayudar a generar 
igualdad de oportunidades para todos. 
 
Televisión Digital Terrestre (TDT) 
 
Es el conjunto de tecnologías de generación, transmisión y recepción de imagen y sonido a 
través de información digital (lo que se conoce como bits, o ceros y unos). Esto permite que 
los errores en la transmisión y recepción de la TV analógica (“fantasmas” y “lluvia”) se corrijan 
y de esta manera no existan interferencias ni distorsiones en pantalla, generando una imagen y 
sonido superior a la TV actual. 
 
Para tener acceso a la TDA, cada televidente deberá contar con un equipo receptor o puede 
estar integrado dentro de algunos nuevos televisores que explícitamente lo informen. 
 
Televisión Directo al Hogar (TDH) 
 
Es un sistema de transmisión y recepción de la señal digital a través de un satélite. El sistema 
satelital complementa las formas actuales de distribución de la TDA a través de la TDT 
Argentina, es decir permite cubrir todo el territorio nacional y ofrecer el acceso a la televisión 
donde por razones técnicas no llega la señal. 
Por otro lado, las normas de televisión digital permiten ofrecer servicios interactivos con la 
programación televisiva, visualizar contenidos en una guía de programas, acceder a canales de 
radio, disfrutar de visión multicámara (para eventos deportivos en particular), y recibir la señal 
en equipos portátiles y móviles (receptores en medios de transporte público o en celulares), 
entre otros beneficios. 
 
 
Video Filmación Página 15 
 
 
1.7 Diferentes tipos de Tv Digital 
 
* SDTV - Definición estándar de televisión digital tiene la misma resolución y relación de 
aspecto 4:3 como la televisión analógica tradicional, sino que se transmite en forma digital. La 
imagen es de 480 x 640 píxeles, con barrido entrelazado. 
 
* EDTV - Enhanced Definition Television tiene la misma resolución que la SDTV, pero con 
el barrido progresivo, lo cual crea una imagen más suave en general. Puede estar en la relación 
de aspecto 4:3 o 16:9, para una resolución de 480 x 640 o bien 480 x 720 píxeles. 
 
* HDTV (720p) – 1er Formato de alta definición de televisión con 720 x 1280 píxeles de 
resolución con escaneo progresivo. Este formato es ideal para la programación con mucho 
movimiento, como eventos deportivos. La relación de aspecto es de 16:9. 
 
 * HDTV (1080i). 2do formato de alta definición ofrece una resolución superior a 720p (1080 
x 1920 píxeles), pero con exploración entrelazada. La relación de aspecto es de 16:9. 
 
* HDTV (1080p) - Este es el formato final de alta definición, con resolución de 1080 píxeles x 
1920 (en la proporción 16:9) y escaneo progresivo. 
 
* Resolución 4K (también conocido como Ultra HD o UHD) es un tipo de resolución 
gráfica que tiene cerca de 4000píxeles de resolución horizontal 
 
- Existen dos tipos de resolución 4K que se diferencian por su relación de aspecto: por una 
parte, el 4K como estándar emergente para resolución en cine digital de relación 17:9, y por 
otra parte el 4K UHD usado en la industria de la televisión digital, de relación 16:9. 
 
- El 4 K real tiene una resolución de 4096 px de ancho por 2160 px de alto. 24 fotogramas por 
segundo y 8 bits de color. 
 
- EL 4 K UHD posee 3860 px de ancho por 2160 px de alto. 50 ó 60 fotogramas pos segundo 
y hasta 12 BITS, con una relación 16.9, de esta manera se evitan las franjas negras. 
 
 
 
 
 
 
1.7.1 Relación de aspecto 
 
Video Filmación Página 16 
 
 
Si dividimos el televisor en 12 cuadrados iguales, tendría 4 de largo por 3 de alto. Un televisor 
16:9 dividido imaginariamente en 144 partes, tendría 16 de largo por 9 de altura. 
 
 
 
 
 
 
 La relación de aspecto es la proporción entre el ancho y el alto de una imagen. 
 En TV analógica (NTSC, PAL) es de 4:3, es decir el ancho es 1.33 veces el alto. 
 En cambio la relación de aspecto de HDTV es de 16:9, es decir el ancho es 1,78 veces 
el alto. 
 
Si tenemos una imagen 4:3 en una TV 16:9 (Widescreen) se pueden producir dos fenómenos: 
 
 Barras laterales: Como la pantalla es ancha, la imagen 4×3 estará centrada en la imagen, 
de modo que se producirán 2 barras de color negro laterales. 
 
 Ensanchamiento de la imagen: De modo de llenar toda la pantalla la imagen se estirará 
en forma vertical. 
 
 
2. Grabación magnética 
 
La grabación magnética consiste en la grabación de datos en una banda magnética que crea un 
flujo que circula por el bobinado de la cabeza grabadora. Este flujo magnetiza la cinta en 
movimiento y no modifica los valores instantáneos de la señal de entrada. De este modo las 
señales llegan a televisión mediante impulsos magnéticos que se traducen en intensidades 
luminosas. 
 
La televisión basa sus principios en la transformación de estas intensidades luminosas en 
variaciones de tensión que permiten su modulación y radiación desde una antena transmisora. 
Con anterioridad a la aparición de los magnetoscopios ya existían los magnetófonos de audio, 
pero la grabación de imágenes exigía soluciones de mayor complejidad. La dificultad estribaba 
en cómo convertir las corrientes eléctricas variables procedentes de la cámara de TV en 
campos magnéticos que afectasen a un material ferromagnético, dejando una huella 
permanente. 
 
Video Filmación Página 17 
 
 
La grabación magnética se efectúa en la cabeza magnética, que es un hilo conductor enrollado, 
en forma de bobina, a un núcleo que genera un campo magnético proporcional a la corriente 
aplicada al hilo. 
 
La grabación y la reproducción de la imagen presentaban complejidades que hicieron retrasar la 
aparición del magnetoscopio. 
 
 
 
Cabeza Magnética 
 
 
El principal problema de la grabación de vídeo estriba en el enorme ancho de banda de la 
propia señal de imagen. Un sistema de televisión de 625 líneas de blanco y negro ocupa un 
ancho de banda de 5 Hz. El sonido requiere entre 8 y 20 Khz., según la calidad deseada. Esta 
enorme diferencia entre la anchura de imagen y del sonido, dificulta la grabación. A mayor 
velocidad de desplazamiento de la cinta, más elevadas son las frecuencias que pueden grabarse. 
La máxima frecuencia a registrar magnéticamente es inversamente proporcional a las 
dimensiones del entrehierro. Debe haber una total correspondencia en la situación de los 
entrehierros de las cabezas con las huellas magnéticas de la cinta, lo que obliga a regular el 
posicionamiento y la velocidad de las cabezas en la grabación y especialmente en la 
reproducción. 
 
Para garantizar la grabación de una señal con una anchura de banda tan amplia se hace que la 
cinta desfile a una elevada velocidad lineal. Para ahorrar metros de cinta, se hace girar las 
cabezas de grabación a la par que la cinta se desplaza longitudinalmente. Se consigue así un 
incremento de la velocidad relativa entre la cabeza y la cinta que facilita la grabación de las altas 
frecuencias y se traduce en un considerable ahorro. Para regular el posicionamiento de las 
cabezas respecto a las huellas magnéticas grabadas y su velocidad de giro, se incorporan, 
durante el proceso de grabación unos sincronismos grabados con una cabeza independiente, 
sobre una pista longitudinal en la cinta de vídeo. Estos impulsos de sincronismo son leídos 
durante la reproducción, para situar correctamente la cabeza lectora con las huellas magnéticas 
grabadas en cinta. Los sincronismos gobiernan la velocidad de los motores de arrastre de la 
cinta, así como el giro del cabezal magnético. 
 
La señal de crominancia se sitúa en la parte superior del espectro de frecuencias y los 
magnetoscopios domésticos o industriales no podrían tratarla si no fuese por la incorporación 
de unos circuitos de tratamiento de señal, cuya misión es la de trasladar la seña de crominancia 
a una banda de frecuencia más baja. 
Video Filmación Página 18 
 
 
 
2.1 Tipos de Grabación magnética: Grabación Transversal 
 
Los problemas tecnológicos que retrasaron la aparición de los grabadores de imágenes fueron 
resueltos en el año 1956, cuando salió el primer magnetoscopio profesional, de la firma 
Ampex: Cuádruplex. Éste poseía calidad de radiodifusión (broadcast) y sistema de grabación 
transversal. Los magnetoscopios de grabación transversal presentaban problemas relacionados 
con el excesivo ancho de cinta, la imposibilidad de congelar y ralentizar la imagen, la existencia 
de una única 
pista de audio, el complejo sistema de lectura aumentaba el tamaño de los equipos. 
 
El formato Cuádruplex desapareció aunque se mantuvo en la mayor parte de empresas 
televisivas hasta la década de los 80. 
 
El excesivo tamaño y el precio de los primeros magnetoscopios restringían su uso por las 
cadenas de televisión. 
 
 
 
 
 
 
 
2.2 Tipos de Grabación magnética: Grabación Helicoidal 
 
En la década de los 70 aparecieron muchos modelos de magnetoscopios. La mayoría hacía uso 
de la grabación helicoidal. En el sistema de grabación helicoidal, la cinta envuelve el tambor 
(adoptando forma de hélice). En el tambor se hallan dispuestas las cabezas de grabación / 
reproducción, sobresaliendo ligeramente a través de una hendidura. Las cabezas del tambor 
exploran la cinta de forma oblicua dando lugar a una disposición también oblicua de las pistas 
magnéticas grabadas. La variante más extendida es la disposición de 2 cabezas diametralmente 
opuestas en el tambor porta cabezas. Cada cabeza graba una pista inclinada y paralela respecto 
a la precedente. En cada una de las pistas se inscribe la información correspondiente a un 
campo de televisión, es decir, la información de 312’5 líneas. La velocidad de giro de un 
tambor de 2 cabezas es de 25 revoluciones por segundo, grabando 50 x segundo. 
Video Filmación Página 19 
 
 
 
La grabación de un campo de imagen por línea hace posible la ralentización y la congelación de 
la imagen. Para ello, la cinta se ralentiza o se detiene mientras giran las cabezas lectoras. La 
disposición oblicua de las pistas contribuye a un mayor aprovechamiento de la superficie de la 
cinta que permite reducir su anchura. Como en el sistema transversal, se precisa para la 
reproducción de una cabeza que graba los impulsos de sincronismo, que gobernarán la 
velocidad de paso de la cinta y su alineamiento respecto al tambor de grabación. Los impulsos 
de sincronismo van dispuestos en una pista longitudinal. Los sistemas helicoidales incorporan 
más de una pista de audio y abarcan desde la calidad profesional hasta las necesidades 
domésticas. 
 
 
2.3 Tipos de Grabación magnética: Grabación en Azimut 
 
Los magnetoscopios Cuádruplex y buena parte de la gama profesional de los grabadores de 
vídeo de exploración helicoidal, dejan un espacio en blanco entre línea y línea de imagen. Este 
espacio no grabado es la banda de seguridad y su función es la de evitarla diafonía o lectura 
por la cabeza reproductora de la pista que le corresponde, así como de parte de las pistas 
adyacentes, lo que alteraría la señal de salida. 
 
Los magnetoscopios domésticos eliminan la banda de seguridad para obtener mayor densidad 
de grabación y una elevada rentabilidad de cinta. La diafonía se evita mediante este tipo de 
grabación. 
 
Los entrehierros de las cabezas se colocan con un ángulo diferente de inclinación, en el sentido 
inverso. Así se suprimen las interferencias de lectura entre pistas adyacentes. 
 
Mientras una cabeza lee el campo que le corresponde, situada perpendicularmente a la pista, y 
obteniendo la máxima amplitud de la señal registrada, las pistas adyacentes a la pista objeto de 
lectura se encuentran con una angulación opuesta a la cabeza, lo que imposibilita que la cabeza 
pueda leerla. Como el ángulo azimut es diferente para cada formato, se introduce un nuevo 
elemento de incompatibilidad. 
 
 
 Azimutal Profesional 
 
3. El Video 
Video Filmación Página 20 
 
 
 
Es un sistema de grabación y reproducción de imágenes y sonido por métodos electrónicos, 
mediante una cámara, un magnetoscopio y un televisor. Las imágenes quedan grabadas en una 
cinta enrollada en un cartucho. 
 
En un equipo de video, la cámara recoge las imágenes mediante un sistema óptico (objetivo) y 
las proyecta sobre una superficie recubierta de un material semiconductor, que en función de la 
intensidad luminosa que recibe varía la intensidad de una corriente suministrada. Las señales 
eléctricas en las que la cámara transforma las imágenes contienen información sobre la forma, 
la luminosidad y el color de las mismas. Las cabezas de grabación del magnetoscopio 
convierten esas señales eléctricas en una señal electromagnética. Al hacer pasar por las cabezas 
de grabación una cinta magnética a velocidad constante, la señal electromagnética que recorre 
las cabezas orienta en un determinado sentido las partículas magnéticas de la cinta y de este 
modo queda registrada en ésta toda la información que llega a las cabezas. El televisor, por un 
proceso inverso, transforma la señal electrónica en imágenes visuales. 
 
3.2 La cinta de video 
 La información que una cinta magnética puede almacenar a medida que va pasando por las 
cabezas depende de las características de la cinta y de la velocidad a la que la cinta pasa. 
 
 Pista de control. 
 Es un impulso grabado en esta pista, marca cada revolución del tambor de grabación y el 
comienzo de cada cuadro. Actúa como guía para la reproducción de la señal de video. 
 
 Pistas de audio. 
 Aquí va todo lo referido a la sonorización. Según el formato con el que trabajemos dependerá 
de la cantidad de pistas. También pueden ser utilizadas para grabar una señal de Time Code 
(Código de Tiempo) Ver mas abajo. 
 
 Pista de Video. 
Almacena toda la información referida a la imagen, que vemos en una pantalla de TV. Esta 
imagen esta formada por un haz de electrones que explora a través de la parte posterior del 
tubo de imagen. El haz hace que el fósforo del tubo brille, creando así una imagen. 
Este haz efectúa un barrido a través del tubo 625 veces por cada cuadro de video, en un 
proceso que se denomina “exploración entrelazada”. Dicha exploración se realiza en dos 
partes de 312,5 líneas, denominado campo impar y par. 
 
En el primer recorrido el haz explora las líneas impares, luego retorna a la parte superior del 
cuadro y explora las líneas pares, para completar el cuadro de video. 
 
Entre un cuadro y otro hay un intervalo y el haz queda desactivado, dando paso a la lectura de 
sincronismo y salva de color. A este proceso de intervalo se lo denomina “vertical blanking” 
(borrado de imagen vertical. 
 
 Pista de ordenes 
Video Filmación Página 21 
 
 
 Puede incluirse información sobre el programa grabado ó registrarse un código de tiempos útil 
en la edición. 
 
 
Código de Tiempo. 
 El desarrollo del código de tiempo (Time Code) hizo posible que el montaje en video pudiera 
efectuarse con gran precisión. La lectura que se le da al Time Code es en “HH: MM. SS: 
CC” (horas: minutos: segundos: cuadros). 
 
Es una señal de audio, codificada digitalmente, que numera o rotula cada cuadro de 
video. Puede ser grabado en una pista de audio (longitudinal) o en la pista de referencia. La 
única excepción a esto es el código de tiempo de intervalo vertical (VITC), que es una señal de 
video grabada en el intervalo vertical. 
 
Al estar grabado en una pista, el TC es inamovible, si nuestra primer imagen en la cinta 
comienza a “00:02:23:11” será siempre este tiempo. 
 
Para sumar o restar TC hay que tener siempre en cuenta en el sistema que estamos trabajando. 
Si el sistema es “PAL” estaremos trabajando a 25 cuadros por segundo, mientras si trabajamos 
en “NTSC” tendremos 30 cuadros por segundo. 
 
 01:02:12:21 (Comienzo de la toma) 
+ 01:02:15:18 (Fin de la toma) 
---------------------------------------------- 
 2 segundos 22 cuadros durara la toma 
 
4. Sistemas de Video 
 
4.1 Sistemas de Video Profesional. 
 
Se consideran profesionales todos aquellos magnetoscopios dirigidos a la radiodifusión en 
organismos públicos o privados si cumplen algunos parámetros de calidad que garanticen la 
compatibilidad de las grabaciones y que hayan sido declarados por los organismos de 
radiodifusión como obligatorios para el intercambio de programas de calidad broadcast 
(radiodifusión). 
 
Pertenecen a esta denominación los magnetoscopios Cuádruplex, Segmentado B y Helicodal 
C, una característica común e éstos es que todos utilizan cinta magnética en bobina no en 
cassettes. 
 
 
 
Video Filmación Página 22 
 
 
 Cuádruplex Segmentado B Helicoidal C 
 
 
 Cuádruplex: emplea cinta de 2 pulgadas, en un carrete abierto con duración de 60 y 90 
minutos. Posee una pista de audio, una pista de video, una pista de órdenes y una de 
control. 
 
 Segmentado B: surge con la idea de incrementar el número de líneas de televisión 
grabadas en cada huella magnética con respecto al Cuádruplex, reduciendo así el 
número de cabezas a dos y el ancho de cinta a 1 pulgada. La ventaja frente al anterior 
es que posee 3 pistas de audio profesionales. Dispone, además, de 1 pista destinada a 
la grabación longitudinal de sincronismos y de banda de seguridad entre pistas para 
evitar la diafonía. 
 
 Helicoidal C: emplea una sola cabeza que graba un campo de imagen por pista, es decir 
312,5 lo que hace posible la ralentización y la congelación de la imagen. 
 
 
4.2 Sistemas de Video Industrial 
 
Poseen esta denominación todos aquellos que se encuentran entre el nivel doméstico de 8mm 
o ½ pulgada y el nivel profesional de 1 y 2 pulgadas. Con frecuencia son llamados también 
semiprofesionales. La mayor utilidad de estos sistemas esta en la enseñanza, publicidad, toma 
de noticias, intercambio de programas entre organismos de radiodifusión, intercambio de 
información industrial. 
 
Desde que surgió en 1971 se impuso el sistema U-MATIC de Sony. Hace uso de la 
exploración helicoidal, con banda de seguridad entre pistas para evitar la diafonía. Incorpora 
dos pistas de audio independientes y una pista de control. 
 
 
 
Estos sistemas utilizan la exploración helicoidal y también la azimutal que les permite un 
aprovechamiento máximo de la cinta. 
 
En 1980 surge el sistema BETACAM de Sony. Su principal novedad fue su aparición como 
camascopio, es decir cámara y magnetoscopio integrado en un solo cuerpo. Elimina de esta 
manera uno de los operadores, el que transporta el magnetoscopio. 
Otra ventajad de este sistema es que registra directa e independientemente la información de 
luminancia en una pistade video y la de crominancia en otra. 
 
Video Filmación Página 23 
 
 
4.3 Sistema de Video Doméstico 
 
Estos sistemas alojan la cinta magnética en un cassette formado por una bobina suministradora 
y otra receptora colocada en un mismo plano. El ancho de cinta de los sistemas VHS, BETA y 
V-2000 es de ½ pulgada (12,7 mm) existiendo también el ancho de 8mm de Sony.

Continuar navegando