Logo Studenta

46 Caracterización de un modelo de hélice para aplicación náutica autor Andrés Mauricio Morales Bacca

¡Este material tiene más páginas!

Vista previa del material en texto

Caracterización de un modelo de hélice 
para aplicación náutica 
 
 
 
 
 
 
Andrés Mauricio Morales Bacca 
 
 
 
 
 
 
 
Universidad de los Andes 
Departamento de ingeniería Mecánica 
Bogotá D. C. 2011 
2 
 
Caracterización de un modelo de hélice 
para aplicación náutica 
 
 
Andrés Mauricio Morales Bacca 
Autor 
 
Documento presentado a la universidad de los Andes como 
requisito para optar por el título de ingeniero mecánico. 
 
 
Ing. Álvaro E. Pinilla S. Ph.D. M.Sc. 
Asesor. 
 
 
 
Universidad de los Andes 
Facultad de ingeniería 
Departamento de ingeniería Mecánica 
Bogotá D. C. 2011 
3 
 
 
 
 
 
 
 
 
Dedicado a: 
 
Mis padres quienes pusieron en mí, la fuerza necesaria para levantarme después de 
cada caída. 
A mis amigos, quienes siempre fueron un bastón en los momentos de dificultad. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 
 
Agradecimientos 
 
Es para mí un orgullo haber tenido durante éste camino a el Ingeniero Álvaro Pinilla 
como asesor quien me enseño a mantener la calma cuando todo se ve perdido, a regalar 
siempre una sonrisa y sobre todo a respirar profundo y hallar una solución. 
Adicionalmente, es el responsable de fortalecer mi pasión por éste campo de la 
ingeniería. 
 
Por otro lado quiero agradecer al personal del laboratorio en especial a Omar Rodríguez 
quien siempre estuvo dispuesto a ayudar en lo que pudiera, quien además tuvo la 
voluntad de mostrarme mucho de su conocimiento que en más de una ocasión sería el 
responsable de sacarme de problemas. Ramiro Beltrán, Jorge Reyes, Juan David y 
Diego fueron también indispensables para sacar éste proyecto adelante. 
 
Finalmente a mis padres y amigos por su incondicional apoyo durante estos últimos 
años. A todos ellos les tendré reservado un lugar en el panteón de los más grandes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 
 
Tabla Contenido 
1. Introducción .......................................................................................................................... 7 
2. Estado del arte ....................................................................................................................... 9 
a. Antecedentes de las hélices ............................................................................................... 9 
b. Aerodinámica de las hélices. ........................................................................................... 11 
c. Coeficientes. .................................................................................................................... 12 
i. Reynolds ...................................................................................................................... 13 
ii. Avance ......................................................................................................................... 13 
iii. Momento Par ........................................................................................................... 14 
iv. Empuje .................................................................................................................... 14 
v. Eficiencia aerodinámica .............................................................................................. 14 
3. Análisis teórico del perfil aerodinámico. ............................................................................ 16 
4. Diseño y construcción ......................................................................................................... 20 
a. Sumergible. ..................................................................................................................... 21 
b. Banco de pruebas ............................................................................................................ 23 
i. Momento Par ............................................................................................................... 23 
ii. Empuje ........................................................................................................................ 24 
5. Desarrollo Experimental. .................................................................................................... 27 
a. Protocolo Experimental. .................................................................................................. 27 
b. Instrumentación del túnel de agua. .................................................................................. 28 
c. Medición del momento par ............................................................................................. 30 
d. Medición del empuje. ...................................................................................................... 32 
e. Curvas de rendimiento. ................................................................................................... 34 
6. Conclusiones y recomendaciones ........................................................................................ 37 
a. Conclusiones ................................................................................................................... 37 
b. Recomendaciones ............................................................................................................ 38 
c. Trabajo Futuro. ................................................................................................................ 39 
7. Bibliografía ......................................................................................................................... 40 
 
 
 
 
6 
 
Tabla de ilustraciones. 
 
Ilustración 1: Tornillo de Arquimides ............................................................................................ 9 
Ilustración 2: helicóptero de da Vinci ............................................................................................ 9 
Ilustración 3: rueda propulsora de Bernoulli .............................................................................. 10 
Ilustración 4: tornillo de Paucton ................................................................................................ 10 
Ilustración 5: hélice propuesta por Bramah ................................................................................ 10 
Ilustración 6: definición geométrica de un ala. ........................................................................... 11 
Ilustración 7: fuerzas presentes sobre un perfil alar .................................................................... 11 
Ilustración 8: Caracterización hélice Wright 1903 ...................................................................... 15 
Ilustración 9: Caracterización hélice Wageningen B5-75 ............................................................ 15 
Ilustración 10: Hélice Wageningen B5-75 ................................................................................... 15 
Ilustración 11: distribución de la cuerda a lo largo del aspa ....................................................... 18 
Ilustración 12: distribución del ángulo de calaje a lo largo del aspa ........................................... 18 
Ilustración 13: Hélice a caracterizar. diseño Ph D. Alvaro E. Pinilla. S........................................ 19 
Ilustración 14: modelo computacional del sumergible. ............................................................... 22 
Ilustración 15: modelo real del sumergible ................................................................................. 22 
Ilustración 16: banco de pruebas de momento par. torquimetro. ................................................ 23 
Ilustración 17: banco de medición del empuje 1 ......................................................................... 24 
Ilustración 18: banco de medición de empuje 2 y celda de carga. .............................................. 25 
Ilustración 19: Medición de presiones en el venturi ................................................................... 25 
Ilustración20: interfaz de visualización de presiones en el venturi ............................................ 29 
Ilustración 21: curvas características de los motores escogidos. ................................................. 30 
Ilustración 22: eficiencia de los motores escogidos .................................................................... 31 
Ilustración 23: variación del momento par respecto a la velocidad del flujo ............................. 31 
Ilustración 24: calibración de la celda de carga .......................................................................... 32 
Ilustración 25: empuje generado por la hélice en función de la velocidad angular ..................... 33 
Ilustración 26: Variables medidas y puntos de diseño de la hélice ............................................. 34 
Ilustración 27: comportamiento característico de la hélice. ........................................................ 35 
 
 
7 
 
1. Introducción 
 
Uno de los principales objetivos de la ingeniería es desarrollar artefactos que sean más 
eficientes lo que quiere decir, entregar más energía recibiendo menos posible y es por 
esto que resultaría de gran utilidad, una hélice que pudiera entregar una suma 
considerable de empuje y velocidad teniendo como entrada una bajo torque y una poca 
velocidad angular en el eje lo cual reduciría el peso y por tanto costo del motor. Una 
hélice de este tipo podría ser usada en infinidad de aplicaciones entre las cuales se 
encuentran los barcos a escala, deportes náuticos, transporte de carga y en aplicaciones 
militares como movimiento de torpedos entre otros. 
A lo largo de éste proyecto se muestra de forma simple pero concisa, el procedimiento 
para caracterizar una hélice con la limitación de que ésta estará sumergida por lo que se 
requiere de un protocolo distinto al usado en la caracterización de hélices aéreas 
Finalmente se ilustrara gráficamente variables que determinaran el comportamiento en 
aguas abiertas de la hélice mediante curvas adimensionales de torque, empuje y avance 
correspondientes a la caracterización de la misma. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 
 
 
 
 
 
 
 
Esta página se inserta con fines de 
edición 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9 
 
2. Estado del arte 
a. Antecedentes de las hélices 
 
Las Hélices datan desde el año 250 A.C. Cuando Arquímedes propuso su tornillo que, 
aunque no era utilizado como mecanismo de propulsión sino de transporte de agua, 
tiene el mismo principio de operación de las hélices actuales. Consistía en un cuerpo 
alabeado a lo largo de su eje que se 
introducía dentro de una camisa con una 
pequeña holgura que apenas dejaba 
mover el cuerpo. Se disponía de forma 
inclinada sobre un estaque, riachuelo o 
un simple reservorio de agua (podía 
utilizarse con otros líquidos e incluso 
sólidos (tolvas de granos actuales)) en 
donde se hacía mover el eje un una dirección particular y éste, con cada vuelta, 
arrastraba una cantidad de liquido establecida [Ilustración 1]. El concepto tiene mucho 
tiempo de descubierto pero solo se empieza a hablar de hélice con los primeros pasos de 
la aviación y fue Leonardo Da Vinci hacia el 1500 quien propuso un vehículo que 
mediante un sistema de transmisión relativamente simple que se acoplaba a un 
gigantesco tornillo de Arquímedes e impulsado por humanos alzaba vuelo.[Ilustración 
2] 
 
Sin embargo estas no son más que 
aproximaciones a los comienzos 
de la aviación como tal. Si 
queremos centrarnos un poco más 
en lo que corresponde a la 
navegación fluvial, debemos 
remitirnos a quien por muchos ha 
sido considerado el iniciador de la 
propulsión naval; Robert Hooke, reconocido por sus aportes en elasticidad de 
Ilustración 1: Tornillo de Arquimides 
Ilustración 2: helicóptero de da Vinci 
10 
 
materiales, presento en 1681 en su phylosofical collection, un 
compendio en el cual proponía un molino de agua muy similar 
a los molinos de viento con la diferencia de que éste no extraía 
energía del agua sino que al contrario, se la entregaba. El 
molino de Hooke consistía de 6 aspas de madera dispuestas 
perpendicularmente a lo largo de un eje horizontal el cual daba 
dos vueltas por cada revolución de las aspas. Tras éstas 
invenciones, en 1752, la academia de ciencias de parís otorgo 
premios a quienes desarrollaran modelos teóricos de 
propulsión naval para impulsar los barcos de la marina. Con 
esto aparecieron personajes como d’Alembert, Euler, y 
Bernoulli con aportes a la propulsión como la rueda 
propulsora de Bernoulli [ilustración 3], o el tornillo 
Arquimidiano propuesto por Paucton [ilustración 4]. 
Tres años después de la convocatoria hecha en Paris, surgió un personaje que trazaría 
las bases de lo que hoy en día es la propulsión náutica; Joseph Bramah propuso una 
hélice de pocas aspas que se acopla a un eje horizontal que se encuentra por debajo del 
nivel del agua. No hay evidencia de algún barco de la época propulsado mediante la 
hélice de Bramah probablemente debido al problema de hermeticidad que representa 
sacar un eje por debajo de 
la línea de flotación de una 
embarcación. [Ilustración 
5] Varios intentos surgieron 
después como 
modificaciones del modelo 
de Bramah las cuales 
incluían ejes inclinados y 
variación en el numero de 
Ilustración 3: rueda 
propulsora de Bernoulli 
Ilustración 4: tornillo de Paucton 
Ilustración 5: hélice propuesta por Bramah 
11 
 
aspas o el numero de hélices y sentido de giro con lo que se dio paso a las hélices 
contra rotatorias con una gran variedad de diseños. 
b. Aerodinámica de las hélices. 
 
Se debe partir del hecho de que una hélice no es más que un ala rotatoria, entendiendo 
como ala a “cualquier cuerpo cuya función sea recibir fuerzas de un flujo.” [Ref. 1 curso 
aerodinámica] por lo tanto el análisis se realiza aislando un aspa y analizándola como 
si fuese un ala. Un ala puede definirse por sus componentes geométricos. Donde el 
ángulo α corresponde al ángulo de ataque del perfil, la cuerda corresponde a la longitud 
entre el borde de fuga y el borde de ataque y el espesor denominado t.[Ref. 2] existen 
otros parámetros como el alabeo que determina el cambio en el ángulo del perfil a lo 
largo de la envergadura. 
 
Ilustración 6: definición geométrica de un ala. 
Aerodinámicamente un perfil alar se puede caracterizas por las fuerzas que este recibe. 
 
Ilustración 7: fuerzas presentes sobre un perfil alar 
12 
 
La componente L de la grafica indica la fuerza de sustentación (lift), la componente d 
corresponde a la fuerza de arrastre (drag), m el momento de cabeceo y alfa, el ángulo 
de incidencia al flujo, conocido como ángulo de ataque. 
Sin embargo esto corresponde a parámetros geométricos y aerodinámicos de la hélice 
que van más enfocados hacia la parte de diseño. Cuando de comportamiento se trata, es 
necesario contemplar otras variables mas relacionadas con el desempeño dentro de un 
flujo. 
Partamos del hecho de que la propulsión se fundamenta en principios físicos básicos 
como lo son la conservación de la energía y el momento. De ésta manera el 
funcionamiento de una hélice radica en el cambio de presión que genera el movimiento 
de esta dentro del medio. Así, se genera un sistema de bajas presiones delante de la 
hélice y uno de alta, detrás de la misma; tal cambio de presiones se ve reflejado en un 
empuje (T) comprendido como el flujo másico a través del área de giro de la hélice[2ª 
ley de Newton] 
∞ 
Para determinar el rendimiento de una hélice a menudo se realizan diagramas 
adimensionales que proporcionan información fundamental del comportamiento durante 
la aplicación. Generalmente estos diagramas surgen de procedimientos experimentales 
que permiten cuantificar las variables de interés que para el caso de las hélices náuticas 
son: empuje, torque, velocidad de avance yvelocidad de cavitación (ruido en el caso de 
hélices aéreas). Adicional a estas variables es fundamental conocer las condiciones de 
operación que son indicadores del medio en el que se va a desempeñar la hélice: 
densidad, viscosidad. 
c. Coeficientes. 
 
No es novedad que los números adimensionales constituyen una herramienta poderosa 
en la mecánica de fluidos debido a su facilidad y practicidad, sumado a una unificación 
en los conceptos y teorías que están detrás de fenómenos complejos. Por lo tanto para la 
determinación del rendimiento de una hélice se deben usar coeficientes adimensionales 
que permitan ilustrar el comportamiento de éstas así como del medio en que se 
desenvuelven. Los números a usar son: Reynolds, empuje, torque, avance, y cavitación. 
13 
 
i. Reynolds 
El número de Reynolds es tal vez uno de los más utilizados en la mayoría de campos 
donde se involucren fluidos ya que logra sintetizar los complejos conceptos de la física 
de un fluido en una simple expresión que puede determinar las condiciones del 
problema. Cuando se habla de bajos números de Reynolds se hace referencia a flujos en 
los que los efectos viscosos predominan sobre los inerciales y aunque hay distintas 
posiciones en cuanto al valor exacto de Reynolds, el rango en que mejor se ajusta es de 
0 < Re < 300 000. 
 
Donde ρ es la densidad del fluido, µ la viscosidad, V la velocidad y L la medida del 
cuerpo. 
 
ii. Avance 
 
El coeficiente de avance será el punto de partida para el análisis y la función primordial 
de éste número es comparar la velocidad no perturbada del flujo aguas arriba de la 
turbina ∞ contra la velocidad lineal de la hélice. Los valores para hélices marinas 
varían entre 0 y 1.5 usualmente. (ver ilustración 8 y 9) 
∞
 
Donde n es la velocidad angular de la hélice expresada en Hertz (Hz) y D es el diámetro 
en metros (m). 
 
 
 
 
14 
 
iii. Momento Par 
 
El coeficiente de torque es tal vez el más importante dado que es el principal 
responsable de la potencia de entrada requerida y relaciona el torque entregado con la 
velocidad y viscosidad del fluido. (ver ilustración 8 y 9) 
 
Donde Q corresponde al momento par instantáneo. 
 
iv. Empuje 
 
El empuje es sin lugar a duda la variable que más nos interesa incrementar y su 
coeficiente que es cociente entre la fuerza generada y la velocidad de giro de la hélice 
corregida por la densidad, también nos interesa aumentar. (ver ilustración 8 y 9) 
 
Donde T es la fuerza neta de empuje 
 
v. Eficiencia aerodinámica 
 
El concepto de eficiencia es algo por lo que las compañías han luchado y seguirán 
haciéndolo dado que es el representante directo del dinero ya que relaciona lo que se 
debe ingresar para obtener algo (ver ilustración 8 y 9) 
 
15 
 
 
Ilustración 8: Caracterización hélice Wright 1903 
 
Ilustración 9: Caracterización hélice Wageningen B5-75 
 
Ilustración 10: Hélice Wageningen B5-75 
 
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 0,2 0,4 0,6 0,8 1 1,2 1,4
K
q
, 
K
t,
 n
Avance J
Wageningen B5-75
n
K
q
16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Esta página se inserta con fines de 
edición 
 
 
 
 
 
 
 
 
 
17 
 
3. Análisis teórico del perfil aerodinámico. 
 El diseño de hélices tiene en su definición una gran variedad de conceptos y teorías que 
hacen de esto algo complicado, sin embargo existen modelos que permiten facilitar los 
cálculos despreciando algunos detalles o simplemente evitándolos. Para el caso de la 
hélice diseñada por el ingeniero Alvaro Pinilla, el diseño se concentro en la teoría del 
cambio de momento a lo largo del aspa el cual consiste en asumir una eficiencia 
deseada y con ello aumentar el empuje y disminuir el momento par solo modificando su 
geometría. Para ello se separa el elemento aspa en un número finito de partes para que 
sean analizados de manera individual para después obtener un rendimiento teórico que 
sea la suma de los aportes de cada diferencial de aspa. En el presente documento solo se 
expondrán las ecuaciones simplificadas del diseño de la misma dado que el objetivo de 
esta investigación no es el diseño de hélices sino la caracterización de estas, sin 
embargo si el lector está interesado en saber un poco más sobre el diseño, se recomienda 
remitirse al documento de tesis entregado por Rojas. 
 Los parámetros de diseño que son de nuestro interés son la distribución de la cuerda a 
lo largo del aspa (c), y el ángulo de calaje(β) de la misma. Para esto se tienen las 
siguientes expresiones: 
∞
 
 
∞
 
∞
∞
 
 
Los valores de B, y son valores característicos del perfil 
aerodinámico y la eficiencia (η) es un valor asignado desde el principio. Los demás 
valores son los correspondientes a la operación de la hélice, ∞ [tomado de libro 
curso aerodinámica] 
18 
 
El perfil elegido es un Eppler 387 diseñado para operar a 40000 Re con los siguientes 
valores característicos: 
B= 3 
 La distribución de la cuerda y el ángulo de calaje a lo largo del aspa se muestran a 
continuación. 
 
Ilustración 11: distribución de la cuerda a lo largo del aspa 
 
Ilustración 12: distribución del ángulo de calaje a lo largo del aspa 
 
 
 
-20
-15
-10
-5
0
5
10
0,00 0,20 0,40 0,60 0,80 1,00
0
10
20
30
40
50
60
70
80
0,00 0,20 0,40 0,60 0,80 1,00
19 
 
Las condiciones de diseño son las siguientes. 
Diámetro 7 cm 
Velocidad aguas arriba 0.22 m/s 
Velocidad angular 300 rpm 
Coeficiente de avance 0,69 
 
Para estas condiciones dadas, se esperan los siguientes valores como producto del 
desempeño en aguas abiertas. 
Empuje[N] 0,157 
Torque[Nm] 0,00191 
Eficiencia aerodinámica 0,65 
 
Ilustración 13: Hélice a caracterizar. diseño Ph D. Alvaro E. Pinilla. S. 
 
 
 
20 
 
 
 
 
 
 
 
 
 
 
 
 
Esta página se inserta con fines de 
edición 
 
 
 
 
 
 
 
 
 
 
 
 
21 
 
4. Diseño y construcción 
a. Sumergible. 
 
Se le denominó sumergible al cuerpo que alberga el sistema motriz entendido como el 
acople motor y reductor. Las limitaciones dentro del elemento eran principalmente dos. 
Debía ser geométricamente pequeño, pero tenía que ser capaz de albergar el motor. 
Adicional a esto y debido a que la parte motriz es completamente electrónica, tenía que 
ser completamente hermético. Para acotar aún más el problema, el cuerpo debía oponer 
la menor resistencia al avance del flujo lo cual sugería una geometría estilizada con un 
una armonía con el medio. Por tal motivo se utilizo es perfil NACA 4410 que es un 
perfil con un excelente desempeño a bajos números de Reynolds y su relación de cuerda 
espesor cumple con las condiciones requeridas por el motor. Para soportar el 
sumergible se usa una varilla de 1/8 de pulgada en el comercial acero plata y para 
reducir el arrastre en el agua, se construyó una funda de perfil NACA 1066. Tanto el 
sumergible como la funda, se realizaron por medio de una máquina de prototipado 
rápido en los laboratorios de la universidad de los Andes. Para facilitar el movimiento 
de eje dentro del sumergible se instalaron dos rodamientos sellados en acero inoxidable 
de referencia SKF 623-2RS1l y 619/6, el acople del eje de salida a la hélice, se realiza 
mediante un buje que conecta el eje de 3 mm proveniente del motor y conecta con una 
rosca de 3/8 UNC interna a la hélice. 
22 
 
 
Ilustración 14: modelo computacional del sumergible. 
 
Ilustración 15: modelo real del sumergible 
 
 
23 
 
b. Banco de pruebas 
Para el desarrollo del banco de pruebas hay que tener claro que es lo que se quiere 
medir. En este caso y debido a la dificultad de medir bajo el agua, se realizaran dos 
bancos, uno en el que se caracterizaran los motores con el fin de saber qué torque se está 
entregando en un momento determinado para poder construir, posteriormente, la curva 
de torque de la hélice. Y un segundobanco que será destinado para determinar el 
empuje generado. 
 
i. Momento Par 
El banco para medir momento par no es más que un torquimetro con dinamómetros, el 
motor se ubica en una pequeña plataforma en la base de la estructura y se alimenta con 
un voltaje y corriente conocida. En el eje del motor, se acopla una polea encargada de 
transmitir el torque en forma de fuerza a los dos dinamómetros. 
 
Ilustración 16: banco de pruebas de momento par. torquimetro. 
24 
 
ii. Empuje 
 
Para medir el empuje generado por la hélice hace falta simular las condiciones de 
operación por lo tanto se usa el tutor del túnel de agua instalado en la universidad de los 
Andes y en su zona de pruebas se instala, como primera aproximación al problema, un 
dinamómetro para medir la fuerza generada por la hélice al avanzar a distintas 
velocidades conocidas [ilustración 17]. Después se cambia el dinamómetro por una 
celda de carga diseñada específicamente para tal hélice [ilustración 18]. La fuerza que 
mide la celda y el dinamómetro se debe corregir por el cociente de los brazos ya que 
para aumentar la fuerza y que sea más fácil de medir, se realizó una amplificación 
mediante palancas. Con la celda de carga también se modificó el sistema de sujeción del 
sistema al túnel, empotrando una estructura a la mesa y haciendo unos pequeños cubos 
que se deslizan sobre rieles en lo que se puede fijar distintos instrumentos. El motivo 
del cambio es dejar una estructura que pueda ser utilizada en futuras investigaciones. 
[ilustración 18] 
 
Ilustración 17: banco de medición del empuje 1 
Sumergible 
Hélice 
Pitot 
Dinamómetro 
Rotula 
 
eje 
25 
 
 
Ilustración 18: banco de medición de empuje 2 y celda de carga. 
 
Ilustración 19: Medición de presiones en el venturi 
 
Celda de carga Banco de 
pruebas 
Rotula 
Eje 
Transductor B 
Transductor A 
26 
 
 
Para realizar la medición de la velocidad del flujo en la zona de pruebas se midió el 
caudal mediante el venturi ubicado en la parte inferior del túnel y se corrigió mediante 
el área transversal útil de la zona de pruebas para hallar la velocidad media en cada 
instante. Para medir el caudal se uso el principio de Bernoulli y se midieron las 
presiones a la entrada y la salida del venturi con áreas transversales conocidas con lo 
que se pudo determinar el caudal. Para la medición de las presiones se usaron 
transductores de presión: en la entrada se uso un rango de 0 a 30 psi (Transductor A) y 
en la salida, uno de 0 a 15 psia (Transductor B) dado que al acelerarse el flujo, se espera 
una baja de presión. 
 
La adquisición de datos se hizo mediante dos tarjetas de adquisición de datos: una 
nacional instruments para la celda de carga con un puente de wheatstone completo y 
una Labjack para la medición de las presiones a la salida y la entrada del venturi. Tanto 
la excitación de los transductores como la alimentación de la turbina se realizo mediante 
una fuente variable. 
 
 
 
 
 
 
 
 
 
27 
 
5. Desarrollo Experimental. 
a. Protocolo Experimental. 
 
Para realizar las mediciones de las variables requeridas es indispensable tener una guía 
para facilitar las mediciones, entonces empezaremos con la selección del motor de la 
turbina. 
Las condiciones que se tenían para éste eran las siguientes: 
· Geométricamente pequeño (diámetro inferior a 20 mm) 
· Rango de velocidad entre 0 rpm y 700 rpm 
· Alta eficiencia 
Haciendo un recorrido por el mercado colombiano, se observo que no hay empresas que 
fabriquen este tamaño de motores por lo tanto se compraron dos ejemplares que 
cumplían con los requerimientos pero que como argumento en contra tiene reductor que 
como es de esperar en este tamaño, es el responsable de reducir la eficiencia del 
conjunto. 
Una vez seleccionados los motores, se realizaron la caracterización correspondiente 
para cada uno ellos obteniendo sus curvas de rendimiento con sus eficiencias para cada 
velocidad que serán el punto de partida cuando se esté analizando la hélice en 
operación. 
 Usualmente, para la caracterización de hélices náuticas se varia la velocidad del flujo 
para poder barrer valores en el coeficiente de avance de 0 a 1,5 sin embargo al contar 
con la limitación de velocidad en el túnel se optó por mantener una velocidad fija ( 0,22 
m/s) y variar la velocidad angular de la hélice. Para el empuje funciona sin problemas 
pero para el torque no dado que siempre se le está exigiendo mas torque para aumentar 
la velocidad de giro, por lo tanto en la medición se tuvo que variar la velocidad del flujo 
manteniendo una velocidad fija y realizando este procedimiento a distintas velocidades 
se logro barrer todo el rango de J. 
Para la determinación de la velocidad de cavitación el procedimiento es un poco más 
simple ya que se incrementa la velocidad hasta observar cavitación en la punta y se 
28 
 
compara la velocidad con la predicha por la teoría. Sin embargo los cálculos sugieren 
una velocidad de giro de 92K lo cual no es posible en un motor de este tamaño. 
Los equipos requeridos son los siguientes: 
· tacómetro óptico 
· fuente variable Protek. 0-30 V 0 – 4A 
· amperímetro digital Fluke 
· voltímetro digital Fluke 
· transductores : 0-30 psi y 0 – 15psia 
· tarjeta de adquisición de datos Labjack 
· tarjeta de adquisición de datos National instruments 
· software JLogger 
· software National instruments 
 
b. Instrumentación del túnel de agua. 
 
Para realizar las mediciones hace falta instrumentar el túnel. Para medir la velocidad del 
flujo, se construyeron tubos de Pitot de 1/16 de pulgada para determinar la cabeza 
dinámica y transformarla en velocidad mediante la siguiente relación. 
 
A velocidad máxima de la bomba del túnel, se obtuvieron cabezas de 2.5 mm 
correspondientes a velocidades de 0,22 m/s lo que indica que medir la velocidad del 
flujo por éste método no es lo más indicado por su poca exactitud por lo tanto se decidió 
medir la velocidad mediante una corrección del caudal y el área en la zona de pruebas 
ya que en la parte inferior del tutor hay un venturi que permite conocer el caudal que 
está circulando en cada instante. Para medir el caudal en el Venturi, se usaron dos 
transductores de presión ubicados donde muestra la imagen 19. Una vez conocidas las 
presiones y mediante la ecuación de Bernoulli se convierte a velocidad mediante la 
siguiente ecuación. 
29 
 
 
 
 
Donde P es la presión en cada punto, ρ la densidad del fluido, las áreas 
transversales en cada sección del Venturi, Q el caudal y la velocidad y el área 
transversal del fluido en la zona de pruebas. 
La velocidad en la zona de pruebas se varió mediante el cierre y apertura de una válvula 
dispuesta aguas abajo de la bomba. 
 
Ilustración 20: interfaz de visualización de presiones en el venturi 
 
 
30 
 
c. Medición del momento par 
 
Como se mencionó en un aparte anterior, la determinación del momento par se hizo a 
partir de la caracterización de los motores. Una vez conocida la eficiencia para cada 
velocidad de giro y la potencia de entrada, se puede saber la potencia de salida y 
conociendo la velocidad instantánea de operación se puede calcular el torque en el eje 
por medio de la siguiente ecuación. 
 
 
 
A continuación se muestran las curvas características de los dos motores a usar. 
 
Ilustración 21: curvas características de los motores escogidos. 
 
0
5
10
15
20
0 100 200 300 400 500 600 700 800
M
o
m
e
n
to
 P
a
r 
(N
 m
m
)
Velocidad angular [rpm]
Momento Par al eje
Motor Negro Motor Blanco
31 
 
0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0 0,05 0,1 0,15 0,2
M
o
m
e
n
to
 p
a
r 
[N
m
]
Velocidad de flujo [m/s]
Momento par al eje
 
Ilustración 22: eficiencia de los motores escogidos 
En éstas gráficas se puede ver claramente la razón por la cual se usaron dosmotores en 
vez de uno solo. A velocidades inferiores a 260 rpm el motor blanco es capaz de 
entregar más potencia por cada unidad de potencia suministrada, sin embargo se puede 
apreciar que la eficiencia de este está cerca al 36% mientras que para el motor negro, 
asciende a un 40%. El motivo de estos valores tan bajos es el tamaño de los mismos. 
Una vez conocido el comportamiento de los motores, se hacen las pruebas en el túnel de 
agua con el fin de determinar la variación en 
el momento par para distintas velocidades 
de flujo. Como se puede ver, a medida que 
aumenta la velocidad en la zona de pruebas, 
el torque disminuye debido a que el fluido 
esta entregándole energía a la hélice 
haciendo que ésta requiera menos potencia a 
la entrada para mantener una velocidad 
cuasi constante. [Ilustración 23] 
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0 100 200 300 400 500 600 700 800
E
fi
ci
e
n
ci
a
Velocidad angular [rpm]
Eficiencia
Motor Negro Motor Blanco
Ilustración 23: variación del momento par respecto a la 
velocidad del flujo 
32 
 
d. Medición del empuje. 
 
La medición se realizo mediante una celda de carga del tipo anillo dadas las 
magnitudes de las fuerzas que se van a medir. La celda está hecha de bronce fosforado 
con modulo elástico teórico de 120GPa. A continuación se muestra el proceso de 
diseño de la misma. 
 
 
 
 
Ilustración 24: calibración de la celda de carga 
0,00
100,00
200,00
300,00
400,00
500,00
600,00
700,00
800,00
900,00
1000,00
0 0,5 1 1,5 2 2,5
D
e
fo
rm
a
ci
o
n
e
s 
[µ
ε
]
Carga [N]
Calibracion celda
Experimental 
teorico
Lineal (Experimental )
Lineal (teorico)
33 
 
 
Ilustración 25: empuje generado por la hélice en función de la velocidad angular 
En la primera gráfica se puede apreciar la calibración de la celda y se ve que el valor 
obtenido no se encuentra muy lejos del esperado. Adicional a esto el coeficiente de 
regresión nos indica un buen ajuste de los datos y el comportamiento de la curva nos da 
el comportamiento típico de una celda de carga. 
En la segunda y tercera grafica se observan los valores de empuje; la primera 
corresponde al valor censado por la celda y la segunda corresponde a la corrección por 
palanca que indica el empuje real que está ejerciendo la hélice. 
0,0
0,2
0,4
0,6
0,8
1,0
1,2
0 100 200 300 400 500 600 700 800
E
m
p
u
je
 [
N
]
Velocidad angular [rpm]
Empuje de la helice
34 
 
e. Curvas de rendimiento. 
 
Ilustración 26: Variables medidas y puntos de diseño de la hélice 
 
0
0,001
0,002
0,003
0,004
0,005
0,006
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,000 0,050 0,100 0,150 0,200 0,250
To
rq
u
e
 [
N
m
]
E
m
p
u
je
[N
]
Velocidad del flujo [m/s]
mediciones @ 300rpm
Empuje[N]
Torque [Nm]
35 
 
 
Ilustración 27: comportamiento característico de la hélice. 
Como se puede observar en las graficas anteriores, las variables se comportan como era 
esperado, a nivel que aumenta el coeficiente de avance, los coeficientes de torque y 
empuje disminuyen y la eficiencia forma una campana sesgada a la derecha. 
(Comportamiento típico de hélices náuticas) el valor del coeficiente de empuje para un J 
= 0,63 debía ser de 0,265 y el obtenido es de 0,226 lo que da un error porcentual del 14 
% lo cual es bastante bueno teniendo en cuenta los valores tan pequeños de las variables 
medidas. Otro factor que respalda esto es que el empuje de esperado por la hélice era de 
0,15N cuando gira a 300 vueltas por minuto, y el valor obtenido es de 0,141N. Sin 
embargo, la eficiencia esperada para el mismo avance era del 57 % y solo obtuvimos el 
40 % y es posible que los valores sean reflejo del torque dado que los valores esperados 
son muy inferiores a los obtenidos, posiblemente por la forma en que se medió esta 
variable. 
0
0,1
0,2
0,3
0,4
0,5
0,6
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,00 0,20 0,40 0,60 0,80 1,00 1,20
η
K
q
,K
t
Avance J
Curva caracteristica de la helice @ 150rpm
Kt Kq
Kq d Kt d
efi n d
36 
 
 
 
 
 
 
 
 
 
Esta página se inserta con fines de 
edición 
 
 
 
 
 
 
 
 
 
 
37 
 
6. Conclusiones y recomendaciones 
a. Conclusiones 
 
 
Las relaciones adimensionales constituyen una herramienta poderosa cuando se trata de 
evaluar el desempeño de objetos que se desenvuelven en un fluido sin embargo hay que 
tener especial cuidado cuando se va a diseñar el experimento dado que aún cuando se 
puedan medir las variables, el protocolo experimental debe coincidir con lo que se 
desea observar, por tal motivo para caracterizar una hélice es necesario fijar una 
velocidad de giro y variar la velocidad del medio con el fin de ver cuál es el efecto que 
tiene el fluido sobre el elemento. Si realiza al revés puede haber resultados 
inconsistentes. Variar la velocidad de giro de una hélice para barrer un determinado 
rango de J puede funcionar para la medición del empuje, sin embargo , la medición de 
momento par no será buena ya que con cada variación de velocidad el torque variara 
según lo que su componente mecánica le indique y no según lo que el flujo le imponga 
obteniendo valores en el coeficiente de torque que aumentan a medida que se 
incremente la velocidad de avance. Por esta razón es sumamente útil tener el recurso de 
velocidad de flujo muy por encima de los requerimientos de la prueba con el fin de no 
quedarse corto y poder llegar hasta donde se quiera. 
Medir valores pequeños tiene una gran dificultad en el sentido en que se debe saber muy 
bien qué es lo que la instrumentación está entregando ya que mucho de esto puede ser 
simple ruido que no aporta nada por lo que siempre es útil corroborar la información 
con otras fuentes de medición si es posible o de lo contrario un papel y un lápiz junto 
con una buena teoría pueden respaldar o por el contrario contradecir la información 
obtenida. Por otro lado, en ocasiones no se presta mucha atención a la base de una 
medición, el banco de pruebas. La mala construcción de éste puede significar el fracaso 
de la medición, e; banco debe ser rígido y estructuralmente estable; que ayude a 
eliminar ruido de las señales pero que no absorba información valiosa. Adicional a esto 
se debe procurar que éste sea lo más liviano posible sin sacrificar ninguna de las 
condiciones mencionadas anteriormente. 
En cuanto a la hélice; El desempeño de la hélice responde al comportamiento de 
cualquier hélice probada anteriormente, sus coeficientes de empuje y momento par 
38 
 
decrecen a medida que el coeficiente de avance aumenta. La eficiencia tiene forma de 
campana con sesgo a la derecha lo cual es común en cualquier tipo de hélice y aunque el 
valor obtenido no fue el esperado, eficiencias del 55% en hélices de éste tipo y a esta 
escala no son para nada despreciables y más aún teniendo en cuenta que el momento par 
no fue medido directamente sino calculado lo cual puede haber introducido un error en 
los datos. Otro factor que pudo afectar la medición fue que la hélice al momento de su 
construcción se le dejo una pequeña excentricidad que se ve representada en una 
oscilación constante en la corriente de entrada especialmente a bajas velocidades lo cual 
implica un poco mas de cuidado al momento de registrar tal variable. 
Dado que las curvas características son obtenidas de forma experimental y que las 
hélices se diseñan para un punto de mejor operación, no tenemos algo similar con que 
comparar, sin embargo un buen indicio de que se están haciendo bien las cosas es la 
capacidad de obtener resultados iguales o por lo menos parecidos cada vez que se repita 
el experimento. Para este caso, se realizaron 5 mediciones en las cuales el error estuvo 
por debajo del 12% lo cual nos da una base solida para formular hipótesis sobre el 
fenómeno que se está observando. Otro criterio de comparación puedeser alguna otra 
hélice que sea representativa por sus características; Los hermanos Wright diseñaron 
una hélice en 1903 que desarrollaba una eficiencia del 75 % en vuelo y 82 % como 
máximo que pone un estándar bastante alto en el campo del diseño de hélices, sin 
embargo a nivel náutico las eficiencias están un poco más bajas llegando a valores de 
75% lo que da fortaleza a la hélice que fue probada ya que un 55% en una hélice de 7 
cm de diámetro no es cosa para desechar. 
b. Recomendaciones 
Como principal recomendación se sugiere realizar la medición del torque de forma 
directa con el fin de eliminar las posibles fuentes de error y de ser posible robustecer un 
poco el eje que sostiene el sumergible ya que a velocidades superiores a las 500rpm, 
por su longitud, introduce un error de importancia en la señal de empuje. 
El tutor del túnel de agua es muy útil para la visualización a bajas velocidades pero es 
posible que se quede colgado cuando se requieran velocidades mayores a 0,22 m/s por 
lo que sería útil buscar la forma de aumentar la velocidad de la zona de pruebas. De 
igual manera es de suma urgencia la compra de tubos de Pitot que puedan ser usados en 
39 
 
agua y que permitan medir diferencias de presión lo suficientemente pequeñas que 
permitan una buena resolución en la medición de variables de bajo valor. 
Los paneles transparentes de la zona de pruebas del túnel son de acrílico por lo que se 
rayan con facilidad por lo que sería muy bueno reemplazarlos por módulos de vidrio 
que tienen una duración un poco mayor y su instalación y funcionamiento son iguales 
que los actuales. 
c. Trabajo Futuro. 
La caracterización de la hélice es solo una aproximación al campo náutico, sería muy 
interesante realizar una evaluación de la hélice pero ya no como turbina abierta sino 
cerrarla y cuantificar el efecto de toberas en su desempeño, tal vez instalarla en algún 
tipo de vehículo acuático radio controlado y ver como se desenvuelve bajo condiciones 
reales, lagos, ríos, mares etc. También podría hacerse una comparación experimental de 
la hélice respecto a una comercial y evaluar sus pros y sus contras. 
Como investigación posterior se podría realizar un modelo a escala comercial para que 
sea probado por expertos y oír los comentarios que tienen acerca de esta para así poder 
realizar las correcciones correspondientes. Adicional a esto, se recomienda realizar 
pruebas con la hélice encajonada con aditamentos como difusores o toberas que puedan 
modificar las condiciones de desempeño de la misma. 
 
 
 
 
 
 
 
 
40 
 
7. Bibliografía 
· CARLTON, J. Marine propellers and propulsión, 2 ed. Burlington, MA, USA. MPG 
books, 2007. 533 p. 
· GONZALEZ, Camilo. Desarrollo de una hélice de alto rendimiento para bajo número 
de Reynolds. Tesis te titulación (M Sc en ingeniería mecánica). Bogotá D.C. 
Universidad de los Andes, Facultad de ingeniería, Departamento de ingeniería 
mecánica. 2009. 73p 
· UIUC Airfoil coordinates Database [en línea]. Illinois, USA. University of Illinois. 
Disponible en: http://www.ae.illinois.edu/m-selig/ads/coord_database.html 
· VILLA, Carlos. Adecuación del túnel de agua de la universidad de los Andes. Tesis 
de titulación (ingeniero mecánico) Bogotá D. C. Universidad de los Andes, Facultad 
de ingeniería, Departamento de ingeniería mecánica. 2008. 64p 
· PINILLA, A. Notas del curso electivo de aerodinámica. Bogotá D.C. Universidad de 
los Andes. 2010 
· LOBOGUERRERO, J. Notas del curso electivo de máquinas hidráulicas. Bogotá D. C. 
Universidad de los Andes. 2009 
· PINILLA, A. Notas del curso electivo de energía eólica. Bogotá D.C. Universidad de 
los Andes. 2009 
· BRESLIN, J. Hydrodynamics of ship propellers, 1 Ed. New York NJ, USA, Cambridge 
University press, 1994. 559 p. 
· BERTIN, J. Aerodynamics for engineers, 4 Ed. New Jersey, USA. Prentice Hall. 2002. 
· UGURAL, A. Mechanics of materials, 7 Ed. Hoboken New Jersey USA .John Wiley & 
sons, 2008, 716 p. 
· ALEXANDER, C. fundamentals of electric circuits, 3 Ed. Boston MA, USA. McGraw-
Hill, 2000. 940 p.

Continuar navegando