Logo Studenta

Introduccion-a-Modelos-de-Optimizacion

¡Este material tiene más páginas!

Vista previa del material en texto

A LOS MODELOS DE 
Introducción
R o d r i g o P é r e z P e ñ a
OPTIMIZACIÓN
R o d r i g o P é r e z P e ñ a
A LOS MODELOS DE 
Introducción
OPTIMIZACIÓN
Pérez Peña, Rodrigo
Introducción a los modelos de optimización /
Rodrigo Pérez Pena.
Bogotá : Universidad Piloto de Colombia. Seccional Alto Magdalena,
2019
65 páginas : tablas; gráficos 
Incluye referencias bibliográficas
ISBN : 9789588957999
 
1. Investigación de operaciones
2. Construcción de un modelo
3. Toma de decisiones CDD 658.4034
UNIVERSIDAD PILOTO DE COLOMBIA
Presidente Olinto Eduardo Quiñones Quiñones
Rectora Ángela Gabriela Bernal Medina 
Director de Publicaciones y Comunicación Gráfica Rodrigo Lobo-Guerrero Sarmiento 
Director de Investigaciones Mauricio Hernández Tascón 
Coordinador General de Publicaciones Diego Ramírez Bernal 
SECCIONAL DEL ALTO MAGDALENA
Vicerrector Administrativo y Financiero José Ernesto Bermúdez Rojas 
Vicerrector Académico Henry Alberto Matallana Novoa 
Decana del Programa de Ingeniería Financiera Andrea Mican Silva
Coordinadora de Publicaciones Karen Estefanía Sarmiento Jiménez
Gestora de Línea de Investigación Luz Andrea Meneses Ortegón 
Primera edición, Bogotá 2019
Autor · Rodrigo Pérez Peña 
ISBN · 978-958-8957-99-9 
Diseño · Juliana Vélez y Daniela Martínez Díaz 
Corrección de estilo · Diego Nicolás Márquez
Ingeniería
Financiera
Facultad de
Ingeniería
INTRODUCC IÓN
R o d r i g o P é r e z P e ñ a
A LOS MODELOS DE A LOS MODELOS DE 
OPTIMIZACIÓNOPTIMIZACIÓN
La obra literaria publicada expresa exclusivamente la opinión de sus res-
pectivos autores, de manera que no representan el pensamiento de la 
Universidad Piloto de Colombia. Cada uno de los autores, suscribió con 
la Universidad una autorización o contrato de cesión de derechos y una 
carta de originalidad sobre su aporte, por tanto, los autores asumen la 
responsabilidad sobre el contenido de esta publicación.
© Introducción a los modelos de optimización
Agradezco a la Universidad Piloto de Colombia Seccional 
del Alto Magdalena por darme la oportunidad de llevar a 
feliz término la publicación de este libro que tendrá como 
objetivo construir a mejorar el conocimiento y aprendizaje 
en la actividad académica.
“
"
A mí querida esposa Ruby, quien siempre está conmigo.
A mis hijos Mario Alberto, Magda Lucía y Rodrigo.
A mis nietos Mario David y Verónica.
Esta obra es para ustedes.
"
“
RODRIGO 
PÉREZ PEÑA
¨
Ingeniero Industrial, Candidato a Doctorado en Admi-
nistración Gerencial, MBA con Especialidad en Finanzas 
Corporativas, especializado en Evaluación Social de Pro-
yectos y Docencia Universitaria, con amplia experiencia 
adquirida en los diferentes cargos desempeñados en 
la parte administrativa, experto en formulación y eva-
luación, seguimiento, ejecución y Control de proyec-
tos, tanto del sector privado como del sector público; 
con habilidades para diseñar estrategias que busquen 
mejorar de una manera eficiente y eficaz los sistemas 
productivos, administrativos y organizativos de una em-
presa; además cuento con las aptitudes para planear y 
desarrollar alternativas de optimización de los recursos 
disponibles de una empresa.
Con treinta y cinco años de experiencia en docencia, a ni-
vel de pregrado y postgrado, en diferentes centros Univer-
sitarios del país; liderar del grupo de investigaciones de-
sarrollo y productividad de la ciudad región de Girardot, 
ante Colciencias, durante los años 2014, 2015, 2016, 2017.
A
CE
R
CA
 D
EL
A
U
TO
R
CONTE
NIDO
21
22
23
25
25
26
26
26
27
29
29
30
30
16
18
31
19
24
32
32
33
INTRODUCCIÓN
CAPÍTULO I
¿Qué es un modelo?
Importancia de los modelos para la toma decisiones 
Modelación en la investigación de operaciones
Antecedentes de la investigación de operaciones
Aplicación de los modelos de investigación de operaciones
Directrices de un proyecto de investigación de operación
Fases de un estudio de investigación de operaciones
Estudio de la empresa u organización
Interpretación de la organización como un sistema
Identificación de los problemas de la organización
Construcción del modelo
Derivación de soluciones del modelo
Prueba del modelo y soluciones
Diseño de controles asociados a la solución
Implementación de la solución al sistema
CAPÍTULO II
Investigación de operaciones determinística
Modelo lineal
Definición de modelo determinístico
52
33
35
35
38
41
41
43
51
57
72
74
76
78
81
97
95
98
98
98
100
101
96
103
120
105
121
110
121
112
117
61
44
44
45
48
50
119
123
126
51
55
67
74Planteamiento del problema
Pasos para formular el modelo
Formulación del modelo
Conceptualización y equivalencias
Importancia de la formulación
Características del modelo lineal
CAPÍTULO III
Formulación de Casos
Caso 1
Caso 2
Caso 3
CAPÍTULO IV
Método Gráfico
Pasos para su solución
Ejemplo 1
Método Simplex
Complicaciones del Método simplex
Solución del Método simplex
Método del Gran M
Problemas
Modelo determinístico DUAL
Tecnología de la informática
Análisis Económico
Método dual simplex
Análisis Postóptimo
Ejercicios
Modelo determinístico del transporte
Observación sobre el modelo
Modelo de la matriz del transporte
Procedimiento
Ejemplo ilustrativo del problema del transporte
Soluciones básicas factibles al problema del transporte
Formulación Método simplex para la solución del problema del 
transporte
Método de la esquina noroeste
Método de Voguel
Método Solución Óptima
Método alternativo para seleccionar qué variable entra y 
sale de la base
Problemas de degeneración
EJERCICIOS
Problema 1
Problema 2
Problema 3
GLOSARIO
REFERENCIAS
INTRO
DUCCIÓN
El mundo globalizado de los mercados obliga a que las em-presas tengan que planificar el uso de sus recursos para lo-grar altos rendimientos y ser competitivas. A partir del uso de los modelos de optimización que nos ofrece la investigación 
de operaciones, tanto determinísticos como estocásticos, se busca 
obtener una utilización óptima de los recursos, tanto de los dispo-
nibles para realizar sus operaciones normales, como de los que se 
reinvertirán en el mercado de capitales, portafolios de inversión y 
en la planificación de las operaciones de las empresas. Actualmen-
te, existen diversas herramientas que permiten incrementar la pro-
babilidad de obtener mayor eficiencia en los procesos productivos y 
administrativos de la empresa y organizaciones en general. 
Las entidades administran los recursos físicos, económicos, hu-
manos y financieros, mediante la utilización de sistemas técnicos, 
por ejemplo, a través de modelos de producción, procesos, cuan-
titativos, planificación, financieros, y la inteligencia artificial, estos 
le permiten optimizar sus recursos y mejorar la efectividad de su 
gestión operativa. Resaltándose para nuestro estudio las diferen-
tes técnicas de la investigación operacional que ofrecen diferentes 
tipos de métodos tanto determinísticos como estocásticos para la 
solución de los diferentes problemas que se puedan presentar.
Hay que recordar que los modelos no toman decisiones, éstas son 
tomadas por la dirección, equipos de trabajo, asesores, jefes de 
área y personal auxiliar quienes en forma estratégica aplican los 
resultados obtenidos, buscando una mayor eficiencia y eficacia en 
el rendimiento. El significado de “solución óptima” que nos dan 
los métodos en la investigación de operaciones, es el resultado 
definitivo, según lo planteado en el algoritmo matemático; sin em-
bargo, pueden existir otros factores que solo los directores podrán 
determinar si producirán éxito o fracaso y los ajustes necesarios 
para funcionar realmente bien. 
A partir de lo anterior, cabe la pena preguntar ¿cuál es la importan-
cia del modelo si no garantiza la solución óptima que determina? 
La respuesta que se puede plantear es que si bien el modelo arro-
ja una solución óptima del problema,la situación real puede no 
ser determinística, influyendo en los resultados del mismo, donde 
pueden incidir otros factores no considerados en el modelo; que 
hacen que la solución obtenida no sea el resultado final; sin embar-
go, contar con una perspectiva de cómo arreglar el problema es de 
mucha importancia para la dirección y el equipo de trabajo en aras 
de tomar una decisión acertada y evitar así riesgo en la inversión.
19
¿QUÉ ES UN MODELO?
Un modelo es la abstracción de un problema real; al cual se le aplicarán ciertas consideraciones mate-máticas, permitiendo obtener resultados óptimos. En la investigación de operaciones se plantean 
una serie de modelos de optimización, los cuales sirven de 
apoyo a los gerentes y profesionales para la toma de decisio-
nes, permitiéndoles pautas importantes en la búsqueda de 
soluciones a los diferentes problemas administrativos y en 
la generación de valor para la empresa. Por tal motivo, cono-
cer este enfoque de aprendizaje a partir de la construcción 
de un modelo, permite a los ejecutivos y gerentes abordar 
los aspectos más importantes de cualquier situación para la 
toma de decisiones.
Antes de elaborar un modelo de optimización, se debe tener 
en cuenta el siguiente procedimiento:
I
CAPÍTULO
Capítulo I · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
20 21
Situación del problema
Análisis de resultados Proceso modelo optimización
Implementación modelo
Planteamiento del 
modelo
Figura 1. Proceso optimización
Fuente: Elaboración propia
Es necesario tener en cuenta que ningún modelo logra captar toda la realidad. 
Pues estos son una abstracción de un problema real, lo cual significa que sólo 
se pueden considerar algunas variables representativas de este; que al ser teni-
das en cuenta en el modelo y al realizar el proceso iterativo, representa en una 
forma aproximada las relaciones entre ellas. Lo anterior nos permite entender 
en una forma sencilla cuándo es conveniente realizar un modelo y qué varia-
bles pueden ser relevantes en el mismo.
Importancia de los modelos para 
la toma decisiones
Los diferentes modelos que plantea la investigación operacional son muy 
importantes en la toma de decisiones gerenciales, ya que contribuyen en la 
solución de los diferentes problemas que se presentan en las empresas u or-
ganizaciones. Una vez establecidas las mejoras a partir del modelo, los valores 
óptimos pueden diferir de la realidad, por factores externos, que nada tienen 
que ver el modelo elaborado.
Hay situaciones donde podemos hablar de “soluciones óptimas” ante las pro-
blemáticas de la administración de las empresas, así como también para algu-
nas decisiones del gobierno en la vida real, del mismo modo en el mundo de los 
negocios. Se recomienda a los directivos de las empresas que antes de aplicar 
los resultados realicen un análisis detallado de sus decisiones con respecto a 
ellas y no se fíen plenamente en el modelo. De igual manera, si al aplicar los 
resultados obtenidos está en desacuerdo a las pretensiones de la dirección, es 
conveniente que revise el modelo para realizar los ajustes pertinentes. 
En los modelos de optimización se debe tener en cuenta las siguientes consi-
deraciones.
1. Es una representación abstracta de la realidad de un problema.
2. Al elaborarse debe tenerse en cuenta suficientes argumentos que le 
permitan:
a. Obtener resultados satisfactorios de acuerdo con el problema planteado.
b. Los resultados obtenidos deben ser consistentes con la información del 
problema a resolver.
c. La optimización y su interpretación; se debe obtener en el menor tiempo 
posible.
Ciertos modelos representan una medida de desempeño que se logra a través 
de ciertas variables dentro de una serie de actividades, esto permite estable-
cer qué tanto se ha logrado cumplir de las metas propuestas. Quizás el pro-
blema más relevante en la investigación de operaciones es su elaboración; 
el cual representa cuánto están aportando las variables seleccionadas a la 
solución del problema.
La investigación de operaciones ayuda a resolver todas aquellas situaciones 
de cuello de botella que se presentan en las diferentes áreas de operación o 
en la parte administrativa de las entidades, con el fin de lograr el mejor uso 
de los recursos disponibles.
Capítulo I · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
22 23
Consideraciones de la investigación de operaciones
 Diferentes autores han realizado estudios sobre la investigación de ope-
raciones, presentando interesantes aportes al desarrollo de las técnicas 
de la investigación de operaciones, uno de los que ha presentado ma-
yores aportes es el Dr. Juan Prawda Witenberg quien ha divulgado una 
serie de metodologías muy importantes: 
La investigación de operaciones es un método científico. Situación completamen-
te errónea, porque hace suponer muchos métodos científicos, cuando la realidad 
sólo existe uno. La toma de decisiones está incluida dentro de la investigación de 
operaciones. Situación también falsa, ya que la investigación de operaciones es 
una de las tantas herramientas para la toma de decisiones (Prawda, 1979, p. 19). 
Otra contribución interesante al tema, la da el Dr. Ackoff Sasiani quien argu-
menta que los problemas militares presentados en la segunda guerra mundial 
tuvieron bastante influencia para que la investigación de operaciones lograra 
un amplio desarrollo, para ello plantea la siguiente consideración: 
La investigación de operaciones se puede considerar como: 
a. La aplicación del método científico
b. Por equipos interdisciplinarios
c. A problemas que comprenden el control de sistemas organizados hombre 
– máquina, para dar soluciones que sirvan mejor a los propósitos de la or-
ganización como un todo (Ackoff, 1979, p. 17).
Del mismo modo, Frederick S. Hiller y Gerald J. Lieberman han realizado gran-
des aportes al desarrollo de los modelos de la investigación de operaciones, a 
través de la siguiente consideración:
La investigación de operaciones significa hacer la investigación sobre las opera-
ciones. Esto dice algo tanto del enfoque como del área de aplicación. Entonces 
la investigación de operaciones se aplica a problemas que se refieren a la con-
ducción y coordinación de operaciones o actividades dentro de una organiza-
ción (Hillier & Lieberman, 1994, p. 5).
Modelación en la investigación de operaciones
La investigación de operaciones es una ciencia que cuenta con una serie de 
modelos que la hacen una de las herramientas más completas para el análisis 
de la optimización de los recursos, tanto para las empresas como para las 
diferentes organizaciones.
El autor Juan Prawda contribuye así a la importancia operacional: 
Estos modelos matemáticos de decisión permiten calcular los valores exactos 
o aproximados de los componentes controlables del sistema para que pueda 
comportarse mejor, de acuerdo a ciertos criterios establecidos. Estos cálculos 
se realizan bajo el supuesto que se conoce la información asociada al estado de 
aquellas componentes del sistema que no se pueden controlar. El acto de calcular 
el valor apropiado de estas componentes controlables, se conoce como derivar 
una solución al problema en cuestión utilizando un modelo (Prawda, 1979, p. 22). 
La investigación de operaciones utiliza dos tipos de modelos para la optimiza-
ción. Unos llamados determinísticos y otros llamados estocásticos; los mode-
los determinísticos son aquellos en los cuales se tiene un modelo matemático 
previamente diseñado, es decir tenemos una función y unas restricciones a 
optimizar; en los estocásticos no se cuenta con un modelo previamente defini-
do, hay que crearlo con la poca información disponible.
Antecedentes de la investigación de operaciones
Las técnicas operativas son una aplicación del método científico a la solución 
de los diferentes problemas que poseen las empresas y organizaciones tanto 
gubernamentales como militares y privadas, con el fin de tomar decisionesque optimicen los recursos escasos.
La investigación de operaciones comienza a conocerse hacia 1759 con los mo-
delos primitivos de programación matemática.
Posteriormente, el economista Walras también utiliza estas técnicas en el año 
1874; y en 1873 Jordan, crea los modelos de programación lineal, los comple-
menta Minkowsky en 1896 y Farkas en 1903.
En el siglo XIX hay que resaltar los descubrimientos de los modelos operaciona-
les estocásticos de inventarios, de tiempos y movimientos; a comienzos del si-
glo XX los modelos de líneas de espera, todos estos hoy en día son de suma im-
portancia para optimizar tanto los procesos productivos como los de servicios. 
Otro de los métodos utilizados fue el de asignaciones; muy útil en la distribu-
ción de equipos. El cual fue fundado por los húngaros Konig y Egervay. Neuman 
en los años 1937 culmina los estudios relacionados con la teoría de juegos, y 
la teoría de preferencias, muy importantes en las decisiones de competencia.
A partir de la Segunda Guerra Mundial, la investigación de operaciones tomó 
mucho más auge; como consecuencia de la falta de planificación de los recursos 
y buscando de qué manera se podían racionar los pocos existente. Fue en ese 
momento en el que los militares británicos llamaron una serie de científicos de 
Capítulo I · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
24 25
la investigación de operaciones y comenzaron a buscar modelos que les permi-
tieran obtener triunfos con el menor uso de recursos bélicos y humanos.
Al obtener buenos resultados con esto, los militares estadounidenses los motiva-
ron a realizar estudios, con iguales objetivos, donde aplicaron la investigación de 
operaciones a problemas complejos de logística, logrando resultados exitosos.
En igual forma se utilizó la planificación en estudios de vuelos, movilización de 
tropas, uso de equipos electrónicos en el campo de combate, y toda área donde 
fuera necesario optimizar los recursos.
Después de la guerra, vino una época de crecimiento económico, donde se 
querían generar procedimientos complejos y especializados en los diferentes 
tipos de organizaciones, en la asignación de recursos, sistemas de produc-
ción, planificación de actividades, lo cual exigió de las asesorías especializa-
das en las empresas y organizaciones, tanto del gobierno como particulares, 
y para ello se involucraron a ese grupo científicos que habían obtenido bue-
nos resultados en la acción militar.
De esta manera, los modelos planteados por la investigación de operaciones 
resultan trascendentales en la optimización de los recursos disponibles, bus-
cando los máximos beneficios a un menor costo. 
Aplicación de los modelos de investigación 
de operaciones
Los modelos de investigación de operaciones hoy en día son aplicables a todo 
tipo de negocio ya sea bursátiles, comerciales, industriales, servicios, financie-
ros, en planificación de los recursos de la salud y en general a todas las inver-
siones que impliquen optimización de recursos.
Estos modelos pueden ser aplicables tanto al sector privado como al sector público. 
Actualmente, existen diferentes organizaciones dedicadas a la fundamentación 
teórica y práctica de los diferentes modelos de la investigación de operaciones. 
Existen varias asociaciones que agrupan a miembros que se dedican a la aplica-
ción de la investigación de operaciones en todo el mundo. En los Estados Uni-
dos, existen dos asociaciones la Operations Research Society of Management 
Science, con aproximadamente 12000 miembros y el Institute of Management 
Science, con aproximadamente 8000 miembros, además hay asociaciones Ca-
nadienses, Europeas, Latinoamericanas y Asiáticas (Prawda, 1979, pág. 24). 
Directrices de un proyecto de investigación 
de operación
Al realizar un análisis de un proyecto de investigación de operaciones se deben 
considerar las siguientes directrices.
1. Realizar decisiones más eficientes
Las empresas, como las organizaciones en general, al realizar la toma de 
decisiones durante su gestión lo hacen en una forma técnica, sin tener en 
cuenta la relación existente entre las diferentes áreas que las componen. 
Los modelos operacionales permiten analizar estas interrelaciones entre 
las variables, evitando posibles fallas y traumas en la solución de los pro-
blemas. 
2. Interrelacionar las diferentes áreas de las empresas u organizaciones.
La investigación de operaciones a través de sus diferentes modelos, con-
sidera la posibilidad de implementar orden en las diferentes áreas de las 
empresas u organizaciones; tal es el caso de los requerimientos de ma-
teria prima en un proceso productivo, donde se debe contar con unos 
buenos inventarios de materia prima y una disposición adecuada de la 
circulación de esta dentro del proceso. 
3. Establecer un seguimiento eficiente de los procedimientos
Otra gran ayuda de los modelos de investigación de operaciones es que 
se puede lograr establecer una supervisión de las operaciones de una em-
presa u organización, evitando inconvenientes a futuro.
4. Obtener óptimos procedimientos 
A través de estas técnicas se puede lograr la optimización de los ingresos y 
costos mediante la maximización o minimización de una función objetivo 
y a su vez obtener mayor fluidez de los recursos eliminando los posibles 
inconvenientes que se puedan presentar; facilitando una mejor interrela-
ción entre los diferentes componentes de la empresa u organización.
De acuerdo con Prawda (1979, p. 27), se pueden considerar las siguientes fases 
en un estudio de investigación:
1. Estudio de la organización
2. Interpretación de la organización como un sistema
3. Formular el problema de la organización
Fases de un estudio de investigación 
de operaciones 
Capítulo I · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
26 27
4. Construcción del modelo
5. Derivación de soluciones del modelo
6. Prueba del modelo y sus soluciones
7. Diseño de controles asociados a las soluciones
8. Implementación de las soluciones al sistema
A continuación, se detalla cada una de estas fases.
Estudio de la empresa u organización 
Al elaborar un trabajo de investigación de operaciones se debe tener en cuen-
ta en primer lugar, cómo está funcionando la empresa u organización, y cómo 
está relacionada con el medio externo. Al tener ese conocimiento se puede to-
mar una apreciación sobre el tipo de empresa a analizar y los posibles proble-
mas que la rodean. Esto permite que se definan variables que estén más direc-
tamente relacionadas con el problema como en los modelos a implementar y 
poder obtener óptimas soluciones. 
Interpretación de la organización como un sistema
Quiere decir esto que se debe considerar la empresa como un sistema organi-
zado donde el comportamiento de cualquier parte de esta puede ser afectado 
por otra. En la investigación de operaciones implica ampliar el problema al pre-
sentado originalmente, de tal manera que se incluyan interacciones que no se 
tienen en la formulación hecha por la administración. 
Formular el problema de la organización
Al realizar un estudio operacional se deben plantear varias alternativas de solu-
ción, antes de formular el problema que se busca solucionar. 
Ackoff hace unas consideraciones a tener en cuenta para plantear un problema 
de manera sencilla:
1. Debe existir por lo menos un individuo al que se le pueda atribuir el proble-
ma, el individuo ocupa un medio ambiente.
2. El individuo debe tener, por lo menos, dos posibles cursos de acción C1 y 
C2 que pueda seguir; es decir, debe poder hacer una selección de compor-
tamiento.
3. Debe existir, cuando menos, dos resultados posibles de su selección, de los 
cuales él prefiere uno en vez del otro; es decir debe haber, cuando menos, 
un resultado que él quiera, un objetivo.
4. Los cursos de acción disponibles deben ofrecer cierta oportunidad de lo-
grar su objetivo, pero no puede dar la oportunidad a ambos. 
5. Las personas que toman las decisiones desconocen las solucionesy/o efi-
ciencias y/o efectividades relacionadas con las soluciones del problema” 
(Ackoff, 1979, p. 35-36).
Para determinar si existe o no un problema se debe tener en cuenta lo siguiente: 
• Que la problemática, sea para varios y no en una forma individual.
• Que la posición donde se encuentra la problemática sufra cambios per-
manentemente.
• Poseer la disponibilidad de seleccionar varias estrategias, en una 
forma finita.
• Que el conjunto de la problemática pueda identificar varios objetivos. 
Aunque no sean prioritarios.
• Que la estrategia seleccionada pueda ser realizada por otro grupo.
• Que las decisiones tomadas repercutan tanto en el conjunto de la proble-
mática como en los ajenos a esta, ejemplo: productores y no productores. 
Clase de problemas
Se consideran dos tipos de problemas los determinísticos y los estocásticos, es-
tos últimos identificados según niveles de incertidumbre y riesgo que se tengan.
Problema Determinístico
En el problema determinístico, cada alternativa planteada tiene una solución, 
cuando existe más de una alternativa existirá más de una solución. Cada una 
tiene una función que medirá la eficiencia y/o efectividad de esta y estará aso-
ciada a los objetivos del sistema. 
Problema Estocástico
Son aquellos que poseen cierto nivel de incertidumbre, con la presencia de 
variables inciertas, para su medición es necesario contar con una cierta pro-
babilidad. La función de distribución de estas probabilidades es identificable 
y por consiguiente calculable. 
Problema de Incertidumbre
En este tipo de problemas los niveles de incertidumbre son altos y se requiere 
de información estadística; para ello es necesario estimar las probabilidades a 
plantear en el modelo. 
Construcción del modelo
Al estudiar las técnicas de investigación operacional, se tienen tres clases de 
modelos:
Los icónicos, analógicos, simbólicos.
Capítulo I · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
28 29
Modelos icónicos
Los modelos icónicos se representan mediante una imagen y su medición pue-
de hacerse en escala de acuerdo con el tipo de situación que se desee analizar. 
Por ejemplo imágenes, maquetas, mapas y representaciones de situaciones 
reales con ciertas dimensiones para su formación como barcos, automóviles, 
aviones, canales, como aparece en la figura 2. 
Figura. 2. Modelo imagen ícono.
Fuente: Elaboración Propia
Modelos analógicos
Se logran mediante esquemas cuyas propiedades son las de un modelo que se 
obtiene a partir del problema que se desea resolver; referenciando otro modelo 
cuyas propiedades son equivalentes. Por ejemplo, las propiedades de un mo-
delo de red, de interconexión aérea entre varios países son equivalentes a la red 
de un sistema interconexión satelital (figura 3). 
Figura 3. Modelos Análogos 
Fuente. Elaboración propia
Modelos simbólicos
Es el modelo más utilizado por su bajo costo y su fácil elaboración. Tiene for-
ma abstracta de la situación a analizar; y se puede hacer mediante el uso de 
letras, números, variables y ecuaciones. Suele ser muy flexible, por lo cual per-
mite realizar diferentes clases de modelos. (Ver figura 4)
Figura 4. Modelos Simbólicos
Fuente: Elaboración Propia
Por falta de información en la búsqueda de una solución de un problema, muchas 
veces es necesario cambiar de una clase de modelo a otro para obtener informa-
ción. Esto evita que se cometan errores; hay que considerar que entre más sencillo 
sea el modelo, menos dificultad se tiene en la consecución de la información.
Derivación de soluciones del modelo
Encontrar una solución es hallar los valores a las variables que hacen que su 
solución sea óptima, sin embargo, como se ha expresado, esta solución no ne-
cesariamente determina una mejoría en la eficiencia o eficacia al sistema.
El análisis matemático que se hace a un modelo de solución por investigación 
de operaciones se realiza en forma deductiva, es decir, parte de lo más general 
a lo particular.
Así mismo, otra manera de llegar a soluciones posibles, es el método iterativo, 
donde se van obteniendo soluciones factibles hasta en encontrar la solución 
óptima, realizando un recorrido en el llamado polígono de soluciones hasta 
encontrar la óptima. 
Prueba del modelo y soluciones
Los modelos se deben probar independientemente de quién lo realice, con el 
fin de comprobar si los resultados obtenidos son predicciones verdaderas o qué 
tan cerca están de ser confiables. Es recomendable que la persona o equipo de 
trabajo de la toma de decisiones siga los siguientes pasos al realizar la prueba.
A
B
C
ORIGEN
Rodrigo Pérez Peña
30
1. Se debe comprobar que el diseño elaborado, no presente fallas; de tal ma-
nera que al realizar las diferentes iteraciones se vuelva infactible.
2. Una vez se compruebe la veracidad del modelo, se revisan las expresiones 
matemáticas; si están acorde a los objetivos que se pretenden lograr con este.
3. Una vez revisado tanto el modelo como su representación matemática; se 
selecciona la técnica para obtener la solución; los resultados obtenidos se 
analizan e interpretan según el problema planteado.
4. El análisis de los resultados deben hacerse de tal manera que sean enten-
dibles por los interesados en los resultados.
5. Una vez analizados se deben hacer los ajustes necesarios al modelo y luego 
se hace la implementación al problema real de la empresa.
Diseño de controles asociados a la solución
Al realizar el diseño del sistema al modelo en estudio se debe comprobar que 
no haya omitido ningún componente controlable importante y que no se haya 
rechazado ninguna interacción que sea relevante para la solución.
Se debe corroborar la opinión de todo el equipo responsable en la toma de deci-
siones y cuyas conclusiones se tengan en el análisis que fundamenta el diseño.
Implementación de la solución al sistema
Una vez se tenga la solución con el modelo en estudio, representación mate-
mática y restricciones, función objetivo, hay que corroborar que la técnica que 
resuelve este sea aplicada correctamente al sistema en estudio.
II
CAPÍTULO
Capítulo II · Introducción a los modelos de optimización
33
Investigación de operaciones determinística
Es aquella que cuenta con una base fundamental como es el modelo matemático previamente defini-do, para buscar una solución óptima.
Modelo lineal
Definición de modelo determinístico
Consiste en una función lineal sujeta a restricciones linea-
les; estructurada mediante un algoritmo matemático, que 
brinda una amplia gama de soluciones factibles hasta ob-
tener una óptima.
En la investigación de operaciones determinística se tiene 
una serie de métodos lineales, los cuales contienen una 
estructura matemática bastante útil, para obtener una 
solución óptima según el tipo problema que se tenga a 
resolver, entre otros podemos mencionar: el método grá-
fico, simplex, gran M, análisis postóptimo, dual, dual sim-
plex, transporte y asignaciones. Agrupados en la rama de 
la programación lineal. 
Dado un conjunto de m ecuaciones lineales restringidas con n variables donde 
se quiere hallar los valores no-negativos de las variables que satisfacen unas 
restricciones y maximizando o minimizando una función lineal, llamada fun-
ción objetivo que conforman las variables. 
El método determinístico nos ayuda a evaluar posibles soluciones factibles 
de un problema planteado y formulado entre muchos, hasta lograr obtener 
la solución óptima.
Estos modelos son una herramienta que sirve para la toma de decisiones en el 
mundo empresarial, financiero, organizacional, político y económico, dando 
alternativas de solución que son aplicadas con el fin de optimizar la utilización 
de los recursos disponibles en las empresas y organizaciones en general.
Planteamiento del problema
Existe una gran cantidad de problemas dentro de los procesos productivos, 
administrativos y financieros, que requieren de la aplicación de una técnica 
determinada para su solución; esta técnica nos la facilita los modeloslineales, 
a través de los diferentes métodos con que cuenta.
Generalmente, los problemas que se plantean solucionar por medio de los 
diferentes modelos ya expuestos (método gráfico, simplex, gran M, análisis 
postóptimo, dual, dual simplex, transporte y asignaciones), y deben ser plan-
teados de la siguiente forma:
a. Identificar las variables de decisión necesarias para la solución del problema.
b. Formular la función objetivo, (F,O) que se va a optimizar, ya sea maximi-
zando o minimizando.
c. Formular las restricciones con el fin de demarcar la disponibilidad de los 
recursos limitados para formular el problema.
d. Cumplir la propiedad de proporcionalidad. Significa que la función obje-
tivo y las restricciones deben guardar una proporcionalidad en el ámbito 
de contribución de cada variable, de acuerdo con una disponibilidad de 
recursos.
e. Cumplir la propiedad de divisibilidad. Es decir, que sea posible asignarles 
valores fraccionarios a las variables. Esta es una consideración importante 
en los casos en que se trabaje con sistemas de producción o asignación de 
artículos discretos. En tanto que no es posible garantizar que las solucio-
nes encontradas, los valores de sus variables sean enteras.
f. Cumplir la propiedad de actividad. Significa que la función objetivo 
sea la suma de las contribuciones de las variables. Esto es que el total 
Capítulo II · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
34 35
sea igual a la suma de las partes y que no hay efecto de interacción en-
tre los niveles de cada variable.
g. Cumplir la condición de no negatividad. Que todas las variables que se 
vayan a utilizar dentro del problema a resolver deben ser de la condición 
fundamental y necesaria, mayores e iguales a cero (xj ≥ 0); ya que no es po-
sible producir u obtener valores negativos de las variables como resultado.
En el planteamiento del problema se hace necesario realizar un análisis con-
ceptual básico de las variables a considerar, ya sea realizando suposiciones y 
simplificaciones de tal forma que se logre una estructura ideal del modelo. 
Así mismo, en la formulación del problema se requiere que el diseñador selec-
cione y aísle del entorno total, todos aquellos aspectos de la realidad que no 
son pertinentes para su fundamentación. Ello nos permite analizar en las em-
presas, organizaciones y tipos de negocios solamente lo que nos ocupa de las 
decisiones y objetivos necesarios para la formulación del problema, los cuales 
deben ser identificados y definidos de un modo explícito.
Cuando se va a construir un modelo de optimización, el problema más sig-
nificativo es plantear las variables de decisión, que lo formarían; para ello se 
presenta el siguiente diagrama estructural de las variables a considerar, el cual 
representa la problemática tanto interna como externa a analizar, estas pueden 
ser de dos formas: endógenas y exógenas.
• Variables controlables
• Variables no controlables
• Variables transformadas
• Variables de complemento
• Función Objetivo
• Algoritmo Matemático
Variables
Exógenas
Variables
Endógenas
Función a 
transformar
Figura 5. Diagrama de variables exógenas y endógenas
Fuente. Elaboración propia
Al identificar las variables de entrada; las definimos como variables exógenas, 
las cuales a su vez están divididas en variables controlables que son las que 
maneja los directivos (gerente), y variables no controlables que están bajo 
control de otras personas o del entorno.
Por su parte, las variables endógenas se pueden considerar como variables 
transformadas, y permiten establecer qué tanto se ha cumplido con los ob-
jetivos y metas; llamadas también variables de complemento, son variables 
que indican otras posibles alternativas que se pueden considerar en la solu-
ción del modelo. Las variables transformadas tienen gran relevancia porque 
conllevan aquellas consideraciones utilizadas que indican qué tanto se ha 
logrado respecto a lo planeado. Por esta razón, a las variables transformadas 
se les llama variables optimizadas. 
En cuanto a la función a transformar; esta también se divide en dos; función 
objetivo y algoritmo matemático, aquí es donde mediante el modelo mate-
mático encontrado, se transforman las variables y salen transformadas según 
condiciones planteadas en el problema principal. 
Pasos para formular el modelo
Al formular el modelo, se requiere de una estructura matemática, conformada por 
una serie de parámetros, los cuales se deben plantear de la siguiente manera.
a. Definir las variables de decisión (xi); estas son las que se han identifica-
do como la solución del problema, las cuales pueden variar desde un x1, 
x2……. xn. El número de variables a considerar depende del problema a 
resolver. Estas variables deben argumentarse cuando se esté elaborando 
el modelo, en su dimensión y unidad de medida. 
b. Definir la función objetivo: (F, O). Es la función elaborada para lograr la 
optimización de las variables del problema, las cuales deben estar inte-
rrelacionadas para poder generar un “resultado total”, es decir, puede de-
jarse de fabricar un producto (variable) para fabricar o utilizar una mayor 
cantidad de otro producto (variables).
c. Definir las restricciones: (C, S, R) que significa “con las siguientes restric-
ciones”; las cuales deben estar relacionadas con la disponibilidad y uso 
de los recursos, esto quiere decir que existen limitaciones en la disponi-
bilidad de recursos para el cubrimiento de la demanda; los cuales deben 
ser de forma lineal.
d. Definir la condición de no negatividad, ello significa que los valores de las 
variables deben ser mayores o iguales a cero.
e. Definir el modelo matemático. Una vez se han definido los anteriores pa-
sos, se procede a elaborar el modelo matemático.
Formulación del modelo 
Una vez elaborados los anteriores pasos, procedemos a formular el modelo de 
acuerdo con el algoritmo matemático requerido según el problema, así:
a. Variable de decisión: existen dos tipos de variables de decisión; una sin re-
ferencia y otra con referencia; entendiéndose con referencia, por ejemplo 
Capítulo II · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
36 37
una empresa que posee varios centros de distribución, la referencia sería 
los centros de distribución.
b. Variable de decisión sin referencia; como por ejemplo una empresa que 
produce varios productos. 
Xj para toda j=1……n
Donde la variable x, es la que vamos a optimizar según tipo de problema, y 
el subíndice “j” nos indica cuántas son las variedades de productos a con-
siderar en el problema.
c. Variable decisión con referencia; aquella que tiene un centro de origen y 
varios lugares a donde llegar, la forma de esta variable es como sigue:
Xij para todo i=1,……m ;j=1…..n
Donde la variable x, es la que vamos a optimizar según tipo de problema, 
tiene dos subíndices, el subíndice “i” que nos indica los lugares relaciona-
dos con las variables, y el subíndice “j” nos indica cuántas son las varieda-
des de esas variables a considerar en el problema.
d. La función objetivo (F, O); corresponde a la función que vamos a opti-
mizar; esta función puede tomar dos formas para su optimización, una 
buscando maximización y otra buscando minimización, su forma mate-
mática es como sigue: 
Sin referencia: 
Max o Min(Z)=C1 X1+C2 X2+C3 X3+⋯+Cn Xn
En una forma general será:
Max o Min f(x)=∑ Cj Xj
n
m
i=1 j=1
n
j=1
Con referencia sería:
Max o Min(Z)=C11 X11+C12 X12+C21 X21+⋯+Cmn Xmn
Max o Min f(z)=∑ ∑Cij Xij 
En una forma general será
Las restricciones serán las limitaciones de los recursos disponibles con que 
se cuenta para la solución del problema. Estas presentan la siguiente es-
tructura matemática:
a21 x21a22 x22 =a2n x1n b2
a11[ [ [[ [ [x11a12 x12a1n x1n b1am1 xm1am2 xm2amn xmn bm
Formada a partir de dos matrices, la matriz de los coeficientes técnicos y la 
matriz de las variables, igualado al vector de los recursos disponibles. 
La condición de no negatividad; que correspondea que todas las variables con-
templadas en el modelo deben ser positivas es decir mayores e iguales a cero.
Xj o Xij≥ 0 donde 
i=1……..m
j=1……….n 
La formulación del modelo matemático; que es la representación de todas las 
anteriores expresiones, se resume así:
Sin referencia
Max o Min(Z)=C1 X1+C2 X2+C3 X3+⋯+Cn Xn
c.s.r
a11 x1+a12 x2+a13 x3+⋯a1n xn ≤≥=b1
a21 x1+a22 x2+a23 x3+⋯a2n xn≤≥=b2
….+⋯+⋯+ ……………+⋯ …… ….
…..+⋯+⋯+ …….………+⋯ ….… ….
am1 x1+am2 x2+am3 x3+⋯amn xn ≤≥=bm
Xj ≥0 Para i =1…..m ;j =1……n
Capítulo II · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
38 39
Con referencia 
Max o Min(Z)=C11 X11+C12 X12+C13 X13+⋯+Cmn Xmn
c.s.r
a11 x11+a12 x12+a13 x13+⋯a1n x1n ≤≥=b1
a21 x21+a22 x22+a23 x23+⋯a2n x2n≤≥=b2
….+⋯+⋯+ ……………+⋯ …… ….
…..+⋯+⋯+ …….………+⋯ ….… ….
am1 xm1+am2 xm2+am3 xm3+⋯amn xmn ≤≥=bm
Xij ≥0 Para i =1…..m ;j =1……n
Conceptualización y equivalencias
El término Cij es el coeficiente de contribución, es decir mide el aporte de las 
variables a la optimización de la función.
Por su parte, el término aij coeficiente técnico es un valor estandarizado de 
acuerdo con un estudio de tiempo y movimientos, que indica lo requerido por 
la variable, según la disponibilidad de recursos. Ello se puede expresar como la 
cantidad de recurso j que se necesita por cada unidad de la actividad i. 
El bi significa la cantidad de recursos con que se cuenta para resolver el problema. 
Mientras que la Xij es la cantidad de unidades de la actividad i obtenida del 
recurso j.
Solución factible. Es aquella solución que satisface las condiciones limitan-
tes de los recursos.
Solución factible básica. Es la que se posee con no más de m componentes 
positivos.
Solución básica factible degenerada. Es el caso cuando hay menos de m com-
ponentes positivos de las variables X; ello quiere decir que en el área de solu-
ción existe un valor cero.
Región de factibilidad. Es el conjunto de todas las posibles soluciones factibles.
Convexidad. Cuando existe una solución factible, hay una región convexa. Una 
región es convexa, si un plano es convexo; un subconjunto del plano es con-
vexo; si para cada par de puntos A, B los puntos contienen todo el segmento 
rectilíneo que los conecta.
Ejemplo de un área convexa
A B
Figura 6. Plano convexo
Fuente: Elaboración Propia
Max o Min f(z)=∑ ∑Cij Xij
m
i=1 j=1
n
Ejemplo de un área no convexa
Figura 7. Plano no convexo
Fuente: Elaboración Propia 
Un ejemplo de una región convexa en tres dimensiones es una esfera (poliedro 
convexo).
La parte común de dos regiones convexas es también una región convexa, la 
siguiente figura nos determina esta situación.
Capítulo II · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
40 41
Figura 8. Plano de regiones convexas
Fuente: Elaboración propia 
Si se escoge un punto arbitrario M que no pertenezca a un polígono convexo 
dado, siempre podemos hallar una recta PQ tal que el punto M y el polígono se 
encuentran en lados opuestos de ella. 
P
Q
Figura 9. Punto fuera del plano no convexo
Fuente: Elaboración Propia 
Dado un polígono convexo puede trazarse cualquier número de rectas tales 
que cada una tiene por lo menos un punto en común con el polígono y son 
llamados “Rectas de Apoyo”
En el punto P se habla de “Plano de apoyo”. 
Es útil pensar que el problema del modelo lineal mediante la programación 
lineal se puede representar en un espacio de n – dimensiones. La región de 
soluciones factible es una región convexa o conjunto convexo, con esquinas o 
puntos extremos y si existe una solución óptima, es un punto de donde se halle.
En lo relacionado a las equivalencias tenemos:
Max o Min f(x)=∑ Cj Xj
n
n
j=1
j=1
C.S.R.
∑aj xj≤bj
xj ≥ 0 para j=1….n
El signo de la desigualdad en las restricciones puede ser de la forma menor 
igual o mayor igual o igual, según las limitaciones de los recursos.
a. Si se va a maximizar CX, es equivalente a minimizar –CX
b. Si se va a minimizar CX, es equivalente a maximizar –CX
c. La desigualdad AX <= b, es equivalente a - AX >= - b
d. La desigualdad AX >= b, es equivalente a – AX <= - b
Cuando el valor de la función objetivo “Z” es finita significa que al menos una 
esquina de la región factible fue óptima. Si la solución óptima no fue única, 
hay puntos que no son esquinas y fueron óptimos.
Importancia de la formulación
La formulación es quizás la actividad más importante en la solución de un pro-
blema de lineal, ya que al no contarse con un modelo bien definido en su for-
mulación no hay solución factible ni óptima del problema. Es necesario realizar 
un análisis riguroso del problema a resolver para identificar las variables que 
se requieren optimizar, y no correr el riesgo de resolver un modelo infactible.
Características del modelo lineal
En la formulación de un modelo lineal, se debe tener en cuenta lo siguiente:
1. La condición de linealidad; es decir no se deben considerar las siguientes 
expresiones; X1X2; a
2X1; X1
2 a1; Log X1.
2. No se aceptan expresiones en restricciones xj < 0 ; es decir, tener valores de 
variables negativas.
3. No contar con limitaciones de recursos negativos (-bi) 
Rodrigo Pérez Peña
42
4. La función objetivo (F.O) que tenga la expresión Max z = -X1-2X2 se puede 
multiplicar por (-1), dando como resultado Min z= X1+ 2X2 
5. El modelo asume algunas propiedades de aditivas y multiplicativas: 
a. Si el producto A necesita 1 hora de la actividad 1 y el producto B 1.5 
horas de la actividad 1, ambas necesitan 2.5 unidades. 
b. Si una unidad del producto 1 necesita 3 horas; 6 necesitan 18 horas
6. Cuando se hable de m restricciones no se incluye la condición de no 
negatividad.
7. La variable Xj puede ser no entera, por ejemplo 5.3 unidades 
8. Un conjunto de variables Xj que cumpla las m restricciones es una posible 
solución al problema.
9. Si todas las variables sin Xj ≥ 0 es una solución factible.
10. Si todas las variables de la solución factible optimizan la F.O es una solución 
factible óptima.
III
CAPÍTULO
Capítulo III · Introducción a los modelos de optimización
45
Formulación de Casos
En el presente capítulo se plantearán varios casos relacionados con problemas de las empresas, or-ganizaciones, negocios y financieros, de tal manera que se logre el entendimiento de cómo aplicarse los 
diferentes pasos para lograr un buen modelo y se pueda re-
solver cualquiera de los modelos lineales.
Caso 1
La empresa Babilonia produce tres variedades de pro-
ductos para comercializarlos en el mercado nacional, la 
demanda actual del mercado es de 20000 unidades. Para 
producir una unidad del producto 1, se requieren cuatro 
unidades de materia prima y seis de insumos; para producir 
una unidad del producto 2, se requieren tres unidades de 
materia prima y siete de insumo, para producir una unidad 
del producto 3 se requieren cinco unidades de materia pri-
ma y cuatro de insumos; la disponibilidad de materia prima 
en el mercado es de 30000 unidades y de insumo 54000 uni-
dades. Además, los productos requieren para su produc-
ción, 60, 45 y 53 horas de mano de obra, respectivamente, 
y cuenta con una disponibilidad total de 4500 horas. Si los 
productos se venden a $ 250 pesos por unidad del producto 1, $ 310 pesos por 
unidad del producto 2, y $ 270 pesos por unidad del producto 3. 
¿Determine cuántas unidades deben producirse de cada producto?, y ¿cuánto 
serían sus ingresos totales? Formule un problema y aplique las técnicas de los 
modelos lineales para encontrar una solución óptima.
Solución:
• Primer paso:
Definir la variable de decisión
X1 = Cantidad de unidades a producir del producto 1 (u)
X2 = Cantidad de unidades a producir del producto 2 (u)
X3 = Cantidad de unidades a producir del producto 3 (u)
• Segundo Paso:
Definir la Función Objetivo
Maximizar I = 250 $/u*X1(u) + 310 $/u*X2(u) + 270 $/uX3(u)
• Tercer Paso:
Definir las Restricciones
Materia Prima: 4 (u.m.p) /u*X1(u) + 3 (u.m.p) /u*X2(u) + 5 (u.m.p) /u*X3(u) ≤ 
30000 u.m.p
Insumos: 6 u.ins/u*X1(u) + 7 u.ins/u*X2(u)+ 4 u.ins/u*X3(u) ≤ 54000 u.ins
Mano Obra: 60 h/u*X1(u) + 45 h/u*X2(u) + 53 h/u*X3(u) ≤ 4500 h
• Cuarto Paso:
Condición no negatividad Xj ≥ 0 para todo j = 1……n
Modelo Matemático
Max IT=250X1+310X2+270X3
C.S.R.
4X1+ 3X2+5X3≤30000
6X1+7X2+4X3≤54000
60X1+45X2+53X3≤4500
X1,X2,X3≥0
Caso 2 
Un banco de nuestro medio actualmente está analizando cuál puede ser su 
estrategia comercial en créditos para el próximo semestre. Para ello destina 
un monto de $ 20.000.000. Dentro de sus condiciones está obligada a prestar 
su servicio sin exclusividad de clientes e igualmente dar créditos a sus clientes. 
La tabla siguiente señala las líneas de crédito, tasa de interés a cobrar (E. T), 
cartera irrecuperable, es decir que los clientes dejen de cancelar su obligación 
con el crédito dado. La tasa de interés a cobrar es mensual. 
Capítulo III · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
46 47
El mercado competitivo con otros bancos, le indican que debe asignar el 45 % 
del monto destinado para créditos para la línea industrial y comercial; y para 
vivienda al menos un 45 % de los préstamos personales de actividad agrícola. 
El banco considera que dentro de su política de pagos de difícil cobro no puede 
ser de más de un 3.5%. Se supone que el cliente que no paga, es cartera de difí-
cil cobro, y por lo tanto no se reciben intereses. ¿Qué sugeriría a las directivas? 
Formule un modelo de problema de programación lineal.
Tabla III-1 Información Básica 
Prestamos Tasa de Interés (%) Probabilidad Cartera Difícil cobro (%)
Industrial 3.5 4
Comercial 3.0 3
Vivienda 2.5 2
Personales 4.0 12
Agrícola 2.0 6
Solución:
• Primer Paso:
Definimos la variable de decisión
X1 = Cantidad de Dinero ($) destinado a crédito Industrial ($)
X2 = Cantidad de Dinero ($) destinado a crédito Comercial ($)
X3 = Cantidad de Dinero ($) destinado a crédito Vivienda ($)
X4 = Cantidad de Dinero ($) destinado a crédito personal ($)
X5 = Cantidad de Dinero ($) destinado a crédito Agrícola ($)
• Segundo Paso:
Definimos la función objetivo
Donde R. Neto = Rendimiento neto
Monto destinado a crédito
Maximizar R. Neto = 0.1087*(.96X1 ($)) + 0.0927*(0.97X2 ($)) + 0.0769*(0.98X3 
($)) 
0.1249*(0.88X4 ($)) + 0.0612*(0.94X5 ($))
En una forma simplificada
Máx RN=0.1044X1 ($) + 0.0899X2 ($) + 0.0754X3 ($) + 0.1099X4 ($) + 0.0575X5 ($) 
• Tercer paso:
Definimos las restricciones
X1($) + X2($) + X3($) + X4($) + X5($) ≤ $20.000.000
Monto destinado a créditos industrial y comercial
X1($) + X2($) ≤ 0.45*($) 20.000.000 
Es decir:
X1($) + X2($) ≤ $ 9.000.000 
Monto préstamos vivienda
X3($) ≥ 0.45*(X1($) + X2($) + X3($))
Es decir:
-0.45X1 ($) – 0.45X2 ($) +0.55X3 ($) ≥ 0
Límite cartera difícil cobro
0.04X1 ($) + 0.03X2 ($) + 0.02X3 ($) + 0.12X4 ($) + 0.06X5 ($)≤ 0.035*(X1 ($) + X2 
($) + X3 ($) + X4 ($) + X5($))
Es decir
0.005X1 ($) – 0.005X2 ($) – 0.015X3 ($) + 0.085X4 ($) + 0.025X5 ($) ≤ 0
• Cuarto paso:
Definir la condición de no negatividad
Restricción de no negatividad
X1, X2, X3, X4, X5 ≥ 0 
• Quinto paso:
Definir el modelo matemático
Maximizar R. Neto = 0.1044X1 + 0.0899X2 + 0.0754X3 + 0.1099X4 + 0.0575X5
C.S.R.
Capítulo III · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
48 49
X1 + X2 + X3 + X4 + X5 ≤ 20.000.000
X1 + X2 ≤ 9.000.000
 0.45X1 – 0.45X2 + 0.55X3 ≥ 0
0.005X1 – 0.005X2 – 0.015X3 + 0.085X4 + 0.025X5 ≤ 0
X1, X2, X3, X4, X5 ≥ 0
Caso 3
Una persona se gana un baloto de $ 100 millones de pesos y le recomiendan 
sus amigos que los invierta en dos tipos de acciones de la bolsa de valores de 
Colombia, acciones A y acciones B, las acciones A tienen menor riesgo y pro-
ducen un beneficio del 6 %, las acciones B, tienen un mayor riesgo y producen 
un beneficio del 9 %. Sus amigos, después de varias deliberaciones, le reco-
mendaron varias formas de cómo realizar la inversión. Teniendo en cuenta las 
recomendaciones, optó por lo siguiente: Invertir como máximo $ 50 millones 
de pesos, en la compra de acciones B y por lo menos $ 20 millones de pesos, 
en acciones A. Además, decide que lo invertido en B sea por lo menos igual a lo 
invertido en A. ¿Cómo debería invertir los $100 millones de pesos de tal manera 
que su beneficio sea el máximo?
Solución:
• Primer paso:
Definir las variables de decisión 
X1 = Cantidad de dinero a invertir en la acción A ($)
X2 = Cantidad de dinero a invertir en la acción B ($)
• Segundo paso:
Maximizar B = 0.06*X1($) + 0.09*X2($)
• Tercer Paso:
Definir las restricciones
Restricción de presupuesto de inversión
X1 (($) + X2($) <= 100 ($) millones
Restricción de monto de la inversión en acción A
X1 <= 20 ($) millones
Restricción de monto de la inversión en acción B
X2 <= 50 ($) millones 
Restricción de proporcionalidad
X2($) >= X1 ($)
• Cuarto paso:
Condición de no negatividad
Xij>= 0 para todo i =1…m y todo j =1……n
• Quinto paso:
Definir modelo matemático
Maximizar Beneficio = 0.06X1 + 0.09X2
C.S.R
X1 + X2 ≤ 100
X1 ≥ 20
X2 ≤ 50
-X1 + X2 ≥ 0
X1, X2 ≥ 0
IV
CAPÍTULO
En la investigación de operaciones se cuenta con di-ferentes métodos para determinar una solución óp-tima, cada método cuenta a su vez con un modelo matemático que lo sustenta. 
Método Gráfico
Se presenta cuando hay solamente problemas de dos va-
riables, la solución puede hallarse gráficamente. (También 
puede usarse este método cuando hay tres variables, pero 
su solución es más compleja).
Pasos Para Su Solución
a. Convertir las desigualdades en igualdades, reempla-
zando los signos ≤ , ≥ por el signo =; este cambio ge-
nera líneas rectas.
b. Tabular cada restricción de acuerdo con las técnicas 
de las matemáticas, para hallar los puntos de corte en 
el plano cartesiano P(X1, X2).
c. Representar los puntos hallados en el plano P(X1, X2), 
en el primer cuadrante, donde se generan las áreas po-
sitivas de soluciones factibles de acuerdo con la condi-
ción de no negatividad.
d. Graficar las restricciones convertidas en ecuaciones de 
línea recta en el plano P(X1, X2), utilizando flechas en 
cada restricción para ver el sentido de estas y deter-
minar la región que debe considerarse como parte del 
espacio de solución.
e. Determinar el área de soluciones factibles, o polígo-
no de solución factible. Que debe ser igual al área co-
mún resultante de representar las restricciones en el 
plano P(X1, X2).
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
52 53
f. Escoger como solución óptima el vértice del espacio de soluciones factible 
que maximice o minimice la función objetivo. Determinar los valores de las 
variables.
Ejemplo 1
Dado el siguiente modelo matemático:
Máx z = 5x1 + 3x2
C. S. R. 
3x1 + 5x2 ≤ 15
5x1 2x2 ≤ 10
x1, x2 ≥ 0
Determinar una solución óptima, para una de las variables. 
Solución Manual:
• Primer Paso:
Transformar las restricciones en igualdades como sigue:
Restricción 1 3x1 + 5x2 ≤ 15 3x1 + 5x2 = 15
Restricción 2 5x1 + 2x2 ≤ 10 5x1 + 2x2 = 10
• Segundo Paso:
Se realiza la tabulación restricción 1
3x1 + 5x2 = 15
x1
x1
0
0
5
2
x2
x2
3
5
0
0
Se realiza la tabulación restricción 2
5x1 + 2x2 = 10
• Tercer Paso: 
Representar en el plano P(x1, x2)
1
0 1 432 5 X1
Área 
Soluciones 
Factible
2
3
5
4
X2
Grafica 1 Área de soluciones factible
• Cuarto Paso:
Hallar los vértices desconocidos
Para ello, mediante el sistema de igualación, eliminamos una variable como sigue:
3x1 + 5x2 = 15
5x1 + 2x2 = 10
Para igualar una variable multiplicamos la restricción 1 por 5 y la restricción 2 
por (-3), obteniendo:
15x1 + 25x2 = 75
-15x1 – 6x2 = -30
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
54 55
------------------------- 
0 19x2 = 45 Despejando x2 = 2.36
Reemplazamos en la primera restricción para buscar el valor de la variable x2 
como sigue.
3x1 + 5(2.36) = 15 3x1 + 11.8 =15 x1 = 1.05
Por lo cual, el punto de corte desconocido es de coordenadas p (1.05, 2.37)
• Quinto Paso:
Buscamos el vértice óptimo del área de solucionesfactible, para ello reempla-
zamos los valores de cada vértice en la función objetivo:
Máx z = 5x1 + 3x2 
Solución factible en el vértice p (0, 0); Máx Z = 5(0) + 3(0) = 0
Solución factible en el vértice p (0, 3); Máx Z = 5(0) + 3(3) = 9
Solución factible en el vértice p (1.05, 2.37); Máx Z = 5(1.05) + 3(2.37) =12.37 *
Solución factible en el vértice p (2, 0); Máx Z = 5(2) + 3(0) = 10
Como se está maximizando, se selecciona el mayor valor de estos; obteniendo 
como solución óptima que X1* = 1.05 y X2* = 2.37 y Z*= 12.37
Otra forma es aplicando un software, tal como WinQSB, el cual dará una so-
lución gráfica del problema. Por otro lado, Excel también cuenta con la herra-
mienta Solver, sin embargo, esta no ofrece solución gráfica.
Utilizando el software del WinQSB tendríamos la siguiente solución:
Gráfico 2. Área de solución factible
Fuente. Software WinQSB 
Donde podemos observar el área de soluciones factible sombreada de color 
rojizo y el vértice de solución óptima como un punto blanco, la línea roja es 
una paralela al área de soluciones factible, que demarca el punto óptimo al 
tocarlo de primero.
Como se observa, la solución es igual a la que se obtiene al hacerlo de manera 
manual.
Método Simplex
Otro de los modelos que tiene la investigación de operaciones determinística 
en la parte de la programación lineal es el método simplex, que sirve para so-
lucionar problemas que tengan dos o más variables de decisión. 
Al considerar problemas que tengan varias variables de decisión, sus cálculos 
matemáticos son más complejos, para obtener una solución factible óptima. 
Se tiene que la solución óptima de un determinado problema se halla en uno 
de los puntos extremos del polígono de soluciones factible, esto nos indica 
que cada vértice del polígono es una solución factible básica. Con el método 
simplex podemos recorrer todos los vértices del polígono de soluciones facti-
ble si es el caso, hasta encontrar el vértice que contiene la solución óptima del 
problema, como se puede observar en la figura 10.
Polígono de 
soluciones 
factibles
Vértice 1
Vértice 2
Recorrido
Constraint
Objective 
Function
Feasible 
Area
Figura 10. Polígono de soluciones factible
Fuente: elaboración propia
En cada vértice se encontrará una solución, llamadas soluciones factibles bá-
sicas. Al realizar el recorrido entre cada vértice, se puede ahorrar tiempo y tra-
bajo. Si se utilizara el método gráfico para este tipo de problemas, por tratarse 
de variables múltiples el procedimiento sería en exceso complejo y en algunos 
puntos imposible. Sin embargo, el Método Simplex lo realiza a través de ecua-
ciones de procedimiento algebraicos.
El recorrido entre vértices se llama “iteración”, y a partir de este movimiento 
las variables y la función se transforman y se obtienen nuevos valores para el 
vértice siguiente, esos nuevos valores son la solución factible básica. 
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
56 57
Para realizar el recorrido el modelo matemático del problema debe sufrir varia-
ciones, ya que está formado por inecuaciones en vez de ecuaciones, las cuales 
son muy difíciles de tratar en el álgebra. Para ello, el Método Simplex se vale 
de algunos cambios que se realizan en las inecuaciones como es el caso de 
cambiar las desigualdades en igualdades cuando estas son menores o iguales, 
agregando una variable llamada de “holgura” (XH) o de relleno. Si la desigual-
dad es mayor igual se cambia a través de agregar una variable de holgura en 
forma negativa y una “variable de superávit” llamada también “variable artifi-
cial” en forma positiva; el procedimiento es el siguiente.
Consideremos el siguiente caso; se tiene una restricción como sigue:
X1 + X2 + X3 ≤ 20
¿Cómo poder llevar esta inecuación a una ecuación? 
Para ello, primero agregamos una variable de holgura:
X1 + X2 + X3 + XH = 20
Donde xH es la variable de holgura. Esta ecuación equivale a:
X1 + X2 +X3≤ 20
Donde se destruye la desigualdad por una igualdad y se trabaja como una 
ecuación lineal.
Si la desigualdad de la restricción original es de forma x4 ≥ 0, el procedimiento 
para destruir la desigualdad sería el siguiente:
X1 + X2 + X3 ≥ 20
Multiplicamos por menos uno (-1) la restricción, obteniendo:
- X1 - X2 - X3 ≤ - 20
Agregamos una variable de holgura y restamos una artificial para destruir la 
desigualdad y la negatividad del valor bi, dando como resultado:
- X1 - X2 - X3 + X4 - X5 = - 20
Multiplicamos por (-1) nuevamente la ecuación resultante, así:
X1 + X2 + X3 - X4 + X5 = 20
Donde podemos observar que para este caso se resta una variable de holgura 
y se suma una artificial, con ello se subsana el problema de la desigualdad 
mayor igual.
¿Qué pasa con la función objetivo?
En el caso de la desigualdad menor igual, la función será: 
Máx. z = 5x1 + 9x2
Así, con la variable de holgura sería:
Máx. z = 5x1 + 9x2 + 8X3 + 0X4
Donde la variable de holgura sería positiva de coeficiente igual a cero, indican-
do que su aporte es cero a la optimización de la función.
En el caso de la desigualdad mayor igual maximizando la función objeto, 
se tendría:
Máx. z = 5x1 + 9x2 + 8X3 + 0X4 – MX5
Si es minimizando:
Min. z = 5x1 + 9x2 + 8X3 + 0X4 + MX5
Donde a la variable artificial se le agrega como coeficiente un valor de “M” y la 
“M” significa un valor muy grande.
Un problema por el método simplex, tiene dos maneras de solucionarse; el mé-
todo algebraico y el método de simplex; este último se puede realizar a su vez 
de dos formas por eliminación de Gauss o por el método de la tabla de simplex.
Si hay m ecuaciones con n variables (n ≥ m); una solución básica se obtiene 
haciendo iguales a cero n + m de las variables, resolviendo para m variables 
que quedan (m ecuaciones, n variables) son no negativas (≥ 0). Una solución 
básica factible no degenerada, es una solución básica con las cuales todas las 
n variables son positivas, es decir son (≥ 0). Las n variables se conocen como 
variables básicas en la base o variables, mientras que las n + m variables que 
quedan se conocen como no básicas y son iguales a cero. 
Complicaciones del Método simplex
Supongamos el siguiente modelo matemático:
Máx. z = 12x1 + 14x2
C.S.R.
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
58 59
X1 ≤ 20
X2 ≤ 18
4X1 + 5X2 ≤ 32
X1, X2 ≥ 0
Caso I. Minimización en la función objetivo:
Multiplicar por menos uno (-1)
Min. Z = -5x1 - 9x2
Es equivalente a 
(-) Máx. z = 5x1 + 9x2
a. Si la función es minimizar se multiplica por menos uno (-1) y se trabaja 
como si estuviera maximizando.
4x1+3x2 ≥ 21
Se multiplica por (-1); su equivalente es
-4x1-3x2 ≤ -21
Caso III. Si los bi son negativos. 
El problema aquí es que el lado derecho de la inecuación, es decir que el bi es 
el valor de la variable básica de esa inecuación. Si es negativo, se viola la con-
dición de no negatividad, ello implica que es una solución degenerada, un caso 
más común es hacer lo mismo como si fuera mayor igual.
1. Escoger otra variable diferente a las variables de holgura para usarse como 
variable básica (ello implica mucho más cálculo algebraico, y mucho más 
tanteo y error para hallar la solución factible, básica no degenerada).
2. Introducir una variable de holgura y una artificial, este artificio tiene como 
nombre, Método del Gran M.
Supongamos 
4x1+3x2 ≥ 21
Su equivalente es 
-4x1-3x2-XH +XA=21
Al introducir las variables xH y xA se ha eliminado la restricción, ya que el tér-
mino (-xH +xA) puede asumir cualquier valor; sin embargo, podemos asegurar 
que el valor de xA al final es cero. En la función se tendría el siguiente cambio; 
supongamos que la función objetivo es Max Z=5x1+6x2
Su equivalente es
Max Z=5x1+6x2-MxA
Caso IV. Cuando hay una restricción con signo igual:
Esta situación se resuelve descomponiendo en dos restricciones comparables 
con signos desiguales así.
4X1 + 5x2 = 32
4X1 + 5x2 ≤ 32
4X1 + 5x2 ≥ 32
a.Donde las dos últimas son equivalentes a la primera.
b. También se puede hacer eliminando la igualdad, se despeja una variable y 
reemplaza en las otras restricciones, simplificando el problema.
Al descomponer en dos restricciones la igualdad se tiene una restricción me-
nos igual que se resuelve como el caso uno; y la otra restricción es de signo 
mayor igual, que se resuelve como el caso tres.
Caso II. Desigualdad en ambas direcciones 
Es decir, la restricción es de la forma (≥) en vez de (≤)
Dada la siguiente restricción 
CASO V. Variables sin restricciones en signo
Supongamos que la variable xj no está restringida a la condición mayor igual a 
cero, situación que se resuelve así:
Supongamos x1 no restringida en signo se reemplaza por (y1 – w1) donde (y1 – 
w1) ≥0 y se sustituye en el modelo original el valor de la x1.
Supongamos, 
Modelo original 
Max Z =3x1+2x2
c.s.r.
6x1+2x2≤12
4x1+3x2≤20
x1 no restringida en signo,x2 ≥0
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
60 61
Modelo reemplazando la variable restringida en signo
Se reemplaza la variable x1 por (y1-w1)
Max Z =3(y1-w1)+2x2
c.s.r.
6(y1-w1)+2x2 ≤ 12
4(y1-w1)+3x2 ≤ 20
y1,w1,x2 ≥ 0
Tabla del Simplex
La estructura de la tabla del simplex es la siguiente.
Cj C1 …………. Cn 
CB bI X1 …………. Xn a/b
C1B b1 a11 …………. a1n b1/a1n
C2B b2 a21 ………. a2n b2/a2n
. . . …………. . .
. . . …………. . .
CnB bm am1 …………. amn bm/amn
ZT Z1-C1 ………….. Zn-Cn
En forma matricial, esta tabla del simplex quedaría 
[C1 C2………….Cn] Vector fila de coeficiente de contribución.
[x1 x2…………..xn] Vector fila de variables de decisión.
C1B
C2B
…..
….
CnB
b1
a1n
b2
a2n
…..
….
bm
amn
X11
X21
…..
…..
Xm1
a11
a21
…..
…..
am1
1
0
0
X12
X22
…..
…..
Xm2
a12
a22
…..
…..
am2
0
1
0
X1n
X2n
…..
…..
Xmn
a1n
a2n
…..
…..
amn
0
0
1
…..
…..
…..
…..
…..
…..
…..
…..
…..
…..
…..
…..
…..
Vector columna de las variables básicas en la base.
b1
b2
….
….
bm
Vector de la disponibilidad de recursos.
Matriz de las variables de decisión. 
Matriz de coeficientes técnicos.
Matriz de identidad de las variables de holgura. 
[Z1 - C1 Z2 - C2 ……. Zn -Cn]
Vector fila para seleccionar la variable que 
entra a la base.
Vector para seleccionar la variable que sale de la base. 
Regla para cambiar las variables (vectores) de la base
1. La variable (no básica) que entra a la base
Calcule zk – ck = min (zj – cj) ; zj – cj < 0, luego xk entra a la base.
2. La variable (básica) que sale de la base
bm
amn
bm
amn
( (Calcule =min donde amn ≥ 0 
Solución del Método simplex
Normalmente se utiliza para la solución del método simplex, la eliminación de 
Gauss y el de la tabla del simplex.
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
62 63
Para este caso se utilizará la tabla del simplex, con este procedimiento se traba-
ja con los coeficientes tanto de la función objetivo como las restricciones.
Supongamos el siguiente ejercicio:
Máx Z = 10X1 + 6X2
C.S.R
4X1 + 3X2 ≤ 17 
6X1 + 2X2 ≤ 12
X1, X2 ≥ 0
Se plantea el modelo matemático para llevarlo a la tabla de simplex, trans-
formando las inecuaciones en ecuaciones agregando las variables de holgura 
igual forma su función objetivo como sigue:
 Máx Z = 10X1 + 6X2 +0X3 + 0X4
4X1 + 3X2 + X3 = 17
6X1 + 2X2 + X4 = 12
Una vez transformado el problema en ecuaciones, construimos la tabla del simplex.
Inicialmente se llevan los datos iniciales del problema a la tabla como apa-
recen a continuación.
Iteración Inicial
Cj 10 6 0 0
CB XB B X1 X2 X3 X4 b/a
0 X3 17 4 3 1 0 17/4 4.25
0 X4 12 6 2 0 1 12/6 2.0
 Z 0 -10 -6 0 0
Z1-C1 Z2-C2 Z3-C3 Z4-C4
En la primera fila aparecen los coeficientes de las variables en la función objetivo.
En la segunda fila, la identificación de cada columna según funcionalidad 
como sigue:
Columna 1, los coeficientes de las variables básicas en la base.
Columna 2, las variables básicas iniciales, en nuestro caso son las variables de 
holgura.
Columna 3, los valores de los términos independientes de cada restricción.
Columna 4, los coeficientes de la primera variable en las restricciones.
Columna 5, los coeficientes de la segunda variable en las restricciones.
Columna 6, los coeficientes de la tercera variable en las restricciones.
Columna 7, los coeficientes de la cuarta variable en las restricciones.
En la última columna de la división entre el término independiente de las res-
tricciones y el coeficiente técnico de la variable seleccionada que entra a la 
base y la que deja de ser básica.
La última fila son los (z - c), que nos indica cuál variable entra a la base y se vuel-
ve básica. A partir de la tabla inicial anterior, se puede decir que Z1-C1 correspon-
de a la primera variable, se calcula Z1 = 0*4 + 0*6 = 0; C1 = 10; luego Z1-C1 = (0-10) 
= -10 (que aparece con color azul); y así se estiman las otras variables, de ellas se 
selecciona la más negativa, que se convierte en básica. Ahora seleccionamos la 
variable que sale de la base, para ello la columna de los (b/a) como sigue. 
Dividimos el valor de b1 por el coeficiente técnico de la variable seleccionada 
entrar a la base (17/4), de igual forma para la restricción dos (12/6), los resulta-
dos obtenidos son (4.25; 2.0), de estos resultados se selecciona la menor posi-
tiva, que aparece con color verde, las flechas indican cuál entra y cuál sale, el 
cruce de las dos en la matriz de coeficientes técnico se llama elemento pivote 
que aparece con color naranja. Cada recorrido entre vértices del polígono de 
área de soluciones factible se llama “iteración”. Una vez realizado el proceso 
de cuál variable entra y cuál sale, se procede a realizar la primera iteración, 
que dará los siguientes resultados.
Iteración 1
Cj 10 6 0 0
CB XB b X1 X2 X3 X4 b/a
0 X3 9 0 5/3 1 -2/3 9/5/3 5.4
10 X1 2 1 1/3 0 1/6 2/1/3 6.0
 Z 20 0 -8/3 0 5/3
Z1-C1 Z2-C2 Z3-C3 Z4-C4
Para llevar a cabo esta iteración, se realiza el siguiente procedimiento mate-
mático. La fila donde está el elemento pivote en la tabla anterior se divide por 
el nuevo valor del elemento pivote.
Las otras posiciones de la nueva tabla se calculan así: 
El nuevo valor de la posición de la celda bi de la variable X3 en la base es 9 y se 
calcula así bn = 17 – ((12*4) / 6) = 9 en la tabla anterior, está el triangulito que 
se debe formar para realizar el cálculo, así se hace con todas las posiciones 
vacías, el triangulito se desdobla y el calcula de la nueva posición de X2 en la 
primera fila de la matriz de coeficientes técnicos que corresponde a la primera 
restricción, obteniendo como resultado, 3 = 3 – ((4*2) / 6) = 5/3, siempre divi-
diendo por el elemento pivote, es decir al realizar un nuevo cálculo de nuevas 
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
64 65
posiciones se divide por el elemento pivote, la nueva posición de X4 en la matriz 
de coeficientes técnicos será 0 = ((4*1) / 6) = - 2/3.
Las posiciones de X1 y X3 que están en la base forman la matriz de identidad, por 
lo cual agregamos uno y cero, según la restricción a que correspondan; en la ma-
triz de la tabla del simplex, la primera fila de la matriz de coeficientes técnicos 
corresponde a la primera restricción, la segunda fila a la segunda restricción y así 
sucesivamente dependiendo del número de restricciones que tenga el problema. 
Vamos a la nueva tabla del simplex, calculamos todos los (z - c), para ver si existen 
valores negativos entre estos. Así se obtiene que la variable X2 es negativa, luego 
esta entra a la base a ser básica; ahora buscamos cuál sale, obteniéndose que X3 
es la menor positiva, luego sale de la base. El nuevo elemento pivote es 5/3, una 
vez estimado quién sale y cuál entra de la base; calculamos la segunda iteración:
Iteración 2
Cj 10 6 0 0
CB XB B X1 X2 X3 X4 b/a
6 X2 5.4 0 1 3/5 -2/5
10 X1 0.2 1 0 -1/5 3/10
 Z 34.4 0 0 1.6 0.6
Z1-C1 Z2-C2 Z3-C3 Z4-C4
Si fuéramos a calcular el nuevo valor de X4 en la segundarestricción de la ma-
triz de los coeficientes técnicos de la segunda iteración sería:
1/6 = 1/6 – ((1/3*(-2/3)) / 5/3) = - 2/5 como aparece en la nueva tabla.
Al calcular todos los (z - c), vemos que todos son positivos, luego hemos llegado 
a la solución óptima del problema. Por lo cual, la solución sería la siguiente:
X1* = 0.2 
X2* = 5.4
Z* = 34.4
Las otras variables X3 y X4 son iguales a cero; la razón, están fuera de la base de 
las variables básicas de la tabla del simplex y no participan de la solución, su 
contribución a la función objetivo es cero.
La interpretación económico-financiera de estos resultados de la solución ópti-
ma depende del tipo de problema que estemos analizando.
Sin embargo, para nuestro ejemplo; supondremos que estamos buscando maximi-
zar las ventas de dos productos; que requieren de materia prima e insumos para su 
elaboración; entonces nuestro análisis e interpretación de los resultados es:
Con respecto a la función objetivo, se tiene que los precios de venta de cada 
producto son, $ 10 y $ 6 pesos. 
 Máx Z = 10X1 + 6X2 
Luego los ingresos totales por ventas totales son iguales a $/u 10*0.2 (u) + 
$/u 6*5.4 (u) = $34.4 
Significa ello que para lograr unos ingresos totales de $ 34.4 pesos se deben 
vender 0.2 unidades del producto uno y 5.4 unidades del producto dos, de 
acuerdo al resultado obtenido por el método simplex; pero si estuviéramos 
hablando de productos como pan aliñado y pan francés; no podemos decir 
que se va producir 0.2 unidades de pan aliñado, aproximamos a la unidad 
más inmediata, por encima o por debajo tomando como referencia el punto 
medio, es decir, 0 unidades de pan aliñado y 5 unidades de pan francés luego 
nuestros ingresos son $30.0 pesos.
Si estuviéramos hablando de unos productos, como oro galo y oro puro, en-
tonces nuestros ingresos serán de $34.4, ya que el oro se puede vender por 
onzas, y 0.2 onzas a $ 10 cada onza, el valor de esa venta sería $ 2.
Luego se hace el análisis del uso de los recursos, para ello se toma cada res-
tricción tal cual se obtuvo la solución óptima y suponemos que la primera es 
la restricción de materia prima y la segunda es la restricción de insumos y se 
analiza de la siguiente forma: 
Restricción de materia prima
4X1 + 3X2 ≤ 17
4*0.2 + 3*5.4 ≤ 17 
0.8 + 16.2 ≤ 17
17 ≤ 17 en cuanto a la materia prima se usó toda la disponible
Restricción de Insumos
6X1 + 2X2 ≤ 12
6*0.2 + 2*5.4 ≤ 12
1.2 + 10.8 ≤ 12
12 ≤ 12 significa que se utilizaron todos los insumos disponibles.
Si por ejemplo, el resultado hubiese dado
10 ≤ 12
Quiere decir que sobraron dos unidades de insumos disponibles que se pue-
den emplear en otra actividad.
Si se utilizara el software del WinQSB, tendríamos la siguiente tabla de resultados.
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
66 67
Tabla 2 Solución final WinQSB
Variable 
Decisión
Valores 
Solución
Costo 
Unitario o 
ganancia
Total 
Contribución
Costo 
reducido
Estado 
Básico
Mínimo 
Permisible 
de Cj
Máximo 
Permisible 
de Cj
X1 0,2000 10 2 0 Básica 8 18
X2 5,4000 6 32,4 0 Básica 3,333 7,5
Función Objetivo maximizar 34,4
Restricción
Lado 
Izquierdo
Dirección 
Lado 
Derecho
Necesidad
Precio 
sombra
Mínimo 
permisible 
RHS
Máximo 
Permisible 
RHS
C1 17 <= 17 0 1,6 8 18
C2 12 <= 12 0 0,6 11,33 25,5
Fuente. Elaboración Propia
Donde la primera parte serían las incidencias resultantes en la función objetivo 
y la segunda parte las incidencias en las restricciones.
El análisis interpretativo de la primera parte de la tabla en relación con la fun-
ción objetivo, se interpretaría así:
La primera columna significa variables de decisión. En nuestro ejemplo son 
las variables X1 y X2.
La segunda columna son los valores óptimos de las variables. Es decir, el ópti-
mo de X1* = 0.2 y X2* = 5.4 unidades. 
La tercera columna sería el costo o precio unitario de cada variable. Es nuestro 
precio de venta X1=10 y X2=6 pesos. 
En la cuarta columna tenemos la contribución de cada variable a la optimiza-
ción de la función objetivo. Contribución total de la variable X1 =10*0.2 = 2 pe-
sos; contribución total de la variable X2 = 6*5.4 = 32.4 pesos.
La quinta columna, será la de costo reducido. Para el caso de este problema, se 
observa que no hay reducción de costos.
La sexta columna son las variables básicas. Significa que las variables que es-
tamos analizando son las que terminaron como básicas en la última tabla de la 
solución simplex.
La séptima columna, lo mínimo permisible del coeficiente de contribución de 
la variable en la función objetivo. Muestra en cuánto puedo disminuir el precio 
de venta de la variable X1, en nuestro caso hasta 8 pesos se puede disminuir. 
La octava columna, lo máximo permisible del coeficiente de contribución de 
la variable en la función objetivo. Indica en cuánto puedo aumentar el precio 
de venta de la variable X1, en nuestro caso hasta 18 pesos se puede aumentar. 
La misma interpretación se realiza para la variable X2 y como último el valor 
total de la función objetivo.
Por último, tenemos el valor de la función objetivo óptimo el cual es la suma 
de las dos contribuciones de cada variable, que es igual a 34.4. 
En cuanto a las incidencias de las restricciones, tenemos lo siguiente:
La primera columna significa restricciones: restricción 1 y restricción 2
La segunda columna es el lado izquierdo. Es el rango menor que puede mover 
el recurso de la restricción, en nuestro caso es 17 lo mínimo que se debe tener 
disponible para la producción de ese recurso. 
La tercera columna es ≤, =, ≥; dirección de la restricción, es decir cómo se 
mueve ese recurso. 
La cuarta columna lado derecho. Es el rango mayor que puede mover el re-
curso de la restricción, en nuestro caso es 17 lo máximo que se debe tener 
disponible para la producción de ese recurso. 
La quinta columna es la holgura o excedente de la restricción. Significa si sobra 
o faltan recursos disponibles.
La sexta columna precio-sombra. Da el valor de en cuánto se podría vender 
una unidad adicional que se produzca con ese recurso.
La séptima columna lo mínimo permisible de la disponibilidad de recurso de 
la restricción. Muestra en cuánto puedo disminuir el recurso b1, en nuestro 
caso hasta 8 unidades se puede disminuir.
La octava columna lo máximo permisible de la disponibilidad de recurso de la 
restricción significa en cuánto puedo aumentar el recurso b1, en nuestro caso 
hasta 18 unidades se puede aumentar la disponibilidad de recursos.
La misma interpretación se realiza para la variable X2.
Método del Gran M
Este método es una solución a los casos de las restricciones mayor igual, cuan-
do se va a optimizar la función objetivo, ya sea maximizando o minimizando.
Caso maximizando.
Supongamos el siguiente modelo matemático de un problema determinado: 
Máx z = 12X1 + 9X2
C. S. R
8X1 + 7X2 ≤ 54
9X1 + 5X2 ≥ 36
X1, X2 ≥ 0
Capítulo IV · Introducción a los modelos de optimizaciónRodrigo Pérez Peña
68 69
Llevamos el problema para resolverlo por el método de la tabla del simplex; así, 
transformamos las desigualdades en igualdades.
8X1 + 7X2 + X3 = 54
Como la segunda restricción es mayor igual, tenemos:
9X1 + 5X2 - X4 + X5 = 36
Por lo cual, la función objetivo quedaría
Máx z = 12X1 + 9X2 + 0X3 + 0X4 – MX5
Una vez convertidas las desigualdades en igualdades, se llevan las restriccio-
nes a la tabla del simplex, y se obtiene que el valor de M es muy grande, por lo 
cual se reescribe en la tabla así:
Iteración Inicial
Cj 12 9 0 0 -M
CB XB b X1 X2 X3 X4 X5 b/a
0 X3 54 8 7 1 0 0 54/8 6.75
-M X5 36 9 5 0 -1 1 36/9 4
 Z -36M -12-9M -9-M5 0 M 0
Z1-C1 Z2-C2 Z3-C3 Z4-C4 Z5-C5
Seleccionamos la variable que entra a ser básica y deja de ser básica; de los 
(Zj – Cj), en este caso sería X1 la más negativa; la que sale de la base es X5 que es 
la menor positiva por encima de cero. El elemento pivote es 9 el cruce entre la 
variable que entra y la variable que sale. La nueva iteración queda:
Iteración 1
Cj 12

Continuar navegando