Logo Studenta

METODO_DE_RIGIDEZ-CAP12-VERSION2010

¡Este material tiene más páginas!

Vista previa del material en texto

CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -1- 
 
Capítulo 12 
 
Emparrillados planos - Pórticos tridimensionales 
 
12.1- El emparrillado plano 
 
Un emparrillado plano es una estructura plana de barras con nudos rígidos cuyas cargas 
actúan perpendiculares al plano de la estructura. 
Resulta importante destacar que la única diferencia con el pórtico plano consiste en la 
dirección en que actúan las cargas. Dado que todas las estructuras en rigor son tridimensionales, 
una estructura plana recibe, en general, cargas en todas direcciones y trabaja simultáneamente 
como pórtico y como emparrillado. Además, cada estructura tiene en general un tipo de carga 
dominante que condiciona que la misma sea clasificada como pórtico o como emparrillado. 
En el caso genérico en que las cargas predominantes no están todas contenidas en el plano 
de la estructura, ni son todas perpendiculares a dicho plano, siempre es posible considerar al 
sistema dado como un pórtico plano superpuesto con un emparrillado plano como se aprecia en 
la Figura 12.1. 
Por otra parte, siempre existe la posibilidad de tratar el caso general (a) de la Figura 12.1 
como una estructura tridimensional considerando 6 desplazamientos incógnitas por nudo. En tal 
caso debe resolverse un sistema de 12 x 12 incógnitas, mientras que descomponiendo en los 
casos (b) y (c) de la Figura 12.1, la resolución es más sencilla dado que deben resolverse dos 
sistemas de 6 x 6. 
 
 
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -2- 
 
 
Figura 12.1 
En el caso de la Figura 12.1.c, la flexión de la barra horizontal provoca giros de los nudos 
2 y 3 (alrededor del eje vertical) que inducen torsión en las barras verticales. Suponiendo a b< e 
(1) (2)I I= , el giro del nudo 2, 2
xφ causado por la flexión de la barra vertical (1) resulta mayor que 
3
xφ , por lo que la barra horizontal está sometida a torsión. Además, la fuerza horizontal en la 
Figura 12.1.c viaja hasta los apoyos como fuerza cortante. 
Las barras de un emparrillado están sometidas a esfuerzos de flexión, corte y 
torsión (no hay esfuerzo normal). 
En cada nudo deben considerarse como incógnitas el desplazamiento perpendicular al 
plano de la estructura y dos giros respecto a los ejes coplanares con la estructura. 
Dada una barra de un emparrillado plano siempre es posible, sin pérdida de generalidad, 
suponer que el emparrillado está contenido en el plano horizontal XY y que las cargas actúan en 
la dirección vertical Z. Lo que no siempre sucede es que todas las barras sean paralelas a los ejes 
X o Y, por lo que resulta necesario deducir la matriz de rigidez en el caso general de la barra 2-3 
de la Figura 12.2. 
 
Figura 12.2 
xF
zF
yF
xF
yF
zF
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -3- 
 
Suponiendo que esta barra 2-3 es prismática, se adopta un sistema local de coordenadas 
tal que el eje lX coincide con el eje de la barra. 
 
Figura 12.3 
El lZ local coincide con el eje Z global, mientras que el eje lY está contenido en el plano 
de la estructura (horizontal) y tiene una dirección y sentido tal que la terna , ,l l lX Y Z es ortogonal 
y está positivamente orientada (dextrógira). 
12.2- Matriz de rigidez de una barra e emparrillado 
 
A continuación se formula la matriz de rigidez de una barra prismática orientadas según 
el eje X. Posteriormente, mediante una rotación del sistema de referencia, se obtiene la matriz 
del caso general de una barra con una dirección arbitraria. 
Deben considerarse tres incógnitas de desplazamiento por nudo, por lo que la matriz de 
rigidez resulta de 6 x 6. Los elementos de la matriz de rigidez se deducen a través de un 
razonamiento físico análogo al empleado para las barras de reticulado y pórtico. 
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
.
z z
i i
x x
i i
y y
i i
z z
j j
x x
j j
y y
j j
K K K K K K U P
K K K K K K M
K K K K K K M
K K K K K K U P
K K K K K K M
K K K K K K M
φ
φ
φ
φ
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
=⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
(Ec. 12.1) 
La primera columna de la matriz se deduce suponiendo los siguientes desplazamientos 
prefijados: 
lXl
Y
lZ
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -4- 
 
 
Figura 12.4 
 
1 0
0 0
0 0
z z
i j
x x
i j
y y
i j
U U
φ φ
φ φ
= =
= =
= =
 
 
 
 (Ec. 12.2) 
De la primera ecuación de la (Ec. 12.1): 
11 12 16.1 .0 .0
z
iK K K P+ + + =… 
11 3
.12. E IK
l
= (Ec. 12.3) 
De la segunda ecuación de la (Ec. 12.1): 
21 22 26.1 .0 .0
x
iK K K M+ + + =… 
 
21 0K = (Ec. 12.4) 
Utilizando las ecuaciones 3ª, 4ª, 5ª y 6ª del sistema de la (Ec. 12.1) se obtiene: 
31 2
.6. E IK
l
= − ; 41 3
.12. E IK
l
= − ; 51 0K = ; 61 2
.6. E IK
l
= − (Ec. 12.5) 
La segunda columna de la matriz de rigidez surgen a través del siguiente esquema: 
1ziU =
3
.12.zj
E IP
l
= −
3
.12.zi
E IP
l
=
2
.6.yi
E IM
l
= −
2
.6.yj
E IM
l
= −
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -5- 
 
 
Figura 12.5 
 
0 0
1 0
0 0
z z
i j
x x
i j
y y
i j
U U
φ φ
φ φ
= =
= =
= =
 
 
 
 (Ec. 12.6) 
Luego: 
12 0K = ; 22
.G JK
l
= ; 32 0K = ; 42 0K = ; 52
.G JK
l
= − ; 62 0K = (Ec. 12.7) 
 
El producto GJ se designa rigidez a la torsión. El parámetro J coincide con el momento 
polar de inercia sólo en el caso de secciones circulares; para otras formas de la sección 
transversal, el valor de “J” se obtiene a través de la teoría de torsión de barras. 
La tercera columna de la matriz de rigidez surge del siguiente esquema: 
 
 
.x
i
G JM
l
=
.xj
G JM
l
=−
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -6- 
 
 
Figura 12.6 
0 0
0 0
1 0
z z
i j
x x
i j
y y
i j
U U
φ φ
φ φ
= =
= =
= =
 
 
 
 (Ec. 12.8) 
Luego: 
13 2
.6. E IK
l
= − ; 23 0K = ; 33
.4. E IK
l
= ; 43 2
.6. E IK
l
= ; 53 0K = ; 63
.2. E IK
l
= (Ec. 12.9) 
Notar que considerando el teorema de reciprocidad se demuestra que: 
21 12K K= 31 13K K= 32 23K K= (Ec. 12.10) 
Repitiendo un razonamiento análogo se deducen los elementos de la columna restantes. 
Las ecuaciones fuerza-movimiento para una barra prismática según el eje X resultan: 
1 2 1 2
2 3 2 3
1 2 1 2
2 3 2 3
0 0
0 0 0 0
0 0 / 2
.
0 0
0 0 0 0
0 / 2 0
z z
i i
x x
i i
y y
i i
z z
j j
x x
j j
y y
j j
K K K K U P
K K M
K K K K M
K K K K U P
K K M
K K K K M
φ
φ
φ
φ
⎡ ⎤ ⎡ ⎤− − −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
=⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (Ec. 12.11) 
1 2 33 2
. . . .12. 6. 4.G J E I E I E IK K K K
l l l l
= = = = 
1yiθ =
2
.6.zi
E IP
l
= −
.4.yi
E IM
l
=
.2.yj
E IM
l
=
2
.6.zj
E IP
l
=
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -7- 
 
Nótese que durante la deducción de los elementos de la matriz de rigidez se han 
despreciado las “deformaciones por corte”. Como ejercicio, se sugiere deducir la primera 
columna de la matriz de rigidez incluyendo deformaciones por corte. 
Resulta conveniente considerar la interpretación física de los elementos de la matriz de 
rigidez. Observando la (Ec. 12.1), ¿ qué representa 46K ?. Al estar en la sexta columna, el 
elemento 46K multiplica a 
y
jφ . Igualando los restantes desplazamientos a cero y teniendo en 
cuenta que el elemento 46K pertenece a la cuarta ecuación, se obtiene: 
46.
y z
j jK Pφ = (Ec. 12.12) 
Por lo tanto, 46K representa la fuerza a aplicar en el nudo "j" en la dirección Z cuando al 
nudo "j" se lo gira un radián alrededor del eje Y mientras que los restantes desplazamientos de 
extremo de la barra se encuentran restringidos (son nulos). 
12.3- Matriz de rigidez en el caso general 
 
El eje de la barra forma un ángulo α respecto del eje X del sistema global. 
 
Figura 12.7 
El desarrollo resulta totalmente análogo al descripto para la barra de pórtico. Deben 
relacionarse las componentes de un vector (giro o momento) contenido en el plano XY en el 
sistema local con las componentes del mismo vector expresadas en el sistema global. 
lX
lY
α α
1γ
2γ
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -8- 
 
 
Figura 12.8 
( ) ( )
( ) ( )
.cos .
. .cos
x y
x l l
x y
y l l
M M M sen
M M sen M
α α
α α
⎫= − ⎪
⎬
= + ⎪⎭
 (Ec. 12.13) 
Matricialmente: 
1 2
2 1
.
x
xl
y
yl
MM
MM
γ γ
γ γ
− ⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦
 (Ec. 12.14) 
Observando que las fuerzas según el eje Z local no cambian al pasar al sistema global 
porque lZ Z≡ , la matriz de rotación resulta: 
1 2
2 1
1 0 0
0 .
0
z
l z
x
l x
y
l y
globallocal
P P
M M
M M
γ γ
γ γ
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (Ec. 12.15) 
Lo mismo ocurre con los desplazamientos de extremo de barra. En forma abreviada puede 
escribirse: 
. lR P P= . lRU U= (Ec. 12.16) 
R es una matriz ortonormal, por lo que su inversa resulta igual a su transpuesta: 1 TR R− = 
de modo que: 
.TlP R P= .
T
lU R U= (Ec. 12.17) 
Particionando el sistema de la (Ec. 12.11) resulta: 
. .
. .
l l l l l
ii i ij j i
l l l l l
ji i jj j j
K U K U P
K U K U P
⎫+ = ⎪
⎬
+ = ⎪⎭
 (Ec. 12.18) 
Para pasar a coordenadas globales se reemplaza según (Ec. 12.17): 
lX
lY
α
x
lM
xM
yM
y
lM
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -9- 
 
. . . . .
. . . . .
l T l T T
ii i ij j i
l T l T T
ji i jj j j
K R U K R U R P
K R U K R U R P
⎫+ = ⎪
⎬
+ = ⎪⎭
 (Ec. 12.19) 
Premultiplicando ambos miembros por R y considerando que . TR R I= , finalmente se 
llega a: 
. . . .
.
. . . .
l T l T
i iii ij
l T l T
j jji jj
Sistema SistemaMatriz de rigidez en
Global Globalel sistema global
U PR K R R K R
U PR K R R K R
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 
 
 
(Ec. 12.20) 
A modo de ejemplo, se deduce en forma explícita la rigidez directa del nudo "j" en el 
sistema global: 
.
l T
jj
l
jj jj
K R
R R K K
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
 
( ) ( )
( ) ( )
1 2
1 2
2 3 2 1
1 2 1 2 2 1 2
2 2
1 2 2 2 1 2 3 2 2 1 2 3 1 2 3
2 2
2 1 1 2 2 1 3 1 2 1 2 3 2 1 3
0 1 0 0
0 0 0
0 0
1 0 0 0 . .
0 . . . . . . . .
0 . . . . . . . .
K K
K
K K
K K K K K
K K K K K K K K
K K K K K K K K
γ γ
γ γ
γ γ
γ γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ γ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥− − − − + −
⎢ ⎥
− +⎢ ⎥⎣ ⎦
 
Operando de manera similar sobre las restantes matrices de rigidez locales se arriba a la 
forma explícita de la matriz de rigidez en el caso general: 
 
(Ec. 12.21) 
donde: 
1 2 33 2
. . . .12. 6. 4.G J E I E I E IK K K K
l l l l
= = = = 
2 2.A Kγ= ; 1 2.B Kγ= − ; 
2 2
1 2 3. .C K Kγ γ= + ; ( )1 2 3. .D K Kγ γ= − 
2 2
2 1 3. .E K Kγ γ= + ; ( )1 2 3. . 2F K Kγ γ= − + ; 2 21 2 3. . 2G K Kγ γ= − + 
2 2
2 1 3. . 2H K Kγ γ= − + 
1 1
1
.
z z
i i
x x
i i
y y
i i
z z
j j
x x
j j
y y
j j
U PK A B K A B
MC D A G F
ME B F H
U PK A B
MC D
ME
φ
φ
φ
φ
⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
=⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
simétrica
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -10- 
 
El caso de una barra paralela al eje Y es un caso particular de (Ec. 12.21). Sin embargo, 
por resultar un caso de uso frecuente, se desarrolla a continuación su expresión explícita, queresulta simple dado que 2 1γ = y 1 0γ = . 
 
1 2 1 2
2 3 2 3
1 2 1 2
2 3 2 3
0 0
0 / 2 0
0 0 0 0
.
0 0
/ 2 0 0
0 0 0 0
z z
i i
x x
i i
y y
i i
z z
j j
x x
j j
y y
j j
U PK K K K
MK K K K
MK K
U PK K K K
MK K K K
MK K
φ
φ
φ
φ
⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
=⎢ ⎥ ⎢ ⎥⎢ ⎥− − − ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥
− ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (Ec. 12.22) 
Recuérdese que: 
1 2 33 2
. . . .12. 6. 4.G J E I E I E IK K K K
l l l l
= = = = 
Resulta importante destacar que las matrices de las ecuaciones (Ec. 12.11), (Ec. 12.21), 
(Ec. 12.22) se deducen con la siguiente convención de signos (Figura 12.9): 
 
Figura 12.9 
El sentido adoptado como positivo para fuerzas y momentos debe coincidir con el sentido 
positivo adoptado para desplazamientos y giros. Se considera giro (y momento) positivo al que 
tiene sentido antihorario al ser observado desde el lado positivo del eje correspondiente. 
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -11- 
 
12.4- Cálculo de los desplazamientos y determinación de los 
esfuerzos 
 
Habiendo ya obtenido en forma explícita la matriz de rigidez de la barra prismática en el 
caso general, se repite el procedimiento usado en capítulos 10 y 11 para el pórtico plano: 
 
1º Paso: se arma la matriz de rigidez del sistema sumando la contribución de todas las 
barras. La matriz de rigidez de cada barra de está referido a sistema de referencia global (usar 
(Ec. 12.11), (Ec. 12.21) o (Ec. 12.22) según corresponda). 
 
Figura 12.10 
2º Paso: se determinan los elementos del vector de cargas en el sistema global. 
3º Paso: se imponen las condiciones de apoyo suprimiendo las filas y columnas 
correspondientes, con lo que la matriz de rigidez del sistema deja de ser singular. 
4º Paso: se resuelve el sistema de ecuaciones lineales y se obtienen los desplazamientos. 
5º Paso: se calculan las fuerzas de extremo de cada barra. Esto se realiza barra por barra 
trabajando con la matriz de rigidez de cada barra en el sistema local (Ec. 12.11) y utilizando los 
desplazamientos de extremo de las barras previamente transformados al sistema local (emplear la 
(Ec. 12.17)) 
6º Paso: se calculan las reacciones de apoyo sumando las fuerzas de extremo de barra de 
todas las barras que concurren a cada apoyo. Como alternativa pueden utilizarse las ecuaciones 
asociadas a los grados de libertad no utilizados (suprimidos) en el cálculo de desplazamientos. 
Nota 1: 
Antes de imponer las condiciones de vínculo que restringen al desplazamiento de cuerpo 
rígido, la matriz de rigidez de la estructura es singular. 
iiK ijK
jiK jjK
ii ij
ji jj
K K
K K
⎡ ⎤
⎢ ⎥
⎣ ⎦
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -12- 
 
Nota 2: 
La ventaja de obtener las fuerzas de extremo de barra en el sistema local de la barra 
resulta evidente al observar la Figura 12.11. 
:xM se relaciona directamente con el momento torsor. 
:yM se relaciona directamente con el momento flector. 
 
Figura 12.11 
12.5- Pórtico tridimensional 
 
En el caso general de estructuras de barras con nudos rígidos no planas resulta necesario 
considerar seis grados de libertad por nudo: tres desplazamientos y tres giros. Por lo tanto, la 
matriz de rigidez de una barra es de 12 x 12. 
La matriz de rigidez para una barra prismática se deduce haciendo coincidir el eje de la 
barra con el eje X y los ejes principales de inercia de la sección con los ejes Y y Z, 
respectivamente. Las ecuaciones fuerza-movimiento se obtienen repitiendo el razonamiento 
físico aplicado en los casos de pórtico y emparrillado. 
 
x
iM
x
jM
y
jM
z
jP
z
iP
i
j
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -13- 
 
 
Figura 12.12 
 
Designando: 
1 2 33 2
1 2 33 2
. . .. 12. 6. 4.
. . ..* * 12. * 6. 4.
z z z
y y y
E I E I E IA EK K K K
l l l l
E I E I E IG JK K K K
l l l l
⎫= = = = ⎪⎪
⎬
⎪= = = =
⎪⎭
 
 
 (Ec. 12.23) 
1 2 1 2
1 2 1 2
2 3 2 3
2 3 2 3
1 2 1 2
1 2 1 2
2 3 2 3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 * 0 * 0 0 0 * 0 * 0
0 0 0 * 0 0 0 0 0 * 0 0
0 0 * 0 * 0 0 0 * 0 * /2 0
0 0 0 0 0 0 0 0 / 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 * 0 * 0 0 0 * 0 * 0
0 0 0 * 0 0 0 0 0 * 0 0
0 0 * 0 * /2 0 0 0 * 0 *
K K
K K K K
K K K K
K K
K K K K
K K K K
K K
K K K K
K K K K
K K
K K K K
−
−
− −
−
−
−
−
− − −
− −
−
−
2 3 2 3
.
0
0 0 0 0 / 2 0 0 0 0
x x
i i
y y
i i
z z
i i
x x
i i
y y
i i
z z
i i
x x
j j
y y
j j
z z
j j
x x
j j
y y
j j
z z
j j
U P
U P
U P
M
M
M
U P
U P
U P
M
M
K K K K M
φ
φ
φ
φ
φ
φ
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
 
 (Ec. 12.24) 
Nótese que eliminando las filas y columnas correspondientes a , ,z x yU φ φ (es decir: 3º, 4º, 
5º, 9º, 10º, 11º) se obtiene la matriz de rigidez del pórtico plano. Por otra parte, eliminando 
, ,x y zU U φ como grados de libertad, la matriz se reduce al caso del emparrillado plano. 
Adviértase que ambos comportamientos (pórtico plano - emparrillado plano) están desacoplados. 
x
jU
x
jφ
X
y
jU
y
jφ
z
jU
z
jφ
Z Y
j
i
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -14- 
 
Desplazamientos tales como , ,z x yU φ φ no producen fuerzas tales como , ,x y zP P M . Es decir, los 
desplazamientos vinculados al emparrillado plano no producen fuerzas del tipo de pórtico plano 
(la observación recíproca también resulta válida). En el caso general en que la barra tenga una 
dirección cualquiera, se ubica el eje X local uniendo los extremos de la barra. 
Los cosenos directores resultan: 
1
j ix x
l
γ
−
= 2
j iy y
l
γ
−
= 3
j iz z
l
γ
−
= (Ec. 12.25) 
 
 
Figura 12.13 
El eje Y local se define perpendicular al plano que contiene a la barra y al eje Z. De esa 
manera, el eje lY resulta siempre perpendicular al Z y, por ende, se mantiene contenido en el 
plano XY del sistema global. 
( ) ( )
2
1
1 2 3
/
1 . 0 0 1 /
0
l l
i j k D
Y Z X D
D
γ
γ
γ γ γ
−⎡ ⎤
⎢ ⎥= × = = ⎢ ⎥
⎢ ⎥⎣ ⎦
 (Ec. 12.26) 
donde: 2 21 2D γ γ= + 
Finalmente, el eje lZ sedetermina por ortogonalidad: 
( ) ( )
1 3
1 2 3 2 3
2 1
. /
. /
/ / 0
l l l
i j k D
Z X Y D
D D D
γ γ
γ γ γ γ γ
γ γ
−⎡ ⎤
⎢ ⎥= × = = −⎢ ⎥
⎢ ⎥− ⎣ ⎦
 (Ec. 12.27) 
lY
X
Z
Y
j
i
lX
1γ
2γ
3γ
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -15- 
 
Definiendo de tal manera los ejes locales, la matriz de rotación para la transformación de 
coordenadas del sistema local al sistema global resulta: 
 
. lU RU= (Ec. 12.28) 
. lRφ φ= (Ec. 12.29) 
( )
( )
1 2 1 3
2 1 2 3
3
/ . /
/ . /
0
D D
R D D
D
γ γ γ γ
γ γ γ γ
γ
− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
 
 
(Ec. 12.30) 
 
En el caso de una barra según el eje Z, el eje lY se toma directamente como el eje Y del 
sistema global y la matriz R resulta simplemente: 
 
0 0 1
0 1 0
1 0 0
R
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
 (Ec. 12.31) 
De (Ec. 12.28) y (Ec. 12.29) se deduce que: 
0
.0
l
l
U R U
Rφ φ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (Ec. 12.32) 
En notación sintética resulta: 
. lRδ δ= (Ec. 12.33) 
Se sugiere al lector explicitar R para el caso de una barra contenida en el plano XY. 
Observar que eliminando las filas y columnas 3ª,4ª, y 5ª se obtiene R para el pórtico plano (ver 
Ec. 10.10), mientras que suprimiendo las filas y columnas 1ª,2ª y 6ª se obtiene R para el 
emparrillado (ver (Ec. 12.15)). 
Repitiendo el razonamiento de la sección 10.2 y de la sección 12.3 se demuestra que: 
lY
lZ
lX
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -16- 
 
. . . .
.
. . . .
l T l T
i iii ij
l T l T
j jji jj
PR K R R K R
PR K R R K R
δ
δ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (Ec. 12.34) 
donde: 
δ posee seis componentes (tres desplazamientos y tres giros), y 
R es la matriz de rotación definida en (Ec. 12.32) donde la matriz R está definida en (Ec. 
12.30) o bien (Ec. 12.31) según corresponda. 
El eje lX definido por los puntos extremos i y j no define completamente la posición de 
la barras porque la misma puede girar alrededor de dicho eje (en lo que sigue a continuación, se 
consideran barras con secciones simétricas respecto a los ejes principales). 
 
 
Figura 12.14 
Obsérvese que la expresión (Ec. 12.24) es válida en el sistema de ejes principales. Para 
pasar del sistema principal al sistema local se utiliza la matriz de rotación: 
lZ
lYpY
pZ
β
β
pl XX =
lY
lX
lZ
pY
pZ
β
β
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -17- 
 
( ) ( )
( ) ( )
1 0 0
0 cos 0
0 cos
0
sen
sen
R
Idem
β β
β β
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 (Ec. 12.35) 
Finalmente, la matriz de rigidez en el sistema global se obtiene de la siguiente forma: 
. . . . . . . .
. . . . . . . .
p T T p T T
ii ij
p T T p T T
ji jj
R R K R R R R K R R
R R K R R R R K R R
⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
 (Ec. 12.36) 
El caso más frecuente es aquel en que 0β = y por lo tanto R es la matriz identidad y los 
cálculos se simplifican. 
Las estructuras planas (pórticos y emparrillados) con nudos rígidos cuyos ejes 
principales de las barras prismáticas no coinciden con los ejes locales, se comportan 
como tridimensionales y deben tratarse como tales (especificando el ángulo β ). 
En las estructuras tridimensionales, después de calcular los desplazamientos se obtienen 
las fuerzas de extremo de cada barra en su sistema principal. Para ello, se transforman los 
desplazamientos de extremo de cada barra al sistema principal de la barra mediante (Ec. 12.37) : 
.
.
T
l
T
p l
R
R
δ δ
δ δ
⎫= ⎪
⎬
= ⎪⎭
 
. .T Tp R Rδ δ= (Ec. 12.37) 
Recuérdese que el sistema local se identifica por el índice "l", el sistema de ejes 
principales de inercia por el índice "p" y que el sistema global no lleva índice. Luego se utiliza la 
matriz de rigidez en el sistema principal de la barra definida por (Ec. 12.24): 
.p p pK Pδ = (Ec. 12.38) 
Las fuerzas en cada extremo de barra, expresadas en el sistema de ejes principales de 
inercia, resultan: 
" "
" "
" "
"
x
y
z
p x
y
z
Esfuerzo NormalP
Corte según eje principal YP
Corte según eje principal ZP
P
Momento TorsorM
Momento Flector según eje principal YM
Momento Flector según eje principal ZM
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 
 
 
 
 
 "
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 (Ec. 12.39) 
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -18- 
 
Finalmente, las reacciones de apoyo se calculan en la forma habitual, es decir, a partir de 
las fuerzas de extremo de barra de las barras que concurra la apoyos, o bien utilizando las 
ecuaciones suprimidas en el cálculo de los desplazamientos. 
 
Ejercicio Nº 1: 
Plantear el sistema de ecuaciones de equilibrio del estado II para el emparrillado indicado 
en la figura. 
 
 
 
Barra 1: 
2
3 3
3 3
4 2 8
. 2 4
12 12
. 4 2
4,37
A cm
b hI
h bJ
β
= × =
×
= =
×
= =
 
2 4,37
:
h
b
h lado mayor
β= ⇒ =
 
 
)3(
mKgq /100=
)1(
cm60
1
)2(
2
cm10
3
cm100
Z
Y
X
3=D
2Barra
1Barra
4
2
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -19- 
 
Barra 2: 
4
4
4
4
. 3,976
64
.2. 7,952
32
DI cm
DJ I cm
π
π
= =
= = =
 
Estado I: 
 
2 2
1
2
2 2
3
2
. 1.60 300 .
12 12
. 1.10 50 .
2 2
q lM Kg cm
q lM Kg cm
= = =
= = =
 
 
Barra 1: 
1
1
2
/ / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / 1244,4 0 37334,5
/ / / / / / 0 102480 0
/ / / / / / 37334,5 0 1493380
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 2 
 
3 2
. . . .102480 ; 12. 1244,4 ; 6. 37334,5 ; 4. 1493380G J E I E I E I
l l l l
= = = = 
 
 
CAPITULO 12 EMPARRILLADOS PLANOS 
_________________________________________________________________________________________________________________________________________________________________________________________
PRATO, MASSA -20- 
 
Barra 2: 
2
2
3
100,2 5008,5 0 / / / / / /
5008,5 333900 0 / / / / / /
0 0 66798 / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 3 
 
3 2
. . . .66798 ; 12. 100,2 ; 6. 5008,5 ; 4. 333900G J E I E I E I
l l l l
= = = = 
2
2
2
1344,6 5008,5 37334,5 40
5008,5 436380 0 . 0
37334,5 0 1560178 250
z
x
y
U
φ
φ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 
 
Ejercicio Nº 2: 
Plantear las ecuaciones de equilibrio del estado II. 
 
 
30=D
150
29=d
mKgq /400=
)2(
)1(
m1 3
2
m2
m3
1
X
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -21- 
 
( )
( )
4 4
4
4 4
4
.
5042, 2
64
.
2. 10084, 4
32
x
D d
I cm
D d
J I cm
π
π
−
= =
−
= = =
 
Estado I: 
 
 
 
Barra 1: 
1
1
2
/ / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / 211772400 1588293 0 105886200
/ / / / 1588293 15882 0 1588293
/ / / / 0 0 42354480 0
/ / / / 105886200 1588293 0 21177240
 2 
0
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 
3 2
. . . .42354480 ; 12. 15882,9 ; 6. 1588293 ; 4. 211772400G J E I E I E I
l l l l
= = = = 
Barra 2: 
2
2
3
4706 705908 0 / / / / / /
705908 141181600 0 / / / / / /
0 0 28236320 / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 3 
 
CAPITULO 12 EMPARRILLADOS PLANOS 
____________________________________________________________________________________________ 
 
_____________________________________________________________________________________________
PRATO, MASSA -22- 
 
3 2
. . . .28236320 ; 12. 4706 ; 6. 705908 ; 4. 141181600G J E I E I E I
l l l l
= = = = 
1
2
2
2
211772400 1588293 0 105886200 1666,67
15882935 20588,93 705908 1588293 1000
.0 705908 183536080 0 30000
105886200 1588293 0 240008720 13333,33
y
x
y
U
φ
φ
φ
−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Continuar navegando

Materiales relacionados

287 pag.
llano_libro de estatica

UNINTER

User badge image

Paty Norma

327 pag.
690 pag.
Lector22

SIN SIGLA

User badge image

kresur21