Logo Studenta

ELECTRONICA_I

¡Este material tiene más páginas!

Vista previa del material en texto

ELECTRONICA I 
 
1.-NOMBRE DE LA MATERIA: ELECTRÓNICA I 
2.-CODIGO DE LA MATERIA: 1N121 
3.-DEPARTAMENTO: INGENIERIAS 
4.-CODIGO DEL DEPTO. 2B5004 
5.-CENTRO UNIVERSITARIO: DE LA COSTA SUR 
 
 
 
CARGA HORARIA 
6.- TEORIA: 40 HORAS 
7.- PRACTICA 40 HORAS 
8.- TOTAL: 80 HORAS 
9.- CREDITOS: 8 CREDITOS 
10.- TIPO DE CURSO CURSO-TALLER 
11.- NIVEL DE FORMACIÓN LICENCIATURA 
12.- PRERREQUISITOS: FISICA III (IN109) 
 
 
 
 
13.- OBJETIVO GENERAL: 
 
 Conocer los conceptos básicos de la electrónica analógica, los dispositivos que mas 
frecuentemente son utilizados en el diseño de circuitos electrónicos así como la lectura de los 
diagramas de circuitos, además del diseño de proyectos prototipo. 
 
 
 
14.-OBJETIVOS ESPECÍFICOS: 
 
A) Conocimiento de los principios básicos de la electrónica 
B) Conocer los dispositivos y elementos que se utilizan en los circuitos electrónicos 
C) Calcular y resolver problemas de diseño de circuitos electrónicos 
D) Diseñar circuitos electrónicos a partir de diagramas. 
 
 
 
 
 
 
 
 
 
 
 
 
15.-CONTENIDO TEMÁTICO 
 
 
UNIDAD I 
PRINCIPIOS FUNDAMENTALES 
 
1.1.-Introducción. 
1.2.-Principios de electrónica. 
1.3.-Simbolos Electrónicos Generales. 
1.4.-Diagramas electrónicos Generales. 
1.5.-Resistencias, Valores y Códigos. 
 
 
 
 
UNIDAD II 
SEMICONDUCTORES 
 
2.1.-Semiconductores. 
2.2.-Dispositivos semiconductores (N-P). 
2.3.-Diodos (Si - Ge) Tipos. 
2.4.-Fuentes de voltaje y corriente. 
 
 
 
UNIDAD III 
TRANSISTORES 
 
3.1.-Transistores NPN, PNP. 
3.2.-Tipos de amplificadores analógicos (Diseño). 
3.3.-Tipos de amplificadores de alta y baja señal ( FET, BJT, UJT, MOSFET, JFET) 
3.4.-Polarización directa, auto-polarización, satur ación y corte. 
3.5.-División de tensión y corriente. 
3.6.-Concepto de ganancia (Filtros activos y pasivo s). 
3.7.-Amplificadores de potencia de audio y señal. 
 
 
 
UNIDAD IV 
OSCILADORES 
 
4.1.-Introducción a los osciladores. 
4.2.-Tipos de osciladores. 
4.3.-Oscilador 555 
4.4.-Aplicaciones del oscilador 555. 
 
 
TEMA COMPLEMENTARIO: 
DISEÑO Y CONSTRUCCION DE CIRCUITOS IMPRESOS. 
 
 
 
 
 
16.-ESTRUCTURA CONCEPTUAL 
 
Electrónica I, es una de las materias básicas en la Carrera de Ingeniero en Obras y Servicios, 
pues proporciona los conocimientos básicos, así como el comienzo de la comprensión del 
funcionamiento de los dispositivos de que están constituidos los sistemas electrónicos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SEMICONDUCTORES 
INTRODUCCIÓN 
 
MATERIAL TIPO N Y 
TIPO P 
 
TIPO N-P 
 
 
TIPOS DE DIODOS 
 
 
EL DIODO 
 
 
EL TRANSISTOR 
 
TIPOS DE 
TRANSISTOR 
 
OSCILADORES 
 
TIPOS DE 
OSCILADORES 
 
 
 
17.- BIBLIOGRAFIA BÁSICA POR TEMAS 
 
UNIDAD I 
1.1. INTRODUCCIÓN 
 PAGINA 1. 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
1.2. PRINCIPIOS DE ELECTRÓNICA 
PAGINAS 5-38 Y 53-83 
LIBRO: GUIA PRATICA DE ELECTRICIDAD Y ELECTRÓNICA 
TOMO I 
AUTORES: RICARDO ANTONIO MARTÍN BARRIO 
 ANTONIO COLMENAR SANTOS. 
EDITORIAL: CULTURAL, S.A. 
 
 
1.3. SÍMBOLOS ELECTRÓNICOS GRAL. 
PAGINA 120 
LIBRO: ELECTRÓNICA BASICAS POR OBJETIVOS. 
SEGUNDO CURSO. 
AUTORES: GILBERTO MELGAREJO HERNÁNDEZ 
 GONZALO GONZALEZ LLANES 
 MARIA DE LOURDES LOPEZ BRAVO 
EDITORIAL: HERRERO S.A. 
 
 
1.4. DIAGRAMAS ELECTRÓNICOS GRAL. 
PÁGINAS 118-119 
LIBRO: ELECTRÓNICA BASICAS POR OBJETIVOS. 
SEGUNDO CURSO. 
AUTORES: GILBERTO MELGAREJO HERNÁNDEZ 
 GONZALO GONZALEZ LLANES 
 MARIA DE LOURDES LOPEZ BRAVO 
EDITORIAL: HERRERO S.A. 
 
 
1.5. RESISTENCIAS, VALORES Y CODIGOS. 
PAGINAS 46-52 
LIBRO: GUIA PRATICA DE ELECTRICIDAD Y ELECTRÓNICA 
TOMO I 
AUTORES: RICARDO ANTONIO MARTÍN BARRIO 
 ANTONIO COLMENAR SANTOS. 
EDITORIAL: CULTURAL, S.A. 
 
 
 
 
 
 
 
UNIDAD II 
2.1. SEMICONDUCTORES 
 PAGINAS 3-6 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
2.2. DISPOSITIVOS SEMICONDUCTORES (N-P). 
 PAGINA 7-40 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
2.3. DIODOS (Si – Ge) TIPOS. 
 PAGINAS 35-42 
LIBRO: PRINCIPIOS DE ELECTRÓNICA 
SEXTA EDICION 
AUTOR: MALVINO 
EDITORIAL: McGRAW HILL 
 
 
2.4. FUENTES DE VOLTAJE Y CORRIENTE. 
 PÁGINAS 123-142 
LIBRO: GUIA PRATICA DE ELECTRICIDAD Y ELECTRÓNICA 
TOMO I 
AUTORES: RICARDO ANTONIO MARTÍN BARRIO 
 ANTONIO COLMENAR SANTOS. 
EDITORIAL: CULTURAL, S.A. 
 
 
 
UNIDAD III 
 
3.1. TRANSISTORES NPN, PNP. 
 PÁGINAS 114-117 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
3.2. TIPOS DE AMPLIFICADORES ANALÓGICOS (DISEÑO) 
 PAGINAS 12-13 
LIBRO: ELECTRÓNICA MODERNA PRATICA. 
TOMO II 
AUTORES: MILTON KAUFMA 
ARTHUR H. SEIDMAN. 
EDITORIAL: McGRAW HILL 
 
 
 
3.3. TIPOS DE AMPLIFICADORES DE ALTA Y BAJA SEÑAL ( FET, BJT, UJT, MOSFET, JFET) 
 PAGINAS 215-248 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
3.4. POLARIZACION DIRECTA. 
PAGINAS 45-46,54-55 
AUTOPOLARIZACION. 
PÁGINAS 289-291 
SATURACIÓN Y CORTE. 
PAGINAS 48,57-59,215,240-245,248-252 
LIBRO: PRINCIPIOS DE ELECTRÓNICA 
SEXTA EDICION 
AUTOR: MALVINO 
EDITORIAL: McGRAW HILL 
 
 
3.5. DIVISIÓN DE TENSIÓN Y CORRIENTE. 
PÁGINAS 98-100 Y 108-112 
LIBRO: ANÁLISIS INTRODUCTORIO DE CIRCUITOS 
AUTOR: ROBERT L. BOYLESTAD 
EDITORIAL: TRILLAS 
 
 
3.6. CONCEPTO DE GANANCIA (FILTROS ACTIVOS Y PASIVO S) 
 PÁGINAS 809-827 
LIBRO: PRINCIPIOS DE ELECTRÓNICA 
SEXTA EDICION 
AUTOR: MALVINO 
EDITORIAL: McGRAW HILL 
 
 
3.7. AMPLIFICADORES DE POTENCIA DE AUDIO Y SEÑAL. 
 PÁGINAS 365-391 
LIBRO: PRINCIPIOS DE ELECTRÓNICA 
SEXTA EDICION 
AUTOR: MALVINO 
EDITORIAL: McGRAW HILL 
 
 PÁGINAS 701-707 
LIBRO: ELECTRÓNICA: TEORIA DE CIRCUITOS 
 SEXTA EDICIÓN 
AUTOR: ROBERT L. BOYLESTAD, LOUIS NASHELSKY 
EDITORIAL: PRENTICE HALL 
 
 
 
 
 
 
 
 
UNIDAD IV 
 
4.1. INTRODUCCIÓN A LOS OSCILADORES. 
4.2. TIPOS DE OSCILADORES 
4.3. OSCILADOR 555 
4.4. APLICACIONES DEL OSCILADOR 555 
 PÁGINAS 931-979 
LIBRO: PRINCIPIOS DE ELECTRÓNICA 
SEXTA EDICION 
AUTOR: MALVINO 
EDITORIAL: McGRAW HILL 
 
 
 
 
 
 
 
 
18.-BIBLIOGRAFIA COMPLEMENTARIA 
 
 
NOTAS DE ELECTRONICA 
AUTOR: FORREST M. MIMS III 
EDITORIAL: Mc. GRAW-HILL 
 
 
REVISTA: SABER ELECTRONICA 
AUTOR: ING. HORACIO VALLEJO 
EDITORIAL: TELEVISA 
 
 
FUNDAMENTOS Y APLICACIONES DE LOS CIRCUITOS DE TRAN SISTOR 
AUTOR: HENRY C. VEATCH 
EDITORIAL: PUBLICACIONES MARCOMBO, S.A. (MEXICO-BAR CELONA) 
 
 
ELECTRONICA DE LOS SISTEMAS A LOS COMPONENTES 
AUTOR: NEIL STOREY 
EDITORIAL: 
 
 
ENCICLOPEDIA DE ELECTRONICA 
MULTIMEDIA 
EDITORIAL: ESPAÑOLA 
 
 
 
 
 
 
 
 
 
 
 
19.- MODALIDADES DEL PROCESO DE ENSEÑANZA Y APRENDI ZAJE 
 
 
A.- TÉCNICAS DE ENSEÑANZA 
 
� LECTURA DE RESISTENCIAS, CAPACITORES Y BOBINAS 
� INVESTIGACIÓN DE DIAGRAMAS Y SU LECTURA 
� EJERCICIOS DE CALCULO Y DISEÑO 
� PRACTICAS DE LABORATORIO 
� PRACTICAS DE DISEÑO 
 
 
B.- COMPETENCIAS 
 
 
� HABILIDAD PARA LA IDENTIFICACIÓN DE ELEMENTOS Y/ O DISPOSITIVOS 
ELECTRÓNICOS 
� CAPACIDAD DE LECTURA DE VALORES Y DIAGRAMAS 
� DESTREZA PARA EL DISEÑO DE MODELOS ELECTRÓNICOS 
� HABILIDAD PARA REALIZAR PROYECTOS PROTOTIPO 
� HABILIDAD PARA EL MANEJO Y USO DE EQUIPO PARA EL ANÁLISIS DE CIRCUITOS 
ELECTRÓNICOS Y ELÉCTRICOS. 
 
 
 
 
20.- CARACTERÍSTICAS DE LA APLICACIÓN PROFESIONAL D E LA ASIGNATURA. 
 
ELECTRÓNICA I SE PRESENTA COMO UNA MATERIA BASICA, QUE ESPERA CUBRIR LAS 
EXPECTATIVAS DE PROPORCIONARLOS CONOCIMIENTOS BÁSICOS HACIA LAS DEMÁS 
MATERIAS CONSECUTIVAS, PUES ES LA PLATAFORMA QUE DARÁ DESTREZAS, 
HABILIDADES Y CONOCIMIENTO DE LA ELECTRÓNICA PRINCIPALMENTE ANALÓGICA. 
 
 
 
21.- CONOCIMIENTOS, VALORES, APTITUDES, ACTITUDES 
 
Este curso debe proporcionar al alumno lo siguiente en su formación profesionalizante: 
 
A.-CONOCIMIENTOS 
Adquirir los conocimientos básicos de electrónica básica, lectura de los diagramas electrónicos, reconocer y leer los valores de los 
dispositivos de que se conforman los circuitos complejos de control, potencia etc. 
 
 
B.-VALORES 
El iniciar a estudiar dicho curso proporcional al alumno el sentido de responsabilidad, de seguridad en el trabajo, de ser analítico y reflexivo 
y de ubicarse en el entorno social y económico. 
 
 
C.-APTITUDES 
1.-Ser practico en la resolución de problemas cotidianos 
 
2.-Analítico de tal manera en que pueda definir un diagnostico de los valores de los 
elementos que componen un circuito electrónico. 
 
3.-Elevar la capacidad de crear nuevas técnicas de solución de problemas 
 
 
C.-ACTITUDES 
Promover la actitud positiva de servicio, de proporcionar siempre un estado de 
confianza y seguridad en si mismo, por lo tanto incrementar la credibilidad de las acciones y 
decisiones tomadas en la solución de problemas. 
 
 
 
22.- MODALIDADES DE EVALUACIÓN 
 
A) EXAMENES PARCIALES 25 % 
B) EXAMEN DEPARTAMENTAL 20 % 
C) INVESTIGACION Y EXPOSICIONES 10 % 
D) TRABAJOS Y PRACTICAS ENTREGADAS 
 Y FUNCIONANDO 30 % 
 F) ASISTENCIA A TUTORIAS 5 % 
 G) ASISTENCIAS A PRACTICAS DE LABORATORIO 10 % 
 
 CALIFICACIÓN FINAL 100 % 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIDAD I 
PRINCIPIOS FUNDAMENTALES 
 
1.1 INTRODUCCION 
 
Lo que hoy conocemos con el denominador común de tecnología de la electrónica puede parecer, a 
primera vista, un apartado ciertamente complejo destinado a ser manejado por cultivados 
especialistas en la materia, ayudados por avanzados sistemas de cálculo y vetado a los no iniciados 
en esta noble ciencia. Pues bien, no podemos negar que algo de eso hoy. Pero no es menos cierto 
que, aparte de ser la tecnología punta que domina nuestro diario ir y venir, la electrónica puede ser 
también un arte, una forma más de expresión. 
 
Si bien es cierto que los tecnólogos más versados en esta materia pudieran parecernos un poco fríos 
y calculadores, no lo es menos que la misma conlleva una imperiosa necesidad de ingenio y creación 
con que alimentarse. De ahí nuestro ahínco en demostrar, a partir de aquí, dos cosas. La primera de 
ellas es la cara oculta y atractiva de la electrónica , su modo de ser creación, imaginación y, en 
definitiva, una forma, acaso atípica, de arte. La segunda, y a nuestro modo de ver aún más 
importante, es la posibilidad de domesticar la electrónica , esto es, hacer ver a los posibles 
aficionados que se trata de una ciencia totalmente asequible, que debe ocupar ¡ya! una parte de 
nuestros conocimientos y, por qué no, gozar de nuestro aprecio. Basta ya de barreras... Comienza la 
función. 
 
 
 
DIFERENCIAS ENTRE ELECTRICIDAD Y ELECTRÓNICA 
 
Toda obra que prevea cierto éxito de taquilla ofrece golosas posibilidades a los artistas noveles y, por 
lo tanto, estos intentarán conseguir salir a escena aun a costa de desbancar a los actores más 
consagrados. Así ocurrió con la electrónica . Todo se lo debía a la electricidad y, sin embargo. La 
primera disyuntiva que surge a la hora de colocar la ciencia electrónica en su lugar aparece en cuanto 
intentamos separarla de su antecesora: la electricidad . De ahí surge la pregunta: ¿es esto realmente 
necesario? Seguramente no. Pero queda claro que todo electrónico que se precie intentará darnos 
una versión, más o menos acertada, de cómo y por qué se escindió la electrónica de la no menos 
noble ciencia de la electricidad. Tampoco nosotros podemos resistirnos a ello, pero, en vez de 
razonarlo categóricamente, vamos a intentar explicar de una forma sencilla el proceso para que sea 
el lector quien saque sus propias conclusiones. 
 
Queda claro que la electricidad está involucrada en todo proceso electrónico . Sin embargo, por 
caprichos del destino, esta aseveración estaba destinada a no ser reversible, es decir, que existen 
procesos eléctricos que claramente excluyen la ciencia de la electrónica. 
 
El motor del más moderno de los ventiladores responde a un funcionamiento puramente eléctrico, 
mientras que el más antiguo aparato de radio que podamos recordar será sin duda un dispositivo 
electrónico - más o menos sofisticado - pero, claro está, precisará del concurso de la electricidad 
para poder funcionar. 
 
La electricidad ha estado enfocada siempre a una utilización masiva de los electrones , esto es, 
incluso antes de poder razonar experimentalmente la existencia del electrón ya se utilizaba 
masivamente la electricidad. La bombilla, los motores eléctricos, timbres, electroimanes, 
transformadores, etc., se basan en el uso del electrón , del cual hablaremos de una manera, 
permítasenos la expresión, bastante tosca. 
 
Como todos sabemos, el electrón es uno de los componentes básicos de la materia. Basta indicar 
aquí que según sea la materia analizada así será el número de electrones que esta posee y la 
posición de estos sobre sus átomos. Un átomo es la parte más pequeña que podemos tomar de una 
materia dada. Así, por ejemplo, la disposición a dar y recibir electrones no es la misma en un átomo 
de cobre que en uno de carbono. Esta propiedad, bien utilizada, podía ser algo revolucionario y, de 
hecho, lo es. 
 
El pistoletazo de salida en la carrera de la electrónica lo dio la aparición de las válvulas 
termoiónicas o de vacío , que no son sino los tubos iluminados que podíamos encontrar (aún hoy día 
pueden verse) dentro de las radios y de los televisores más antiguos. 
 
La razón de considerar la aparición de las válvulas como el detonante de la explosión electrónica es 
su posibilidad de "manejar" uno a uno los electrones, es decir, controlar el flujo de los mismos. A este 
control o "modulación" de dicho flujo se le asoció el calificativo de polarización. La válvula estaba 
constituida por un emisor de electrones (al que se llamó cátodo ), un receptor de electrones 
(denominado ánodo ) y una "rejilla" colocada de forma que fuera atravesada por el flujo de electrones 
emitido por la patilla denominada cátodo. Es obvio que si la rejilla está ahí no es por casualidad. 
Tenía un papel fundamental que representar, y bien que lo hizo. 
 
Quedaba claro que el movimiento de electrones se origina cuando estos deben equilibrarse y 
cuando se aproximan materias que, por la cantidad y disposición de los mismos en su superficie, 
están predispuestas, unas a soltar electrones y otras a recibirlos. A esta circunstancia se la llamó 
polarización . Es decir, según sea la carga (en cantidad y situación de electrones) de una materia 
dada, así será su predisposición a soltar o recibir electrones. 
Si la válvula anteriormente descrita solo poseyera un ánodo y un cátodo, no se hubiera conseguido 
otra cosa que mantener la circulación de electrones, pero, como quiera que se intercaló una rejilla , 
denominada muy apropiadamente rejilla de control , y esta podía ser polarizada de forma 
independiente, éramos capaces de controlar el haz de electrones. De este modo se inventó un primer 
dispositivo capaz de manejar a nuestro antojo la corriente eléctrica y puede que fuera entonces 
cuando a dicha capacidad se le asoció el calificativo de nueva ciencia: había nacido la electrónica . 
 
 
 
COMPONENTES ELECTRÓNICOSComo no podía ser de otra forma, la electrónica había otorgado el papel estelar a las válvulas de 
vacío , pero el guión exigía un reparto de papeles más extenso y la aparición en escena de bastantes 
más "artistas invitados". Los tubos de vacío tuvieron que rodearse de un elenco de colaboradores 
que, incluso sin poder destacar mucho, clamaban por conseguir un éxito que se venía venir. 
 
La "obra" a representar exigía cierta destreza en el campo eléctrico y, aun siendo papeles 
secundarios, a los aspirantes se les suponía un cierto currículo. Quedaba claro que por méritos 
propios los más indicados para subirse al carro del éxito electrónico eran, entre otros: las resistencias, 
los condensadores, las bobinas, los transformadores, los interruptores, los pulsadores y, al menos en 
un principio, hubo trabajo hasta para las bombillas. 
 
Para los menos versados en el mundillo no habrá posibilidades de distinguir entre los diferentes 
protagonistas. Para evitar este problema podemos, a modo de introducción, redactar aquí un 
pequeño resumen del elenco disponible, el cual será capaz de "actuar" en las más variopintas 
"representaciones". 
 
 
 
 
 
 
 
 
EL TUBO DE VACÍO 
 
Fue el primer gran astro de la obra electrónica. Actualmente ha quedado bastante desfasado. A pesar 
de sus innegables cualidades ha sido sustituido con gran éxito por sucesores tales como el transistor 
y el circuito integrado . De todas formas y, según la crítica, hay funciones en las cuales estos no 
llegarán nunca a superar al antiguo tubo. 
 
 
 
 
 
 
EL TRANSISTOR 
 
Surge como panacea ante los problemas de espacio, temperatura y coste de las válvulas. Puede 
imitarlas perfectamente en su versión básica. Los últimos retoques técnicos dados por los 
"maquilladores " electrónicos han posibilitado la aparición de nuevos talentos, como los transistores 
tipo FET, que permiten mantener muy alto el pabellón de estos últimos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
EL DIODO 
 
Es un artista de segunda fila, más bien desbancado por los transistores , pero que desempeña un 
papel muy importante. Desde su primera aparición en público, a principio de siglo y en forma, cómo 
no, de válvula termoiónica , ha sufrido importantes cambios. El conjunto de diodos disponibles en el 
mercado actualmente abarca un amplio campo. Como ejemplo cabe citar los diodos rectificadores 
puros , diodos zener , diodos varicap , diodos LED, etc. 
 
 
 
 
 
LOS CIRCUITOS INTEGRADOS 
 
Constituyen la generación más joven del elenco disponible para trabajar en la gran obra de la 
electrónica. Son rápidos, con nuevas ideas y su contratación en cualquier representación que se 
precie se traducirá en un importante ahorro, tanto en dinero como en esfuerzo, a la hora de diseñar el 
guión a seguir. Su truco para conseguir esto es sencillo: aplicar el refrán "la unión hace la fuerza". 
Internamente están conformados por un gran número de transistores , incluso por miles de ellos, y 
diodos especialmente caracterizados para trabajar en conjunto. 
 
 
 
 
 
 
 
 
 
 
 
RESISTENCIAS 
 
Son un elemento indispensable dentro del mundillo electrónico. Con su cuerpo coloreado dan el tono 
festivo a cualquier circuito. Dicha vistosidad no responde a un afán de destacar por encima del resto 
del "reparto" sino más bien a la imperiosa necesidad de demostrar al mundo, y nunca mejor dicho, lo 
que valen. "Por sus bandas de colores las conoceréis". 
 
 
 
 
 
CONDENSADORES 
 
Suelen aparecer también con relativa asiduidad en casi cualquier circuito. Son algo más estirados que 
las resistencias ya que, para empezar, no les da igual el tipo de tensión con la que trabajan; son un 
poco veletas y modifican su carácter según les toque bregar con tensiones alternas o continuas. 
También gustan de lucir atuendos de colores aunque no lo hacen con tanta frecuencia como sus 
colegas las resistencias. Existe un cuerpo de elite dentro del conjunto de los condensadores que 
responde al nombre de "condensadores electrolíticos". Para destacar del resto suelen lucir un 
"uniforme" azul o negro y ciertas "insignias" con logos tales como "+" y "-". 
 
 
 
 
 
 
 
 
 
 
 
BOBINAS 
 
Son, casi siempre, las más fáciles de identificar. Su aspecto de hilo de cobre enrollado no les permite 
muchos lujos y, aunque por su modestia pudiera parecer que van por el mundo desnudas, esto no es 
así. Todas ellas visten un invisible traje de laca aislante y trasparente que las preserva tanto del clima 
ambiente como de incómodos roces entre espiras continuas. ¿Que qué es una espira ? Pues baste 
indicar aquí que cada una de las vueltas que hace el hilo de cobre esmaltado, es su correcta 
denominación, para conformar la bobina responde a dicho nombre. Dentro de la sociedad de bobinas 
existe también cierto clasismo: las más humildes de las bobinas se ven obligadas a dar vueltas sobre 
un núcleo central imaginario, mientras que las de mejor posición social cuentan con núcleos 
especializados, por ejemplo, uno muy común llamado ferrita , que les permiten aumentar su categoría 
fácilmente y realizar su trabajo en el circuito con menor esfuerzo. 
 
 
 
 
 
TRANSFORMADORES 
 
Son, por mucho que intenten negarlo, tan solo un tipo especializado de bobinas . Como ocurre en 
toda sociedad, en el mundo electrónico también existe un grupo de elementos que intenta defender, 
no con poco corporativismo, su independencia y excelencia. Estos son sin duda los 
transformadores . No cabe duda de que el trabajo desarrollado por estos no es nada despreciable, 
pero seamos sinceros, el transformador no es más que el matrimonio de conveniencia de dos bobinas 
solitarias. Su misión es de suma utilidad: domar la tensión que reciben y entregarnos a cambio otra 
tensión que se adapte a lo solicitado por el director de obra. Sus condiciones de trabajo obligan a este 
par de bobinas a protegerse con un traje de cierta robustez denominado "armadura". Su aspecto 
cuadradote y macizo hace que identifiquemos rápidamente al transformador. Pero, como no podía ser 
menos, aquí también hay excepciones: a veces, aunque no muy frecuentemente, los transformadores 
nacen de la unión de tres o incluso más bobinas. 
 
 
 
 
INTERRUPTORES, CONMUTADORES Y PULSADORES 
 
Cómo no incluir en este reparto de protagonistas electrónicos a todo el conjunto de dispositivos que, 
sin ser propiamente electrónicos, nos permiten interrelacionarnos con ese mundo y, aun 
disminuyendo de tamaño y aumentando sus prestaciones, son totalmente imprescindibles. Cualquier 
circuito que se precie deberá ofrecernos algún que otro pulsador, interruptor o similar. Por lo menos 
hasta que los montajes accionados por la voz humana estén a la orden del día. 
 
 
 
 
 
 
 
CIRCUITOS IMPRESOS 
 
La verdad es que los circuitos impresos no pueden ser considerados estrictamente como 
verdaderos protagonistas de la obra electrónica. Mas bien pertenecen al mundo de la tramoya, es 
decir, al conjunto de accesorios precisos para que los verdaderos protagonistas, esto es, los 
componentes, se luzcan. Que cómo se distingue el circuito impreso , pues muy sencillo: no tenemos 
más que observar la superficie donde los componentes están situados. Dicha superficie aparece 
surcada por numerosas líneas -las pistas del mismo- y contiene multitud de pequeños orificios de 
bordes plateados que están predestinados a servir de alojamiento a las patillas de los componentes. 
 
 
 
 
 
 
 
 
UNIÓN DE COMPONENTES 
 
Una vez conocido el reparto, misión que modestamente pretende esta obra, podremos preparar 
cualquier función electrónica que se nos ocurra. Parece claro que con solo conocer las piezas que 
componen nuestro rompecabezas electrónico no tendremos suficientes datos como para poder iniciar 
una puesta en escena de cualquier dispositivo, por sencillo que este sea. Para poder realizar esto 
deberemos conocer no solo los componentes básicos de un circuito sino también el "guión" a seguir 
por cada uno de ellos, es decir, las normas y leyes electrónicasque rigen su funcionamiento. Conocer 
básicamente la Ley de Ohm o los diferentes tipos de conjuntos circuitales serán para nosotros lo 
que para un actor es saber diferenciar el drama de la comedia. 
 
 
 
 
Los diferentes "actos" involucrados en nuestra "obra" responden a nombres tales como: 
amplificador , oscilador , comparador , multiplexador , fuente de alimentación , etc. Podremos 
conocer los actores (componentes ) básicos que forman parte de cada uno de estos actos. 
 
Una vez conocidos los componentes , y los bloques que pueden constituir cada uno de ellos, 
podremos enlazar dichos bloques para formar circuitos de mayor envergadura. 
 
Para resumir un poco los conceptos explicados hasta ahora nos conformaremos con indicar que todo 
circuito electrónico , por complejo que pudiera parecernos, puede ser descompuesto en bloques 
bien diferenciados, de forma que podamos analizarlo de una manera bastante sencilla. Si, además, 
conocemos los elementos que constituyen cada uno de los componentes podremos analizar en 
detalle cada uno de los bloques que forman el circuito total. Esto nos permitirá analizar, reparar, 
modificar y, por qué no, mejorar un circuito dado. 
 
 
 
APLICACIONES GENERALES DE LA ELECTRÓNICA 
 
A ciencia cierta sólo tendríamos que pararnos a observar la serie de procesos que se han visto 
afectados por el mundo de la informática, al fin y al cabo una rama especializada de la electrónica y 
los ordenadores. Con este campo bastaría para afirmar que la electrónica está hoy día en todas 
partes. 
 
Pero nosotros no queremos conformarnos con eso. Miremos a nuestro alrededor. Si nos encontramos 
en la sala de estar de nuestra casa podemos ver objetos que a simple vista nos son totalmente 
comunes y a los que no se nos hubiera ocurrido señalar como influidos por la electrónica. El equipo 
de música, el vídeo y el televisor son objetos claramente pertenecientes a la era electrónica pero ¿y 
la mesa del salón? Sí, la mesa. Puede parecernos sorprendente a primera vista. ¿Cómo puede estar 
involucrada la electrónica con la mesa? No es de locos, no. En efecto, la mesa es de madera 
estándar, nada relacionado con materiales o aleaciones extrañas. 
 
Pero ¿nos hemos parado a pensar en el proceso de fabricación que siguen los muebles de nuestra 
casa? Queda claro que las industrias más "tradicionales" siguen realizando un trabajo artesanal pero 
no así las modernas fábricas de muebles. El proceso de cortado de los tablones precisos para 
conformar esa mesa se habrá realizado con moderna maquinaria de corte, gobernada por un 
complejo sistema denominado "de control numérico". Como ya habremos adivinado, bajo este curioso 
nombre se esconde un más o menos complejo sistema de ordenador, el cual, al final no es más que 
un circuito puramente electrónico. 
 
Podemos asegurar, sin miedo a equivocarnos, que casi cualquier objeto que poseamos ha podido ser 
diseñado, comprobado y/o fabricado por ordenador lo cual, como vemos, da un papel más que 
protagonista a la electrónica. 
 
Vayamos ahora al mundo exterior. La comunicación, entendida en su forma global, conlleva una 
estrecha relación con la electrónica. Podemos comenzar por los coches y ver que no sólo se 
diseñan, comprueban y fabrican, mediante procesos que implican tecnología electrónica, sino que 
ellos mismos incorporan hoy día avanzados y complicados equipos destinados a hacer su conducción 
más segura y confortable. Hablamos con cierta facilidad del sistema ABS , el ordenador de a bordo, el 
climatizador; pues bien, estos no son sino circuitos electrónicos aplicados al mercado automovilístico. 
 
 
 
 
La navegación , tanto aérea como marítima, se ha visto asistida de una forma tremenda por el campo 
electrónico. Los modernos sistemas de navegación posibilitan que barcos y aviones surquen grandes 
distancias con total fiabilidad y seguridad. Está claro que los pioneros de la navegación marítima y 
aérea no precisaban de estas técnicas pero no cabe duda de que los progresos más espectaculares 
en estos campos deben mucho a la electrónica. Por poner un ejemplo, cabría preguntarse: ¿cómo 
podríamos sin sistemas electrónicos hacer volar un avión entre Madrid y Nueva York con un error 
máximo de 1 km o conseguir que el mismo avión aterrice de forma totalmente automática, es decir, 
sin participación de los pilotos, en condiciones de niebla cerrada? No cabe duda de que 
la electrónica es indispensable en muchos campos. 
 
 
 
Podríamos citar también el desarrollo astronáutico habido estos últimos años o la tristemente 
célebre carrera de armamentos , donde también, por desgracia, la electrónica está presente. 
Cualquier actividad, desde la agraria a la aeroespacial, pasando por sectores tan dispares como el 
bancario, el musical, el médico, el cinematográfico 
o el puramente lúdico están haciendo un uso masivo de los últimos avances dentro del campo 
electrónico. 
 
Hace tan solo unos años no podíamos haber imaginado salir a la calle sin dinero, o sin la 
correspondiente cartilla o chequera para hacer efectiva cierta cantidad en metálico en nuestro banco. 
Hoy en día es común llevar encima la típica tarjeta bancaria con la que poder ir al cajero electrónico y 
hacer efectivo el dinero que sea menester. Es un poco arriesgado considerar a la tarjeta bancaria 
como circuito electrónico propiamente dicho, o al menos lo era hasta hoy. Las tarjetas de crédito, o 
bancarias, incorporan una banda magnética en la cual se han pregrabado ciertas informaciones. El 
lector magnético presente en los cajeros automáticos nos permite "sacar" esta información y, junto 
con la clave que debemos introducirle a través de un teclado, comunicar con el ordenador central, el 
cual enviará, una vez hechas las oportunas comprobaciones, la orden de entregar el dinero al cajero 
automático. 
 
 
 
Decíamos antes que es difícil calificar a la tarjeta bancaria como circuito electrónico. Pero esto 
también está cambiando. Las modernas tarjetas de crédito incorporarán un microcircuito electrónico 
capaz de realizar ciertas operaciones "inteligentes" con lo que si se podrá calificar de dispositivo 
electrónico a una simple tarjeta de crédito. 
 
 
Otra vertiente donde podemos observar el auge de este tipo de electrónica de control es en las 
tarjetas de "teléfono". Este tipo de tarjetas incorpora, al menos en Europa , un microcircuito que se 
encarga de controlar el crédito "telefónico" de que disponemos. 
 
El aspecto lúdico es otra de las vertientes donde la electrónica se ha volcado en los últimos años. 
Quién no las ha utilizado al menos conoce las célebres "consolas" de juegos. Queda claro que en 
éste, como en otros aspectos, el detonante claro del ingenio del diseñador es uno: la ganancia de 
cantidades ingentes de dinero. De todas formas, y sin necesidad de encuestas previas, es seguro que 
la chiquillería estará completamente de acuerdo con la investigación desarrollada en este campo. 
 
 
 
 
Un campo donde la electrónica está no sólo presente sino que es la principal protagonista es el de la 
informática . Todos y cada uno de los equipos involucrados en la parafernalia informática responden 
a un diseño puramente electrónico. Desde el monitor a la CPU (Unidad Central de Proceso), pasando 
por el teclado, la impresora, las memorias, etc., todo es pura y simple -ésta no es la palabra más 
adecuada- electrónica. 
 
Para terminar un poco este primer vistazo a lo que son las aplicaciones electrónicas podríamos 
centrarnos en un ejemplo de lo más extendido: la televisión . 
 
 
 
 
Vamos a intentar centrarnos ahora en un solo dispositivo electrónico y a explicarlo de la forma más 
sencilla que seamos capaces. Para comenzar debemos hacer notar que una televisión incorpora, o 
puede hacerlo, electrónica de todo tipo. Nos explicamos: el propio tubo de imagen del televisor no es 
más que un tipo sofisticado de válvula electrónica. Según sea la edad del equipo así será la 
tecnología que incorpore el mismo. Puede ser un antiquísimo equipo deválvulas o un moderno 
equipo de color con los últimos avances en tecnología digital, más adelante veremos que es esto. 
Pero sea cual sea la edad del televisor está claro que incorporará electrónica de muy diversa índole. 
 
¿Cómo esta constituido un sistema de TV? En principio bastará observar las ilustraciones adjuntas 
para darnos cuenta de que podemos comprender de forma genérica el funcionamiento del sistema y, 
si así lo deseamos, profundizar en el mismo todo lo que sea menester. 
 
Tema aparte será la TV, pero sirva esta introducción a modo de ejemplo de como podemos entender 
la electrónica de casi cualquier equipo y de que, si queremos, podemos llegar a conocer hasta el más 
mínimo detalle del mismo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2 PRINCIPOS DE ELECTRONICA 
 
 
INTRODUCCION A LA TEORIA DE CORRIENTE AC/DC 
 
El término inglés AC/DC no solo es el nombre de un famoso grupo de rock sino que coincide, 
además, con la abreviatura inglesa que corresponde a las españolas de Corriente Alterna y 
Corriente Continua. En inglés corriente alterna es AC (Alternating Current) y corriente continua 
es DC (Direct Current), pero vamos a adentrarnos ah ora en su significado técnico. 
 
Pese a la diversidad de aparatos eléctricos y electrónicos que pululan por el mundo, todos ellos 
poseen un punto de encuentro: precisan de energía eléctrica para ser alimentados. Como ya 
sabemos, la electricidad no es más que una forma de energía cuya presencia puede obtenerse por 
diversos procedimientos; si los enumeráramos, y el tema se diera por finalizado, sin duda estaríamos 
ante un sencillo capítulo de los que engloba esta obra, pero no, no: el destino vuelve a complicar las 
cosas y estamos ante la coexistencia de dos tipos de energía eléctrica de diferentes características. 
Como ya habremos deducido al leer la introducción de estas líneas, los dos tipos de energía en los 
que podemos subdividir la energía eléctrica responden a las denominaciones Corriente continua y 
Corriente alterna (para abreviar CC y CA). 
 
La forma y fuentes de obtención de los dos tipos de corriente difiere apreciablemente. A modo de 
introducción, podemos citar como fuentes con presencia de corriente de tipo alterna las siguientes: 
- La torreta de la luz que pasa por el barrio. 
- El enchufe que tenemos en la pared de casa. 
- La toma de salida de un transformador. 
- Los bornes de conexión de un alternador. 
 
Mientras que, como puntos de origen de una corriente continua, podemos citar: 
- Los bornes de una pila. 
- La salida de una dinamo (generador de CC). 
- La alimentación de batería de un coche. 
- Las conexiones de un acumulador o pila recargable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GENERACIÓN DE CORRIENTE. TENSIÓN Y FRECUENCIA 
 
La obtención de energía eléctrica conlleva diversos métodos. La transformación de otros tipos de 
energía en energía eléctrica es el método más usual. Entre los procedimientos utilizados podemos 
destacar los químicos, mecánicos, térmicos, nucleares, eólicos, solares, etc. Pero, para comenzar 
con uno de ellos, hablaremos del más extendido y, a la vez, más sencillo: la generación de corriente 
de tipo alterna a partir de una conversión mecánico-elétrica . 
 
 
 
Este es el caso de las centrales de generación situadas en grandes presas. La fuerza procedente de 
la liberación del agua se utiliza para mover enormes turbinas que, a su vez, accionan potentes 
generadores de energía eléctrica. En la ilustración podemos ver una muestra simplificada de lo que 
constituye un generador de corriente alterna. Para facilitar su entendimiento, debemos imaginar un 
motor eléctrico trabajando en modo reversible, esto es, a un motor eléctrico se le suministra energía 
eléctrica y este genera, mediante su giro, energía de tipo mecánico. Si partimos de la hipótesis de 
que dicho motor pudiera funcionar en modo inverso, esto es, reversible, suministraríamos al mismo 
una cierta cantidad de energía mecánica (girando su eje de algún modo) y nos entregaría en sus 
bornes una tensión determinada (energía eléctrica). Aproximadamente, esto es lo que ocurre en los 
generadores de las centrales eléctricas. Se toma una cantidad ingente de energía almacenada (agua 
en el caso de una presa) y se conduce de forma que accione ciertas turbinas que son solidarias al eje 
de los generadores eléctricos. Nos creemos ya que en la salida de dichos generadores se obtiene la 
energía eléctrica buscada pero ¿cómo operan estos generadores internamente? 
 
En la ilustración podemos ver una espira de hilo situada en el centro de un campo magnético 
(representado por los imanes etiquetados como "N" y "S") la cual se supone que es la representación 
simplificada de un buen número de espiras (al conjunto de todas las que tiene un motor o un 
generador se le denomina bobinado). Tenemos que explicar ahora lo que sucede en la espira de hilo 
al hacer girar esta dentro de un campo magnético. El campo magnético que atraviesa la espira móvil 
de hilo conductor origina que en los extremos de la misma se produzca una diferencia de potencial (o 
tensión eléctrica). 
 
 
 
 
 
Como quiera que los extremos de dicha espira se conectan a un par de anillos circulares que se 
sitúan sobre el eje del generador, tendremos entre ambos un voltaje determinado. La forma en que 
conseguimos acceder a dicha tensión es conectando un par de hilos conductores a los anillos de 
salida. Para ello tendremos que utilizar algún método de conexión a los mismos y que sea también 
conductor. Estamos hablando de las escobillas, que son conductoras y, mediante cierta presión 
mecánica, aseguran la perfecta unión entre los anillos de salida circulares y los cables que 
transportan la electricidad de salida. 
 
En el caso de los generadores reales, la espira es un bobinado (más o menos complejo) conectado a 
un par de escobillas (o a un sistema de ellas) y su salida suele ser de una tensión bastante elevada. 
 
Hay un punto que no puede pasarnos desapercibido en el proceso "ideal" descrito y este es el 
carácter VARIABLE del campo magnético inducido. Como parece lógico, la tensión presente en los 
extremos de la espira (o del bobinado) situada en el interior del citado campo, no es siempre de igual 
magnitud, ya que esta dependerá de la superficie de la espira que sea atravesada por el citado 
campo magnético. De aquí podemos deducir ya que la tensión en bornes del bobinado del generador 
no es de naturaleza estable, sino que sufre variaciones alternas (varía su polaridad si tenemos en 
cuenta el nivel de señal correspondiente al valor cero) directamente proporcionales en un lapso de 
tiempo a la velocidad con que se mueva (gire) la espira dentro del campo magnético. De ahí que este 
tipo de corriente se denomine corriente alterna. 
 
Si estuviéramos en presencia de una tensión de carácter continuo, el valor presente de tensión sería 
estable, mientras que, en el caso de la tensión obtenida del generador descrito, obtenemos una 
tensión variable en el tiempo. 
 
En un eje de coordenadas, la tensión de tipo continua no ofrece ninguna dificultad: se trata de una 
línea continua paralela al eje de abscisas (línea de coordenada horizontal). Pero, cuando se trata de 
la tensión alterna, la cosa cambia. En una de las ilustraciones adjuntas podemos ver formas de onda 
(tipos) de señales. Dichas señales podrían representar sin problema gráficas de tensiones dadas. La 
señal etiquetada como tipo b responde a una forma de onda sinusoidal. La representación de una 
tensión alterna responde exactamente a este tipo de gráfica. Como podemos ver, la tensión vale cero 
en un instante dado (ninguna línea de campo magnético atraviesa la espir a) hasta tomar un valor 
máximo (el punto en que la espira es atravesada por el mayo r número posible de líneas 
magnéticas ). Entre estos dos valores existe una variación del valor real de tensión que se 
corresponde con las diferentes posiciones intermedias de la espira. 
 
Unavez que la espira ha pasado de estar en posición vertical a posición horizontal (valor de tensión 
máxima) la espira continúa con su giro; pero esta vez, y debido a la simetría de la construcción del 
generador, se pasa a valores decrecientes de tensión, hasta llegar a valer cero de nuevo. 
 
Debido al sentido de circulación, tanto del campo eléctrico como del magnético, en la espira 
estudiada, al seguir ésta girando (habíamos llegado a los 180 grados de rotación) se origina una 
tensión creciente pero de sentido (o polaridad) inverso a la anterior. 
 
La suma de señales de los continuos giros de la espira originan la señal de tensión alterna descrita. 
 
Ha llegado el momento de explicar una nueva unidad electrónica ya que, además, a la idoneidad del 
momento se une la "necesidad" de hacerlo; se trata del Hercio . Para definir esta unidad, sólo 
tenemos que fijarnos en que las variaciones del valor de tensión cambian a un ritmo constante. Cada 
cierto período de tiempo se origina una repetición de la señal. De aquí podemos deducir que estamos 
en presencia de una señal cuya variación se da cada cierto PERÍODO de tiempo o, lo que es igual, 
que la señal de tensión varía con una FRECUENCIA dada. 
 
Al número de veces que la señal se repite durante un segundo se le asocia la magnitud "Frecuencia". 
La tensión de red, esto es, la que hay en nuestros hogares, varía a una frecuencia de 50 veces por 
segundo. A la unidad de medida de la frecuencia se la denomina Hercio o, para abreviar, Hz. 
 
Existe una relación lineal entre la frecuencia de una señal eléctrica y el período de la misma. Si 
observamos la ilustración, podemos ver que el período (representado por la letra T) se mide en el 
sentido de evolución de la variación de la citada señal, de donde se deduce que el período se mide 
en unidades de tiempo. La misma figura nos ilustra la relación existente entre frecuencia y período: 
una es la inversa de la otra o, dicho de otro modo, F = 1/T. 
 
 
 
 
Al tiempo transcurrido entre el comienzo y final de una señal variable se le denomina período y, como 
es lógico, al transcurrido en la mitad de dicha señal, semiperíodo. 
 
 
La tensión de red de la mayoría de los hogares europeos tiene una frecuencia de 50 Hz, esto es, se 
repite periódicamente en forma sinusoidal 50 veces por segundo y su período es, por lo tanto, de 1/50 
segundos . 
 
 
 
GENERACIÓN DE CORRIENTE CONTINUA 
 
Aunque la forma de generar corriente eléctrica, descrita arriba, sea una de las más extendidas, 
existen otras, también de amplia difusión. Por ejemplo, a la hora de generar corriente continua se 
suele recurrir a las pilas eléctricas o a un tipo especial de generador denominado "dinamo". 
 
 
 
 
 
La manera más amplia de difusión de energía eléctrica de la denominada continua es a través de las 
pilas y acumuladores recargables. Las pilas responden a un efecto de tipo químico. El funcionamiento 
resumido de una pila eléctrica es el siguiente: Tomamos dos barras de elementos químicos diferentes 
como, por ejemplo, el carbón y el zinc, y los sumergimos en una solución de agua y ácido sulfúrico. 
Dado que el ácido ataca al zinc más rápidamente que al carbón, se origina entre estos dos materiales 
una diferencia de potencial. Dicho montaje constituye la base de una pila eléctrica. Para denominar a 
las dos barras se utiliza la denominación de "electrodos", mientras que la solución acuosa donde 
estos se sumergen se denomina "electrolito". 
 
Existen generadores químicos, para abreviar "pilas", que tienen una vida limitada. En el que 
presentamos, en la conexión de los electrodos (bornes ) de la pila de un circuito eléctrico a alimentar 
se produce una corriente de electrones entre el polo negativo (Zinc ) y el positivo (Carbón ) a través 
del circuito alimentado; a continuación, los electrodos retornan a la barra de zinc a través de la 
solución ácida. Cuando el electrodo de zinc queda completamente corroído por la acción del ácido, la 
pila ha llegado al final de su vida. 
 
 
 
Dentro de las pilas de vida limitada destaca la pila seca o "Leclanché", la cual aporta una ventaja 
definitiva a las anteriormente comentadas ya que, en vez de utilizar una disolución líquida como 
electrolito, usa una pasta que realiza las mismas funciones. Todo ello, unido al hecho de que la pila 
esté completamente sellada, ha contribuido a su masiva utilización. 
 
En las pilas secas se utiliza un cilindro contenedor de zinc, el cual aloja en su interior una barrita de 
cobre que desempeña el papel de polo positivo de la misma. 
La tensión que suelen ofrecer este tipo de pilas es de 1,5 voltios. Existen pilas de tensiones mayores 
que no son sino un conjunto de pilas de 1,5 V empaquetadas en un mismo encapsulado. 
 
Últimamente, el aumento del consumo y una mayor miniaturización de los diferentes equipos y 
dispositivos electrónicos que se alimentan a CC han forzado la aparición de nuevos tipos de pila, de 
entre los que podemos destacar las pilas Mercury y las de tipo alcalino. Las pilas Mercury se 
conocen popularmente como pilas "botón" debido a que guardan cierta similitud con este objeto, en 
cuanto a forma y tamaño. Además de su pequeño tamaño, la característica más interesante de estas 
pilas es poder suministrar una tensión mucho más constante y una intensidad entre 4 y 7 veces 
superior al tipo Leclanché . Asimismo, señalaremos que funcionan a partir de una mezcla de óxido de 
mercurio y carbón contenidos en un encapsulado de hierro. 
 
Las pilas alcalinas operan con una mezcla de zinc y bióxido de manganeso y su eficiencia en circuitos 
de elevado consumo es sensiblemente superior a los otros tipos. 
 
 
 
Respecto a la utilización de generadores de CC podemos destacar la dinamo, nombre bajo el que se 
engloba un tipo de generador de tensión del tipo "conversión mecánica-eléctrica y que, en la práctica, 
se asemeja bastante al generador de CA antes descrito. 
 
Si observamos el esquema interno simplificado del generador de CC que aparece en una de las 
ilustraciones, podemos comprobar su gran similitud con el generador de CA, pero con una ligera 
salvedad: la salida hacia las escobillas no se hace por un par de conexiones en anillo sino sobre un 
tipo de semianillos que realizan la función de mantener constante la polaridad de la señal (tensión) de 
salida. 
 
El funcionamiento básico, es decir, el eléctrico es similar al generador de CA pero, cuando en aquél 
se producía una inversión de polaridad por el efecto giro de la espira, aquí queda obviado pues, este 
tipo de conexión de salida invierte físicamente las conexiones eléctricas de la espira. 
 
En la práctica, tal y como sucedía también con los generadores de CA, no se trabaja con una espira 
sino con un buen número de ellas. Al conjunto de espiras se le denomina bobinado, y si este se sitúa 
en la parte rotatoria del generador se dice que la dinamo es del tipo de rotor bobinado. El campo 
magnético inductor creado por el estator puede ser de imanes fijos o bien también del tipo bobinado. 
La salida del bobinado se hace llegar a un conjunto de conexiones, situadas en el eje del generador, 
denominadas "delgas". Al conjunto de conexiones giratorias sobre el que rozarán las escobillas, se le 
conoce como colector de delgas. 
 
La señal obtenida en la salida del generador de CC se asemeja a la de clase d, de la representación 
de señales tipo adjunta. Como vemos, se trata de una tensión continua, en el sentido de que no varía 
de polaridad, pero pulsatoria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APLICACIONES DE AC/CD 
 
La electrónica teórica está muy bien para sentar ci ertos conocimientos básicos pero, a la hora 
de la verdad, debemos enfrentarnos con dispositivos "prácticos" que pueden, o no, tener que 
ver con la teoría. ¿Qué es alta tensión? ¿Cómo oper a un transformador? ¿Qué obtenemos en 
una fuente de alimentación? Éstas y otras cuestione s serán analizadas a continuación. 
 
 
 
Cuando tratamos con un generador, o cuando compramos una pila, podemosprecisar el 
conocimiento de ciertos parámetros más, los cuales no han sido comentados hasta ahora. Si 
trabajamos con circuitos conectados a la red del hogar debemos tener en cuenta qué se entiende por 
baja tensión y alta tensión. Al conectar a la red una fuente de alimentación podemos obtener 
tensiones reducidas con respecto a la de la red pero ¿de qué tipo de tensión se trata? Aparte de los 
generadores mecánicos existen otras fuentes de energía alternativas (ecológicas o no). Pero, para 
empezar, con todas las dudas que nos puedan surgir con respecto a la utilización de diferentes tipos 
de tensiones disponibles en el mundo real, vamos a explicar cómo y por qué se trabaja con tensiones 
alternas, continuas, alta tensión o baja tensión. 
 
 
 
LÍNEAS ELÉCTRICAS, ALTA Y BAJA TENSIÓN 
 
Una de las particularidades de la corriente continua es su gran pérdida en potencia cuando es 
transportada a grandes distancias. Ésta es una de las razones de que las centrales eléctricas 
generen tensiones alternas, las cuales se pueden trasladar a grandes distancias en forma de 
elevadas tensiones y baja intensidad. A todos nos son familiares las torretas de conducción para 
líneas de alta tensión. 
 
Una vez que la energía eléctrica se hace llegar a núcleos de población o industriales -en forma de 
alta tensión- se procede a su adaptación (transformación) a niveles de tensión utilizables por los 
destinatarios. Las centrales de transformación eléctrica se ocupan de esta misión. La legislación se 
ocupa también de definir el ámbito de lo que se entiende por alta y baja tensión (A.T. y B.T.). En las 
disposiciones generales del "Reglamento electrotécnico de AT y BT " se especifica lo siguiente: "se 
considerarán como instalaciones de baja tensión (BT), tanto para corriente continua como para 
corriente alterna, aquellas en las cuales las tensiones nominales utilizadas sean inferiores a mil 
voltios, y como instalaciones de alta tensión, las de tensiones nominales de mil voltios y superiores"; 
así que ya tenemos un punto de partida -legal, por supuesto- para delimitar lo que es alta y baja 
tensión. 
 
 
 
En la práctica, y en BT, se suele operar con tensiones de CA de 220 V o, en entornos industriales, 
con 380 V, mientras que las altas tensiones manejadas por las líneas de distribución eléctrica pueden 
llegar hasta los 220.000 V. 
 
 
 
 
 
 
PILAS Y TRANSFORMADORES EN LA PRÁCTICA 
 
A la hora de adquirir una fuente de CC, es decir, una pila, nos suele bastar con pedir una pila de tal 
grosor y de 1,5 V ó 9 V. Pero existen otros parámetros dentro del mundo de las pilas que no debemos 
pasar por alto. 
 
 
- Tensión : la tensión (en circuito abierto) de una pila viene determinada por su composición química. 
Por ejemplo, la tensión de un elemento de zinc-carbón puede oscilar entre 1,5 y 1,6 V. 
 
- Resistencia interna : cuando se conecta en los polos de la pila un circuito dado la tensión en bornes 
de la misma es siempre inferior a su tensión nominal. Dicho efecto de debe a la "resistencia interna" 
de la pila. Esta resistencia es intrínseca a los materiales químicos -que no son conductores perfectos- 
empleados en la fabricación de la misma. Ésta aumenta con el uso, el paso del tiempo y el 
incremento de la temperatura. Cuando la resistencia interna aumenta demasiado la pila queda 
inutilizada. 
 
 -Capacidad : se define como la posibilidad que tiene una pila para mantener su tensión nominal en 
bornes, incluso en condiciones de carga máxima, y está íntimamente ligada a la resistencia de dicha 
carga. En la capacidad de una pila pueden influir tanto el tipo de carga como las dimensiones de la 
pila, el periodo de conservación de la misma y las temperaturas de funcionamiento y 
almacenamiento. 
 
 
 
 
 
 
Cambiando de tema, y dentro de las propiedades de que goza la corriente alterna, está la posibilidad 
de utilizar cierto dispositivo para elevar o reducir el valor nominal de una tensión dada. Se trata, como 
ya habrán supuesto los lectores, del transformador. 
 
 
 
Al igual que ocurre con ciertos dispositivos mecánicos, a veces es preciso convertir la energía 
disponible según sea la aplicación a la que queramos destinar ésta. Por ejemplo, la caja de cambios 
de un coche adapta la energía extraída del motor de forma y manera que sea la más adecuada para 
el momento de la conducción. De igual manera, el transformador realiza una adaptación de la energía 
eléctrica disponible para "adaptarla" a la fuente de consumo final. 
 
Cabe indicar aquí que, al igual que ocurre en el símil mecánico, la operación realizada es una simple 
conversión o adaptación pero en modo alguno se podrá modificar la potencia eléctrica disponible en 
las patillas de entrada del transformador. 
 
El transformador basa su operativa en el principio de la inducción electromagnética. Consta de uno o 
más bobinados, los cuales están magnéticamente autoinfluídos entre sí, esto es, se encuentran 
acoplados magnéticamente: la corriente que recorre un devanado induce una tensión en el otro (o los 
otros). Esto constituye una inductancia mutua entre ambos bobinados. 
 
En la ilustración se puede observar la pareja de bobinados que constituye el transformador. El 
bobinado donde conectaremos la tensión a transformar se ha dado en denominar "bobinado 
primario", mientras que el bobinado del cual se obtendrá la tensión transformada se denomina 
"secundario". La base operativa del mismo depende tanto del número de espiras que contengan los 
devanados (bobinados) como de la tensión aplicada en la entrada del primario. 
 
 
 
 
OTRAS FORMAS DE TENSIÓN ALTERNATIVAS 
 
Existen otras formas de obtener tensión y, aunque sea de manera resumida, queremos nombrarlas a 
continuación: 
 
Fuentes de alimentación : son dispositivos electrónicos -que veremos más adelante- y suelen tomar 
la tensión alterna de la red para convertirla en una baja tensión de tipo continua que, a veces, suele 
ser de tipo ajustable. 
Acumuladores : responden a los mismos principios que las pilas pero ofrecen la ventaja añadida de 
que pueden ser recargados una vez que se hayan agotado. Su tensión nominal suele ser de 1,2 V. 
Los más difundidos son los de Níquel-Cadmio (Ni-Cd). 
Batería de coche : no es más que un acumulador bastante especializado. Consta de un conjunto de 
elementos (normalmente 6) agrupados para que ofrezcan una tensión continua de unos 12 V. Una de 
sus principales características es su gran capacidad. 
Efecto piezoeléctrico : éste hace uso de un principio según el cual algunas sustancias (cristales) 
hacen aparecer una diferencia de potencial en sus caras al aplicarles cierta presión. Este se conoce 
como efecto piezoeléctrico. Los micrófonos de tipo piezoeléctrico, por ejemplo, hacen uso de este 
efecto. 
Efecto fotoeléctrico : las células solares o el conjunto de estas (paneles solares) hacen uso de este 
efecto. Cuando la luz incide sobre las dos capas del material fotosensible que las constituye se 
genera entre ellas una d.d.p. susceptible de ser utilizada para alimentar una carga. La alimentación 
de, por ejemplo, un repetidor de TV o telefónico en un sitio recóndito es un buen campo de aplicación 
para las fotocélulas. 
Energía eólica : es de amplia aplicación en lugares de fuertes vientos. No es otra cosa que 
generadores dotados de palas de gran superficie solidarias al eje de los mismos. La fuerza del viento 
hace el resto. 
 
 
 
 
 
 
COMPONENTES ELECTRONICOS EN CD 
 
Puede que una vez conocido el reparto que "actuará" en nuestra obra no tengamos muchas 
esperanzas de que su "puesta en escena" sea un éxit o total. Pero... démosles una oportunidad 
a los protagonistas. Su primera "representación" se rá en el escenario de la corriente continua. 
 
 
 
El enunciado de la Ley de Ohm , por mucho que intentemos evitarlo, nos perseguirá durante toda 
nuestra vida de aficionado al mundillo electrónico. Para no pasar de hoy mismo sin conocer a fondo 
este asunto, vamos a hacer un alto (por lo demás, imprescindible) en elcamino de nuestra obra a fin 
de describir este tema detalladamente. 
 
En el siglo XIX, el físico alemán Georg S. Ohm se ocupó de investigar la relación de proporcionalidad 
existente entre la corriente eléctrica (I) y la tensión (V). Dicha relación se demostró como lineal en 
aplicaciones donde se utilizara la corriente continua. En el año 1826 publicó los resultados de sus 
experimentaciones. 
 
La Ley de Ohm se aplica de forma sencilla a los circuitos básicos de CC y a todos los dispositivos 
que empleen esta corriente. 
 
La unidad de resistencia eléctrica se denomina ohmio , en honor del mencionado investigador. La 
representación de la misma se realiza con la letra griega "omega" (�). La definición formal de la Ley 
de Ohm viene a expresarse así: "La intensidad de la corriente presente en un circuito eléctrico es 
igual a la tensión en extremos del mismo dividida por su resistencia". Las unidades manejadas para 
que la citada fórmula se cumpla son: la tensión (V) expresada en voltios, la corriente eléctrica (I) en 
amperios y la resistencia eléctrica (R) en ohmios. 
 
 
 
La forma en que la Ley de Ohm se comporta linealmente se puede explicar de una manera sencilla y 
rápida. Imaginemos una tensión constante ejemplo, de 220 V alimentando a una resistencia 
susceptible de ser variada arbitrariamente, posteriormente veremos que dicha resistencia existe y se 
la denomina potenciómetro. Si la resistencia toma un valor de 22 ohmios la intensidad será de 
220/22=10 A. Pero si ahora variamos el valor de la resistencia conectada en el circuito anterior, la 
tensión sigue siendo igual a 220 V y, supongamos, la resistencia toma un valor doble al que tenía 
anteriormente, esto es, 44 ohmios, la intensidad será esta vez igual a 220/44=5 A. 
 
 
 
 
Como vemos, la fórmula de Ohm se comporta linealmente, es decir, si duplicamos la resistencia 
(manteniendo V constante) el valor de la intensidad que circula por el circuito se divide por dos. 
 
 
 
 
 
LA POTENCIA ELÉCTRICA 
 
Antes de continuar con los circuitos en CC hemos de adentrarnos en el conocimiento de una nueva 
magnitud: la potencia eléctrica . La potencia eléctrica viene a ser la medición de la capacidad para 
desarrollar un trabajo por parte, por ejemplo, de la tensión. El trabajo producido por dicha tensión al 
ser aplicada en una resistencia dada puede traducirse en calor (como es el caso de un calefactor), en 
energía luminosa, como sucede en las lámparas y otros elementos similares. 
 
La potencia eléctrica (P) se mide en vatios y se puede expresar en términos eléctricos que nos son 
mucho más conocidos. Por ejemplo, la fórmula que nos expresa la potencia consumida (en vatios) al 
fluir una intensidad (en ohmios) a través de un circuito alimentado por una tensión dada (en voltios) 
es la siguiente: P=V * I (donde P es el símbolo de la potencia). 
 
La ley de Ohm liga de alguna manera los conceptos de tensión, intensidad y resistencia. La potencia 
es una magnitud eléctrica más y puede, por tanto, ser expresada en función de cualquiera de las 
otras magnitudes mencionadas. 
 
 
 
 
La tabla correspondiente nos permite ver la interrelación entre todas las magnitudes eléctricas 
descritas hasta el momento. Cabe mencionar, asimismo, que la aplicación de dichas fórmulas es 
totalmente acertada siempre y cuando estemos trabajando con corriente continua. A la hora de 
manejar las mismas magnitudes, pero sobre corriente alterna, la cosa cambia notablemente. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LOS COMPONENTES ANTE LA C.C. 
 
Hasta este momento hemos aplicado la Ley de Ohm sobre una resistencia y hemos visto como se 
comportan la intensidad y la tensión en bornes de esta. Ahora vamos a dejar de lado, por un 
momento, las resistencias y comenzaremos a estudiar el comportamiento de condensadores y 
bobinas ante el paso a través de ellos de una corriente de tipo continua. 
 
 
 
LAS BOBINAS FRENTE A LA C.C. 
 
Cuando se hace circular una corriente continua a través de una bobina, esta se comporta, a efectos 
resistivos, como un hilo conductor y ofrece al paso de la misma una resistencia que dependerá del 
material conductor (cobre, plata, aluminio, etcétera). 
Pero, además, una bobina sometida a la variación que supone pasar de estar con sus extremos al 
aire a ser conectada a una diferencia de potencial, genera a su alrededor un campo magnético , de 
algún modo igual al generado por un imán permanente. 
 
 
 
La circulación de una corriente a través de un hilo conductor genera también alrededor del mismo un 
campo magnético, el cual es muy pequeño. Cuando arrollamos dicho cable en espiras, es decir, 
conformando una bobina, obtenemos una "suma" de campos que origina que la inductancia 
magnética generada sea de mucha más magnitud. 
 
 
 
 
 
La inductancia se suele representar por la letra "L" y, como ya hemos mencionado, es prácticamente 
nula en un conductor recto, el cual sólo posee cualidades resistivas. Pero, si nos fijamos en un 
conductor arrollado, vemos que la aplicación de una tensión en sus extremos origina una inductancia 
(L) mayor. Dicha inductancia presenta la "originalidad" de ofrecer, ante la presencia de una fuerza 
electromotriz generadora, una fuerza contralectromotriz que tiende a oponerse a la primera. 
 
 
 
El tiempo que tarda la corriente en llegar a su valor máximo depende tanto del valor resistivo u 
óhmico de la bobina, para entendernos, como de la inductancia de la misma (representada por la letra 
"L"). Si la inductancia es grande y la resistencia es muy pequeña la corriente que atraviesa la bobina 
aumentará lentamente y viceversa. 
 
Para fijar este tiempo (al que denominaremos "t") debemos aplicar la fórmula siguiente: "t"=L/R ; 
donde "t" será el tiempo (en segundos) en que la intensidad alcanza el valor máximo (realmente el 
63% del mismo); R será la resistencia óhmica de la bobina (en ohmios) y L la inductancia de la 
misma, la cual se mide en Henrios (H). A esta fórmula se la denomina en electrónica "constante de 
tiempo RL". 
 
Para entendernos, basta con ver el siguiente ejemplo: 
 
Supongamos que una bobina de inductancia igual a 35 Henrios tiene una resistencia óhmica de 700 
ohmios. La constante de tiempo "t" será, por tanto,: "t" = L/R = 35/700 = 0,05 segundos . 
 
Si dicho circuito se conecta a una pila (por tanto CC) cuya fuerza electromotriz, para entendernos, es 
de 9V la intensidad que circulará a través de la misma será de 0: 
 
I = V/R = 9/700 = 0,012 A = 12 mA. (miliamperios). 
 
De todo ello se deduce que al conectar una bobina, cuya resistencia es de 700 � y cuya inductancia 
alcanza 35 H, a una fuente de CC de 9V, y después de un tiempo de 50 milisegundos (los 0,05 
segundos calculados), obtendremos una intensidad a través de dicha bobina de 7,5 mA (63% de los 
12 mA calculados). 
 
 
 
 
La inductancia de una bobina depende de los detalles constructivos de la misma. Influyen en el valor 
de la inductancia el número de espiras de dicha bobina, su longitud y, algo muy importante, el núcleo 
de la misma. La distancia entre espiras consecutivas es también determinante en el valor inductivo 
final. Baste sólo recordar lo ya explicado anteriormente, donde se establecía que los campos 
magnéticos originados en cada una de ellas pueden sumarse a las contiguas, si estas se encuentran 
lo suficientemente próximas. Por el contrario, si separamos las espiras contribuiremos a disminuir el 
campo magnético susceptible de ser sumado y, por tanto, la inductancia resultante se verá mermada. 
 
La unidad de medida de la inductancia debe su nombre a Joseph Henry , descubridor de dicho 
fenómeno. 
 
 
 
La definición "formal" de la inductancia puede resumirse de la siguiente forma: Un circuito posee una 
inductancia igual a un Henrio cuando una variación de corriente de un amperio ocasiona en el mismo 
una inducción de fuerza electromotriz (o fuerza contraelectromotriz ) opuesta igual a un voltio. 
 
En el "mundillo" electrónico se considera ala unidad Henrio ciertamente excesiva, por lo que nos 
será más fácil toparnos con subunidades tales como el miliHenrio (0,001 H) o el microHenrio (0,001 
mH). 
 
Para resumir, podemos afirmar que las bobinas poseen inductancia de forma semejante a como los 
resistores ("resistencias", para los puristas) poseen resistencia eléctrica. 
 
LOS CONDENSADORES FRENTE A LA C.C. 
 
Con relación a los condensadores también podemos describir toda una bibliografía acerca de su 
comportamiento al ser alcanzados por una tensión de tipo continua. Según podemos ver en la 
ilustración correspondiente, el condensador básico es, por definición, tan solo un par de piezas de 
material conductor separadas por otro material de tipo aislante, el cual puede ser únicamente aire. Se 
ha convenido en denominar "armaduras" a las dos placas que constituyen el condensador , mientras 
que a la sustancia aislante que las separa se le asigna la denominación de "dieléctrico". 
 
 
 
El evento que ocurre cuando un condensador se conecta a una fuente de corriente continua es la 
carga del mismo. El condensador permanece en estado neutro, ambas armaduras tienen una carga 
neutra la una respecto a la otra si partimos de la posición B (suponemos el condensador totalmente 
descargado). Pasamos luego el interruptor a la posición A y los electrones presentes en la placa o 
armadura conectada al polo positivo de la alimentación son atraídos por este, con lo que dicha placa 
queda con un "déficit" de electrones o, dicho de otro modo, adquiere una carga positiva. 
 
En el polo opuesto del condensador ocurre una situación similar pero de sentido inverso, es decir, el 
polo negativo de la batería "envía" electrones hacia la placa del condensador a la que está 
conectada. Esto, por supuesto, se traduce en que dicha placa adquiere una carga de signo negativo 
o, lo que es igual, un exceso de electrones. 
 
Las placas del condensador están siempre separadas por un material aislante (dieléctrico) por lo que, 
al conectar un condensador a la alimentación (continua), lo que siempre ocurre es que éste se carga 
de forma inmediata. 
 
A pesar de que la circulación "real" a través del dieléctrico no se da, se origina en el momento de la 
carga una circulación de corriente eléctrica a través del conductor que une el condensador a la 
alimentación. Dicha intensidad, medible, por otra parte, con un amperímetro de adecuada 
sensibilidad, se debe a la secuencia de carga dada en el instante de conectar el condensador a la 
batería y que evoluciona como ya se ha explicado anteriormente. Dicha circulación se debe a que, en 
el instante de conectar la alimentación a las placas del condensador se establece una diferencia de 
potencial entre las placas del mismo y los polos de la citada alimentación. Una vez que el potencial se 
iguala, lo cual tiene lugar en breves instantes, la circulación (por así decirlo) en el circuito se detiene. 
Podemos, en este instante, decir que el condensador se ha cargado. La razón de que el 
condensador permanezca "cargado" se debe a que sus dos placas han adquirido un potencial 
idéntico entre sí pero de signo contrario. Dicha situación se traduce en una atracción entre cargas que 
no pueden llegar a juntarse por la separación a la que el dieléctrico aislante las somete. Esta 
atracción es la explicación de la citada "carga" del condensador . 
 
Si en este instante desconectáramos el condensador del circuito, comprobaríamos que el mismo 
permanece cargado (no hay un "camino" eléctrico para que pueda descargarse). 
 
Pero lo que vamos a hacer ahora es pasar el interruptor, de nuevo, a la posición B. Ahora ya no 
partimos de un condensador en estado neutro sino de un condensador ya cargado. Al dar a las 
placas del condensador una posibilidad de equilibrar sus cargas estamos procediendo al evento 
contrario al anterior, es decir, a la descarga del condensador . 
 
La diferencia de potencial entre placas hace que, por un instante, el circuito se asemeje a una pila 
alimentando a una resistencia (R) conectada en serie con ella, pero con una salvedad, aquí no hay 
reacción química entre polos (placas del condensador ) ya que estos no son más que un par de 
materiales conductores separados por una sustancia más o menos aislante. De aquí podemos 
deducir ya, que, al haber un desequilibrio de cargas entre placas (una es positiva y la otra negativa) y 
conectarlas a través de R, se produce una circulación de electrones para "solucionar" dicho 
desequilibrio y conseguir igualar el potencial eléctrico entre placas. Este suceso se conoce como 
"descarga" del condensador . 
 
La "carga " del condensador responde a una circulación de corriente alta en principio y nula al final, 
cuando el mismo ya está cargado. La "descarga" del condensador también genera una circulación 
de electrones alta en el primer instante pero nula al final del proceso. La diferencia entre una corriente 
y otra es que son de sentido contrario. 
 
 
En la ilustración que representa el circuito de carga/descarga del condensador, podemos observar 
también unas curvas que representan la evolución de la tensión (potencial) en bornes del 
condensador, al poner el mismo en posición B partiendo de un condensador neutro (descargado)y al 
ponerlo en la posición A. Ambas curvas están convenientemente identificadas como "carga" y 
"descarga". 
 
En la primera curva, la tensión en bornes del condensador es nula en el instante de conectarlo a la 
pila y aumenta hasta que este se carga. En la segunda curva, vemos que partimos de un 
condensador cargado y, en el momento de unir sus placas a través de R, se origina una descarga 
progresiva. 
 
Tanto en el caso de la carga como de la descarga del condensador, la circulación de corriente 
tendrá una duración mayor o menor dependiendo de la resistencia a través de la que se conecte el 
condensador . A esta duración se le asigna en electrónica el nombre de "constante de tiempo RC". 
Se define por constante de tiempo RC, al transcurrido desde que se inicia la carga de un 
condensador conectado en serie con una resistencia hasta que las placas del mismo adquieren un 
potencial del 63% del valor final (el de la alimentación). 
 
En el caso de la descarga, se trata del tiempo que transcurre hasta que el condensador disminuye su 
potencial entre placas y alcanza el 37% del valor inicial del mismo. 
 
LAS RESISTENCIAS FRENTE A LA C.C. 
 
El hecho de que denominemos a un componente como resistencia "pura" no hace sino destacar que 
el resto de componentes comentados antes, esto es, bobinas y condensadores, no se puedan 
estudiar como entes meramente capacitivos o inductivos. Como ya iremos viendo posteriormente, 
aunque, en teoría, hablemos de inductancia y capacidad, al tratar con circuitos de corriente alterna 
habrá que tener en cuenta el hecho de que un condensador posee, además de capacidad, un 
pequeña componente resistiva. Lo mismo ocurre con las bobinas: el hilo que constituye la bobina, 
aparte de ofrecer el fenómeno inductivo, tiene un valor resistivo claramente calculable en ohmios. 
 
 
COMPONENTES ELCTRONICOS EN CD (APLICACIONES) 
 
Pasaremos ahora revista a unas pocas aplicaciones d e CC para ocuparnos luego de las 
posibilidades de conectar entre sí más de un compon ente electrónico y la forma en que la 
corriente continua evoluciona sobre dichas combinac iones. 
 
Los lugares en que podemos encontrar aplicación a circuitos alimentados por corriente continua son 
múltiples. Podemos citar, a modo de ejemplo, los siguientes: 
 
La luneta térmica del coche : convierte la energía consumida de la batería en energía calorífica, la 
cual produce el efecto de desempañado deseado. 
 
 
 
Un electroimán : en este supuesto, la energía eléctrica suministrada por la alimentación se convierte 
en energía magnética. 
 
 
 
Una linterna : la bombilla es el dispositivo encargado de transformar la energía eléctrica de la pila en 
energía luminosa. 
 
Un pequeño ventilador para coche : en este caso, la corriente deaire se debe a que existe un 
dispositivo que mueve las aspas del ventilador. Este dispositivo es el motor de CC, el cual se encarga 
de convertir la energía eléctrica de la batería del coche en energía mecánica capaz de mover las 
citadas aspas. 
 
 
SUMA DE RESISTENCIAS 
 
Es posible conectar entre sí dos o más resistencias. Si tomamos los extremos de dichas asociaciones 
de resistencias, y medimos su resistencia en un ohmímetro, estaremos leyendo el valor de lo que se 
conoce como Resistencia Equivalente o Resistencia Total del circuito . 
 
Además de poder medir el valor de la resistencia total (Rt), efectuaremos también el cálculo numérico 
adecuado para determinarlo. En las siguientes líneas veremos las diferentes formas de conectar las 
resistencias entre sí y el modo de calcular la resistencia equivalente del circuito. 
 
 
 
Como podemos en la ilustración correspondiente, en la que hay resistencias asociadas, éstas están 
conectadas entre sí de forma que una patilla de R1 se conecta a la batería y la otra a una patilla de 
R2. La otra patilla de R2 se conecta a R3 y así sucesivamente. Este tipo de asociación de 
componentes recibe el nombre de conexión en "serie". 
 
En la ilustración correspondiente podemos ver que todas las patillas de la izquierda de las tres 
resistencias están unidas en un punto común, y lo mismo ocurre con las de las del otro lado. Este tipo 
de montaje responde al nombre de conexión en "paralelo". 
 
 
 
En nuestra propia casa podemos ver ejemplos de conexiones serie y paralelo . Por ejemplo, el 
conjunto de tres o más enchufes conectados a una única toma en la pared constituye un caso de 
conexión en paralelo. Otro ejemplo, las recurridas lucecitas del árbol navideño están unidas entre sí 
en conexión serie. 
 
Vamos ahora a ver como se comporta la Ley de Ohm en el caso de la conexión de resistencias en 
serie. En el caso de la primera de las figuras (conexión en serie), la intensidad que circula por el 
circuito es idéntica a lo largo del mismo. Si la alimentación es igual a V la intensidad será igual 
(aplicando Ohm ) a: I = V/Rt. Pero ahora debemos calcular Rt la cual, en el caso de resistencias 
conectadas en serie, será: 
 
Rt = R1 + R2 + R3 
 
 
 
Podemos añadir aquí que la tensión que hay en extremos de cada una de las resistencias no será 
igual a V, sino que tendrá un valor proporcional a su propia resistencia. La suma total de las caídas 
de tensión (c.d.t.) en extremos de las tres resistencias será igual a la alimentación V. De aquí 
podemos deducir que, para calcular la tensión en extremos, por ejemplo, de R1, debemos aplicar: 
 
V = R I ==> V1 = R1 * I 
 
V = V1 + V2 + V3 
 
En el caso de la asociación en paralelo, la tensión en extremos de cada resistencia sí es igual a la 
tensión de alimentación: 
 
V = V1 = V2 = V3 
 
Pero no ocurre lo mismo con la intensidad. La intensidad total (I) se divide en varias "ramas" por lo 
que a cada resistencia le atravesará una intensidad proporcional a su valor: 
I = i1 + i2 + i3 
 
El cálculo de la intensidad total que atraviesa el circuito se realiza también con la Ley de Ohm . Es 
decir, I = V/Rt y, como en el caso anterior, nos vemos obligados a calcular Rt. Para ello aplicamos la 
fórmula: 
1/Rt = 1/R1 + 1/R2 + 1/R3 
 
o, lo que es igual: 
Rt = 1/(1/R1 + 1/R2 + 1/R3) 
 
 
El la ilustración correspondiente podemos ver un montaje "mixto". En este caso nos encontramos con 
una conexión paralelo (R2 y R3) en serie con otra resistencia (R1). Para calcular la resistencia 
equivalente en éste y otros circuitos del mismo tipo mixtos se realizará una "reducción" de cada 
circuito de forma que a los resultantes podamos aplicarles las fórmulas explicadas anteriormente. 
 
En este caso procederemos de la siguiente manera: reduciremos la asociación paralelo para obtener 
la resistencia equivalente a ésta (la denominaremos Ra-b. Una vez obtenido el valor de Ra-b 
aplicaremos la fórmula de resistencias en serie entre la citada Ra-b y R1. El cálculo quedará de la 
siguiente forma: 
 
Ra = 1/(1/R2 + 1/R3) 
Rt = Ra+ R1 
I = V/Rt 
 
De aquí podemos deducir que cuando nos encontremos con circuitos mixtos de cierta complejidad 
procederemos a "reducir" las ramas paralelo a una resistencia equivalente, para luego sumar entre sí 
las resistencias serie resultantes. 
 
Antes de dar por zanjado el tema del cálculo de las resistencias equivalentes a una asociación de las 
mismas vamos a comentar un par de "trucos" que se deducen de la simplificación de las fórmulas ya 
comentadas en sendos casos particulares de montajes paralelo: 
 
Caso de asociación de dos resistencias: 
 
Rt = (R1 R2) / (R1+R2) 
 
podemos utilizar esto para simplificar "ramas" de dos en dos si nos parece más rápido que utilizar la 
fórmula general. 
 
Caso de múltiples resistencias de idéntico valor: 
 
Suponemos que tenemos N resistencias de igual valor (R) conectadas en paralelo. La resultante será: 
 
Rt = R / N 
 
 
 
SUMA DE CONDENSADORES 
 
La asociación de condensadores también puede ser en serie o en paralelo, se resuelve calculando la 
capacidad equivalente (o total). Las fórmulas a aplicar son las siguientes: 
 
Caso de N condensadores en serie: 
 
Ct = 1 / (1/C1 + 1/C2 +... + 1/CN) 
 
Caso de N condensadores en paralelo: 
 
Ct = C1 + C2 + C3 +... + CN 
 
Como podemos ver, las fórmulas a aplicar para calcular la capacidad total son las inversas 
(aritméticamente hablando) a las empleadas en el caso de las resistencias. 
 
 
 
SUMA DE INDUCTANCIAS 
 
En el caso de inductancias, sí rigen fórmulas similares a las de las resistencias para calcular la 
inductancia total. 
 
Caso de N inductancias en serie: 
Lt = L1 + L2 + L3 +... + LN 
 
Caso de N inductancias en paralelo: 
 
Lt = 1 / (1/L1 + 1/L2 +... + 1/LN) 
 
 
 
 
COMPONENTES ELECTRONICOS EN AC 
 
La corriente alterna se muestra algo más compleja a la hora de lidiar con nuestros 
protagonistas. Vamos a estudiar en profundidad el c omportamiento de los componentes 
denominados "pasivos" cuando actúan en circuitos al imentados con corriente alterna. 
 
 
 
La corriente alterna , tal y como se ha visto anteriormente, es aquella que varía su polaridad de 
forma regular. No debemos confundir la corriente alterna con la corriente pulsatoria . Esta última 
puede responder a una forma ciertamente no muy constante pero queda claro que no varía su 
polaridad de forma alterna. 
 
El componente más pasivo de los que hemos visto hasta ahora es, sin lugar a dudas, la resistencia, 
que, sin embargo, no va a ser el componente estrella de este apartado ya que las variaciones de 
polaridad no influyen demasiado en el comportamiento electrónico de la misma. 
 
Antes de continuar, no podemos hablar de efectos de resistencia , inductancia y capacidad puros , 
sino más bien de efectos simultáneos . A la hora de enfrentarnos a la corriente alterna tenemos que 
empezar a considerar seriamente que una bobina no es solo una inductancia sino que también 
posee cierta cantidad de resistencia óhmica . Por esta razón, y a partir de ahora, cuando veamos 
una "L" en un circuito debemos pensar que estamos ante un componente que en realidad debe 
representarse como "L+ R". 
 
 
 
El mismo criterio rige para los condensadores . Cada vez que tengamos un condensador delante 
debemos acostumbrarnos a ver un "C+ R". 
 
Para circuitos de corriente alterna , a la resistencia que ofrece un condensador al paso de la 
corriente eléctrica se la denomina "reactancia capacitiva", mientras que a la resistencia que ofrece 
una bobina a la CA se la denomina "reactancia inductiva". Su representación es, respectivamente, Xc 
y XI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GRÁFICA DE CORRIENTE ALTERNA 
 
A pesar de que ya hemos comentado anteriormente la semejanza que hay entre la forma que 
adquiere la tensión alterna y una curva de forma sinusoidal , es hora de explicar el porqué de esta 
forma de representarla. 
 
La tensión - la llamamos tensión - alterna invierte su posición gráfica, es

Continuar navegando

Materiales relacionados