Logo Studenta

Diseño de Muros de Hormigón

¡Este material tiene más páginas!

Vista previa del material en texto

Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 1 
 
 
 
 
 
 
 
 
 
 
GUÍA PRÁCTICA 
PARA EL DISEÑO DE 
MUROS DE HORMIGÓN ARMADO 
 
 
 
 
 
 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 2 
 
ÍNDICE 
 
1 Introducción ............................................................................................................................. 8 
2 Diseño sísmico de muros ...................................................................................................... 10 
2.1 Factores de carga y combinaciones de cargas................................................................. 10 
2.2 Factores de reducción ..................................................................................................... 10 
2.2.1 Diseño a flexión y carga axial ................................................................................. 10 
2.2.2 Diseño al corte ......................................................................................................... 11 
2.3 Diseño a flexión y carga axial ......................................................................................... 11 
2.3.1 Limitación de carga Axial ....................................................................................... 12 
2.3.2 Capacidad de curvatura ........................................................................................... 12 
2.4 Elemento de borde .......................................................................................................... 13 
2.4.1 Elemento especial de borde ..................................................................................... 13 
 El elemento especial de borde se debe extender verticalmente de acuerdo a las siguientes 
condiciones: ........................................................................................................................... 13 
 El elemento especial de borde se debe extender horizontalmente de acuerdo a las 
siguientes condiciones. .......................................................................................................... 14 
 El espaciamiento de los ganchos suplementarios en el elemento especial de borde se 
definirá de acuerdo a las siguientes condiciones: .................................................................. 14 
 La separación del refuerzo transversal del elemento de borde debe cumplir las siguientes 
condiciones: ........................................................................................................................... 15 
 La sección del refuerzo transversal del elemento especial de borde tendrá que ser 
definido de acuerdo a las siguientes condiciones .................................................................. 15 
2.4.2 Sin elemento especial de borde ............................................................................... 16 
2.5 Diseño al corte ................................................................................................................ 17 
3 Verificación del diseño original ............................................................................................ 18 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 3 
 
3.1 Descripción general ........................................................................................................ 18 
3.1.1 Planimetría del Edificio ........................................................................................... 18 
3.1.2 Propiedad de los materiales ..................................................................................... 19 
3.1.3 Solicitaciones ........................................................................................................... 20 
3.1.4 Combinaciones de carga .......................................................................................... 21 
3.1.5 Resultados del análisis sísmico ............................................................................... 22 
3.2 Muros para el análisis. .................................................................................................... 23 
3.2.1 Identificación de los muros para el análisis. ............................................................ 23 
3.2.2 Daños Observados en los muros que se utilizaran en el análisis. ............................ 23 
3.2.3 Elevaciones y detalle de armadura de los muros que se utilizaran en el análisis. ... 24 
3.2.4 Diagrama de momento – curvatura ......................................................................... 26 
3.3 Desplazamiento elástico. ................................................................................................ 29 
3.3.1 Desplazamiento elástico por amplificación al momento nominal. .......................... 29 
3.3.2 Desplazamiento elástico - Expresión simplificada. ................................................ 33 
3.3.3 Desplazamiento elástico por amplificación a la curvatura de fluencia. .................. 34 
3.4 Acortamiento del hormigón. ........................................................................................... 36 
4 Ejemplo práctico de aplicación - Rediseño de muro. ............................................................ 39 
4.1 Rediseño de muro con daño estructural .......................................................................... 39 
4.1.1 Rediseño del muro T S/5, Considerando como largo de rotula plástica 0.5Lw ....... 39 
4.2 Rediseño de muros de hormigón armado sin daño estructural. ...................................... 47 
4.2.1 Rediseño del “muro L P/5 2p”, Considerando como largo de rotula plástica 0.5Lw 48 
4.2.2 Rediseño del muro J P/5, Considerando como largo de rotula plástica 0.5Lw ........ 56 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 4 
 
ÍNDICE DE TABLAS. 
 
Tabla 4-1.Propiedades de los materiales. ...................................................................................... 19 
Tabla 4-2.Parámetros sísmicos. ..................................................................................................... 21 
Tabla 4-3.Resumen de propiedades dinámicas.............................................................................. 22 
Tabla 4-4.Resultados de análisis sísmico. ..................................................................................... 22 
Tabla 4-5.Resumen de datos de fluencia y nominales de los muros. ............................................ 29 
Tabla 4-6.Factor de agrietamiento de los muros. .......................................................................... 31 
Tabla 4-7.Resumen de desplazamiento elástico por amplificación al momento nominal............. 32 
Tabla 4-8.Resumen de desplazamiento elástico – Expresión simplificada. .................................. 34 
Tabla 4-9.Resumen de desplazamiento elástico A.C.F. ................................................................ 36 
Tabla 4-10.Resumen de acortamiento del hormigo. ...................................................................... 38 
Tabla 4-13Solicitaciones del muro T S/5 en la parte superior, para el diseño con el Ds Nº60 (largo 
de rotula plástica de 0.5Lw) .......................................................................................................... 39 
Tabla 4-14.Solicitaciones del muro T S/5 en la parte inferior, para el diseño con el Ds Nº 60 
(largo de rotula plástica de 0.5Lw) ................................................................................................ 40 
Tabla 4-15.Solicitacionesdel muro L P/5 2p en la parte superior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). ............................................................................................... 48 
Tabla 4-16.Solicitaciones del muro L P/5 2p en la parte inferior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). ............................................................................................... 48 
Tabla 4-17.Solicitaciones del muro J P/5 en la parte superior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). ............................................................................................... 56 
Tabla 4-18.Solicitaciones del muro J P/5 en la parte inferior, para el diseño con el Ds Nº60 (largo 
de rotula plástica de 0.5Lw). ......................................................................................................... 56 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 5 
 
ÍNDICE DE FIGURA 
 
Figura 1.Esquema explicativo, factores de reducción. .................................................................. 11 
Figura 2.Esquema explicativo, Ancho colaborante. ...................................................................... 11 
Figura 3.Esquema explicativo, elemento especial de borde. ......................................................... 13 
Figura 4.Esquema explicativo, extensión vertical del elemento especial de borde. ...................... 14 
Figura 5.Esquema explicativo, extensión horizontal del elemento especial de borde. ................. 14 
Figura 6.Esquema explicativo, espaciamiento de ganchos suplementarios del elemento especial 
de borde. ........................................................................................................................................ 15 
Figura 7.Esquema explicativo, separación del refuerzo transversal del elemento especial de 
borde. ............................................................................................................................................. 15 
Figura 8.Vista general del edificio. ............................................................................................... 18 
Figura 9.Planta tipo primer piso. ................................................................................................... 18 
Figura 10.Planta tipo segundo a duodécimo pisos. ....................................................................... 19 
Figura 11.A) Planta decimotercer piso. B) Planta decimocuarto piso. ...................................... 19 
Figura 12.Identificación de los muros analizados. ........................................................................ 23 
Figura 13.Daños en la fachada Sur. ............................................................................................... 23 
Figura 14.Daños en el muro T S/5. ................................................................................................ 24 
Figura 15.Elevación y detalle de armadura del muro Z F.S.P. ...................................................... 24 
Figura 16.Elevación y detalle de armadura del muro Z F.S.P. ...................................................... 25 
Figura 17.Elevación y detalle de armadura del muro T S/5. ......................................................... 25 
Figura 18.Diagrama momento curvatura muro Z F.S.P en la dirección X. ................................... 26 
Figura 19.Diagrama momento curvatura muro Z F.S.O en la dirección X. .................................. 26 
Figura 20.Diagrama momento curvatura muro T S/5 en la dirección X ....................................... 27 
Figura 21.Diagrama momento curvatura muro Z F.S.P en la dirección -X. ................................. 27 
Figura 22.Diagrama momento curvatura muro Z F.S.O en la dirección -X. ................................. 28 
Figura 23.Diagrama momento curvatura muro T S/5 en la dirección -X. ..................................... 28 
Figura 24.Desplazamiento elástico – esquema explicativo. .......................................................... 29 
Figura 25.Aplicación del factor de agrietamiento en altura. ......................................................... 31 
Figura 26.Solicitaciones sísmicas - esquema explicativo. ............................................................. 34 
Figura 27.Desplazamiento plástico del muro. ............................................................................... 36 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 6 
 
Figura 28.Diagrama de tensiones. ................................................................................................. 37 
Figura 29.Detalle de armadura longitudinal del muro T S/5, para el diseño con el Ds Nº 60 (largo 
de rotula plástica 0.5Lw). ............................................................................................................... 40 
Figura 30.Diagrama de interacción del muro T S/5 para la dirección X, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). ...................................................................................... 41 
Figura 31.Diagrama de interacción del muro T S/5 para la dirección Y, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). ...................................................................................... 41 
Figura 32.Diagrama de momento curvatura del muro T S/5 para el sentido positivo, para el diseño 
con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ....................................................................... 42 
Figura 33.Diagrama de momento curvatura del muro T S/5 para el sentido negativo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................................................... 42 
Figura 34.Detalle de armadura de confinamiento del muro T S/5 para el sentido negativo de la 
dirección X, para el diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................... 46 
Figura 35.Identificación de muros sin daños estructural, para su rediseño. .................................. 47 
Figura 36.Detalle de armadura longitudinal del muro L P/5 2p, para el diseño con el Ds Nº60 
(largo de rotula plástica 0.5Lw). ..................................................................................................... 49 
Figura 37.Diagrama de interacción del muro L P/5 2p para la dirección X, para el diseño con el 
Ds Nº60 (largo de rotula plástica de 0.5Lw). ................................................................................ 50 
Figura 38.Diagrama de interacción del muro L P/5 2p, para la dirección Y, para el diseño con el 
Ds Nº60 (largo de rotula plástica de 0.5Lw). ................................................................................ 50 
Figura 39.Diagrama de momento curvatura del muro L P/5 2p, para el sentido positivo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................................................... 51 
Figura 40.Diagrama de momento curvatura del muro L P/5 2p, para el sentido negativo, para el 
diseño con el Ds Nº60(largo de rotula plástica de 0.5Lw). ............................................................ 51 
Figura 41.Detalle de armadura de confinamiento del muro L P/5 2p, para el sentido positivo de la 
dirección X, para el diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................... 55 
Figura 42.Detalle de armadura longitudinal del muro J P/5, para el diseño con el Ds Nº60 (largo 
de rotula plástica 0.5Lw). ............................................................................................................... 57 
Figura 43.Diagrama de interaccióndel muro J P/5 para la dirección X, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). ...................................................................................... 58 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 7 
 
Figura 44.Diagrama de interacción del muro J P/5, para la dirección Y, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). ...................................................................................... 58 
Figura 45.Diagrama de momento curvatura del muro J P/5, para el sentido positivo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................................................... 59 
Figura 46.Diagrama de momento curvatura del muro J P/5, para el sentido negativo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). ........................................................... 59 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 8 
 
1 Introducción 
 
Este manual se enmarca dentro del proyecto Innova “Nueva Metodología de Diseño Sísmico para 
Muros de Hormigón Armado en Edificios”. El objetivo general del proyecto ha sido desarrollar 
una metodología de diseño sísmico de muros que permita modificar la Norma Chilena de Diseño 
en Hormigón Armado NCH430, actualmente DS60, incorporando la experiencia del reciente 
terremoto del 27 de Febrero y que entregue herramientas a los ingenieros estructurales para evitar 
las fallas observadas en edificios de hormigón armado. 
Esta propuesta de diseño busca fortalecer la práctica chilena en el diseño de edificios de 
hormigón, reconocida internacionalmente, dándole sustento teórico y analítico y además el 
sustento experimental necesario para considerar las características de nuestros propios materiales, 
métodos de construcción y sismos. 
El terremoto del 27 de febrero recién pasado mostró que a pesar del buen desempeño de la gran 
mayoría de los edificios chilenos de hormigón armado, se presentaron fallas inesperadas en 
muros de edificios en altura que afectaron especialmente a edificios modernos construidos en los 
últimos 10 años. 
Esto dejó en evidencia que dichos muros tenían un comportamiento frágil, inadecuado para 
resistir solicitaciones sísmicas importantes. Gran parte de lo anterior se debe al poco 
confinamiento de estos elementos, práctica usual en nuestros edificios y que venía avalada por el 
buen comportamiento en el terremoto del año 1985 de edificios con muros sin confinar. 
Para la nueva generación de edificios, especialmente los construidos en los últimos 10 años, 
claramente la conclusión del año 1985 no es aplicable y se requiere dar mayor importancia al 
confinamiento de borde en muros. La norma chilena de diseño en hormigón armado NCh430 del 
año 2008, basada en la norma americana ACI318 del año 2005, establece el confinamiento 
requerido, pero lo hace en base a criterios desarrollados para estructuras comunes a la práctica 
americana, las que se alejan de las configuraciones tradicionales de muros en Chile. 
Por ejemplo, la norma americana ACI 318 considera implícitamente que todo el desplazamiento 
sísmico del edificio es generado por rotaciones plásticas en la base de los muros (zona crítica). 
Esto implica un diseño en el cual se esperan pérdida de recubrimiento y eventualmente pandeo de 
barras en la base de los muros (daños similares aunque más controlados que los vistos en 
febrero). 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 9 
 
Por otro lado, nuestra práctica tradicional de diseño ha privilegiado históricamente edificios que 
responden casi sin daño, fundamentalmente en el rango elástico. Lamentablemente, la nueva 
generación de edificios chilenos quedó en una zona intermedia entre la práctica americana y la 
chilena tradicional, sin suficiente confinamiento y ductilidad (ACI) y sin suficiente rigidez y 
capacidad de deformación elástica (práctica chilena), lo que llevó a un modo de falla inesperado 
en flexo compresión, especialmente en zonas donde el movimiento sísmico fue especialmente 
severo como es el caso de la zona centro de Concepción o de Viña del Mar, con pérdida del 
recubrimiento en la zona de falla, pandeo y corte de barras y pérdida de la integridad de la 
estructura, en algunos casos con evidente inclinación del edificio e incluso colapso global. 
Para solucionar en futuros diseños el problema evidenciado por la falla de muros en flexo 
compresión y dar seguridad tanto a las personas respecto al comportamiento de los edificios en el 
futuro y a los agentes que intervienen en el proceso de desarrollo de un proyecto inmobiliario 
(calculistas, constructores e inmobiliarias), es necesario desarrollar un conjunto de 
recomendaciones de diseño sísmico de muros basadas en las características propias de nuestros 
edificios y de nuestros terremotos, con un respaldo experimental y analítico suficiente, que 
garantice que su aplicación se traducirá en mayores niveles de seguridad para los edificios en 
futuros terremotos, menores daños estructurales y una reducción de los costos asociados al 
desalojo y reparación de estas estructuras. Al mismo tiempo se busca garantizar que se 
preservarán las características fundamentales del edificio chileno de muros, reconocido 
internacionalmente como un ejemplo de buen comportamiento sísmico. 
Las deficiencias en el diseño principalmente de muros reveladas en el terremoto llevaron a una 
modificación de la norma de diseño de hormigón armado, la cual se centró en detallar 
los requerimientos necesarios para un comportamiento adecuado de los muros, mediante el 
decreto D.S N°118 de Febrero de 2011 el cual fue modificado en Diciembre del mismo 
año mediante el decreto D.S N°60. 
Esta Guía Práctica de Diseño intenta mostrar en forma didáctica la aplicación de las disposiciones 
actuales para el diseño de muros de hormigón, tomando como ejemplo un edificio que presentó 
daños durante el terremoto del 27F para aplicar sus disposiciones a la verificación del diseño 
original y posteriormente hacer un rediseños del mismo. Se ha puesto especial énfasis en el 
cálculo de la capacidad de desplazamiento elástico de los muros, elemento que ha mostrado ser 
crítico para el buen comportamiento de nuestros edificios. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 10 
 
2 Diseño sísmico de muros 
 
2.1 Factores de carga y combinaciones de cargas 
 
Se deben considerar las siguientes combinaciones: 
a. : NCh3171 Of 2010 
b. : NCh3171 Of 2010 
c. : NCh3171 Of 2010 
Dónde: 
L : Cargas Vivas. 
D : Cargas Muertas y Permanentes. 
E : Cargas Sísmicas. 
 
2.2 Factores de reducción 
 
2.2.1 Diseño a flexión y carga axial 
2.2.1.1 Factores de reducción para secciones sometidas a flexión y controladas por compresión. 
La sección está controlada a compresión cuando la deformación unitaria del acero y se 
aplica un factor de reducción � de 0.65. 
2.2.1.2 Factores de reducción para secciones sometidas a flexión y controladas por tracción. 
La sección está controlada a tracción cuando la deformación unitaria del acero y se 
aplica un factor de reducción � de 0.9. 
2.2.1.3 Factor de reducción para secciones sometidas a flexión y controladas por los límites de 
compresión y tracción. 
Se permiten que el factor de reducción � aumente linealmente desde el valor controlado por la 
compresiónhasta un valor 0.9, el cual se determinar a través de la siguiente expresión: 
 
 Ec. 3.1 � 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 11 
 
 
Figura 1.Esquema explicativo, factores de reducción. 
2.2.2 Diseño al corte 
 
El factor de reducción, φ, que se utiliza en el diseño al corte de 0.6 
 
2.3 Diseño a flexión y carga axial 
 
Para realizar el diseño por resistencia de un muro, se debe cumplir con las siguientes expresiones: 
 
 
 
 
Donde Pu y Mu son las solicitaciones. Pn y Mn son la resistencia nominal de la sección. 
 
Al verificar el diseño de las secciones transversales compuestas (L, T, C u otras formas) se debe 
considerar la sección completa con todas las armaduras especificadas. Alternativamente, se puede 
verificar utilizando el ancho efectivo del ala. El ancho efectivo del ala en secciones con ala debe 
extenderse desde la cara del alma una distancia igual al menor valor entre la mitad de la distancia 
al alma de un muro adyacente y el 25% de la altura total del muro. 
 
Figura 2.Esquema explicativo, Ancho colaborante. 
 
Ec. 3.3 
 � Ec. 3.2 
 � 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 12 
 
2.3.1 Limitación de carga Axial 
 
El máximo valor de Pu actuando en la sección transversal definida debe cumplir la siguiente 
condición. 
 
Dónde: 
f´c : Resistencia específica a la compresión del concreto. 
Ag : Área bruta de la sección de concreto 
 
2.3.2 Capacidad de curvatura 
La sección critica de todo muro con razón de aspecto Hw/Lw mayor o igual a 3 debe tener una 
capacidad de curvatura, φ, mayor que la demanda de curvatura, φu, la cual se calcula a través de 
las siguientes expresiones: 
 ( ) 
Dónde: 
φy : Curvatura de fluencia, curvatura en la sección critica de un muro, consistente con ~e. 
φu : Curvatura ultima. 
~u : Desplazamiento de diseño según se define en NCh433. 
~e : Capacidad de desplazamiento elástico de un muro en su extremo 
lp : Largo de rotula plástica, no se debe considerar mayor a lw/2. 
Hw : Distancia entre el último nivel significativo del edificio y la sección critica de un muro. 
c :Mayor profundidad del eje neutro 
Esta verificación se debe hacer considerando la mayor carga axial Pu consistente con ~u. 
 
 
Ec. 3.4 
Ec. 3.5 
Ec. 3.6 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 13 
 
2.4 Elemento de borde 
La zona en compresión se debe reforzar con elemento especial de borde cuando: 
 
 
Dónde: 
~´u : Desplazamiento relativo de diseño entre el extremo superior del muro y el 
desplazamiento a nivel de la sección analizada. 
H´w : Altura de un muro medida desde el extremo superior del muro a la sección analizada. 
lw : Longitud del muro completo. 
 
 
Figura 3.Esquema explicativo, elemento especial de borde. 
 
2.4.1 Elemento especial de borde 
 
 El elemento especial de borde se debe extender verticalmente de acuerdo a las siguientes 
condiciones: 
 
 
 
 
 
 
 
 
La mayor longitud 
Ec. 3.7 
Ec. 3.8 
Ec. 3.9 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 14 
 
 
Figura 4.Esquema explicativo, extensión vertical del elemento especial de borde. 
 
 El elemento especial de borde se debe extender horizontalmente de acuerdo a las 
siguientes condiciones. 
 
 
 
 
 
 
 
Figura 5.Esquema explicativo, extensión horizontal del elemento especial de borde. 
 
 El espaciamiento de los ganchos suplementarios en el elemento especial de borde se 
definirá de acuerdo a las siguientes condiciones: 
 
 
 
 
 
 
 
 
La mayor longitud (Cc) 
La menor dimensión (hx) 
 
 
Ec. 3.11 
Ec. 3.10 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 15 
 
La menor dimensión (s) 
La mayor área 
 
Figura 6.Esquema explicativo, espaciamiento de ganchos suplementarios del elemento especial 
de borde. 
 
 La separación del refuerzo transversal del elemento de borde debe cumplir las siguientes 
condiciones: 
 
 
 
 
 
 
 
 
 
Figura 7.Esquema explicativo, separación del refuerzo transversal del elemento especial de 
borde. 
 
 La sección del refuerzo transversal del elemento especial de borde tendrá que ser 
definido de acuerdo a las siguientes condiciones 
 
 
 
 
 
 
 
 (φヱヰ) 
Ec. 3.14 
Ec. 3.13 
Ec. 3.12 
Ec. 3.15 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 16 
 
 Para la armadura longitudinal y transversal del elemento especial de borde se de cumplir 
con las siguientes condiciones: 
 
 
 
 
 
 
2.4.2 Sin elemento especial de borde 
2.4.2.1 Si la cuantía de refuerzo longitudinal en el borde del muro es mayor que se debe 
cumplir con: 
  El refuerzo transversal se debe disponer mediante estribos cerrados de confinamiento 
sencillo o múltiple. Se puede usar ganchos suplementarios del mismo diámetro de barra y 
con el mismo espaciamiento que los estribos cerrados de confinamiento. Cada extremo del 
gancho suplementario debe enlazar una barra perimetral del refuerzo longitudinal. Los 
extremos de los ganchos suplementarios consecutivos deben alternarse a lo largo del 
refuerzo longitudinal 
 El diámetro mínimo del refuerzo transversal debe de ser �10. 
 El espaciamiento horizontal de los ganchos suplementarios, hx, debe ser menor o igual a 
35 centímetros. 
 La separación del refuerzo transversal, s, dependerá de la zona de influencia. 
-Zona normal 
 
 
-Zona critica 
 
 
 
 
 
2.4.2.2 Si el corte en el plano del muro 
 
 
 
 
La menor dimensión (s) 
 
20 cm 
Ec. 3.18 
Ec. 3.19 
 
Ec. 3.20 
 √ Ec. 3.21 
 
 Ec. 3.17 
Ec. 3.16 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 17 
 
La menor dimensión 
Se deberá cumplir con las siguientes condiciones: 
  El refuerzo transversal que termine en los bordes de muros estructurales sin elementos de 
borde, debe tener un gancho estándar que enganche el refuerzo de borde, o el refuerzo de 
borde debe estar abrazado con estribos en “U”, que estén empalmados al refuerzo 
horizontal y tengan su mismo tamaño y espaciamiento. 
 El diámetro mínimo del refuerzo transversal debe ser �10. 
 La separación vertical de los estribos (s): 
 
 
 
 
 
 
2.5 Diseño al corte 
 
La resistencia nominal al corte, Vn, debe cumplir con la siguiente condición: 
 
 
Donde es la solicitación por corte y se calcula de la siguiente manera para muros esbeltos: 
 
 
 
 
 
 
Dónde: 
Acv: Área neta de la sección de hormigón limitada por el espesor del alma y la longitud de la 
sección en la dirección de la fuerza de corte considerada. 
Acw: Área de la sección de hormigón resistente al corte. 
ρt: Cuantía del área de refuerzo transversal distribuido al área bruta de concreto de una sección 
perpendicular a este refuerzo, no debe ser inferior a 2.5‰. 
 
 
La menor dimensión del elemento Ec. 3.23 
Ec. 3.22 
 Min 
 √ √ 
Ec. 3.24 � 
Ec. 3.26 
Ec. 3.25Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 18 
 
3 Verificación del diseño original 
3.1 Descripción general 
 
Se trata de un edificio de plantas rectangulares y perpendiculares entre sí, separados por una 
junta de 5 cm de ancho, coincidente con la ubicación de ascensores y escalera, excepto en el 
último nivel donde la losa los conecta, Es un edificio de 140 departamentos. 
El edificio tiene losas de hormigón de 12 cm y vigas tipo rectangular de 15x42 cm y 15x60 
cm. 
 
Figura 8.Vista general del edificio. 
 
3.1.1 Planimetría del Edificio 
 
Figura 9.Planta tipo primer piso. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 19 
 
 
Figura 10.Planta tipo segundo a duodécimo pisos. 
 
 
Figura 11.A) Planta decimotercer piso. B) Planta decimocuarto piso. 
 
3.1.2 Propiedad de los materiales 
 
Nombre del material H25 
Masa (ton/m3) 0.2448 
Peso (ton/m3) 2.5 
Módulo de elasticidad (ton/m2) 2131000 
Coeficiente de Poisson 0.2 
Módulo de corte 1054583 
Resistencia f´c (ton/m2) 2000 
Tensión de fluencia del acero de refuerzo (ton/m2) 42000 
Tabla 3-1.Propiedades de los materiales. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 20 
 
3.1.3 Solicitaciones 
3.1.3.1 Carga gravitacionales  Carga muerta 0.15 ton/m2 
 Sobre carga 0.2 ton/m2 
3.1.3.2 Análisis modal espectral  Espectro de aceleración 
Dónde: 
I : Coeficiente de importancia determinado según el destino de la estructura 
Ao : Aceleración efectiva de acuerdo a la zonificación sísmica de la norma NCh433 
αn : Factor de amplificación que se determina para cada modo de vibración de la estructura 
R* : Factor de reducción de la respuesta que se calcula para cada dirección de análisis y que 
depende del periodo fundamental de la estructura en la dirección considerada 
 
 Factor de amplificación espectral 
 岾 峇 
 岾 峇 
 Factor de reducción de respuesta 
Dónde: 
Tn : Periodo de vibración del modo n 
To; p : Parámetro relativos al tipo de suelo de fundación 
T* : Periodo del modo con mayor masa traslacional equivalente en la dirección de análisis 
Ro : Valor para la estructura que se establece de acuerdo al tipo de estructura y materialidad 
 
Ec. 4.1 
Ec. 4.2 
Ec. 4.3 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 21 
 
 
Zona sísmica 3 
Aceleración efectiva Ao/g 0.4 
Categoría de la estructura C 
Factor de importancia I 1 
Factor de modificación de la respuesta Ro 7 
Factor de modificación de la respuesta R 11 
Tipo de suelo III 
S 1.2 
To (seg) 0.75 
T´ (seg) 0.85 
N 1.8 
p 1 
Tabla 3-2.Parámetros sísmicos. 
 
3.1.4 Combinaciones de carga 
 
 Combinación 1: 1.4D+1.7L 
 Combinación 2: 1.4(D+L±Sx) 
 Combinación 3: 1.4(D+L±Sy) 
 Combinación 4: 0.9D±1.4Sx 
 Combinación 5: 0.9D±1.4Sy 
Dónde: 
D : Cargas de peso propio de la estructura y carga permanente adicional 
L : Sobrecarga de uso de finidas de acuerdo a la norma chilena NCh1537 
Sx : Solicitación sísmica reducida en la dirección X incluyendo el efecto de la torsión 
accidental 
Sy : Solicitación sísmica reducida en la dirección Y incluyendo el efecto de la torsión 
accidental 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 22 
 
3.1.5 Resultados del análisis sísmico 
3.1.5.1 Propiedades dinámicas 
 
Periodo fundamental en la dirección X (seg) 0.47 
Periodo fundamental en la dirección Y (seg) 0.28 
Periodo torsional (seg) 0.37 
Numero de modos considerados 14 
Masa modal fundamental en la dirección X (%) 67.1 
Masa modal fundamental en la dirección Y (%) 73.9 
Masa modal torsional (%) 69.6 
Masa modal total en la dirección X (%) 95.2 
Masa modal total en la dirección Y (%) 97.9 
Masa modal torsional total (%) 95.7 
Tabla 3-3.Resumen de propiedades dinámicas. 
 
3.1.5.2 Espectro de diseño 
 
Masa sísmica (ton/g) 2969.5 
Factor de reducción de respuesta (R*x) 4.96 
Factor de reducción de respuesta (R*y) 4.52 
Corte basal mínimo de diseño 6.7% (ton) 197.7 
Corte basal máximo de diseño 16.8% (ton) 498.9 
Corte basal de diseño Vx (ton) 497.6 
Corte basal de diseño Vy (ton) 498.8 
Tabla 3-4.Resultados de análisis sísmico. 
 
 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 23 
 
3.2 Muros para el análisis. 
3.2.1 Identificación de los muros para el análisis. 
 
Figura 12.Identificación de los muros analizados. 
3.2.2 Daños Observados en los muros que se utilizaran en el análisis. 
 
 
Figura 13.Daños en la fachada Sur. 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 24 
 
 
Figura 14.Daños en el muro T S/5. 
 
3.2.3 Elevaciones y detalle de armadura de los muros que se utilizaran en el análisis. 
 
 
 
Figura 15.Elevación y detalle de armadura del muro Z F.S.P. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 25 
 
 
Figura 16.Elevación y detalle de armadura del muro Z F.S.P. 
 
 
Figura 17.Elevación y detalle de armadura del muro T S/5. 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 26 
 
3.2.4 Diagrama de momento – curvatura 
 
 Diagrama de momento curvatura en la dirección X 
 
 
Figura 18.Diagrama momento curvatura muro Z F.S.P en la dirección X. 
 
 
Figura 19.Diagrama momento curvatura muro Z F.S.O en la dirección X. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 27 
 
 
Figura 20.Diagrama momento curvatura muro T S/5 en la dirección X 
  Diagrama de momento curvatura en la dirección –X 
 
 
Figura 21.Diagrama momento curvatura muro Z F.S.P en la dirección -X. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 28 
 
 
Figura 22.Diagrama momento curvatura muro Z F.S.O en la dirección -X. 
 
 
Figura 23.Diagrama momento curvatura muro T S/5 en la dirección -X. 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 29 
 
Dirección Secciones P (ton) My (ton-m) φy (1/m) Mn (ton-m) φn (1/m) C (m) 
X 
Muro Z F.S.P 559.5 1238.56 0.0007384 1326.6 0.001504 2 
Muro Z F.S.O 522.8 1262.69 0.0007381 1354.34 0.001087 2.72 
Muro T S/5 546.1 2213.81 0.0005265 2451.7 0.002405 1.24 
-X 
Muro Z F.S.P 559.5 1377.64 0.0007384 1486.95 0.001087 2.72 
Muro Z F.S.O 522.8 1018.75 0.0006764 1133.07 0.001594 1.88 
Muro T S/5 546.1 2656.12 0.0006769 2729.87 0.001101 2.74 
Tabla 3-5.Resumen de datos de fluencia y nominales de los muros. 
3.3 Desplazamiento elástico. 
 
A continuación se explicaran tres metodologías distintas de calcular el desplazamiento 
elástico de muro. 
 
Figura 24.Desplazamiento elástico – esquema explicativo. 
 
3.3.1 Desplazamiento elástico por amplificaciónal momento nominal. 
 
A continuación se detallaran los pasos a seguir para calcular el desplazamiento elástico de los 
muro a través de esta metodología 
 Paso Nº1: Calcular el factor de agrietamiento para cada muro. 
 
Factor de agrietamiento 
 
Ec. 4.4 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 30 
 
Dónde: 
RF : Rigidez agrietada de la sección transversal del muro. 
RNA : Rigidez no agrietada de la sección transversal del muro. 
 
Se pueden obtener a través de la siguiente expresión 
Dónde: 
My : Momento de fluencia de la sección transversal del muro. 
φy : Curvatura de fluencia de la sección transversal del muro. 
Ec : Modulo de elasticidad del concreto 
Iw : Inercia del muro 
 
Ejemplo: Calculo del factor de agrietamiento del muro Z F.S.P en la dirección –X. 
 
My : 1377.64 (ton-m) 
φy : 0.0007384 (m-1) 
Ec : 2101903 (ton/m2) 
Iw : 1.8081 (m4) 
 
 Rigidez agrietada 
 Rigidez no agrietada 
 Factor de agrietamiento 
 
Ec. 4.5 
Ec. 4.6 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 31 
 
Dirección Secciones 
Rigidez 
Agrietada 
(ton-m2) 
Rigidez no 
agrieta (ton-m2) 
Factor de 
agrietamiento 
X 
Muro Z F.S.P 1677342,9 3800452,44 0,44 
Muro Z F.S.O 1710730,25 3800452,44 0,45 
Muro T S/5 4204767,33 8239463,283 0,51 
-X 
Muro Z F.S.P 1865716,41 3800452,44 0,49 
Muro Z F.S.O 1506135,42 3800452,44 0,40 
Muro T S/5 3923947,41 8239463,28 0,48 
Tabla 3-6.Factor de agrietamiento de los muros. 
 
 Paso Nº2: Aplicar el factor de agrietamiento a la inercia de los muros modelados a través 
de un programa de elementos finito (Etabs), aumentando dicho factor a medida que 
aumente la altura del muro. 
Dónde: n : Factor de agrietamiento de la n sección. 
N : Número total de secciones considerada. 
n : Numero de sección. 
 
Figura 25.Aplicación del factor de agrietamiento en altura. 
Ec. 4.7 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 32 
 
 
Para vigas y losas se debe considerar un factor de agrietamiento de 0.35 y 0.25 
respectivamente, esta reducción de la rigidez se realiza de acuerdo a lo señalado en el 
punto 10.10.4.1 del ACI318S-08. 
 
 Paso Nº3: Definir un análisis Push-Over en el modelo donde se le aplicó el factor de 
agrietamiento, este análisis se debe realizar con el modo de mayor masa traslacional en la 
dirección de análisis 
 
 Paso Nº4: Definir las combinaciones de carga en el modelo 
 
-C1 : 1.2PP+1.0SC+1.0PUSH 
-C2 : 1.2PP+1.0SC-1.0PUSH 
-C1 : 0.9PP+1.0PUSH 
-C1 : 0.9PP+1.0PUSH 
Dónde: 
PP : Peso propio de la estructura 
SC : Sobrecarga 
PUSH : Deformación del modo en la dirección de análisis a escalar 
 
 Paso Nº5: Estimar el estado de carga ultima del muro, se debe aumentar el factor de 
amplificación de la carga definida como “PUSH” hasta obtener que el factor de utilización 
(F.U) sea igual a 1. Para luego obtener el desplazamiento elástico. 
 
Dirección Secciones δe(m) Ppush (ton) 
X 
Muro Z F.S.P 0.109 360.01 
Muro Z F.S.O 0.101 692.02 
Muro T S/5 0.102 342.85 
-X 
Muro Z F.S.P 0.126 360.68 
Muro Z F.S.O 0.087 647.04 
Muro T S/5 0.114 342.81 
Tabla 3-7.Resumen de desplazamiento elástico por amplificación al momento nominal. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 33 
 
3.3.2 Desplazamiento elástico - Expresión simplificada. 
 
Esta metodología propone dos formas de calcular la curvatura de fluencia y una para el 
desplazamiento elástico de los muro. 
 
 Primera expresión para la curvatura de fluencia: se utiliza para muros rectangulares y 
también se puede utilizar en muros T cuando el alma de la sección esta en compresión. 
 
 
 Segunda expresión para la curvatura fluencia: Se utiliza para los muros T cuando el ala 
esta en compresión 
 
 
 Desplazamiento elástico 
 
Dónde: 
lw : Largo del muro. 
Hw : Altura del muro. 
 
Ec. 4.10 
Ec. 4.9 
Ec. 4.8 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 34 
 
Ejemplo: Calculo del desplazamiento elástico del muro T S/5 en la dirección –X. 
 
 Curvatura de fluencia 
 
 Desplazamiento elástico 
Dirección Secciones Hw (m) Lw (m) φy (m
-1) δe(m) 
X 
Muro Z F.S.P 29,64 5,175 0,0005411 0,105 
Muro Z F.S.O 29,64 5,175 0,0005411 0,105 
Muro T S/5 29,64 6,01 0,0003328 0,064 
-X 
Muro Z F.S.P 29,64 5,175 0,0005411 0,105 
Muro Z F.S.O 29,64 5,175 0,0005411 0,105 
Muro T S/5 29,64 6,01 0,0004659 0,09 
Tabla 3-8.Resumen de desplazamiento elástico – Expresión simplificada. 
 
3.3.3 Desplazamiento elástico por amplificación a la curvatura de fluencia. 
 
A continuación se detallaran los pasos a seguir para calcular el desplazamiento elástico de los 
muro a través de esta metodología 
 
 Paso Nº1: Obtener el momento (Ma) en la sección analizada y el desplazamiento (~a) en la 
parte superior del muro, producto de la acción sísmica en la dirección de análisis. 
 
Figura 26.Solicitaciones sísmicas - esquema explicativo. 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 35 
 
 Paso Nº2: A través del diagrama de momento curvatura de la sección analizada, obtener la 
curvatura de fluencia (φy). 
 
 Paso Nº3: El tercer paso es calcular la curvatura de análisis a través de la siguiente 
expresión: 
Dónde: 
Ec : Modulo de elasticidad del concreto 
Iw : Inercia del muro 
 
 Paso Nº4: El cuarto paso es calcular el desplazamiento elástico del muro a través de la 
siguiente expresión: 峭 嶌 
Ejemplo: Calculo del desplazamiento elástico del muro T S/5 en la dirección –X. 
 
Ma : 794.1 (ton-m) 
~a : 0.01822 (m) 
φy : 0.0006769 (m-1) 
Ec : 2101903 (ton/m2) 
Iw : 3.92 (m4) 
 
 Curvatura de análisis: 
 Desplazamiento elástico: 
 
Ec. 4.11 
Ec. 4.12 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 36 
 
Dirección Sección φa (m
-1) φy (m
-1) δe(m) 
X 
Muro Z F.S.P 0,0001059 0,0007384 0,081 
Muro Z F.S.O 0,0001064 0,0007381 0,081 
Muro T S/5 0,0000964 0,0005265 0,070 
-X 
Muro Z F.S.P 0,0001059 0,0007384 0,081 
Muro Z F.S.O 0,0001064 0,0006764 0,074 
Muro T S/5 0,0000964 0,0006769 0,090 
Tabla 3-9.Resumen de desplazamiento elástico A.C.F. 
3.4 Acortamiento del hormigón. 
 
Atreves de la siguiente demostración se puede deducir la deformación unitaria del concreto en 
compresión. 
Se sabe que: 
Dónde: 
~u : Desplazamiento de techo de diseño que se obtiene a través de los espectro de 
desplazamiento del DS Nº61. 
~e : Desplazamiento elástico del muro. 
~p : Desplazamiento plástico del muro. 
 
 Donde despejamos el desplazamiento plástico y nos queda la siguiente expresión: 
 
 
 
Figura 27.Desplazamiento plástico del muro. 
Ec. 4.14 
Ec. 4.13 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013Página 37 
 
De la figura 27 podemos deducir la siguiente expresión de desplazamiento plástico de un 
muro: ( ) 
Dónde: 
φy : Curvatura de fluencia, se deben utilizar la expresiones propuesta en el punto 3.3.2 
lp : Largo de rotula plástica, Corresponde al 50% del largo del muro. 
Si reemplazamos la Ec. 4.15 con la Ec. 4.14 obtenemos la siguiente expresión: ( ) 
 
De la Ec. 4.13 se puede despejar la curvatura última, obteniendo la siguiente expresión: ( ) 
 
 
Figura 28.Diagrama de tensiones. 
 
A través de la figura 28 que muestra el diagrama de tensiones, se deduce que el 
acortamiento del hormigón se puede calcular a través de la siguiente expresión: 
 
Donde C corresponde la profundidad de línea neutra para la condición nominal de la sección. 
 
 
Ec. 4.15 
Ec. 4.16 
Ec. 4.17 
Ec. 4.18 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 38 
 
Ejemplo 1: Calculo del acortamiento del hormigón en el muro T S/5 en la dirección –X, 
para este ejemplo se despreciara la componente elástica del muro lo que significa que el 
desplazamiento elástico, ~e, y la curvatura de fluencia, φy, sean igual a cero. 
 
lw : 6.01 (m) 
lp : 3.005 (m) 
~u : 0.183 (m) 
Hw : 29.64 (m) 
C : 2.74 (m) 
 
 Curvatura ultima. 岾 峇 
 Acortamiento del hormigón 
 
 
 
 
 
 
 
Tabla 3-10.Resumen de acortamiento del hormigo. 
 
Dirección Sección 
Hw 
(m) 
lp 
(m) 
δu 
(m) 
δ(3‰) 
(m) 
φu 
 (m
-1) 
C 
(m) 
0c 
(‰) 
0s 
(‰) 
X 
M. Z F.S.P 29,64 2,5875 0,183 0,11 0,00249775 2 5,0 7,9 
M. Z F.S.O 29,64 2,5875 0,183 0,08 0,00249775 2,72 6,8 6,1 
M. T S/5 29,64 3,005 0,183 0,20 0,00216668 1,24 2,7 10,3 
-X 
M. Z F.S.P 29,64 2,5875 0,183 0,08 0,00249775 2,72 6,8 6,1 
M. Z F.S.O 29,64 2,5875 0,183 0,12 0,00249775 1,88 4,7 8,2 
M. T S/5 29,64 3,005 0,183 0,09 0,00216668 2,74 5,9 7,0 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 39 
 
4 Ejemplo práctico de aplicación - Rediseño de muro. 
 
Para el rediseño del muro T S/5, el rediseño se realizara a través del decreto supremo Nº60 
(Requisitos de diseño y cálculo para el hormigón armado). 
 
Además se considerara la curvatura de fluencia obtenida por la expresión simplificada y el 
desplazamiento elástico obtenido por la metodología de amplificación al momento nominal. 
 
4.1 Rediseño de muro con daño estructural 
4.1.1 Rediseño del muro T S/5, Considerando como largo de rotula plástica 0.5Lw 
4.1.1.1 Diseño a flexión y carga axial 
 Solicitaciones 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -361,29 1,36 29,09 
1.4(D+L±Sx) Max -154,44 2,09 957,73 
1.4(D+L±Sx) Min -537,22 0,53 -902,05 
1.4(D+L±Sy) Max -220,90 18,44 99,50 
1.4(D+L±Sy) Min -470,77 -15,83 -43,82 
0.9D±1.4Sx Max 15,44 1,45 944,04 
0.9D±1.4Sx Min -367,33 -0,11 -915,74 
0.9D±1.4Sy Max -51,01 17,81 85,81 
0.9D±-1.4Sy Min -300,88 -16,46 -57,52 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-1Solicitaciones del muro T S/5 en la parte superior, para el diseño con el Ds Nº60 (largo 
de rotula plástica de 0.5Lw) 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 40 
 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -370,18 -1,55 34,27 
1.4(D+L+-Sx) Max -163,33 0,29 1144,57 
1.4(D+L+-Sx) Min -546,11 -3,26 -1078,95 
1.4(D+L+-Sy) Max -229,78 26,63 105,33 
1.4(D+L+-Sy) Min -479,65 -29,59 -39,7 
0.9D+-1.4Sx Max 9,73 1,04 1128,48 
0.9D+-1.4Sx Min -373,05 -2,51 -1095,04 
0.9D+-1.4Sy Max -56,72 27,37 89,23 
0.9D+-1.4Sy Min -306,59 -28,84 -55,79 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-2.Solicitaciones del muro T S/5 en la parte inferior, para el diseño con el Ds Nº 60 
(largo de rotula plástica de 0.5Lw) 
 Carga axial máxima. 
Dónde: 
Pu : 546.1 (ton) en compresión 
f´c : 2000 (ton/m2) 
Lw : 6.01(m) 
ew : 0.15 (m) 
 
 Detalle de armadura 
 
Figura 29.Detalle de armadura longitudinal del muro T S/5, para el diseño con el Ds Nº 60 
(largo de rotula plástica 0.5Lw). 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 41 
 
 Diagrama de interacción 
 
Figura 30.Diagrama de interacción del muro T S/5 para la dirección X, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 31.Diagrama de interacción del muro T S/5 para la dirección Y, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). 
-2500
-2000
-1500
-1000
-500
0
500
1000
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
P
n 
(t
on
) 
Mn (ton-m) 
Diagrama de interación - Dirección X 
Mn Pn
φMn φPn 
Solicitaciones
-2500
-2000
-1500
-1000
-500
0
500
1000
-200 -100 0 100 200
P
n 
( 
to
n)
 
Mn ( ton-m) 
Diagrama de interacción - Dirección Y 
Mn Pn
φMn φPn 
Solicitaciones
Nota: Compresión 
son los valores 
negativos 
 
Nota: Compresión 
son los valores 
negativos 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 42 
 
 Diagrama de momento curvatura 
El rediseño se realiza solo en la dirección X, para sus dos sentidos 
 
 
Figura 32.Diagrama de momento curvatura del muro T S/5 para el sentido positivo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 33.Diagrama de momento curvatura del muro T S/5 para el sentido negativo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
0.000E+00
500E+00
1.000E+00
1.500E+00
2.000E+00
2.500E+00
3.000E+00
3.500E+00
0,000 0,002 0,004
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
0.000E+00
500E+00
1.000E+00
1.500E+00
2.000E+00
2.500E+00
3.000E+00
0,000 0,002 0,004
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 43 
 
 Capacidad de curvatura 
 
Donde los valores para la dirección X en sentido positivo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 3.005 (m) 
C : 0.5 (m) para un muro de espesor de 15 cm. 
 
 
Donde los valores para la dirección X en sentido negativo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 3.005 (m) 
C : 3.31 (m) para un muro de espesor de 15 cm. 
 
4.1.1.2 Elemento de borde 
 
 La zona en compresión se debe reforzar con un elemento de borde si: 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 44 
 
 
 
Donde los valores para la dirección X en sentido positivo son: 
φy : 0.00020546 (m-1) 
C : 0.5 (m) 
No requiere elemento especial de borde 
 
Donde los valores para la dirección X en sentido negativo son: 
φy : 0.00020546 (m-1) 
C : 3.31 (m) 
Requiere elemento especial de borde 
 
 El elemento especialde borde en el sentido negativo de la dirección X debe cumplir la 
siguientes condiciones: 
 Se debe extender verticalmente 
 
 
 
 
 
 
 El elemento especial de borde se debe extender verticalmente 6.01 (m) 
 
 
 
La mayor longitud 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 45 
 
La menor dimensión (s) 
La mayor área 
 Se debe extender Horizontalmente 
 
 
 
 
 
 
El elemento especial de borde, se debe extender horizontalmente 1.8 (m) 
 
 Espaciamiento de los ganchos suplementarios 
 
 
 
 
 
 
Los ganchos suplementarios del elemento especial de borde, deben tener una separación 
15 (cm) 
 
 Separación del refuerzo transversal 
 
 
 
 
 
 
 
 
El refuerzo transversal del elemento especial de borde, debe estar espaciado a 10 (cm) 
 
 Sección del refuerzo transversal 
 
 
 
 
 
 
 
La mayor longitud (Cc) 
La menor dimensión (hx) 
 
 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 46 
 
El refuerzo transversal del elemento especial de borde, debe ser φsh10 (0.785 cm2) 
 
 Detalle de armadura 
 
Figura 34.Detalle de armadura de confinamiento del muro T S/5 para el sentido negativo de la 
dirección X, para el diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 47 
 
4.2 Rediseño de muros de hormigón armado sin daño estructural. 
Para el rediseño se considerara un muro hormigón armado que no sufrió daños estructurales y que 
su geometría varía en la altura, se rediseñaran la sección basal de dicho muro y la sección del 
segundo nivel del mismo muro. El rediseño se realizara a través del decreto supremo Nº60 
(Requisitos de diseño y cálculo para el hormigón armado). 
 
Además se considerara la curvatura de fluencia obtenida por la metodología de Jorge Alfaro y el 
desplazamiento elástico obtenido por la metodología de amplificación a curvatura de fluencia. 
 
 
Figura 35.Identificación de muros sin daños estructural, para su rediseño. 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 48 
 
4.2.1 Rediseño del “muro L P/5 2p”, Considerando como largo de rotula plástica 0.5Lw 
4.2.1.1 Diseño a flexión y carga axial 
 Solicitaciones 
 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -228,81 -9,55 16,00 
1.4(D+L+-Sx) Max -206,57 11,13 197,72 
1.4(D+L+-Sx) Min -231,80 -29,35 -167,17 
1.4(D+L+-Sy) Max -189,32 -2,40 30,53 
1.4(D+L+-Sy) Min -249,05 -15,81 0,02 
0.9D+-1.4Sx Max -99,40 15,70 190,11 
0.9D+-1.4Sx Min -124,63 -24,78 -174,79 
0.9D+-1.4Sy Max -82,15 2,17 22,91 
0.9D+-1.4Sy Min -141,88 -11,24 -7,60 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-3.Solicitaciones del muro L P/5 2p en la parte superior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). 
 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -233,95 22,05 96,16 
1.4(D+L+-Sx) Max -211,70 24,28 374,76 
1.4(D+L+-Sx) Min -236,93 17,90 -190,42 
1.4(D+L+-Sy) Max -194,45 28,04 115,17 
1.4(D+L+-Sy) Min -254,18 14,14 69,18 
0.9D+-1.4Sx Max -102,70 13,88 329,87 
0.9D+-1.4Sx Min -127,93 7,50 -235,30 
0.9D+-1.4Sy Max -85,45 17,64 70,28 
0.9D+-1.4Sy Min -145,18 3,73 24,29 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-4.Solicitaciones del muro L P/5 2p en la parte inferior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 49 
 
 Carga axial máxima. 
Dónde: 
Pu : 254.2 (ton) en compresión 
f´c : 2000 (ton/m2) 
Lw : 3.57 (m) 
ew : 0.15 (m) 
 
 Detalle de armadura 
 
 
Figura 36.Detalle de armadura longitudinal del muro L P/5 2p, para el diseño con el Ds Nº60 
(largo de rotula plástica 0.5Lw). 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 50 
 
 Diagrama de interacción 
 
Figura 37.Diagrama de interacción del muro L P/5 2p para la dirección X, para el diseño con el 
Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 38.Diagrama de interacción del muro L P/5 2p, para la dirección Y, para el diseño con el 
Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
-1400
-1200
-1000
-800
-600
-400
-200
0
200
400
-1500 -1000 -500 0 500 1000 1500
P
n 
(t
on
) 
Mn (ton-m) 
Diagrama de interacción - Dirección X 
Mn Pn
φMn φPn 
Solicitaciones
-1400
-1200
-1000
-800
-600
-400
-200
0
200
400
-100 -50 0 50 100
P
n 
(t
on
) 
Mn (ton-m) 
Diagrama de interacción - Dirección Y 
Mn Pn
φMn φPn 
Solicitaciones
Nota: Compresión 
son los valores 
negativos 
 
Nota: Compresión 
son los valores 
negativos 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 51 
 
 Diagrama de momento curvatura 
El rediseño se realiza solo en la dirección X, para sus dos sentidos 
 
 
Figura 39.Diagrama de momento curvatura del muro L P/5 2p, para el sentido positivo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 40.Diagrama de momento curvatura del muro L P/5 2p, para el sentido negativo, para el 
diseño con el Ds Nº60(largo de rotula plástica de 0.5Lw). 
 
0.000E+00
100E+00
200E+00
300E+00
400E+00
500E+00
600E+00
700E+00
800E+00
900E+00
1.000E+00
0,000 0,003 0,006 0,009
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
0.000E+00
100E+00
200E+00
300E+00
400E+00
500E+00
600E+00
700E+00
800E+00
900E+00
0,000 0,003 0,006 0,009
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 52 
 
 Capacidad de curvatura 
 
Donde los valores para la dirección X en sentido positivo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 1.785(m) 
C : 1.36 (m) para un muro de espesor de 15 cm. 
 
 
Donde los valores para la dirección X en sentido negativo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 1.785 (m) 
C : 0.66 (m) para un muro de espesor de 15 cm. 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 53 
 
4.2.1.2 Elemento de borde 
 
 La zona en compresión se debe reforzar con un elemento de borde si: 
 
 
 
Donde los valores para la dirección X en sentido positivo son: 
φu : 0.00034588 (m-1) 
C : 1.36 (m) 
Requiere elemento especial de bordeDonde los valores para la dirección X en sentido negativo son: 
φu : 0.00034588 (m-1) 
C : 0.66 (m) 
No requiere elemento especial de borde 
 
 El elemento especial de borde en el sentido positivo de la dirección X debe cumplir la 
siguientes condiciones: 
 Se debe extender verticalmente 
 
 
 
 
 
 
 
La mayor longitud 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 54 
 
La menor dimensión (s) 
 El elemento especial de borde se debe extender verticalmente 3.57 (m) 
 
 
 Se debe extender Horizontalmente 
 
 
 
 
 
 
El elemento especial de borde, se debe extender horizontalmente 0.4 (m) 
 
 Espaciamiento de los ganchos suplementarios 
 
 
 
 
 
 
Los ganchos suplementarios del elemento especial de borde, deben tener una separación 
10 (cm) 
 
 Separación del refuerzo transversal 
 
 
 
 
 
 
 
 
El refuerzo transversal del elemento especial de borde, debe estar espaciado a 10 (cm) 
 
 
 
 
La mayor longitud (Cc) 
La menor dimensión (hx) 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 55 
 
La mayor área 
 Sección del refuerzo transversal 
 
 
 
 
 
 
El refuerzo transversal del elemento especial de borde, debe ser φsh10 (0.785 cm2) 
 
 Detalle de armadura 
 
Figura 41.Detalle de armadura de confinamiento del muro L P/5 2p, para el sentido positivo de 
la dirección X, para el diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 56 
 
4.2.2 Rediseño del muro J P/5, Considerando como largo de rotula plástica 0.5Lw 
4.2.2.1 Diseño a flexión y carga axial 
 Solicitaciones 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -531,99 -132,50 2,26 
1.4(D+L+-Sx) Max -265,50 -12,11 886,04 
1.4(D+L+-Sx) Min -754,78 -241,53 -879,24 
1.4(D+L+-Sy) Max -460,10 -85,54 296,80 
1.4(D+L+-Sy) Min -560,18 -168,11 -289,99 
0.9D+-1.4Sx Max -17,75 50,22 888,24 
0.9D+-1.4Sx Min -507,04 -179,20 -877,04 
0.9D+-1.4Sy Max -212,35 -23,21 299,00 
0.9D+-1.4Sy Min -312,44 -105,78 -287,79 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-5.Solicitaciones del muro J P/5 en la parte superior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). 
 
Parte inferior del muro 
Combinaciones* P (ton) M2 (ton-m) M3 (ton-m) 
1.4D+1.7L -546,86 -44,57 51,77 
1.4(D+L+-Sx) Max -280,36 126,29 1255,23 
1.4(D+L+-Sx) Min -769,65 -211,50 -1153,86 
1.4(D+L+-Sy) Max -474,96 308,29 372,14 
1.4(D+L+-Sy) Min -575,05 -393,50 -270,76 
0.9D+-1.4Sx Max -27,31 147,40 1233,89 
0.9D+-1.4Sx Min -516,60 -190,39 -1175,19 
0.9D+-1.4Sy Max -221,91 329,40 350,80 
0.9D+-1.4Sy Min -322,00 -372,39 -292,10 
*Nota: Para simplificar la comparación se mantendrán las 
combinaciones de cargas originales. 
Tabla 4-6.Solicitaciones del muro J P/5 en la parte inferior, para el diseño con el Ds Nº60 
(largo de rotula plástica de 0.5Lw). 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 57 
 
 Carga axial máxima. 
Dónde: 
Pu : 769.65 (ton) en compresión 
f´c : 2000 (ton/m2) 
Lw : 6.16 (m) 
ew : 0.2 (m) 
 
 Detalle de armadura 
 
 
Figura 42.Detalle de armadura longitudinal del muro J P/5, para el diseño con el Ds Nº60 
(largo de rotula plástica 0.5Lw). 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 58 
 
 Diagrama de interacción 
 
 
Figura 43.Diagrama de interacción del muro J P/5 para la dirección X, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 44.Diagrama de interacción del muro J P/5, para la dirección Y, para el diseño con el Ds 
Nº60 (largo de rotula plástica de 0.5Lw). 
 
-4000
-3500
-3000
-2500
-2000
-1500
-1000
-500
0
500
1000
-6000 -4000 -2000 0 2000 4000 6000
P
n 
(t
on
) 
Mn (ton-m) 
Diagrama de interacción - Dirección X 
Mn Pn
φMn φPn 
Solicitaciones
-4000
-3500
-3000
-2500
-2000
-1500
-1000
-500
0
500
1000
-2000 -1000 0 1000 2000
P
n 
(t
on
) 
Mn (ton-m) 
Diagrama de interacción - Dirección Y 
Mn Pn
φMn φPn 
Solicitaciones
Nota: Compresión 
son los valores 
negativos 
 
Nota: Compresión 
son los valores 
negativos 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 59 
 
 Diagrama de momento curvatura 
El rediseño se realiza solo en la dirección X, para sus dos sentidos 
 
 
Figura 45.Diagrama de momento curvatura del muro J P/5, para el sentido positivo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
Figura 46.Diagrama de momento curvatura del muro J P/5, para el sentido negativo, para el 
diseño con el Ds Nº60 (largo de rotula plástica de 0.5Lw). 
 
 
0.000E+00
500E+00
1.000E+00
1.500E+00
2.000E+00
2.500E+00
3.000E+00
3.500E+00
0,00 0,01 0,02 0,03
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
0.000E+00
500E+00
1.000E+00
1.500E+00
2.000E+00
2.500E+00
3.000E+00
3.500E+00
4.000E+00
4.500E+00
5.000E+00
0,000 0,002 0,004
M
om
en
to
 (
to
n-
m
) 
Curvatura (rad/m) 
Diagrama de momento curvatura 
Curvatura
Curvatura nominal
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 60 
 
 Capacidad de curvatura 
 
Donde los valores para la dirección X en sentido positivo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 3.08 (m) 
C : 0.13 (m) para un muro de espesor de 20 cm. 
 
 
Donde los valores para la dirección X en sentido negativo son: 
δu : 0.183 (m) 
Hw : 29.64 (m) 
Lp : 3.08 (m) 
C : 1.59 (m) para un muro de espesor de 20 cm. 
 
 
 
 
Guía Práctica para el Diseño de Muros de Hormigón Armado 
 
Proyecto Innova 10CREC-8580 
Metodología de Diseño Sísmico de Muros en Edificios 
Versión - Mayo 2013 Página 61 
 
4.2.2.2 Elemento de borde 
 
 La zona en compresión se debe reforzar con un elemento de borde si: 
 
 
 
Donde los valores para la dirección X en sentido positivo son: 
φu : 0.002004574 (m-1) 
C : 0.13 (m) 
No requiere elemento especial de borde 
 
Donde los valores para la dirección X en sentido negativo son: 
φu : 0.002004574 (m-1) 
C : 1.59 (m) 
No requiere elemento especial de borde

Continuar navegando