Logo Studenta

TFG-1772-GARCIA

¡Este material tiene más páginas!

Vista previa del material en texto

i 
 
 Equation Chapter 1 Section 1 
Proyecto Fin de Carrera 
Ingeniería de Tecnologías Industriales 
 
Determinación de propiedades mecánicas de 
materiales comerciales 
Autor: Andrés García Galet 
Tutor: Carlos Navarro Pintado 
Dep. Ingeniería Mecánica y Fabricación 
Escuela Técnica Superior de Ingeniería 
Universidad de Sevilla 
 Sevilla, 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
iii 
 
Proyecto Fin de Carrera 
Ingeniería de Tecnologías Industriales 
 
 
 
 
 
Determinación de propiedades mecánicas de 
materiales comerciales 
 
 
Autor: 
Andrés García Galet 
 
Tutor: 
Carlos Navarro Pintado 
Profesor Titular 
 
 
 
Dep. de Ingeniería Mecánica y Fabricación 
Escuela Técnica Superior de Ingeniería 
Universidad de Sevilla 
Sevilla, 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v 
 
Proyecto Fin de Carrera: Determinación de propiedades mecánicas de materiales comerciales 
 
 
 
 
Autor: Andrés García Galet 
Tutor: Carlos Navarro Pintado 
 
 
El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros: 
Presidente: 
 
 
 
Vocales: 
 
 
 
 
Secretario: 
 
 
 
 
Acuerdan otorgarle la calificación de: 
 
Sevilla, 2018 
 
 
 
El Secretario del Tribunal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vii 
 
 
 
 
 
Agradecimientos 
A Carlos Navarro, por permitirme realizar este proyecto y ser comprensivo en las dificultades que he sufrido 
durante su realización. 
A José Guareño, Marta Martinez-Darve y Mercedes Fernández, por su acogida en el laboratorio y por toda la 
ayuda prestada para la realización de este proyecto. 
A mis padres, por apoyarme siempre y permitirme estudiar esta carrera. 
A mis amigos, por aguantarme siempre y ayudarme a despejar la cabeza en los momentos que lo necesitaba. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ix 
 
 
 
 
 
Resumen 
En este proyecto, se pretende abordar la problemática actual que ocurre por el uso de nomenclaturas antiguas 
en las empresas que trabajan con el acero y realizar un estudio sobre la veracidad de los datos aportados por 
dichas empresas para las propiedades mecánicas que poseen los aceros que venden. Para ello, se escogen tres 
aceros de uso comercial y se les realiza un estudio de sus propiedades mecánicas a través de los ensayos de 
tracción, dureza y fatiga. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xi 
 
 
 
 
 
Abstract 
In this project, it is intended to address the current problem that occurs using old nomenclatures in companies 
working with steel and conduct a study on the accuracy of the data provided by these companies for the 
mechanical properties of the steels that sell. To do this, three steels, that are used commercially, are chosen and 
a study is made of their mechanical properties through tensile, hardness and fatigue tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Índice 
Agradecimientos vii 
Resumen ix 
Abstract xi 
Índice xii 
Índice de Tablas xiii 
Índice de Figuras xiv 
1 Introducción 1 
2 Caracterización de los materiales 3 
2.1 Acero al carbono: F-1 4 
2.2 Acero bonificado: 34CrNiMo6 6 
2.3 Acero inoxidable: 316L 8 
3 Ensayo de tracción 10 
3.1 Preparación del ensayo de tracción 14 
3.2 Realización del ensayo de tracción 19 
3.3 Obtención de resultados 22 
3.4 Resultados del ensayo de tracción 23 
3.4.1 Resultados del ensayo de tracción para el acero F-1 24 
3.4.2 Resultados del ensayo de tracción para el acero 34CrNiMo6 28 
3.4.3 Resultados del ensayo de tracción para el acero 316L 34 
3.4.4 Comparación de los ensayos de tracción de los tres aceros 39 
4 Ensayo de dureza 40 
4.1 Preparación del ensayo y obtención de los resultados del ensayo de dureza 41 
4.2 Realización del ensayo de dureza 43 
4.3 Resultados del ensayo de dureza 46 
4.3.1 Resultados del ensayo de dureza para el acero F-1 46 
4.3.2 Resultados del ensayo de dureza para el acero 34CrNiMo6 47 
4.3.3 Resultados del ensayo de dureza para el acero 316L 48 
5 Ensayo de fatiga 50 
5.1 Preparación del ensayo de fatiga 53 
5.2 Realización del ensayo de fatiga 57 
5.3 Resultados del ensayo de fatiga 58 
5.3.1 Resultados del ensayo de fatiga para el acero F-1 59 
5.3.3 Resultados del ensayo de fatiga para el acero 34CrNiMo6 61 
5.3.3 Resultados del ensayo de fatiga para el acero 316L 63 
5.3.4 Comparación de los ensayos de fatiga de los tres aceros 66 
6 Conclusión 67 
Bibliografía 69 
xiii 
 
 
 
 
 
ÍNDICE DE TABLAS 
 
 
Tabla 1. Comparación de la composición química del acero F-1 ensayado con la norma 5 
Tabla 2. Equivalencias internacionales del acero 34CrNiMo6 6 
Tabla 3. Comparación de la composición química del acero 34CrNiMo6 ensayado con la norma 7 
Tabla 4. Equivalencias internacionales del acero 316L 8 
Tabla 5. Comparación de la composición química del acero 316L ensayado con la norma 9 
Tabla 6. Resultados del ensayo de tracción de las cinco probetas del acero F-1 24 
Tabla 7. Valores del módulo de elasticidad para los cinco ensayos del acero F-1 26 
Tabla 8. Valores del límite elástico para los cinco ensayos del acero F-1 26 
Tabla 9. Resultados del ensayo de tracción de las cinco probetas del acero 34CrNiMo6 28 
Tabla 10. Comparación de resultados experimentales del acero 34CrNiMo6 33 
Tabla 11. Resultados del ensayo de tracción de las cinco probetas del acero 316L 34 
Tabla 12. Comparación de resultados experimentales del acero 316L 38 
Tabla 13. Resultados del ensayo de dureza para la probeta 1 del acero F-1 46 
Tabla 14. Resultados del ensayo de dureza para la probeta 2 del acero F-1 46 
Tabla 15. Resultados del ensayo de dureza para la probeta 3 del acero F-1 46 
Tabla 16. Resultados del ensayo de dureza para la probeta 1 del acero 34CrNiMo6 47 
Tabla 17. Resultados del ensayo de dureza para la probeta 2 del acero 34CrNiMo6 47 
Tabla 18. Resultados del ensayo de dureza para la probeta 3 del acero 34CrNiMo6 47 
Tabla 19. Resultados del ensayo de dureza para la probeta 1 del acero 316L 48 
Tabla 20. Resultados del ensayo de dureza para la probeta 2 del acero 316L 48 
Tabla 21. Resultados del ensayo de dureza para la probeta 3 del acero 316L 48 
Tabla 22. Medidas de las probetas de fatiga del acero F-1 59 
Tabla 23. Resultados de los ensayos de fatiga para el acero F-1 60 
Tabla 24. Medidas de las probetas de fatiga del acero 34CrNiMo6 61 
Tabla 25. Resultados de los ensayos de fatiga para el acero 34CrNiMo6 62 
Tabla 26. Medidas de las probetas de fatiga del acero 316L 63 
Tabla 27. Resultados de los ensayos de fatiga para el acero 316L 63 
 
 
 
 
 
 
 
ÍNDICE DE FIGURAS 
 
 
Figura 1. Disposición general del ensayo de tracción 10 
Figura 2. Diagrama fuerza-alargamiento 11 
Figura 3. Diagrama esquemático tensión-deformación en el ensayo de tracción de un acero 12 
Figura 4. Plano de la probeta del ensayo de tracción 15 
Figura 5. Tabla de medidas normalizadas para probetas del ensayo de tracción sacada de la norma UNE EN 
ISO 6892-1 16 
Figura 6. Tabla de tolerancias de la probeta del ensayo de tracción sacada de la norma UNE EN ISO 6892-1
 16 
Figura 7. Extensómetro 17 
Figura 8. Mordazas usadas para el ensayo de tracción 18 
Figura 9. Tabla de elección de velocidad de puesta en carga sacada de la norma UNE EN ISO 6892-1 19 
Figura 10. Cabezal superior de la máquina de ensayos MTS 810 20 
Figura 11. Programa para realizar el ensayode tracción 21 
Figura 12. Realización del ensayo de tracción 22 
Figura 13. Curva tensión-deformación experimental del acero F-1 25 
Figura 14. Comparación entre curva verdadera e ingenieril para el acero F-1 27 
Figura 15. Curvas tensión-deformación verdadera para los cinco ensayos del acero F-1 28 
Figura 16. Curva tensión-deformación para el acero 34CrNiMo6 29 
Figura 17. Tramo elástico de la curva tensión-deformación del acero 34CrNiMo6 30 
Figura 18. Procedimiento alternativo para el cálculo del límite elástico convencional 31 
Figura 19. Comparación entre curva verdadera e ingenieril para el acero 34CrNiMo6 32 
Figura 20. Curvas tensión-deformación verdadera para los cinco ensayos del acero 34CrNiMo6 33 
Figura 21. Curva tensión-deformación para el acero 316L 35 
Figura 22. Tramo elástico de la curva tensión-deformación del acero 316L 36 
Figura 23. Comparación entre curva verdadera e ingenieril para el acero 316L 37 
Figura 24. Curvas tensión-deformación verdadera para los cinco ensayos del acero 316L 38 
Figura 25. Comparación de la curva tensión-deformación de los tres aceros ensayados 39 
Figura 26. Disposición general del ensayo de dureza Vickers 42 
Figura 27. Rangos de fuerza de ensayo según la norma UNE-EN ISO 6507-1 42 
xv 
 
Figura 28. Máquina de ensayos de dureza Vickers 43 
Figura 29. Identador ejerciendo fuerza sobre la probeta 44 
Figura 30. Huella dejada por el identador 45 
Figura 31. Pantalla de control de la máquina de ensayos de dureza Vickers 45 
Figura 32. Superficie con rotura por fatiga 51 
Figura 33. Bandas de deslizamiento y fases de iniciación de una grieta 51 
Figura 34. Detalles de las estructuras superficiales causadas por las bandas de deslizamiento persistente en la 
superficie de un cristal 52 
Figura 35. Probeta del ensayo de fatiga y su plano 54 
Figura 36. Mordazas usadas para los ensayos de fatiga 55 
Figura 37. Carga cíclica de amplitud constante 56 
Figura 38. Realización del ensayo de fatiga 58 
Figura 39. Curva S-N experimental para el acero F-1 60 
Figura 40. Curva S-N experimental para el acero 34CrNiMo6 62 
Figura 41. Probeta del ensayo fallido del acero 316L 64 
Figura 42. Curva S-N experimental para el acero 316L 65 
Figura 43. Comparación de los ensayos de fatiga para los tres aceros ensayados 66 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
1 INTRODUCCIÓN 
 
En la actualidad, uno de los materiales más comercializado en el mundo es el acero. Esto se debe a que es un 
material con unas propiedades tanto físicas como mecánicas muy buenas, que lo hace una opción muy 
recomendable para piezas que tengan que soportar algún tipo de esfuerzo. 
Al comienzo de la comercialización de este material, existían pocos tipos de aceros, lo que hacía sencillo el 
que fueran conocidos por todos los fabricantes que los usaban. Sin embargo, con el paso del tiempo y con el 
objetivo de conseguir aceros que posean unas propiedades más específicas, el número de tipos de aceros se ha 
incrementado considerablemente. Esto ha dado lugar a volver a nombrar los aceros existentes varias veces, 
para así dar cabida a nombrar de manera similar a los aceros con propiedades similares. Un claro ejemplo en 
las normas españolas que regulan la nomenclatura de los aceros es el caso de que, antiguamente, algunos de 
los aceros se nombraban con una letra F seguida de un dígito (ej: F-1, F-5…). Sin embargo, la gran cantidad de 
aceros existentes ha hecho que ahora algunos aceros se nombren con esa misma F seguida de hasta cuatro 
dígitos (ej: F-1120, F-1252…). Todo esto hace preguntarse qué ha ocurrido con aquellos aceros que eran tan 
usados antiguamente pero que se quedaron con una nomenclatura obsoleta. 
La suposición oficial dice que todos aquellos aceros volvieron a ser renombrados e incluidos en la nueva 
nomenclatura usada. Sin embargo, la realidad es que no todos los talleres de mecanizados que trabajan con 
aceros se han modernizado a la misma velocidad, por lo que hoy en día siguen existiendo talleres que aún usan 
esa nomenclatura antigua. 
A esta problemática que ocurre en las empresas que trabajan con aceros en España, se le une que no existe una 
sola norma que defina y nombre a todos los aceros existentes, sino que en cada país se usa una norma diferente 
para catalogar un acero. Incluso existen países en los que hay talleres que, pese a disponer de una norma propia 
que catalogue los aceros, para algunos aceros usa la norma nacional, pero para otros aceros decide llamarlos 
como lo definen otras normas internacionales. Esto hace que conocer exactamente el acero con el que se está 
trabajando no sea tan fácil como debería ser. 
Además de todo esto previamente dicho, hay que tener en cuenta otro problema importante a la hora de usar 
un acero. A un acero ya definido se le presuponen una serie de propiedades tanto mecánicas como físicas que 
debe cumplir. Sin embargo, debido en parte a la problemática de conocer realmente el acero con el que se está 
trabajando, hay que tener cuidado a la hora de confiar al completo en las propiedades que dicen que dicho 
acero ha de tener, porque podría llegar a ocurrir que no fueran correctas, pudiendo ocurrir un fallo antes de lo 
previsto. 
De estos dos problemas expuestos nace este proyecto. En él se pretende escoger tres aceros muy usados 
comercialmente en los talleres de mecanizado de Sevilla y caracterizarlos, para así conocer las propiedades 
mecánicas que tiene y poder realizar una comparación con las que se supone que deben tener. Además, 
también se intentará saber si cada uno estos aceros es el mismo para las diferentes empresas del sector o si 
existe discordancia entre la forma de llamarlos. 
Para la selección de los aceros a estudiar se ha preguntado a diferentes talleres de mecanizado de la provincia 
de Sevilla cuáles son los aceros con los que generalmente más se trabaja en el lugar. De los aceros más 
coincidentes entre los diferentes talleres, se ha decidido escoger aquellos tres aceros que tuvieran propiedades 
 
 Introducción 
2 
 
2 
diferentes para hacer más provechoso el estudio a realizar, por lo que se ha decidido coger un acero con una 
resistencia media, un acero con una resistencia muy alta y un acero inoxidable. 
Por tanto, tras un estudio previo de los aceros usados en los talleres, prestando especial atención a los aceros 
recomendados por el taller de mecanizado Cortés Vasallo, que es el taller que mecanizaría las probetas que se 
usan en los ensayos, se ha decidido escoger los tres aceros siguientes: F-1, 34CrNiMo6 y 316L. 
A estos tres aceros se les pretende caracterizar, realizando una serie de ensayos que definan algunas de sus 
propiedades mecánicas. Concretamente, en este proyecto, a cada acero se le realizan tres ensayos: el ensayo de 
tracción, el ensayo de dureza y el ensayo de fatiga. Con estos ensayos se pueden obtener propiedades 
mecánicas de los aceros tan relevantes como son la resistencia de la tracción, la dureza del material o el 
comportamiento a fatiga, entre muchas otras. 
Para un mejor entendimiento de los ensayos realizados, en este proyecto se ha creado un punto específico para 
cada ensayo. En cada punto se tratará de explicar con detenimiento todo lo relacionado a su ensayo 
correspondiente, como la información relevante que ofrecen, la forma de preparar y de realizar dicho ensayo, 
incluso cómo obtener la información del material que se saca del ensayo. Una vez explicados, se expondrán 
los resultados obtenidos y se realizará una comparación con los resultados que según fabricantes y proveedores 
deberían haberse obtenido. 
 
 
 
 
3 
 
 
2 CARACTERIZACIÓN DE LOS MATERIALES 
En este proyecto se caracterizan tres materiales que, pese a ser diferentes, se encuentran dentro de la familia de 
los aceros. El termino acero sirve comúnmente para denominar a una mezcla de hierro con una cantidad 
variable de carbono comprendida entre 0,03% y el 2,14% en masa de su composición.Dicha adición de 
carbono crea un material muy diferente, el cual no debe de ser confundido con el hierro. 
El hierro es un metal duro y relativamente dúctil, con un diámetro atómico de 2,48 Å . Por otra parte, el 
carbono es un no metal blando y frágil (excepto en la forma de diamante), con un diámetro atómico menor de 
1,54 Å. Gracias a la diferencia en diámetros atómicos se logra la difusión del carbono en la estructura cristalina 
del hierro, formándose un compuesto intersticial. En resumen, se forma un compuesto en el que algunas de las 
cavidades intersticiales de la red cristalina del hierro están ocupadas por átomos de carbono. Esto hace que el 
acero conserve las características metálicas del hierro en estado puro, las cuales lo hacen un material 
relativamente duro y tenaz, pero gracias a la adición de carbono y de otros elementos tanto metálicos como no 
metálicos se consigue mejorar sus propiedades. 
Hay que tener en cuenta que el número de aceros existentes en el mundo es muy grande y va día a día en 
aumento. Por tanto, es importante agruparlos en grupos que hagan más sencilla su identificación. Para ello 
existen diversas formas de agrupar a los aceros tal y como se muestra a continuación: 
• En función de los elementos que predominan en su composición. Ejemplo: aceros al carbono, aceros 
al silicio… 
• En función de su susceptibilidad a ciertos tratamientos. Ejemplo: aceros de cementación, aceros de 
bonificación… 
• En función de alguna característica potenciada. Ejemplo: aceros inoxidables… 
• En función de su uso. Ejemplo: aceros estructurales… 
Ya que en este proyecto se van a caracterizar tres aceros, se ha intentado escoger aceros pertenecientes a 
diferentes grupos para obtener una mejor visión del estudio a realizar. Por tanto, los tres aceros escogidos para 
caracterizar en este proyecto son: 
• Un acero al carbono: F-1. 
• Un acero de bonificación: 34CrNiMo6. 
• Un acero inoxidable: 316L. 
 
 
 
 
 
 
 
 
 
 Caracterización de los materiales 
4 
 
4 
 
2.1 Acero al carbono: F-1 
Los aceros al carbono, también llamados aceros estructurales, son aceros en los que el principal aleante es el 
carbono. Históricamente, un 90% de la producción mundial se correspondía con estos aceros y el 10% restante 
a aceros aleados. Sin embargo, la actual tendencia es hacia un crecimiento de la proporción de los aceros 
aleados en detrimento de la producción de aceros al carbono. Este cambio se produce gracias a que las 
investigaciones en materiales han permitido conseguir aceros aleados con buenas propiedades mecánicas y que 
pesen menos, lo cual es un requisito importante en la construcción de cualquier máquina o estructura. A pesar 
de esto, los aceros al carbono siguen usándose mucho en la mayoría de las industrias. 
La composición química de los aceros al carbono es compleja: además del hierro y el carbono que 
generalmente no supera el 1%, hay en la aleación otros elementos necesarios para su producción, tales como 
silicio y manganeso, y otros que se consideran impurezas por la dificultad de excluirlos totalmente como el 
azufre, el fósforo, etc. 
El acero al carbono estudiado en este proyecto es el acero F-1. Este acero lleva usándose desde los principios 
de la comercialización de aceros en España para una gran cantidad de piezas a las que no se les exigen unas 
propiedades mecánicas específicas debido a que se usarán en lugares en los que una rotura de la pieza no 
significará un problema. 
La nomenclatura de la calidad F-1, se debería haber quedado obsoleta hace muchos años, teniendo en cuenta 
que ahora, en la normativa española UNE, los aceros que se nombran con la letra F van seguidos de cuatro 
dígitos (ej: F-1120, F-1272…) en lugar de un solo dígito como se hacía antiguamente (ej: F-1, F-5…). Sin 
embargo, debido a la gran demanda que sigue teniendo este acero y a que no se le exigen unas propiedades 
mecánicas concretas, en España nadie se ha decidido a acabar con la nomenclatura de la calidad F-1. 
Lo que ocurre es que el acero de calidad F-1 abarca muchas calidades de la nueva nomenclatura, pudiendo 
asemejarse un F-1 a un S235, un S275 o incluso hasta un S335. Esto ha dado lugar a que no exista nadie que 
defina las propiedades mecánicas del acero F-1, debido a que el rango que abarca es demasiado grande y los 
proveedores prefieren no decir nada que los pudiera comprometer. 
Por tanto, al no conocer el nombre que tendría el F-1 ensayado en la nueva nomenclatura española, no se 
puede decir qué equivalencias tiene con las diferentes normas internacionales, como sí se hará para los 
siguientes aceros. 
Pese a todo, para que un acero pueda ser considerado F-1, este debe cumplir una composición química 
específica. Sin embargo, a diferencia de los demás aceros en general, éste está obligado a contener cinco 
elementos para llamarlo F-1, que son carbono, manganeso, silicio, fósforo y azufre. Pero hay hasta ocho 
elementos más que se le permite tener aunque no de manera obligatoria, los cuales son cromo, molibdeno, 
níquel, cobre, estaño, vanadio, aluminio y titanio. A continuación, en la tabla 1, se muestra la composición del 
acero ensayado, que es proporcionada por el proveedor del material en el certificado de calidad del acero, y el 
rango de composiciones que debe cumplir un acero para poder denominarse F-1. En esta tabla se muestra el 
tanto por ciento en peso que el material posee de cada elemento. 
 
 
 
 
 
5 
 
5 Caracterización de los materiales 
 
Tabla 1. Comparación de la composición química del acero F-1 ensayado con la norma 
 
C Mn Si P S Cr Mo 
Norma 
Min 0,0300 0,2500 0,0500 0,0010 0,0001 0,0001 0,0001 
Max 0,3000 1,6000 0,5000 0,0500 0,1000 0,5000 0,2000 
Experimental 0,0700 0,4700 0,1200 0,0140 0,0180 0,0800 0,0200 
 
 
Ni Cu Sn V Al Ti 
Norma 
Min 0,0001 0,0001 0,0001 0,0001 0,0010 0,0001 
Max 0,4000 0,5500 0,0700 0,1500 0,0550 0,0350 
Experimental 0,0800 0,2600 0,0010 0,0020 - - 
 
Como se puede observar en la tabla, la composición química del acero ensayado cumple con los requisitos 
para poder denominarlo como acero F-1. 
El acero F-1 es un acero con un límite elástico y una resistencia a la tracción de valor relativamente bajo para 
tratarse de acero, pero tiene una buena ductilidad y tenacidad, mostrando buenas características para la 
soldadura. Este es un acero que no lleva tratamiento térmico, pero gracias a la buena ductilidad que posee se le 
ha realizado un proceso de estirado en frío, con el cual se ha conseguido aumentar su límite elástico a unos 
valores mayores a los del acero original. 
Las aplicaciones para las que se usa este acero son innumerables, siempre y cuando se use para piezas de baja 
responsabilidad que no necesiten unas propiedades mecánicas concretas. Sus aplicaciones más comunes son la 
fabricación de remaches, pernos, tubos y estructuras metálicas. 
Por último, hay que comentar que, debido a que ninguna empresa dice las propiedades mecánicas que el acero 
F-1 posee, no se podrán comparar los resultados que se obtengan experimentalmente con los otorgados por los 
fabricantes, como se hará con los otros dos aceros. Aun así, se podrá decir que un acero F-1 con la misma 
composición química que el ensayado debe cumplir las propiedades mecánicas que aquí se obtienen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Caracterización de los materiales 
6 
 
6 
 
2.2 Acero bonificado: 34CrNiMo6 
Los aceros bonificados reciben ese nombre porque son aceros que poseen una composición adecuada para que 
se les realice un bonificado. Un bonificado es un tratamiento térmico que consta de un temple seguido de su 
posterior revenido. Este tratamiento térmico se realiza para mejorar en gran medida las propiedades mecánicas 
de una aleación metálica. 
En este proyecto, el acero bonificado que se va a caracterizar es el 34CrNiMo6, un acero aleado al Ni-Cr-Mo 
(Níquel-Cromo-Molibdeno). Este es un acero de gran templabilidadque presenta, después de un revenido alto, 
una buena combinación de resistencia y tenacidad, incluso en piezas de gran sección o espesor. 
En un principio, cuando se pidió este acero al taller de mecanizado que proporcionaría las probetas, el acero 
fue pedido como F-127. Una vez el taller de mecanizado entregó las probetas ya mecanizadas con el 
certificado de calidad del acero, dicho certificado catalogaba al acero comprado como 34CrNiMo6. 
A fin de cuentas, este acero es un perfecto ejemplo que permite explicar la problemática existente hoy en día 
en la nomenclatura de los aceros. Para algunos talleres de mecanizado como Cortes Vasallo o empresas 
proveedoras de acero como Aceros Llobregat S.A., el acero 34CrNiMo6 se corresponde con el F-127. Sin 
embargo, para otras empresas proveedoras de aceros en España, como son Metal Service Metales Catalunya 
S.L o ThyssenKrupp Materials Ibérica, el acero 34CrNiMo6 se corresponde con el acero F-128. Incluso 
existen otras empresas, como Aceros Griñón, que catalogan al acero 34CrNiMo6 como un acero diferente 
tanto al F-127 como al F-128, catalogando estos como 40NiCrMo7 y 39NiCrMo3 respectivamente. 
Esto genera un serio problema a la hora de asegurarse con que acero se trabaja. Y todo viene dado porque en 
España, en muchos lugares se sigue trabajando con una nomenclatura antigua que ya tenía que haberse 
quedado obsoleta, pero que, por comodidad, las empresas han seguido usando si llegar a un acuerdo entre 
todas. 
En lo único que, en general, coinciden las empresas antes nombradas con respecto al acero 34CrNiMo6 es que, 
según el sistema de numeración para los aceros acorde con la normativa EN (Número estándar: WNr), este 
acero se puede catalogar como 1.6582. 
Por tanto, la manera más sencilla de catalogar este acero en las diferentes normas internacionales y no dar 
lugar a confusión es como lo catalogan empresas como Aceros IMS o Aceros Griñón y como se muestra a 
continuación en la tabla 2. 
 
Tabla 2. Equivalencias internacionales del acero 34CrNiMo6 
 
Pero para que el acero usado sea 34CrNiMo6, su composición química debe cumplir una serie de requisitos 
recogidos en la siguiente tabla mostrada, tabla 3. Dichos rangos de composición que debe cumplir el acero 
para poder denominarse 34CrNiMo6 se encuentran en el catálogo de la empresa IMS, suministradora de los 
EUROPA 
EN 10083 
EUROPA 
WNr 
ESPAÑA ALEMANIA FRANCIA ITALIA 
SIMBÓLICA NUMÉRICA UNE 36011-12 DIN 17200 NF A35-552-86 UNI 7846 
34CrNiMo6 1.6582 34CrNiMo6 34CrNiMo6 34CrNiMo6 34CrNiMo6 
 
7 
 
7 Caracterización de los materiales 
 
aceros para los ensayos. 
 
Tabla 3. Comparación de la composición química del acero 34CrNiMo6 ensayado con la norma 
 
C Mn Si P S Cr Mo 
Norma 
Min 0,3000 0,5000 0,0001 0,0001 0,0001 1,3000 0,1500 
Max 0,3800 0,8000 0,4000 0,0350 0,0350 1,7000 0,3000 
Experimental 0,3800 0,6800 0,3300 0,0100 0,0290 1,4500 0,2810 
 
 
Ni Cu Sn V Al Ti 
Norma 
Min 1,3000 
- - - - - 
Max 1,7000 
Experimental 1,6300 0,1400 0,0090 0,0050 0,0300 0,0020 
 
Como se observa, la composición química del acero ensayado cumple la normativa para definirse como acero 
34CrNiMo6, ya que todos los valores de composición de éste están dentro del rango impuesto por la norma. 
Además de los elementos impuestos por la norma, el acero ensayado posee más elementos que son 
considerados como impurezas. 
Pero lo que más caracteriza a este acero no es su composición, si no los tratamientos térmicos a los que ha sido 
sometido. Estos son la clave de las buenas propiedades mecánicas que posee este acero. 
El tratamiento térmico realizado a este acero comienza con un temple, que tiene como finalidad aumentar la 
dureza y la resistencia del acero. Para ello se calienta el acero a una temperatura superior a la de austenización 
(830 – 870 ºC) y luego se enfría lo suficientemente rápido en un medio como el aceite o el agua para obtener 
una estructura martensítica. Así se consigue una estructura con martensita, el cual es el constituyente más duro 
después de la cementita. 
Pese a que con el temple se consigue un material muy duro, este también hace que el material se vuelva muy 
frágil debido a las tensiones internas producidas por el proceso de endurecimiento. Por tanto, después del 
temple, a este acero se le realiza un revenido. 
En el revenido, el acero se vuelve a calentar a una temperatura entre 540 y 680 ºC, pero esta vez la velocidad 
de enfriamiento es mucho menor que en el temple. Con esto se disminuye un poco la dureza y la resistencia 
con respecto al acero templado, pero se eliminan las tensiones internas creadas por el temple y se mejora 
mucho la tenacidad. Así se consigue un acero con la dureza y resistencia deseada poseyendo además una 
buena tenacidad. 
En consecuencia, se consigue un acero que puede ser usado en piezas sometidas a cargas muy elevadas que 
necesitan tener una alta tenacidad. Por ello este acero se utiliza mucho en la industria del automóvil y para la 
construcción de motores con una alta resistencia, siendo usado para hacer cigüeñales, ejes, bielas, husillos y en 
general piezas sometidas a grandes esfuerzos de fatiga, flexión, torsión, choques, etc. 
 
 
 
 
 
 Caracterización de los materiales 
8 
 
8 
 
2.3 Acero inoxidable: 316L 
El acero inoxidable se define en metalurgia como una aleación de acero con una cantidad mínima del 10,5% 
en peso de cromo, lo cual le da al acero una alta resistencia a la corrosión. Además de cromo, los aceros 
inoxidables contienen otros metales aleantes como el níquel o el molibdeno, los cuales mejoran algunas de sus 
propiedades físicas. Estos metales aleantes poseen una gran afinidad con el oxígeno con el cual reaccionan, 
formando una capa pasivadora de unos 10 nm, evitando así la corrosión del hierro contenido en la aleación. 
En concreto, los aceros con un contenido de cromo entre el 16% y el 28% y de níquel entre el 6% y el 32% se 
les denomina austeníticos ya que poseen una estructura metalográfica formada básicamente por austenita a 
temperatura ambiente. Estos aceros inoxidables austeníticos son los más populares gracias a su excelente 
resistencia a la corrosión, la cual es superior a los otros tipos de aceros inoxidables. Pese a ello, los aceros 
austeníticos tienen una característica a tener en cuenta y es que no pueden ser templados para mejorar sus 
propiedades mecánicas. Por eso, para este tipo de aceros existe otro tratamiento térmico que permite mejorar 
sus propiedades, el hipertemple, que será explicado más adelante. 
El acero inoxidable austenítico estudiado en este trabajo es el 316L, un acero normalizado según la norma 
AISI (American Iron and Steel Institute), la cual establece la clasificación de aceros y de aleaciones de 
materiales no ferrosos más utilizada en los Estados Unidos. Generalmente, los aceros inoxidables se suelen 
catalogar internacionalmente según la norma AISI, que los cataloga según la serie. Es decir, la serie 300 son 
los aceros inoxidables austeníticos, la serie 400 son los martensíticos, etc. Pese a que al hablar de este acero, 
incluso en España, se suele hacer según su nombre en la normativa AISI, también tiene sus equivalencias para 
las diferentes normas internacionales como se muestra en la tabla 4. 
 
Tabla 4. Equivalencias internacionales del acero 316L 
USA 
EUROPA 
EN 10088-3 
EUROPA 
WNr 
ALEMANIA FRANCIA ITALIA 
AISI/SAE SIMBÓLICA NUMÉRICA DIN 17350 AFNOR UNI 
316L X2CrNiMo17-12-2 1.4404 X2CrNiMo17-12-2 Z2CND17-12 X8CN1910 
 
El 316L es un acero inoxidable de cromo níquel que además contiene molibdeno. La adición de este elemento 
hace que aumente la resistencia a la corrosión general, mejorando, además, la resistencia a la corrosión por 
picaduras de soluciones de iones cloruro y proporcionando mayor resistencia a temperaturas elevadas. Aunque 
la verdadera diferencia de este acero con respecto a otros aceros inoxidables essu bajo contenido en carbono 
(0,03% en peso de carbono). Esto hace que se minimice la precipitación de carburos perjudiciales en la zona 
afectada por el calor de la soldadura, evitando así la corrosión intraganular durante dicho proceso. 
Según la norma AISI, para que un acero sea considerado 316L, su composición debe cumplir los requisitos de 
la siguiente tabla: 
 
 
 
 
9 
 
9 Caracterización de los materiales 
 
Tabla 5. Comparación de la composición química del acero 316L ensayado con la norma 
 
C Mn Si P S Cr 
Norma 
Min 0,0001 0,0001 0,0001 0,0001 0,0001 16,5000 
Max 0,0300 2,0000 1,0000 0,0450 0,0300 18,5000 
Experimental 0,0230 1,5200 0,4000 0,0360 0,0290 16,5000 
 
 
Mo Ni N Cu Co Ti 
Norma 
Min 2,0000 10,0000 0,0001 
- - - 
Max 2,5000 13,0000 0,1100 
Experimental 2,0300 10,0500 0,0780 0,6500 0,1400 0,0010 
 
Como se puede observar, la composición química del acero ensayado está dentro del rango teórico, por lo que 
se puede considerar que este acero es 316L, el cual tiene las siguientes características: 
• Alta resistencia a la corrosión por picaduras, concretamente frente a medios muy activos como: ácido 
acético concentrado (en caliente), ácido sulfúrico diluido, ácido fosfórico, soluciones alcalinas y 
ciertas soluciones salinas (como en la atmósfera marina). 
• Buena resistencia a la corrosión intragranular en aplicaciones que conlleven un uso continuado a 
temperaturas elevadas del rango de 450 a 850 ⁰C o en operaciones de soldadura. 
• Se suelda fácilmente, aunque para soldar hay que usar electrodos del mismo tipo de acero. 
• No es templable ni magnético. 
Como ya se ha comentado, este no es un acero al que se le pueda realizar un temple, pero en vez de eso, se le 
realiza un tratamiento térmico denominado hipertemple o temple de solubilización. Este es un tratamiento 
térmico habitual en los aceros inoxidables austeníticos que consiste en calentar el acero a una temperatura 
suficientemente alta (entre 1050 y 1100º C) para eliminar las alteraciones estructurales debidas a procesos de 
fabricación, mantenerlo en tal temperatura durante el tiempo necesario para solubilizar los carburos (en 
especial los de Cromo) y enfriarlo en agua con suficiente velocidad como para evitar nuevamente la 
precipitación de los carburos. El acero logra el estado de máximo ablandamiento y se le confiere con el 
tratamiento las mejores características de ductilidad e inoxidabilidad. 
El acero 316L es un acero que suele ser usado para piezas que demandan una alta resistencia a la corrosión 
localizada o que requieren garantizar resistencia a la corrosión intragranular al estar trabajando a temperaturas 
elevadas o al ser soldadas. Por tanto, existen muchos lugares donde se usa este acero como, por ejemplo: 
• Industria alimentaria, química, farmacéutica, textil, petrolera, fotográfica, lechera, del papel, de la 
pintura, del algodón, del caucho, del nylon, etc. 
• Cambiadores de calor, bombas, condensadores, evaporadores, tanques, cubas de fermentación, 
válvulas. 
• Piezas y utensilios expuestos al ambiente marítimo. 
• Varillas de soldadura (electrodos revestidos) 
10 
 
 
 
 
3 ENSAYO DE TRACCIÓN 
 
Entre los ensayos para determinar propiedades mecánicas de los materiales, el ensayo de tracción es el más 
utilizado por la sencillez en la preparación de la probeta y ejecución del ensayo, así como por la repetibilidad y 
fiabilidad de los resultados que se derivan del mismo. 
A expensas de una explicación más detallada sobre la forma de la probeta en uno de los siguientes apartados, 
la probeta del ensayo de tracción para materiales metálicos suele tener forma cilíndrica recrecida en los 
extremos donde es aprisionada lateralmente por unas mordazas para evitar que la probeta se deslice a lo largo 
de ellas al aplicar una carga longitudinal. 
 
Figura 1. Disposición general del ensayo de tracción 
 
La información que se precisa en el ensayo de tracción es la fuerza F que se aplica y el alargamiento ∆𝐿 que se 
está produciendo en la probeta. Para la medida de esta segunda magnitud existen diferentes métodos. A 
continuación, vamos a explicar los criterios seguidos para la elección del mejor método para estos ensayos. 
El método más sencillo de aplicar y sin requerir instrumentación adicional sobre la probeta, es tomar la 
separación de las mordazas como referencia. Esta alternativa de medida tiene dos inconvenientes: el primero 
es que en el inicio de la aplicación de la carga puede originarse un desplazamiento relativo entre la probeta y 
las mordazas. Considerando que el resultado generado suele ser lo suficientemente representativo para la 
mayoría de las aplicaciones, se podría asumir ese desplazamiento. No obstante, el segundo inconveniente es 
debido a que la medida de la separación longitudinal de las mordazas incluye la zona recrecida de la probeta y 
la de transición, por lo que para la evaluación de magnitudes puntuales implica tomar valores promedios y 
como consecuencia los resultados no son tan precisos. Por ello, se desestima este método y se determina optar 
 
11 
 
11 Ensayo de tracción 
 
por procedimientos que tomen medidas sobre la parte central de la probeta. 
Uno de los métodos para medir sobre la parte central de la probeta es utilizar un extensómetro que se fija a dos 
puntos de la probeta y mide la separación entre ambos puntos. Debido a su exactitud en la medida de la 
magnitud a medir y que es un instrumento reutilizable en tantos ensayos como se necesiten, ésta ha sido la 
alternativa escogida para hacer los ensayos. 
Otro procedimiento estudiado para la medición del alargamiento ha sido el uso de bandas extensométricas. 
Estas se adhieren a la probeta y miden el alargamiento unitario en la dirección en la que han sido colocadas. 
Esta alternativa da, si se coloca correctamente la banda extensométrica, unos valores fiables de alargamiento. 
Sin embargo, no ha sido elegida para estos ensayos debido al trabajo que requiere colocar y quitar la banda 
extensométrica para cada ensayo comparado con el de colocar y quitar el extensómetro. 
Centrándonos en la descripción del ensayo de tracción, habitualmente la fuerza es aplicada en uno de los 
extremos mientras que la otra mordaza permanece fija. No obstante, simbólicamente se representa el ensayo 
de tracción como se puede observar en la figura 1, en la que la fuerza de tracción es aplicada desde los dos 
extremos. 
En lo correspondiente al control del ensayo, en la mayoría de las máquinas existe la posibilidad de controlar 
por unidad de tiempo la fuerza aplicada o el desplazamiento de las mordazas. En cualquiera de los casos, la 
carga debe aplicarse moderadamente para evitar efectos dinámicos. 
De acuerdo con lo indicado anteriormente, la representación más habitual que se obtiene de forma directa del 
ensayo de tracción es un diagrama fuerza-alargamiento como se muestra en la figura 2. En este diagrama, sus 
puntos característicos y sus posiciones relativas entre ellos pueden variar sustancialmente incluso para un 
mismo material, ya que la fuerza necesaria para deformar o romper un material depende del área de la sección 
trasversal de la probeta. 
 
 
Figura 2. Diagrama fuerza-alargamiento 
 
Por ello, al diagrama que resulta del ensayo de tracción se le va a hacer un cambio de escala en ambos ejes con 
respecto al representado en la figura 2. Si aislamos un trozo de la probeta cortando por un plano perpendicular 
al eje de la misma y admitimos que en un extremo hay actuando una fuerza F y en el otro hay una tensión 𝜎 
que se distribuye uniformemente en la sección trasversal 𝐴0 , el equilibrio del trozo aislado lleva a: 
𝐹 = 𝜎𝐴0 ⟹ 𝜎 =
𝐹
𝐴0
 
(1) 
 
 Ensayo de tracción 
12 
 
12 
 
Si por otra parte suponemos que el incremento de longitud ∆𝐿 se distribuye homogéneamente a lo largo de la 
zona de medida 𝐿0, podemos definir una deformación longitudinal 𝜀 constante devalor: 
𝜀 =
∆𝐿 
𝐿0
 
(2) 
Tras las ecuaciones (1) y (2) se puede aplicar un cambio de escala al diagrama que aparece en la figura 2 para 
obtener una relación entre tensión longitudinal y deformación longitudinal. Dicha transformación conduce a 
un diagrama esquemático como el que se representa en la figura 3, donde se han marcado los puntos y tramos 
importantes del diagrama, no apareciendo necesariamente todos los tramos de este diagrama esquemático en 
todos los materiales. 
 
Figura 3. Diagrama esquemático tensión-deformación en el ensayo de tracción de un acero 
 
Hay que destacar, en primer lugar, que el uso de la expresión (1) da lugar a un valor de tensión que no es real 
para cada instante de tiempo ya que en esa expresión se está dividiendo la fuerza que actúa por el área 
trasversal inicial de la probeta. Sin embargo, se sabe que, al mismo tiempo que al aplicar una fuerza F se 
produce un alargamiento en la dirección de aplicación de F, también se produce un acortamiento en dirección 
transversal, lo que conlleva a una reducción del área transversal, que instantáneamente tomará valores 𝐴 (𝐴 <
𝐴0). Ello daría lugar a un valor instantáneo de tensión 𝜎𝑣 , llamada tensión verdadera o real, de: 
𝜎𝑣 =
𝐹
𝐴
> 𝜎 
(3) 
Dicho valor de tensión viene representado por la línea de trazo discontinuo que se observa en la figura 3, el 
cual se vuelve significativamente mayor a partir del comienzo de la estricción. Pese a todo esto, el ensayo de 
tracción no se estudia en variables de tensión verdadera, si no que se estudia en variables ingenieriles, que, 
como se verá a continuación, revelan la información necesaria de este ensayo. 
Por tanto, para describir este ensayo, se va a ir recorriendo la línea OABCDE haciendo hincapié en el 
comportamiento del material y hablando de algunos valores de interés. 
 
13 
 
13 Ensayo de tracción 
 
• Tramo OA: Tramo de comportamiento elástico lineal. En este tramo se observa una proporcionalidad 
entre los valores de 𝜎 aplicados y los alargamientos unitarios experimentados, lo cual da lugar a una 
propiedad importante de los materiales que veremos más adelante. Por otra parte, se observa una 
reversibilidad total del proceso de carga, teniendo el material la propiedad general de elasticidad que 
viene referida a la propiedad de recuperar su forma y tamaño una vez desaparecen las cargas a las que 
es sometido. Durante todo este tiempo el material tiene como memoria un único estado de referencia, 
el estado indeformado, al que vuelve independientemente del historial de carga (siempre que sea cuasi 
estática) sufrido por el material dentro de esta zona. El valor que limita este comportamiento es 
denominado como límite de proporcionalidad, 𝜎𝑝. 
• Tramo AB: Tramo de comportamiento elástico no-lineal. En este tramo se mantiene el carácter 
elástico del material, pero se pierde la proporcionalidad entre tensión y deformación, es decir, si se le 
aplica una fuerza al material que lo lleve entre los puntos A y B, al quitar la fuerza la descarga se 
produce por la línea BAO. El valor de tensión que limita este comportamiento se denomina 
usualmente como límite elástico noval, 𝜎𝑒
𝑁, denominación que se entenderá al estudiar el tramo CD. 
• Tramo BC: Escalón de cedencia del material. Macroscópicamente se observa que el material no 
requiere de un aumento de tensión para que la deformación crezca. Esto se conoce como cedencia o 
fluencia del material, aunque no en todos los materiales aparece o tiene el mismo grado de nitidez. 
Dicha fluencia está caracterizada por un valor 𝜎𝐹 el cual esta muy próximo al límite elástico noval del 
material. De hecho, en lo que sigue identificaremos operativamente los valores hasta ahora definidos: 
𝜎𝑝 ≅ 𝜎𝑒
𝑁 ≅ 𝜎𝐹 = 𝜎0.002 (4) 
La dificultad de medir dichos valores hace que normalmente se tome como valor del límite elástico 
del material aquel valor que deja una deformación permanente en la probeta de 0,002. 
• Tramo CD: Tramo de endurecimiento por deformación. Una vez pasado el escalón de cedencia el 
material necesita que se aumente la tensión para que aumente la deformación. Este tramo es no lineal 
disminuyendo continuamente la pendiente de la curva 𝜎 − 𝜀. 
Tanto en este tramo como en el anterior se ha terminado el comportamiento elástico, sin embargo, el 
material sigue teniendo dicha propiedad. Si suponemos un punto P dentro del tramo CD y se lleva a 
cabo la descarga de la probeta, la descarga no seguirá la línea PCBAO, sino que irá por una nueva 
línea 𝑃𝑂′ la cual es paralela a la línea de comportamiento elástico OA, alcanzando en el estado 
descargado el punto 𝑂′. Esta situación es la que caracteriza el comportamiento elastoplástico en el que 
parte de la deformación total que tenía el material (𝜀𝑇) se recupera elásticamente (𝜀𝑒) y parte se queda 
en el material (𝜀𝑝) recibiendo el nombre de deformación plástica o permanente, cumpliéndose que: 
𝜀𝑇 = 𝜀𝑒 + 𝜀𝑝 (4) 
Si una vez descargado el material vuelve a ser cargado la evolución se produce a lo largo de la línea 
𝑂′𝑃 de manera elástica lineal equivalente a la asociada a la línea OA ya descrita, teniendo un límite 
elástico aparente (𝜎𝑒
𝑎) de valor más alto que el límite elástico noval. Por tanto, una manera de 
conseguir un acero con un límite elástico mayor consiste en llevarlo hasta la zona de comportamiento 
elástoplástico dando lugar a aceros que reciben genéricamente el nombre de estirados en frio. 
Volviendo al diagrama representado en la figura 3, cuando se alcanza el punto D, sea cual sea el 
camino seguido, se alcanza el valor de la tensión de rotura del material, 𝜎𝑅, que es una propiedad no 
alterable mecánicamente, como sí lo era el límite elástico. 
 
 Ensayo de tracción 
14 
 
14 
• Tramo DE: Zona de estricción. A partir de un cierto instante correspondiente al punto D, se observa 
en el ensayo de tracción que cada vez hace falta menos fuerza para separar las mordazas, lo que indica 
que la probeta opone menos resistencia. La disminución de la fuerza que hace falta aplicar para 
separar las mordazas viene asociada de la aparición de una disminución localizada y claramente 
perceptible de la sección transversal de la probeta, fenómeno que recibe el nombre de estricción. 
Dado que en este caso el área transversal instantánea 𝐴 es sensiblemente menor a la inicial 𝐴0, 
conviene estudiar la evolución de la tensión verdadera 𝜎𝑣 que está representada por un trazo 
discontinuo en el diagrama de la figura 3. 
En la zona elástica e incluso en la elastoplástica no hay una diferencia significativa entre el diámetro 
original y el diámetro instantáneo por lo que la tensión real 𝜎𝑣 es sólo algo superior a la tensión 
ingenieril 𝜎. A partir del instante en que comienza la estricción, el diámetro intantaneo, y por tanto el 
área instantánea 𝐴, decrecen considerablemente, por lo que 𝜎𝑣, la cual crece hasta el momento de la 
rotura, se separa del valor de tensión nominal 𝜎. 
Esto prueba que realmente el material sigue resistiendo en este periodo, ya que la tensión real continúa 
aumentando hasta el final. Por todo lo demás, el comportamiento en esta zona es elastoplástico y 
análogo al del tramo adyacente ya explicado. 
En cualquier caso, es razonable asignar el valor de 𝜎𝑅 al máximo de la tensión ingenieril, aun 
sabiendo que la tensión real o instantánea sigue aumentando, porque 𝜎𝑅 está asociada al valor máximo 
de la carga que el elemento puede soportar, careciendo de interés el valor máximo en el instante de 
rotura del material porque ese valor corresponde a una carga menor debido a la estricción. 
Por todo esto resulta lógico estudiar el ensayo de tracción en variables ingenieriles y no en las variables reales, 
ya que estas nos dan toda la información necesaria y además son más sencillas de evaluar. 
A continuación, se verán cómo se prepara un ensayo de tracción, todos los pasos a seguir para realizarlo y 
cómose obtienen los resultados de estos ensayos. Toda esta información explicada a continuación viene 
recogida en la norma UNE EN ISO 6892-1, que viene referida al ensayo de tracción para materiales metálicos 
a temperatura ambiente. 
3.1 Preparación del ensayo de tracción 
Una buena preparación es el primer paso que realizar antes de hacer un ensayo de tracción. En este paso se 
recogen todos los parámetros variables que escoge la persona que realiza el ensayo, siempre siguiendo las 
indicaciones de la norma para que el ensayo a realizar sea válido. A continuación, se ven algunos de estos 
parámetros importantes a tener en cuenta: 
• Probetas del ensayo 
Lo primero en la realización de un ensayo de tracción es la creación de unas probetas que cumplan los 
requisitos impuestos por la norma. Dependiendo de la forma de la probeta, cilíndrica o prismática, y según su 
área transversal, la norma da unas especificaciones que las probetas deben cumplir. 
Estos ensayos se han decidido realizar con probetas cilíndricas de diámetro mayor de 4 mm para que su 
mecanización no resulte muy laboriosa. Las probetas que se van a usar tienen dos partes claramente 
diferenciadas: la parte central, que es la parte calibrada de la probeta y aquella que tiene menor área transversal 
(5 mm de diámetro), lo que hará que la rotura durante el ensayo se produzca por esa zona; y los extremos de la 
probeta, que son de mayor área que la sección central (10 mm de diámetro) y por donde las mordazas de la 
máquina sujetarán la probeta. A continuación, en la figura 4, se muestra un plano de las probetas en las que se 
 
15 
 
15 Ensayo de tracción 
 
especifican sus medidas. 
 
Figura 4. Plano de la probeta del ensayo de tracción 
 
Para escoger las medidas de la probeta se han seguido los requisitos especificados en la norma: 
• El radio de acuerdo mínimo entre las cabezas de amarre y la parte calibrada debe ser el siguiente: 
o 0,75*𝑑0 , donde 𝑑0 es el diámetro de la zona calibrada para probetas cilíndricas. 
• La longitud de la zona calibrada, 𝐿𝑐 , debe ser igual o superior a: 
o 𝐿0 + (
𝑑0
2
) en el caso de probetas cilíndricas. 
• La longitud libre entre las mordazas de la máquina debe ser la adecuada para que los puntos marcados 
sobre la probeta se encuentran a una distancia mínima de √𝑆0 , siendo 𝑆0 el área de la sección 
transversal inicial de la parte calibrada. 
• Por último, la distancia inicial entre puntos, 𝐿0, está relacionada con el área de la sección trasversal 
inicial, 𝑆0, según la siguiente fórmula: 
𝐿0 = k ∗ √𝑆0 
 
(5) 
 Donde k es igual a 5,65. 
 
Estas son todas las especificaciones que debe cumplir una probeta para que el ensayo de tracción sea válido. 
La norma proporciona también la siguiente tabla con medidas normalizadas con la cual poder diseñar una 
probeta válida para el ensayo. 
 
 Ensayo de tracción 
16 
 
16 
 
Figura 5. Tabla de medidas normalizadas para probetas del ensayo de tracción sacada de la norma UNE EN 
ISO 6892-1 
Siguiendo la tabla de la figura 5 se ha decidido escoger unas probetas para el ensayo que tienen un diámetro 
inicial,𝑑0, de 5 mm, por lo que la longitud de la parte calibrada, 𝐿𝑐, es de 28 mm y la longitud inicial entre 
puntos, 𝐿0, es de 25 mm. 
Pero para que una probeta sea válida, además de cumplir las especificaciones de tamaño, debe cumplir las 
especificaciones de tolerancias de mecanizado y en la forma. Para ello también se dispone en la norma de la 
siguiente tabla, mostrada en la figura 6, en la que se especifican las tolerancias que tienen que tener las 
probetas en función de su diámetro inicial. 
 
Figura 6. Tabla de tolerancias de la probeta del ensayo de tracción sacada de la norma UNE EN ISO 6892-1 
 
 
17 
 
17 Ensayo de tracción 
 
Sin embargo, las especificaciones de tolerancia de mecanizado en la dimensión nominal vienen dadas para el 
caso de que no se vaya a medir la sección de cada probeta individualmente. Como ese no es el caso, la 
tolerancia de mecanizado en la dimensión nominal usada es de ±0,1 mm. 
La tolerancia de forma se ha escogido que sea de 0,03 mm, tal y como indica la tabla, lo que significa que la 
diferencia entre el diámetro máximo y mínimo no ha de ser mayor de 0,03 mm. Dentro de las diferentes 
tolerancias de forma que hay, la más importante que debe cumplir la probeta es la excentricidad, que consiste, 
en resumidas cuentas, en que toda la probeta esté bien alineada, ya que hay que evitar que al aplicar la carga de 
tracción se cree una componente de momento flector que falsee los ensayos. La norma especifica, en este 
sentido, un valor máximo para el flector que la probeta debe soportar. Dicha especificación dice que la tensión 
producida por el flector no puede superar el 5% del valor de la tensión a tracción. 
• Determinación del área de la sección transversal 
Una vez fabricadas las probetas, hay que determinar el área de la sección transversal inicial para cada probeta. 
Para ello se debe medir el diámetro de la parte calibrada en varias secciones transversales perpendiculares al 
eje y definir dicho diámetro inicial como la media de las medidas tomadas. La norma dice que el número 
mínimo de medidas a realizar es tres, que es el número de medidas realizadas por probeta en este trabajo. Es 
importante que los equipos utilizados para la medición de la sección estén calibrados conforme a las normas de 
referencia apropiadas y con trazabilidad a un Sistema Nacional de Medición. La norma que regula el ensayo, 
UNE EN ISO 6892-1, exige que la precisión de los equipos utilizados para las mediciones sea igual o menor a 
la tolerancia dimensional exigida, ±0,02 en este caso. Por tanto, el equipo de medida usado para estas 
mediciones es un pie de rey con una precisión de ±0,01, lo que hace que se cumpla la norma. 
• Longitud inicial entre puntos y longitud base del extensómetro 
Para la realización de los ensayos también hay que hacer la elección de la longitud base del extensómetro y el 
marcado de la longitud inicial entre puntos. La norma dice que para una buena determinación de todas las 
propiedades que nos da el ensayo de tracción, la longitud base del extensómetro debería ser aproximadamente 
igual a 𝐿0, que es igual a 25 mm. Para esto no habido problemas ya que el extensómetro del laboratorio tiene 
una longitud base inicial de 25 mm. Este extensómetro usado se puede observar en la figura 7. 
 
 
Figura 7. Extensómetro 
 
 
 Ensayo de tracción 
18 
 
18 
El marcado de la longitud inicial entre puntos se usa porque podría ocurrir que la rotura de la probeta ocurriese 
por una zona fuera del rango que cubre el extensómetro, por lo que este no daría la deformación exacta que ha 
experimentado la probeta. Haciendo algunas marcas en la probeta antes de la realización del ensayo se puede 
conocer el incremento de longitud ocurrido, lo que evita que el ensayo no sea válido. Pese que en este trabajo 
se hayan marcado las probetas, ha sido solo a modo de seguridad ya que el extensómetro, al tener una longitud 
base de 25 mm, cubría casi toda la longitud calibrada que era de 28 mm, haciendo muy difícil que la rotura 
ocurriese por la zona que no está dentro del extensómetro. 
• Condiciones del ensayo 
o Reglaje del punto de fuerza cero 
El sistema de medida de la fuerza de la máquina ha de llevarse al cero después del ensamblaje del tren de carga 
del ensayo, pero antes de que la probeta se fije a ambos extremos. Con esto se garantiza, por un lado, que el 
peso del sistema de sujeción se ve compensado durante la medición de la fuerza y, por otro, que cualquier 
fuerza que resulte de la operación de amordazado no afecta a dicha medición. 
o Método de sujeción 
Las probetas deben sujetarse mediante instrumentos adecuados como cuñas, fijaciones atornilladas, mordazas 
dentadas o asideros amordazados. Para estos ensayos se ha decidido utilizar mordazas dentadas que puedensujetar probetas cilíndricas que tengan un diámetro en la zona de agarre desde 5,84 a 11,94 mm, mostradas en 
la figura 8, ya que las probetas del ensayo tienen un diámetro en las zonas de agarre de 10 mm. El agarre a 
través de mordazas se ha escogido debido a su fácil montaje en la máquina y a que proporcionan un buen 
agarre para este tipo de ensayos. 
Es importante prestarle atención al montaje de las mordazas y realizar una comprobación de su buena 
alineación ya que la fuerza aplicada debe ser lo más axial posible con el objetivo de minimizar el esfuerzo de 
flexión en la probeta. 
 
 
Figura 8. Mordazas usadas para el ensayo de tracción 
o Velocidades del ensayo 
El ensayo de tracción se puede realizar a través de dos métodos que tienen una manera diferente de regular la 
velocidad del ensayo. Esas dos maneras de regular dicha velocidad son en función de la velocidad de 
deformación o en función de la velocidad de puesta en carga. 
 
19 
 
19 Ensayo de tracción 
 
Regular la velocidad del ensayo en función de la velocidad de deformación consiste en variar la carga a la que 
se somete la probeta en función de la deformación que esta sufre, haciendo así que la velocidad de 
deformación sufrida sea constante en el tiempo. Debido a la dificultad de realizarlo de esta manera, se ha 
decidido realizar el ensayo controlando la velocidad de puesta en carga. 
Al realizar el ensayo con este método, hay que tener en cuenta el tipo de material a ensayar. Para ello la norma 
específica, en función del módulo de elasticidad del material, unos valores u otros de velocidad de puesta en 
carga los cuales pueden verse en la tabla de la figura 9. 
 
Figura 9. Tabla de elección de velocidad de puesta en carga sacada de la norma UNE EN ISO 6892-1 
 
Los materiales por ensayar son aceros que en general poseen un módulo de elasticidad mayor de 150000 MPa. 
Esto conlleva que la mínima velocidad de puesta en carga a la que se puede realizar el ensayo es de 6 MPa 
𝑠−1. Puesto que la realización de estos ensayos a una gran velocidad puede conllevar a que la visualización de 
la curva del ensayo no sea lo suficientemente clara, se ha decidido realizar el ensayo a una velocidad cercana a 
la mínima permitida. 
Conocido el diámetro de las probetas a ensayar, 5 mm, se puede determinar el incremento de la fuerza que 
daría lugar a una velocidad de puesta en carga de 6 MPa 𝑠−1. Para que esto se cumpla, la fuerza a aplicar 
debería aumentar en 117,8 N cada segundo. Por lo tanto, para redondear la fuerza a aplicar se decide realizar 
los ensayos aplicando un incremento de fuerza de 120 N cada segundo, el cual da lugar a una velocidad de 
puesta en carga válida para este tipo de ensayos, como se observa a continuación. 
�̇� =
120 𝑁𝑠−1
(
𝜋 ∗ 52
4 ) 𝑚𝑚
2
= 6,1115 𝑀𝑃𝑎 𝑠−1 
(6) 
Una vez analizado el ensayo de tracción y escogido todos los parámetros del ensayo, el siguiente paso es 
realizar los ensayos. 
3.2 Realización del ensayo de tracción 
El primer punto para poder realizar los ensayos de tracción es tener una máquina capaz de realizarlos. Para ello 
se ha decidido usar la máquina MTS 810 que se encuentra en el laboratorio del Área de Ingeniería Mecánica. 
Esta es una máquina hidráulica universal de ensayos mecánicos que permite realizar ensayos dinámicos y 
estáticos. Tiene una capacidad de carga máxima de 100 kN y permite un recorrido de desplazamiento de ±90 
mm, a una frecuencia de trabajo comprendida entre 0 y 20 Hz. Dicha máquina posee dos cabezales que pueden 
desplazarse en dirección vertical. A esos cabezales se les puede acoplar dos mordazas con las cuales agarrar la 
probeta. 
 
 Ensayo de tracción 
20 
 
20 
El cabezal superior, mostrado en la figura 10, está anclado al puente de la máquina y puede desplazarse 
verticalmente, pero antes de comenzar el ensayo, este ha de dejarse fijo en una posición bloqueando el puente. 
Sin embargo, el cabezal inferior está accionado por un pistón por lo que su posición durante el ensayo puede 
variar siendo capaz así, al tener a la probeta agarrada por las mordazas, de trasmitir una fuerza que puede ser 
controlada. 
 
Figura 10. Cabezal superior de la máquina de ensayos MTS 810 
 
Lo primero a realizar al enfrentarnos al ensayo es colocar las mordazas seleccionadas en los cabezales, las 
cuales se quedan fijas gracias a un par de muelles. Una vez fijadas las mordazas, se establece la posición 
óptima del puente y se bloquea para que no se pueda desplazar. Después se coloca la probeta entre las 
mordazas del cabezal inferior y se cierran éstas agarrando a la probeta con una presión lateral de 5 bares, lo 
cual es una presión lo suficientemente alta para que la probeta no se escape, pero lo suficientemente baja para 
no deformar la probeta. 
Mediante el control de la máquina se desplaza el cabezal inferior hasta una posición en la que la mordaza 
superior agarre a la probeta justo por la zona destinada a esa función. Antes de cerrar la mordaza superior, se 
 
21 
 
21 Ensayo de tracción 
 
coloca el extensómetro, ya que con la mordaza cerrada hay menos maniobrabilidad para colocarlo. Éste se 
ubica en la zona calibrada de la probeta ocupando 25 mm y dejando únicamente 1,5 mm por cada lado hasta la 
zona donde se ensancha la sección trasversal. 
Por seguridad para la máquina, el siguiente paso es activar unos límites que se le imponen a la máquina y que 
pueden ser en desplazamiento del pistón inferior, fuerza realizada, etc. Una vez alcanzado alguno de los límites 
preestablecidos el sistema se detiene automáticamente evitando así dañar la propia máquina o la probeta que se 
está ensayando. Para este ensayo se decidieron poner límites en desplazamiento tanto inferior como superior 
para que el pistón no se desplazara de manera brusca y chocara con algo cuando la probeta se partiese. 
Una vez definidos los límites, se cierra la mordaza superior dejando la probeta agarrada por los dos extremos. 
Cuando están cerradas completamente hay que asegurarse de que la fuerza sufrida por la probeta es nula 
cuando no se está trasmitiendo carga. Posteriormente se retira la seguridad que tiene el extensómetro y limita 
su movimiento. Hecho esto, se ajusta la deformación medida por el extensómetro, siendo cero mientras el 
ensayo no haya comenzado. 
Realizados todos los pasos mencionados anteriormente, sólo queda quitar el control manual de la máquina y 
activar el programa creado para realizar el ensayo, el cual se observa en la figura 11. Para ejecutar el ensayo se 
usa el programa MTS Testar Station Manager, en el que se puede ajustar todos los parámetros que se van a 
usar en el ensayo. Dicho programa es el que te da el control de la máquina de ensayo de manera informática. 
 
 
Figura 11. Programa para realizar el ensayo de tracción 
 
El programa creado para realizar este ensayo controla que la máquina realice una fuerza de tracción que vaya 
aumentando linealmente en 120 N/s hasta que la probeta se rompa (o hasta que se alcance algún límite que 
pare el programa). Por tanto, el extensómetro ira registrando la deformación que sufre la probeta hasta su 
rotura y mostrando ésta por pantalla en función de la fuerza. 
 
 Ensayo de tracción 
22 
 
22 
Al finalizar el ensayo, el sistema crea un documento en el que se registran el desplazamiento del pistón inferior 
en mm, la fuerza que ejerce dicho pistón en N, la deformación registrada por el extensómetro en mm y la 
deformación calculada en mm/mm. 
 
Figura 12. Realización del ensayo de tracción 
3.3 Obtención de resultados 
Una vez terminado el ensayo, el software de la máquina crea un fichero con todos los datos registrados. Como 
ya se ha comentado anteriormente, la máquina registra la fuerza aplicada, pero no la tensión, lo que conlleva a 
la obligación de la realización de un cálculo del valor de la tensión en función de la fuerza soportada y el área 
de la probeta.. Para ello se dividen los valoresde fuerza registrados en cada ensayo por el área inicial 
transversal de la probeta de dicho ensayo, conociendo así la tensión nominal soportada por la probeta. Una vez 
obtenida, se realiza el diagrama tensión-deformación del ensayo, del cual se pueden obtener diversas 
propiedades del material. Sin la necesidad de cálculos previos, de este diagrama se pueden obtener dos 
propiedades que son la tensión de rotura y el alargamiento porcentual. 
La resistencia a tracción o tensión de rotura del material es la máxima tensión que soporta el material antes de 
romperse. En el diagrama tensión-deformación del material, el valor de dicha tensión se obtiene conociendo el 
valor máximo de tensión registrado. 
El alargamiento porcentual se define como el tanto por ciento de deformación que la probeta tiene después de 
la rotura. Es decir, es lo que se alarga la probeta antes de partirse. Ésta se suele medir en tanto por ciento y es 
claramente visible ya que es el último valor de deformación registrado por la máquina, justo en el momento de 
la rotura. 
La siguiente propiedad por obtener del material es la pendiente de la recta de la parte elástica del ensayo la 
cual relaciona tensión y deformación de manera lineal para ese tramo. Esta propiedad recibe el nombre de 
 
23 
 
23 Ensayo de tracción 
 
módulo de elasticidad longitudinal o módulo de Young, 𝐸, y cumple, para el tramo de comportamiento 
elástico del material, la siguiente igualdad: 
𝜎 = 𝐸 ∗ 𝜀 ⇒ 𝐸 =
𝜎
𝜀
 (7) 
Esta propiedad determina la tensión que se debe realizar para conseguir una deformación de valor unidad y se 
mide en MPa. 
Una vez conocido el módulo de elasticidad se puede hallar el límite elástico del material, el cual, como ya se 
ha comentado, se aproxima como la tensión que provoca una deformación permanente del 0,2%. Para hallar 
dicho valor se traza en el diagrama tensión-deformación una recta de pendiente igual al módulo de elasticidad 
que comienza a tensión nula en el valor de deformación de 0,2%. El valor del límite elástico del material será 
el valor de tensión en el que dicha recta corta a la curva del ensayo de tracción. 
En conclusión, con estos ensayos se intentará obtener cuatro propiedades mecánicas de los materiales 
ensayados: resistencia a la tracción o tensión de rotura, alargamiento porcentual, módulo de elasticidad y límite 
elástico. 
3.4 Resultados del ensayo de tracción 
Para los ensayos de tracción se ha dispuesto de 15 probetas, 5 de cada acero a estudiar, las cuales han sido 
previamente medidas para una mayor exactitud en la realización de los ensayos. A cada probeta se le han 
hecho tres mediciones del diámetro de la sección calibrada, obteniendo como valor definitivo la media de estas 
tres mediciones. 
Una vez realizados todos los ensayos, para conseguir una visualización más clara del comportamiento de cada 
material se ha decidido superponer en una misma gráfica tensión-deformación los cinco ensayos de cada 
material. Así se puede observar la disparidad que tuviesen los ensayos en un mismo material. Para ello 
también se va a calcular la desviación típica de los resultados y el coeficiente de variación de Pearson, que se 
utiliza para calcular el nivel de desviación de una serie de datos respecto a la media aritmética y se obtiene 
dividiendo la desviación típica entre la media. 
Además de las gráficas con las curvas tensión-deformación ingenieril de cada material, se mostrarán a 
continuación para cada material una gráfica en la que se puede observar la curva que daría lugar con la tensión 
y la deformación verdadera. Si tanto la tensión, 𝜎, y deformación ingenieril, 𝜀 , como la tensión, 𝜎𝑣 , y 
deformación verdadera, 𝜀𝑣 , se definen como se muestran a continuación: 
𝜎 =
𝐹
𝐴0
 𝜀 =
∆𝐿
𝐿0
=
𝐿 − 𝐿0
𝐿0
 
 
(8) y (9) 
𝜎𝑣 =
𝐹
𝐴
 𝜀𝑣 = ∫
𝑑𝐿
𝐿
𝐿
𝐿0
= ln
𝐿
𝐿0
 
(10) y (11) 
Se puede hallar la siguiente relación entre ellas: 
𝜀𝑣 = ln
𝐿0 + ∆𝐿
𝐿0
= ln (1 +
∆𝐿
𝐿0
) = ln(1 + 𝜀) 
(12) 
 
 Ensayo de tracción 
24 
 
24 
𝐴 ∗ 𝐿 = 𝐴0 ∗ 𝐿0 = 𝑐𝑡𝑒 → 
𝐿
𝐿0
=
𝐴0
𝐴
 → 𝜎𝑣 = 𝜎 
𝐴0
𝐴
= 𝜎
𝐿
𝐿0
 
(13) 
𝜀𝑣 = ln
𝐿
𝐿0
= ln(1 + 𝜀) → 
𝐿
𝐿0
= (1 + 𝜀) ⇒ 𝜎𝑣 = 𝜎 (1 + 𝜀) 
(14) 
Sin embargo, hay que tener en cuenta que esta hipótesis realizada sólo es válida el tramo previo a la estricción, 
por lo que en las gráficas que se mostrarán a continuación, una vez llegado a dicho tramo, la curva verdadera 
mostrada no refleja el comportamiento exacto en variables reales. 
Por tanto, para cada acero, se muestran tres gráficas con curvas tensión-deformación: una primera con los 
valores ingenieriles de los cinco ensayos, una segunda con una curva con valores ingenieriles y otra curva con 
valores verdaderos y una tercera gráfica con los valores verdaderos de los cinco ensayos; además de todos los 
resultados obtenidos para los tres aceros que se estudian en este proyecto: F-1, 34CrNiMo6 y 316L. 
Para concluir este punto, para cada acero se realizará una comparación entre los valores obtenidos 
experimentalmente y los dados por el catálogo de la empresa proveedora y por el certificado de calidad del 
material. 
 
3.4.1 Resultados del ensayo de tracción para el acero F-1 
El primer material ensayado ha sido el acero F-1. En la tabla 6 mostrada a continuación se pueden observar 
algunos de los resultados obtenidos de este ensayo para las cinco probetas de este material. 
En las primeras filas de la tabla se muestran las mediciones realizadas al diámetro de la sección calibrada, que 
dan lugar al valor medio de diámetro que ha sido usado para realizar los cálculos. 
En las dos últimas filas de la tabla se muestran los resultados de tensión de rotura y deformación máxima 
sufridos por el material en cada ensayo. Dichas propiedades se obtienen de hallar el valor máximo de la 
tensión y de la deformación sufridas por la probeta, por lo que se obtienen directamente sin necesidad de la 
realización de cálculos. 
Tabla 6. Resultados del ensayo de tracción de las cinco probetas del acero F-1 
 
Probeta 1 Probeta 2 Probeta 3 Probeta 4 Probeta 5 
D1 (mm) 5,009 5,013 5,009 5,017 4,994 
D2 (mm) 5,005 5,007 4,994 5,018 4,985 
D3 (mm) 5,009 5,014 5,007 5,016 5,001 
Diámetro medio (mm) 5,008 5,011 5,003 5,017 4,993 
Tensión Máx. (MPa) 583,6 577,8 577,8 580,2 583,7 
Deformación Máx. (%) 17,5 17,3 16,9 18,9 17,4 
 
El primer paso para dar por válido los ensayos es comprobar si las probetas cumplen los requisitos de 
tolerancias geométricas y de forma impuestas por la norma UNE en ISO 6892-1. Esta imponía una tolerancia 
geométrica de ±0,1 𝑚𝑚 y una tolerancia de forma de 0,03 𝑚𝑚. Si se observan todas las probetas ensayadas, 
se puede confirmar que cumplen los requisitos impuestos por lo que son válidas para los ensayos. 
En consecuencia, dando por válidos los ensayos realizados, se obtiene que la tensión de rotura del acero F-1 
ensayado es: 
𝑇𝑒𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑟𝑜𝑡𝑢𝑟𝑎 ≡ 𝜎𝑅 = 580,6 𝑀𝑃𝑎 
 
25 
 
25 Ensayo de tracción 
 
La desviación típica en la obtención de este resultado es de 2,91 lo que da lugar a un coeficiente de variación 
del 0,5 %. Esto implica, para el acero ensayado, una poca dispersión en la obtención del valor de esta 
propiedad. 
Por el otro lado, el alargamiento porcentual del material ensayado es de: 
𝐴𝑙𝑎𝑟𝑔𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑝𝑜𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 ≡ 𝐴 = 17,6 % 
Este resultado tiene una desviación de 0,77, lo que conlleva a un coeficiente de variación del 4,38%. Este es 
un valor de dispersión mayor que el anterior. Pese a esto, fijándose bien en los ensayos, salvo en el cuarto 
ensayado realizado que da un resultado del 18,9 %, en los otros cuatro ensayos se centra en torno a un valor de 
del 17 % aproximadamente, por lo que se puede decir que la dispersión obtenida es fruto de ese cuarto ensayo 
que dio un valor algo alejado de los demás. 
Los valoresde estas dos propiedades mecánicas ya calculadas se pueden observar en la curva tensión-
deformación que experimenta este acero en los ensayos de tracción realizados. Dicha curva se muestra a 
continuación en la figura 13 donde la tensión viene reflejada en MPa y la deformación en tanto por ciento. 
 
Figura 13. Curva tensión-deformación experimental del acero F-1 
 
Dicha curva muestra el comportamiento que sufre este acero cuando es sometido a tracción. Como se puede 
observar, existen diversos tramos claramente diferenciables que sufre el acero antes de alcanzar la rotura. En la 
primera parte de la curva se puede observar un tramo de deformación elástica lineal que concluye 
aproximadamente al alcanzar el límite elástico del material. Después de un pequeño tramo de fluencia, el 
material entra en un tramo de endurecimiento por deformación que concluye al alcanzar la tensión de rotura 
del material. Una vez alcanzada dicha tensión, el material entra en la zona de estricción, en la que la probeta 
comienza a sufrir una reducción de su área trasversal hasta finalmente alcanzar la rotura completa. Como se 
 
 Ensayo de tracción 
26 
 
26 
puede observar, una vez alcanzada la zona de estricción, comienza a existir cierta dispersión entre los 
diferentes ensayos. Esto es debido a que la estricción no se genera en el mismo punto ni de la misma manera 
en todas las probetas por lo que la dispersión entre los ensayos es entendible. 
Una vez conocidas la tensión de rotura y el alargamiento porcentual del material, el siguiente paso es obtener 
el módulo de elasticidad del material y su límite elástico. Para la obtención del módulo de elasticidad del 
material se ha seguido lo indicado por la norma UNE en ISO 6892-1. Esta dice que el módulo de elasticidad 
ha de estimarse como la pendiente de la recta formada por dos puntos concretos. Dichos dos puntos son 
aquellos con un valor de tensión igual al 10% y al 40% del valor del límite elástico del material. Para hallar 
estos puntos se ha recurrido a un proceso iterativo que, a partir de una primera aproximación, obtiene los 
valores reales del módulo de elasticidad y del límite elástico del material. A continuación, en la tabla 7, se 
muestran los valores del módulo de Young obtenidos en cada ensayo. 
 
Tabla 7. Valores del módulo de elasticidad para los cinco ensayos del acero F-1 
 
Probeta 1 Probeta 2 Probeta 3 Probeta 4 Probeta 5 
E (MPa) 214420 213930 214820 214360 211000 
 
Por tanto, realizando la media a los cinco valores de módulo de elasticidad del material obtenidos en los 
ensayos se puede decir que el módulo de elasticidad o de Young del acero F-1 ensayado es de: 
𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑑𝑎𝑑 ≡ 𝐸 = 213706 𝑀𝑃𝑎 
El cual está en torno al valor típico de módulo de elasticidad de los aceros, que suele ser aproximado por 210 
GPa. 
Para hallar el límite elástico del material sólo hay que trazar una línea de pendiente igual al módulo de Young 
y que empiece en el valor de deformación del 0,2%. Entonces el punto con el que dicha recta corta con la 
curva tensión-deformación es el que indica el valor del límite elástico del material. En la tabla 8 se observan 
los valores de límite elástico para cada ensayo, con los cuales, haciéndoles la media se obtiene el valor del 
límite elástico del material. 
 
Tabla 8. Valores del límite elástico para los cinco ensayos del acero F-1 
 
Probeta 1 Probeta 2 Probeta 3 Probeta 4 Probeta 5 
Límite elástico (MPa) 536,7 529,2 530,3 536,7 537,5 
 
Por tanto, se puede decir que el límite elástico del acero F-1 ensayado es de: 
𝐿í𝑚𝑖𝑡𝑒 𝐸𝑙á𝑠𝑡𝑖𝑐𝑜 = 𝜎0,2 = 534,1 𝑀𝑃𝑎 
El valor del límite elástico de este material es bastante cercano al valor de su tensión de rotura. Sin embargo, 
hay que tener en cuenta que este acero ensayado ha sido previamente estirado en frio para aumentar su límite 
elástico por lo que el valor obtenido es mayor del que tendría el material si no hubiera sido tratado. 
 
• Comparación con el comportamiento en variables reales 
Como se ha comentado anteriormente, se ha calculado, tanto para este acero como para los demás, la tensión y 
la deformación verdadera soportada en los ensayos. Por tanto, a continuación, en la figura 14 se muestra una 
 
27 
 
27 Ensayo de tracción 
 
gráfica en la que se ven reflejadas en rojo, la curva en variables ingenieriles, y en azul la curva en variables 
reales. 
 
 
 
 
Figura 14. Comparación entre curva verdadera e ingenieril para el acero F-1 
 
Como se puede contemplar, las dos curvas son iguales en la parte elástica del material hasta alcanzar el límite 
elástico. Una vez superado este punto y entrado en la zona de endurecimiento por deformación, la curva 
verdadera toma valores de tensión mayores, debido a que poco a poco, el área de la probeta comienza a 
reducirse tomando valores menores al área inicial. Esto se traduce en un aumento de la tensión verdadera 
como se observa en la gráfica. Una vez alcanzada la tensión de rotura, como ya se ha comentado 
anteriormente, la hipótesis realizada para el cálculo de la tensión verdadera deja de ser válida por lo que la 
curva comienza a decrecer cuando realmente esta debería seguir creciendo. 
A continuación, en la figura 15, se puede observar no sólo la curva en variables reales del primer ensayo del 
acero F-1, si no las curvas de los cinco ensayos realizados superpuestas en una misma gráfica. 
 
 
 
 
 
 Ensayo de tracción 
28 
 
28 
 
Figura 15. Curvas tensión-deformación verdadera para los cinco ensayos del acero F-1 
 
3.4.2 Resultados del ensayo de tracción para el acero 34CrNiMo6 
Para el siguiente acero, 34CrNiMo6, se ha trabajado igual que para el acero anterior. Primero se han medido 
los diámetros de la sección calibrada de las probetas y posteriormente se les ha realizado los ensayos de 
tracción a las probetas de este material, obteniendo así los valores de tensión de rotura del material y de 
alargamiento porcentual tal y como se muestran en la tabla 9. 
 
Tabla 9. Resultados del ensayo de tracción de las cinco probetas del acero 34CrNiMo6 
 Probeta 1 Probeta 2 Probeta 3 Probeta 4 Probeta 5 
D1 (mm) 5,011 5,008 5,017 5,017 5,022 
D2 (mm) 5,016 4,996 5,014 5,019 5,02 
D3 (mm) 5,017 5,026 5,015 5,017 5,005 
Diámetro medio (mm) 5,015 5,010 5,015 5,018 5,016 
Tensión Máx. (MPa) 1135,2 1134,3 1140,2 1137,0 1134,6 
Deformación Máx. (%) 11,8 10,2 10,9 11,0 12,1 
 
Siguiendo los pasos realizados para el otro acero, primero se comprueba que las probetas cumplen los 
requisitos de tolerancia impuestos por la norma UNE en ISO 6892-1. Una vez verificado que las probetas son 
válidas, se realizan los ensayos y se obtienen los valores de tensión de rotura y alargamiento porcentual 
mostrados en la tabla 9. 
 
29 
 
29 Ensayo de tracción 
 
Realizando la media de los cinco valores obtenidos, se concluye que la tensión de rotura del acero 34CrNiMo6 
ensayado es de: 
𝑇𝑒𝑛𝑠𝑖ó𝑛 𝑑𝑒 𝑟𝑜𝑡𝑢𝑟𝑎 ≡ 𝜎𝑅 = 1136,3 𝑀𝑃𝑎 
Este acero tiene un valor de tensión de rotura realmente alto, llegando a ser casi el doble del valor para el acero 
F-1. Esto es debido a que este acero está preparado para soportar grandes cargas sin romperse, siendo uno de 
los aceros más resistentes que existe en el mercado. 
La desviación en la obtención de este valor es de 2,44 lo que da lugar a un coeficiente de variación del 0,21%. 
Este es un valor bajo que refleja la poca dispersión entre los valores obtenidos por los cinco ensayos de esta 
propiedad, dándole así mayor fiabilidad al resultado obtenido. 
La otra propiedad calculada, el alargamiento porcentual, tiene como valor: 
𝐴𝑙𝑎𝑟𝑔𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑝𝑜𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 ≡ 𝐴 = 11,2 % 
Este valor indica que este acero no se deforma mucho antes de alcanzar la rotura, en comparación con los otros 
dos aceros estudiados. Como se observará en la figura 16 mostrada a continuación, este acero no presenta un 
tramo largo de endurecimiento

Continuar navegando