Logo Studenta

Ejercicio 11: ¿Para qué valor de k la ecuación: 0122 =+− xkxk admite raíces reales iguales? Luego, encontrar las raíces de la ecuación.

Esta pregunta también está en el material:

cuadernillo_fmn_092732
198 pag.

Matemática Victor HugoVictor Hugo

💡 1 Respuesta

User badge image

Ed Verified user icon

Para encontrar el valor de k para el cual la ecuación admite raíces reales iguales, primero debemos igualar el discriminante a cero. El discriminante de la ecuación cuadrática \(ax^2 + bx + c = 0\) es \(b^2 - 4ac\). En este caso, el discriminante es \(k^2 - 4(1)(2k)\). Igualando esto a cero, obtenemos \(k^2 - 8k = 0\). Factorizando, obtenemos \(k(k - 8) = 0\), por lo que las raíces son \(k = 0\) y \(k = 8\). Luego, para encontrar las raíces de la ecuación original, podemos usar la fórmula cuadrática: \(x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\). Sustituyendo los valores de a, b y c, y el valor de k encontrado, podemos encontrar las raíces de la ecuación.

0
Dislike0

✏️ Responder

FlechasNegritoItálicoSubrayadaTachadoCitaCódigoLista numeradaLista con viñetasSuscritoSobreDisminuir la sangríaAumentar la sangríaColor de fuenteColor de fondoAlineaciónLimpiarInsertar el linkImagenFórmula

Para escribir su respuesta aquí, Ingresar o Crear una cuenta

User badge image

Otros materiales

Contenido elegido para ti

2 pag.
25 pag.
Sem04-Clase02

Universidade de Vassouras

User badge image

JOSE GABRIEL HUACACHI BAZAN

26 pag.
PROBLEMAS_CON_CONJUNTOS

Colegio De Ciencias Lord Kelvin

User badge image

Ronal Sanchez Saldaña