Logo Studenta

ANALISIS-DE-LA-SOLIDIFICACION-EN-METALES-PUROS-POR-EL-METODO-DE-CAMPO-DE-FASES

¡Este material tiene más páginas!

Vista previa del material en texto

Análisis de la solidificación 
en metales puros por el 
Método de Campo 
de Fases 
 
 
 
T E S I S 
Que para obtener el título de: 
Ingeniero en Metalurgia y Materiales 
 
 
P R E S E N T A 
Cristóbal Ricardo Escamilla Illescas 
 
 
Director de tesis 
Dr. Víctor Manuel López Hirata 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ciudad de México 
 Agosto de 2016 
 
Instituto Politécnico Nacional 
 
Escuela Superior de Ingeniería Química 
e Industrias Extractivas 
 
Departamento de Ingeniería en Metalurgia y Materiales 
 
Dedicatoria 
 
 
 
 
 
Dedicatoria 
 
 
 
 
 
Dedicatoria 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A mis padres y abuelos; que con su vida, hicieron posible la mía. 
 
 
 
Agradecimientos 
 
Agradecimientos 
 
Llegar al final de una etapa no es simple, y es estando aquí, al mirar atrás, en donde me doy 
cuenta de todo lo que necesité y se me fue dado para construir un camino que llevara hasta 
este lugar. Quiero agradecer: 
A Dios, por todas las fortuitas casualidades que nos permiten existir y dejar una 
evidencia de nuestra presencia. Por la vida, el tiempo, el amor y por este fascinante mundo 
en el que vivimos. 
Al Instituto Politécnico Nacional, a la Escuela Superior de Ingeniería Química e 
Industrias Extractivas y al Departamento de Ingeniería en Metalurgia y Materiales, por ser 
el pilar de mi formación. Por darme una identidad como Politécnico y Metalúrgico, la cual 
honrar y de la cual estar orgulloso. 
A mis padres, María Victoria Illescas Faustino y Aurelio Escamilla Téllez, a quienes 
debo más que el amor recibido, el techo bajo el que he vivido o todo lo que he aprendido. 
Es por ustedes que me encuentro aquí, que soy este Ricardo. Han formado mi ser cada día 
de mi vida. Lo bueno en mí se los debo a ustedes. 
A mis hermanos, Juan Pablo, David y Esmeralda, que son la fuerza cohesiva de la 
familia Escamilla Illescas, por mostrarme el camino con su ejemplo. 
A mi asesor, el Dr. Víctor Manuel López Hirata, quien con su incansable guía hizo 
posible este trabajo. Por llenar mis dudas con entendimiento y siempre encontrar tiempo 
para escucharlas, por la interminable paciencia e interés, por compartir sus conocimientos 
conmigo y por, incluso, sentarse conmigo a hacer cálculo vectorial. 
A la Dra. Maribel Leticia Saucedo Muñoz, por hacer este trabajo cada vez más completo 
con cada observación y por hacerme sentir parte de este fabuloso grupo de investigación. 
A la Dra. Lucía Graciela Díaz Barriga Arceo, al Dr. Héctor Javier Dorantes Rosales y al 
M. en C. Sergio Javier García Núñez, por tomarse el tiempo para leer y revisar este trabajo, 
a fin de mejorarlo. 
A Valeria Miranda López, quien ha caminado a mi lado cada día de estos últimos cinco 
años, quien me ha visto y hecho crecer. Has iluminado mi vida con recuerdos rebosantes de 
amor y felicidad. Eres verdaderamente la mejor compañera de viaje. Tengamos el viaje más 
largo, ¿Sí? 
 
 
Agradecimientos 
 
 
 
Al Pbro. Felipe Galicia Reyes, quien me formó musical y humanamente, y me dio un 
segundo hogar en Donceles número 49. 
A la Ing. Tania Soriano Cruz, a Karen Ledezma Gutiérrez y Mauricio Trejo Cristerna, 
que me brindaron su apoyo, amistad y compañía durante muchos días de trabajo. 
Al Consejo Nacional de Ciencia y Tecnología, en particular a los proyectos 220929 y 
220984, así como al programa de Becas de Estímulo Institucional de Formación de 
Investigadores del Instituto Politécnico Nacional por el apoyo brindado para la realización 
de este trabajo. 
A todas las personas que han sido parte de mi formación personal y profesional, y que en 
una clara muestra de ingratitud que sabrán perdonar, he olvidado mencionar. 
Muchas gracias. 
 
C. R. E. I. 
 
 
 
Contenido 
 
Contenido 
 
Resumen ..................................................................................................................................I 
Lista de figuras ..................................................................................................................... II 
Lista de tablas ..................................................................................................................... VI 
Introducción .......................................................................................................................... 1 
1. Consideraciones teóricas ............................................................................................... 3 
1.1 Solidificación en metales puros ............................................................................. 3 
1.1.1 Nucleación en metales puros ............................................................................ 3 
1.1.1.1 Nucleación homogénea ..................................................................................... 4 
1.1.1.2 Nucleación heterogénea ................................................................................... 8 
1.1.2 Crecimiento y microestructura dendrítica ...................................................... 12 
1.1.2.1 Anisotropía en crecimiento dendrítico ........................................................... 17 
1.2 Método de Campo de Fases ................................................................................. 19 
1.3 Formulación de Kobayashi ................................................................................. 21 
1.4 Método de Diferencias Finitas ............................................................................ 24 
2. Metodología numérica ................................................................................................ 29 
3. Resultados .................................................................................................................... 33 
3.1 Simulaciones de simetría de anisotropía perfecta ............................................. 33 
3.2 Simulaciones de magnitud de anisotropía ......................................................... 36 
3.3 Simulaciones de calor latente adimensional ...................................................... 43 
4. Discusión ....................................................................................................................... 48 
4.1 Comparación de dendritas en metales puros con dendritas simuladas .......... 48 
4.2 Efecto de la anisotropía en la solidificación ....................................................... 52 
4.3 Efecto del calor latente adimensional en la solidificación ................................ 57 
Conclusiones ........................................................................................................................ 62 
Referencias .......................................................................................................................... 63 
Apéndices ............................................................................................................................. 66 
Apéndice I. Código usado para la simulación .............................................................. 66 
 
 
 
 
Resumen 
 
Resumen 
 
Actualmente el método de campo de fases es una de las técnicas más efectivas para 
modelar la evolución microestructural. La principal característica de los modelos de campo 
de fases es el carácter difuso y finito de la intercara entre dos fases, que se describe por una 
transición continua, en espacio x, de la variable de campo de fases ϕ(x,t) entre dos estados: 
sólido y líquido en el caso estudiado. 
En el presente trabajo se aplicó el método de campo de fases a la solidificación de 
metales puros, haciendo énfasis en el crecimiento de cristales dendríticos usando la 
formulación propuesta por Kobayashi para analizar los diferentes parámetros que afectan el 
proceso de solidificación. 
Para simular la evolución de la microestructura dendrítica, se usó un código en 
FORTRAN, en el cual, las ecuaciones diferenciales parciales del modelo se resolvieron 
numéricamentepor el Método Explícito de Diferencias Finitas para generar archivos de 
datos, que posteriormente se graficaron y se usaron para crear secuencias de video. 
Los resultados de la simulación mostraron la evolución de cristales dendríticos en 
metales con simetría cúbica y hexagonal, el efecto del calor latente de solidificación y la 
magnitud de anisotropía sobre la formación de dendritas. 
Al incrementar el valor de calor latente adimensional se observó una reducción en la 
velocidad de crecimiento de los cristales. Además, a valores bajos de calor latente de 
fusión, este mostró ser el mecanismo que determina la geometría de los cristales en 
crecimiento, permitiendo la formación de geometrías simples. En contraste, a valores altos 
de calor latente de fusión, la magnitud de anisotropía es el mecanismo determinante de la 
geometría de los cristales, permitiendo la formación de geometrías complejas. 
Por otra parte, en condiciones de isotropía cristalina o de baja anisotropía, se observó la 
formación de cristales de puntas separadas. Además, al aumentar la magnitud de 
anisotropía, se observó un aumento en la velocidad de crecimiento de los cristales, con la 
presencia de un máximo, tras el cual la velocidad de crecimiento de los cristales disminuye. 
I 
 
 
Lista de figuras 
 
Lista de figuras 
 
Figura Descripción Página 
 
1 Diferencia en energía libre entre líquido y sólido cerca del punto de fusión. (7) 3 
 
2 Nucleación homogénea. (7) 5 
 
3 
Cambio de energía libre asociado con la nucleación homogénea de una esfera 
de radio r. (7) 
6 
 
4 Nucleación heterogénea de una capa esférica en una pared de molde plana. (7) 8 
 
5 
Exceso de energía libre de embriones para nucleación homogénea y 
heterogénea. (7) 
10 
 
6 
Variación de ΔG* con respecto al sobreenfriamiento, ΔT, para nucleación 
homogénea y heterogénea. (7) 
11 
 
7 
(a) Distribución de temperatura para solidificación cuando el calor es extraído 
a través del sólido. Isotermas (b) para una intercara plana S/L y (c) para una 
protuberancia. (7) 
12 
 
8 Lo expuesto en la figura 7, con conducción de calor hacia el líquido (7). 13 
 
9 
Desarrollo de dendritas térmicas: (a) núcleo esférico; (b) comienzo de 
inestabilidad en la intercara; (c) desarrollo de brazos primarios en direcciones 
cristalográficas; (d) desarrollo de brazos secundarios y terciarios. (7) 
14 
 
10 
Cambio secuencial de la morfología de la intercara a medida que la velocidad 
de solidificación aumenta: (a) Célula creciendo en la dirección de la extracción 
de calor; (b) Célula creciendo en la dirección <100> (c) Transición 
célula/dendrita (d) Dendrita. (11) 
15 
 
 
11 
Distribución de temperaturas en la punta de una dendrita térmica en 
crecimiento. (7) 
16 
 
 
 
II 
 
 
Lista de figuras 
 
12 
Patrón de evolución espacial para una secuencia de separación de puntas 
obtenido en las simulaciones de Kessler, Koplik y Levine. (13) 
17 
 
13 
Crecimiento de un cristal en el cual se observa separación de puntas obtenido 
en las simulaciones de Brush y Sekerka. (14) 
18 
 
14 
Patrón de separación de puntas formado en la experimentación de Ben-Jacob y 
colaboradores. (15) 
19 
 
15 
Representación gráfica del Método Explícito de Diferencias Finitas: 
(a) Aproximación para una ecuación diferencial parcial de primer orden 
(b) Aproximación para una ecuación diferencial parcial de segundo orden. (21) 
28 
 
16 
Diagrama de flujo correspondiente a la simulación de la solidificación en 
metales puros por el método de campo de fases. 
30 
 
17 
Evolución de la solidificación de cristales bajo condiciones de j = 0.0 y 
κ = 1.0. (a) t = 0.08; (b) t = 0.2; (c) t = 0.32; con δ = 0.000. (d) t = 0.08; 
(e) t = 0.2; (f) t = 0.32; con δ = 0.020. 
34 
 
18 
Evolución de la solidificación de cristales bajo condiciones de j = 0.0 y 
κ = 1.8. (a) t = 0.2; (b) t = 0.4; (c) t = 0.6; con δ = 0.000. (d) t = 0.2; 
(e) t = 0.4; (f) t = 0.6; con δ = 0.020. 
35 
 
19 
Evolución de la solidificación de cristales bajo condiciones de κ = 1.8 y 
δ = 0.000. (a) t = 0.2; (b) t = 0.4; (c) t = 0.6; con j = 4.0. (d) t = 0.2; 
(e) t = 0.4; (f) t = 0.6; con j = 6.0. 
37 
 
20 
Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y 
κ = 1.8. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.005. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con δ = 0.010. (g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con 
δ = 0.020. 
38 
 
21 
Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y 
κ = 1.8. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.050. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con δ = 0.080. (g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con 
δ = 0.120. 
39 
 
 
III 
 
 
Lista de figuras 
 
22 
Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y 
κ = 1.8. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.005. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con δ = 0.010. (g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con 
δ = 0.020. 
41 
 
23 
Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y 
κ = 1.8. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.050. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con δ = 0.080. 
42 
 
24 
Evolución de la solidificación de cristales bajo condiciones de κ = 1.0 y 
δ = 0.020. (a) t = 0.08; (b) t = 0.2; (c) t = 0.32; con j = 4.0. (d) t = 0.08; 
(e) t = 0.2; (f) t = 0.32; con j = 6.0. 
44 
 
25 
Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y 
δ = 0.020. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con κ = 1.5. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con κ = 1.8. (g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con 
κ = 2.2. 
45 
 
26 
Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y 
δ = 0.020. (a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con κ = 1.5. (d) t = 0.2; 
(e) t = 0.32; (f) t = 0.4; con κ = 1.8. (g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con 
κ = 2.2. 
46 
 
27 
Comparación entre (a) Imagen de Microscopio Electrónico de Barrido (MEB) 
de una dendrita de austenita; (b) Cristal equiaxial calculado con un modelo de 
Campo de Fases correspondiente a dicha dendrita; (22) (c) Simulación obtenida 
con las condiciones de t = 0.2, j = 4.0, κ = 1.8 y δ = 0.020. 
48 
 
28 
Comparación entre (a) Micrografía de una dendrita equiaxial de Succinonitrilo 
(SCN); (b) Dendrita de Succinonitrilo con brazos secundarios casi 
periódicos; (3) (c) Simulación obtenida con las condiciones de t = 0.2, j = 4.0, 
κ = 1.5 y δ = 0.020. 
49 
 
 
 
 
 
 
 
 
 
IV 
 
 
Lista de figuras 
 
29 
Comparación entre (a) Dendrita de hielo solidificada en agua pura 
sobreenfriada a - 0.4 °C; (23) (b) Simulación obtenida con las condiciones de 
t = 0.2, j = 6.0, κ = 1.5 y δ = 0.020; (c) Dendrita de hielo solidificada en una 
solución de agua y 5% de etilenglicol sobreenfriada a -2.0 °C; (23) 
(d) Simulación obtenida con las condiciones de t = 0.4, j = 6.0, κ = 1.8 y 
δ = 0.005. 
50 
 
30 
Comparación entre (a) Micrografía de cristales con puntas separadas en una 
aleación Al-4%Cu; (25) (b) Micrografía de cristales con puntas separadas en una 
aleación Al-4.5%Cu; (26) (c) Simulación obtenida con las condiciones de 
t = 0.6, j = 4.0, κ = 1.8 y δ = 0.000. 
51 
 
31 
Simulaciones obtenidas con las condiciones fijas de t = 0.4, j = 4.0, κ = 1.8 y 
magnitud de anisotropía variable: (a) δ = 0.000; (b) δ = 0.005; (c) δ = 0.010; 
(d) δ = 0.20; (e) δ = 0.050; (f) δ = 0.080; (g) δ = 0.120. 
53 
 
32 
Simulaciones obtenidas con las condiciones fijas de t = 0.4, j = 6.0, κ = 1.8 y 
magnitudde anisotropía variable: (a) δ = 0.000; (b) δ = 0.005; (c) δ = 0.010; 
(d) δ = 0.20; (e) δ = 0.050; (f) δ = 0.080. 
54 
 
33 
Simulaciones obtenidas con las condiciones fijas de t = 0.32, j = 4.0, δ = 0.020 
y calor latente adimensional variable: (a) κ = 1.0; (b) κ = 1.5; (c) κ = 1.8; 
(d) κ = 2.2. 
58 
 
34 
Simulaciones obtenidas con las condiciones fijas de t = 0.32, j = 6.0, δ = 0.020 
y calor latente adimensional variable: (a) κ = 1.0; (b) κ = 1.5; (c) κ = 1.8; 
(d) κ = 2.2. 
59 
 
35 
Simulaciones obtenidas con las condiciones fijas de t = 0.2, j = 0.0 con 
condiciones de calor latente adimensional y magnitud de anisotropía variable: 
(a) κ = 1.0, δ = 0.000; (b) κ = 1.0, δ = 0.020; (c) κ = 1.8, δ = 0.000; 
(d) κ = 1.8, δ = 0.020. 
60 
V 
 
 
Lista de tablas 
 
Lista de tablas 
 
Tabla Descripción Página 
 
1 Parámetros de la formulación de Kobayashi usados durante las simulaciones 29 
 
2 Condiciones usadas para las simulaciones de simetría de anisotropía perfecta 33 
 
3 Condiciones usadas para las simulaciones de anisotropía 36 
 
4 Condiciones usadas para las simulaciones de calor latente adimensional 43 
 
VI 
 
 
Introducción 
 
Introducción 
 
Se estima que las piezas fundidas se usan en el 90% de los productos fabricados, tales como 
motores de vehículos, maquinaria para construcción y agricultura, válvulas, bombas, 
compresores, electrodomésticos, computadoras, herramientas y en toda la maquinaria 
empleada en la manufactura de dichos productos. 
Las principales razones para utilizar la fundición son el amplio rango de propiedades 
físicas y mecánicas cubierto por aleaciones fundidas, la obtención de un producto con poca 
necesidad de acabado superficial, la versatilidad del proceso con respecto al peso y la forma 
del componente, que puede ser desde gramos hasta toneladas y formas elaboradas que no 
pueden ser obtenidas por otros procesos, así como un costo competitivo de los productos 
obtenidos. 
El proceso de solidificación es una parte inherente de los procesos de fundición, y 
durante esta se genera la estructura de colada de la pieza fundida. Puesto que diversas 
piezas se usan sin tratamientos térmicos o conformado posterior, las propiedades mecánicas 
de estas, que son consecuencia directa de su microestructura, deben ser controladas durante 
el proceso de solidificación. (1) (2) 
Los cristales dendríticos o dendritas son estructuras de no-equilibrio que persisten a lo 
largo del proceso de solidificación y que están presentes en todas las piezas fundidas. Estas 
consisten en cristales individuales ramificados, que presentan morfologías con 
direccionalidad cristalográfica, como brazos o ramas primarias, secundarias o terciarias que 
guardan relaciones angulares especiales entre ellas: los brazos primarios de una dendrita en 
un sistema cúbico se desarrollan en la dirección < 100 >, con los brazos secundarios y 
terciarios desarrollándose en dirección ortogonal al brazo anterior. 
Las dendritas son de gran importancia en materiales fundidos debido a que establecen la 
textura de solidificación y tamaño de grano en la pieza fundida, factores de influencia en las 
propiedades mecánicas y procesamiento posteriores al vaciado. (3) Por ello es de gran 
importancia modelar la formación y evolución de esta microestructura. 
Actualmente el Método de Campo de Fases es una de las técnicas más efectivas para 
modelar la evolución microestructural. La principal característica de los modelos de campo 
de fases es el carácter difuso de la intercara entre dos fases, razón por la cual se llaman 
1 
 
 
Introducción 
 
también ‘modelos de intercara difusa’. La intercara se describe por una transición continua, 
en espacio x, de la variable de campo de fases ϕ(x,t) entre dos estados. (4) 
El presente trabajo tiene el propósito de aplicar el Método de Campo de Fases al 
crecimiento de cristales dendríticos en un metal puro, usando la formulación propuesta por 
Kobayashi (5) para analizar los diferentes parámetros que afectan el proceso de 
solidificación. 
2 
 
 
Consideraciones teóricas 
 
1. Consideraciones teóricas 
 
La forma y el tamaño de los granos en un metal puro policristalino se determinan 
inicialmente por la nucleación y crecimiento que tiene lugar durante la solidificación, (6) por 
lo que es necesario comprender los mecanismos de estos fenómenos. 
 
1.1 Solidificación en metales puros 
La solidificación y la fusión son transformaciones entre estados cristalográficos y no-
cristalográficos de un metal o aleación. Estas trasformaciones son básicas para aplicaciones 
tecnológicas como vaciado de lingotes y piezas, colada continua, crecimiento de 
monocristales para semiconductores, solidificación direccionada de aleaciones compuestas, 
solidificación rápida de aleaciones y vidrios, así como soldadura por fusión. 
Al entenderse el mecanismo de solidificación y cómo lo afectan parámetros tales como la 
distribución de temperaturas o la velocidad de enfriamiento, se puede tener control en las 
propiedades mecánicas de metales vaciados y uniones soldadas. (7) 
 
1.1.1 Nucleación en metales puros 
Si un líquido se enfría debajo de su temperatura de fusión en equilibrio, Tm, existe una 
fuerza motriz para la solidificación (Gl – Gs) ilustrada en la figura 1: 
 
 
 
Figura 1. Diferencia en energía libre entre líquido y sólido cerca del punto de fusión. (7) 
 
3 
 
 
Consideraciones teóricas 
 
Por su presencia se esperaría que la fase líquida solidifique espontáneamente, sin 
embargo este no es siempre el caso. 
Por ejemplo, bajo condiciones apropiadas, el níquel puede ser sobreenfriado 250 K 
debajo de Tm, 1453°C para Ni, y mantenido indefinidamente sin que ocurra transformación 
alguna. La razón de este comportamiento es que la transformación comienza con la 
formación de pequeñas partículas sólidas o núcleos. 
Normalmente no se observan sobreenfriamientos tan grandes como 250 K, ya que en la 
práctica las paredes del recipiente que contiene al líquido o las partículas sólidas de 
impurezas en el líquido catalizan la nucleación del sólido a sobreenfriamientos tan bajos 
como 1 K. Esto se conoce como nucleación heterogénea. 
Los sobreenfriamientos grandes, mencionados antes, se obtienen cuando no hay sitios 
disponibles para nucleación heterogénea, es decir, cuando los núcleos sólidos deben 
formarse de forma homogénea a partir del líquido. (7) 
 
1.1.1.1 Nucleación homogénea 
La figura 2(a) muestra un volumen de líquido determinado a una temperatura ΔT debajo de 
Tm, con una energía libre G1. Si algunos átomos del líquido se agrupan para formar una 
pequeña esfera de sólido, figura 2 (b), la energía libre del sistema cambiará a G2, expresado 
por: 
 
 
 𝐺𝐺2 = 𝑉𝑉𝑆𝑆𝐺𝐺𝑣𝑣𝑆𝑆 + 𝑉𝑉𝐿𝐿𝐺𝐺𝑣𝑣𝐿𝐿 + 𝐴𝐴𝑆𝑆𝐿𝐿𝛾𝛾𝑆𝑆𝐿𝐿 ( 1 ) 
 
 
donde VS es el volumen de la esfera sólida, VL el volumen del líquido, ASL es el área 
interfacial sólido/líquido, GvS y GvL con las energías libres por unidad de volumen de sólido 
y líquido, respectivamente, y γSL la energía libre interfacial sólido/líquido. La energía libre 
del sistema sin sólido presente se describe por: 
 
 
 𝐺𝐺1 = (𝑉𝑉𝑆𝑆 + 𝑉𝑉𝐿𝐿) 𝐺𝐺𝑣𝑣𝐿𝐿 ( 2 ) 
4 
 
 
Consideraciones teóricas 
 
 
Figura 2. Nucleación homogénea. (7) 
 
 
La formación de sólido consiste en un cambio de energía libre ΔG = G2 – G1, donde: 
 
 
 𝛥𝛥𝐺𝐺 = − 𝑉𝑉𝑆𝑆 𝛥𝛥𝐺𝐺𝑣𝑣 + 𝐴𝐴𝑆𝑆𝐿𝐿𝛾𝛾𝑆𝑆𝐿𝐿 ( 3 ) 
 
 𝛥𝛥𝐺𝐺𝑣𝑣 = 𝐺𝐺𝑣𝑣𝐿𝐿 − 𝐺𝐺𝑣𝑣𝑆𝑆 ( 4 ) 
 
 
Para un sobreenfriamiento ΔT, ΔGv se expresa como: 
 
 
 𝛥𝛥𝐺𝐺𝑣𝑣 =
𝐿𝐿𝑣𝑣∆𝑇𝑇
𝑇𝑇𝑚𝑚
 ( 5 ) 
 
 
donde Lv es el calor latente de fusión por unidad de volumen. 
Debajo de Tm, ΔGv es positivo. El cambio de energía asociado con la formación de un 
pequeño volumen de sólido tiene una contribución negativa debida a la transformación del 
sistema de un estado de líquido, con mayor energía libre,a un estado sólido, con menor 
energía libre; así como una contribución positiva debida a la creación de una intercara 
sólido/líquido. 
5 
 
 
Consideraciones teóricas 
 
El exceso de energía libre puede minimizarse con la elección correcta de la forma de 
partícula. Si γSL es isotrópica, ésta es una esfera de radio r y la Ecuación (3) se reescribe 
como: (7) (8) 
 
 
 𝛥𝛥𝐺𝐺𝑟𝑟 = −
4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾𝑆𝑆𝐿𝐿 ( 6 ) 
 
 
Que se ilustra en la figura 3. Ya que γSL aumenta proporcionalmente a r2 y ΔGv 
disminuye proporcionalmente a r3, la creación de pequeñas partículas de sólido siempre 
conduce a un aumento de la energía libre, lo que hace poco probable que los núcleos se 
formen y crezcan. (7) (9) 
 
 
Figura 3. Cambio de energía libre asociado con la nucleación homogénea de una esfera de radio r. (7) 
 
 
Es este incremento el que permite mantener la fase líquida en estado metaestable casi 
indefinidamente a temperaturas debajo de Tm. 
6 
 
 
Consideraciones teóricas 
 
Dado que la contribución debida a la trasformación de un volumen, proporcional a r3, 
difiere de la contribución correspondiente a la formación de la intercara, proporcional a r2, 
la función ΔGr presenta un máximo en ΔG*: para un sobreenfriamiento dado hay un cierto 
radio, r*, asociado al máximo exceso de energía libre que forma una barrera de energía de 
activación que se opone a la cristalización, por lo que es crucial para el comportamiento de 
sobreenfriamiento del metal fundido. 
Si r < r* el sistema puede disminuir su energía libre con la disolución del sólido, 
mientras que cuando r > r* la energía libre del sistema disminuye si el sólido crece. 
Las partículas sólidas inestables con r < r* reciben el nombre de embriones, mientras que 
las partículas estables con r > r* se llaman núcleos. r* es el tamaño crítico de núcleo, ya que 
dG = 0 cuando r = r*, por lo que el núcleo se encuentra en equilibrio con el líquido que lo 
rodea. (7) (8) 
La Ecuación (6) puede diferenciarse para obtener: 
 
 
 𝑟𝑟∗ =
2𝛾𝛾𝑆𝑆𝐿𝐿
∆𝐺𝐺𝑣𝑣
 ( 7 ) 
 
 
Al sustituir la Ecuación (7) en la Ecuación (6) se obtiene: 
 
 
 ∆𝐺𝐺ℎ𝑜𝑜𝑚𝑚∗ =
16𝜋𝜋𝛾𝛾𝑆𝑆𝐿𝐿3
3∆𝐺𝐺𝑣𝑣2
 ( 8 ) 
 
 
Al sustituir ΔGv de la Ecuación (7) en la Ecuación (5) se obtiene: 
 
 
 𝑟𝑟∗ = �
2𝛾𝛾𝑆𝑆𝐿𝐿𝑇𝑇𝑚𝑚
𝐿𝐿𝑣𝑣
�
1
𝛥𝛥𝑇𝑇
 ( 9 ) 
 
 
Y al sustituir la Ecuación (5) en la Ecuación (8) se obtiene: 
 
7 
 
 
Consideraciones teóricas 
 
 ∆𝐺𝐺ℎ𝑜𝑜𝑚𝑚∗ = �
16𝜋𝜋𝛾𝛾𝑆𝑆𝐿𝐿3 𝑇𝑇𝑚𝑚2
3𝐿𝐿𝑣𝑣2
� 
1
𝛥𝛥𝑇𝑇2
 ( 10 ) 
 
 
Así, r* y ΔGhom* disminuyen al aumentar el sobreenfriamiento, ΔT. (7) (9) 
 
1.1.1.2 Nucleación heterogénea 
De acuerdo a la Ecuación (9), para facilitar la nucleación a sobreenfriamientos bajos el 
término de energía interfacial, γSL, debe reducirse. Dos maneras simples de lograr esto es 
que el núcleo se forme en contacto con la pared del molde o con la superficie de partículas 
inoculantes externas. 
La figura 4 muestra un embrión sólido formándose en contacto con una pared de molde 
perfectamente plana: 
 
 
 
Figura 4. Nucleación heterogénea de una capa esférica en una pared de molde plana. (7) 
 
 
Asumiendo que γSL es isotrópica se puede mostrar que para un volumen de sólido 
determinado, la energía interfacial total del sistema se minimiza si el embrión tiene la 
forma de una capa esférica con un ángulo de mojado θ, expresado por el balance de 
tensiones interfaciales γML, γSM y γSL en la pared del molde: (7) (9) 
 
 
 𝛾𝛾𝑀𝑀𝐿𝐿 = 𝛾𝛾𝑆𝑆𝑀𝑀 + 𝛾𝛾𝑆𝑆𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 11 ) 
 
8 
 
 
Consideraciones teóricas 
 
Reescribiendo: 
 
 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝛾𝛾𝑀𝑀𝐿𝐿 + 𝛾𝛾𝑆𝑆𝑀𝑀
𝛾𝛾𝑆𝑆𝐿𝐿
 ( 12 ) 
 
 
Debe notarse que la componente vertical de γSL permanece sin balancear. Tras un tiempo, 
esta fuerza tiraría de la superficie del molde hasta que las fuerzas de tensión superficial se 
balancearan en todas las direcciones. Por ello, la Ecuación (12) sólo muestra la forma 
óptima del embrión. 
La formación de dicho embrión se asocia a un exceso de energía libre expresado por: 
 
 
 ∆𝐺𝐺ℎ𝑒𝑒𝑒𝑒 = −𝑉𝑉𝑠𝑠∆𝐺𝐺𝑣𝑣 + 𝐴𝐴𝑆𝑆𝐿𝐿𝛾𝛾𝑆𝑆𝐿𝐿 + 𝐴𝐴𝑆𝑆𝑀𝑀𝛾𝛾𝑆𝑆𝑀𝑀 − 𝐴𝐴𝑆𝑆𝑀𝑀𝛾𝛾𝑀𝑀𝐿𝐿 ( 13 ) 
 
 
donde Vs es el volumen de la capa esférica, ASL y ASM son las áreas de las intercaras 
sólido/líquido y sólido/molde, y γSL, γSM y γML son las energías libres de las intercaras 
sólido/líquido, sólido/molde y molde/líquido. 
De esta manera existen tres contribuciones de energía interfacial. Las primeras dos son 
positivas ya que surgen de intercaras creadas durante el proceso de nucleación. La tercera, 
sin embargo, se debe a la destrucción de la intercara molde/líquido bajo la capa esférica y 
resulta en una contribución negativa a la energía. 
La Ecuación (13) puede escribirse en términos del ángulo de mojado, θ, y del radio de la 
capa esférica, r. 
 
 
 ∆𝐺𝐺ℎ𝑒𝑒𝑒𝑒 = �−
4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾𝑆𝑆𝐿𝐿� �
(2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2
4
� ( 14 ) 
 
 
Debe hacerse énfasis en que la Ecuación (14) sólo es distinta de la Ecuación (6), que 
describe el cambio de energía libre necesario para que ocurra nucleación homogénea, en la 
9 
 
 
Consideraciones teóricas 
 
existencia del segundo término. Este tiene un valor numérico ≤ 1, dependiente sólo del 
ángulo de mojado θ, esto es, la forma del núcleo. Por ello se denomina factor de forma. 
La comparación entre ΔGhet y ΔGhom se muestra en la figura 5. Puede observarse que r* es 
independiente del sitio de nucleación: (7) 
 
 
 
Figura 5. Exceso de energía libre de embriones para nucleación homogénea y heterogénea. (7) 
 
 
Al diferenciar la Ecuación (14) se puede mostrar que: 
 
 
 𝑟𝑟∗ =
2𝛾𝛾𝑆𝑆𝐿𝐿
∆𝐺𝐺𝑣𝑣
 ( 15 ) 
 
 
Al sustituir la Ecuación (15) en la Ecuación (14) se obtiene: 
 
 
 ∆𝐺𝐺ℎ𝑒𝑒𝑒𝑒∗ =
16𝜋𝜋𝛾𝛾𝑆𝑆𝐿𝐿3
3∆𝐺𝐺𝑣𝑣2
∙
(2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2
4
 ( 16 ) 
10 
 
 
Consideraciones teóricas 
 
Por lo que la barrera de energía de activación opuesta a la nucleación heterogénea ΔG*het 
es menor que aquella para nucleación homogénea, ΔG*hom, debido al factor de forma. El 
radio crítico de núcleo, r*, no se afecta por la pared del molde y sólo depende del 
sobreenfriamiento. Un núcleo que crece se vuelve estable cuando alcanza un radio r0 = 
1.5r*. Una vez que este ha crecido más allá de r0, la cristalización comienza. 
Al combinar las Ecuaciones (16) y (8), se obtiene: (7) (8) (9) 
 
 
 ∆𝐺𝐺ℎ𝑒𝑒𝑒𝑒∗ = �
(2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2
4
� ∆𝐺𝐺ℎ𝑜𝑜𝑚𝑚∗ ( 17 ) 
 
 
El efecto del sobreenfriamiento en ΔG*het y ΔG*hom se ilustra en la Figura 6: 
 
 
 
Figura 6. Variación de ΔG* con respecto al sobreenfriamiento, ΔT, para 
nucleación homogénea y heterogénea. (7) 
 
 
Como se puede ver en la figura 6, la nucleación heterogénea es posible a 
sobreenfriamientos mucho más bajos que los necesarios para que ocurra nucleación 
homogénea. (7) 
 
11 
 
 
Consideraciones teóricas 
 
1.1.2 Crecimiento y microestructura dendrítica 
La solidificación de metales es un proceso controlado por difusión. En metales puros, la 
velocidad de solidificación y la distribución de temperaturas en la zona circundante al 
núcleo están controladas por la velocidad a la cual el calor latente de solidificación puede 
conducirse lejos de la intercara sólido/líquido. (7) (9) 
La conducción se puede dar ya sea a través del sólido o del líquido, dependiendo de los 
gradientes de temperatura en la intercara. 
La figura 7 muestra un sólido con una intercara plana creciendo a una velocidad v hacia 
un líquido sobrecalentado. El flujo de calor hacia el exterior de la intercara a través del 
sólido debe balancear el flujo desde el líquido además del calor latente generado en la 
intercara: 
 
 
 𝐾𝐾𝑆𝑆𝑇𝑇𝑆𝑆′ = 𝐾𝐾𝐿𝐿𝑇𝑇𝐿𝐿′ + 𝑣𝑣𝐿𝐿𝑣𝑣 ( 18 ) 
 
 
donde K es la conductividad térmica, T’ es el gradiente detemperatura, dT/dx, los 
subíndices S y L significan sólido y líquido, v es la velocidad de crecimiento del sólido y Lv 
es el calor latente de fusión por unidad de volumen. 
Cuando un sólido crece hacia un líquido sobrecalentado, una intercara plana 
sólido/líquido es estable, como se muestra en la figura 7: 
 
 
 
Figura 7. (a) Distribución de temperatura para solidificación cuando el calor se extrae a través del 
sólido. Isotermas (b) para una intercara plana S/L y (c) para una protuberancia. (7) 
12 
 
 
Consideraciones teóricas 
 
Si como resultado de un incremento local en v, se forma una pequeña protuberancia en la 
intercara, figura 7 (c), y la intercara de ésta se mantiene a Tm, el gradiente de temperatura en 
el líquido frente al nódulo incrementará, mientras que el gradiente del sólido disminuye. 
Como consecuencia, se conducirá más calor hacia la protuberancia y menos hacia el 
exterior de ésta, por lo que la velocidad de crecimiento de la protuberancia será menor que 
la velocidad en las zonas planas, y la protuberancia desaparecerá. 
El resultado es distinto para un sólido creciendo hacia un líquido sobreenfriado debajo de 
Tm, figura 8. Si se forma una protuberancia en el sólido, el gradiente de temperatura 
negativo en el líquido se vuelve aún más negativo. Por ello, el calor se extrae con mayor 
eficiencia desde la punta de la protuberancia que desde las regiones circundantes, 
permitiendo que ésta crezca preferentemente. Una intercara sólido/líquido avanzando 
dentro de un líquido sobreenfriado es inherentemente inestable. 
 
 
 
Figura 8. Lo expuesto en la figura 7, con conducción de calor hacia el líquido. (7) 
 
 
Esta situación se puede presentar al comienzo de la solidificación si ocurre nucleación en 
las partículas de impurezas en el seno del líquido y se forma una protuberancia: ya que se 
necesita un determinado sobreenfriamiento antes de que la nucleación pueda ocurrir en el 
resto del líquido, las primeras partículas sólidas crecerán hacia el líquido sobreenfriado y el 
calor latente de solidificación será conducido hacia el líquido. (7) 
El líquido, al conducir el calor latente de las protuberancias, elevará su temperatura, con 
lo que se formará una estructura de protuberancias y líquido entre ellas. Este último sólo 
13 
 
 
Consideraciones teóricas 
 
podrá solidificarse por medio de la conducción de calor a través del sólido, como se 
muestra en la figura 7, cuando las paredes del molde y las protuberancias sólidas tengan 
menor temperatura que el líquido. 
Si la nucleación ocurre en las paredes del molde y el líquido no está subenfriado, se 
presentará una zona pequeña de estructuras de protuberancias cerca de la pared, donde el 
líquido está sobreenfriado. (6) (7) 
Cuando r alcanza el radio crítico necesario para que suceda la nucleación, r*, cualquier 
inestabilidad morfológica provoca que la intercara esférica se vuelva inestable a 
alteraciones espaciales continuas, favoreciendo el crecimiento de protuberancias en la 
intercara. Debido a que el crecimiento de protuberancias se favorece si el calor latente se 
conduce hacia el líquido, una partícula originalmente esférica desarrollará brazos en varias 
direcciones como se muestra en la figura 9: (7) (10) 
 
 
 
Figura 9. Desarrollo de dendritas térmicas: (a) núcleo esférico; (b) comienzo de inestabilidad en la 
intercara; (c) desarrollo de brazos primarios en direcciones cristalográficas; 
(d) desarrollo de brazos secundarios y terciarios. (7) 
14 
 
 
Consideraciones teóricas 
 
El crecimiento tras la nucleación se favorece en la dirección de la extracción de calor, 
perpendicular a la intercara sólido/líquido, formando una estructura de brazos primarios, 
también llamada estructura celular. Posteriormente se da una transición de estructura 
celular a estructura dendrítica, figura 10, acompañada de un cambio en la dirección de 
crecimiento a las direcciones preferenciales de cada sistema cristalino, debido a que al 
incrementarse la velocidad de solidificación, el requerimiento para el transporte atómico es 
más alto y este es alcanzado con mayor facilidad en las direcciones preferenciales de cada 
estructura, por ejemplo: < 100 > en metales cúbicos y < 11�00 > en metales hexagonales 
compactos. (2) (7) 
A la vez que los brazos primarios se alargan, su sección transversal cambia de forma 
circular a la de una cruz. Posteriormente sus superficies se vuelven inestables y se 
descomponen en brazos secundarios e incluso terciarios. Esta estructura se conoce como 
dendrita, que se deriva de la palabra griega para árbol, δενδρων. (2) (3) (7) 
 
 
 
Figura 10. Cambio secuencial de la morfología de la intercara a medida que la velocidad de 
solidificación aumenta: (a) Célula creciendo en la dirección de la extracción de calor; 
(b) Célula creciendo en la dirección <100> (c) Transición célula/dendrita 
(d) Dendrita. (11) 
 
15 
 
 
Consideraciones teóricas 
 
En la punta de una dendrita en crecimiento la situación es distinta de aquella presentada 
para una intercara plana, ya que el calor puede disiparse de la punta de la dendrita en tres 
dimensiones. Si se asume que el sólido es isotérmico, T’S = 0, y que el gradiente negativo 
de temperatura T’L es aproximadamente igual a ΔTc / r, donde es la diferencia entre la 
temperatura de la intercara, Ti, y la temperatura del líquido sobreenfriado lejano a la 
dendrita, T∞, como se muestra en la figura 11, y se sustituyen ambas condiciones en la 
Ecuación (18) se obtiene: 
 
 
 𝑣𝑣 =
−𝐾𝐾𝐿𝐿𝑇𝑇𝐿𝐿′
𝐿𝐿𝑣𝑣
≈
𝐾𝐾𝐿𝐿
𝐿𝐿𝑣𝑣
∙
∆𝑇𝑇
𝑟𝑟
 ( 19 ) 
 
 
Por lo que, para un determinado sobreenfriamiento, el crecimiento será rápido para 
valores pequeños de r debido a la mejora de la conductividad térmica a medida que r 
disminuye. (7) 
 
 
 
Figura 11. Distribución de temperaturas en la punta de una dendrita térmica en crecimiento. (7) 
 
16 
 
 
Consideraciones teóricas 
 
La microestructura dendrítica es posiblemente la microestructura más común, estando 
presente en todas las piezas fundidas macroscópicas así como en las transformaciones de 
estado sólido. De hecho, sólo se puede evitar si se usan limitantes de velocidad o 
sobreenfriamiento. 
Si un material que presenta una microestructura dendrítica gruesa es re-procesado, se 
agrietará o presentará defectos. Por ello es deseable obtener una microestructura lo 
suficientemente fina para permitir re-procesamiento sin defectos. En cualquier caso, habrá 
remanentes de la estructura dendrítica en las piezas re-procesadas. (10) (12) 
 
1.1.2.1 Anisotropía en crecimiento dendrítico 
La anisotropía de la cinética de crecimiento de cristales se origina en la tensión superficial, 
en el transporte de calor y en los procesos microscópicos en la intercara, y puede causar que 
la morfología de un cristal en crecimiento cambie. 
Diversos experimentos y cálculos en sistemas con elementos puros y propiedades 
superficiales isotrópicas muestran que en una orientación correspondiente a la punta de una 
perturbación en la forma inicial del cristal, un punto de máxima curvatura en la forma 
inicial, la curvatura de la intercara puede disminuir e incluso volverse negativa a medida 
que la intercara crece, como se muestra en la figura 12: 
 
 
 
Figura 12. Patrón de evolución espacial para una secuencia de separación de puntas 
obtenido en las simulaciones de Kessler, Koplik y Levine. (13) 
17 
 
 
Consideraciones teóricas 
 
Este fenómeno se conoce como separación de puntas, y se presenta a valores mínimos de 
anisotropía. Se requiere un valor crítico de anisotropía cristalina para que las puntas de los 
cristales dendríticos sean estables y no se presente separación de las mismas. 
La figura 12 muestra una de las simulaciones de crecimiento dendrítico obtenidas por 
Kessler, Koplik y Levine con un modelo geométrico, considerando condiciones isotrópicas. 
Cada contorno representa una etapa de tiempo,y se puede observar que a medida que el 
tiempo transcurre, las puntas de la dendrita tienden a hacerse cóncavas y a formar dos 
puntas redondeadas, es decir, a separarse. 
Al aumentar el valor de la anisotropía, aumenta el número de brazos emitidos antes de 
que ocurra la separación de puntas. Si el valor de anisotropía es igual al valor crítico, la 
formación de brazos se estabiliza y el sistema es capaz de formar brazos secundarios. Así, 
el valor crítico de tensión superficial anisotrópica puede evitar que la punta del cristal 
dendrítico se vuelva negativa o cóncava en la orientación donde se presenta la separación 
de puntas. (14) (13) 
La figura 13 muestra una de las simulaciones obtenidas por Brush y Sekerka (14) con un 
modelo de crecimiento de cristales, considerando tensión superficial isotrópica. Es evidente 
la similitud entre esta figura y la presentada por Kessler, Koplik y Levine. (13) 
 
 
 
Figura 13. Crecimiento de un cristal en el cual se observa separación de puntas 
obtenido en las simulaciones de Brush y Sekerka. (14) 
 
18 
 
 
Consideraciones teóricas 
 
El fenómeno de separación de puntas se demostró experimentalmente por Ben-Jacob y 
colaboradores (15) mediante un experimento en el cual se observa la formación de patrones 
en la intercara entre dos líquidos inmiscibles, y donde el efecto de la anisotropía se incluye 
en el experimento al llevarse a cabo sobre una superficie ranurada que forma una retícula. 
La figura 14 muestra el patrón de separación de puntas obtenido por Ben-Jacob y 
colaboradores (15) con bajos valores de anisotropía. 
 
 
 
Figura 14. Patrón de separación de puntas formado en la experimentación 
de Ben-Jacob y colaboradores. (15) 
 
 
1.2 Método de Campo de Fases 
La solidificación de un metal puro se modela tradicionalmente usando una serie de 
ecuaciones que describen el avance del frente de solidificación, que se limita por la difusión 
de calor latente al exterior de la intercara sólido/líquido y por la habilidad de la intercara de 
mantener dos condiciones límite: 
• El flujo de calor hacia un lado de la intercara se balancea con un flujo de calor 
equivalente lejos del lado contrario. 
• La temperatura en la intercara experimenta una corrección debida a la curvatura, 
conocida como condición de Gibbs-Thomson. 
19 
 
 
Consideraciones teóricas 
 
Estas condiciones se expresan matemáticamente por el modelo de intercara definida 
conocido como Problema de Stefan: 
 
 
 
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
= ∇ ∙ �
𝐾𝐾
𝜌𝜌𝑐𝑐𝜌𝜌
∇𝑇𝑇� ≡ ∇ ∙ (𝐷𝐷∇𝑇𝑇) ( 20 ) 
 
 𝜌𝜌𝐿𝐿𝑓𝑓𝑉𝑉𝑛𝑛 = 𝐾𝐾𝑆𝑆∇𝑇𝑇 ∙ 𝑛𝑛�⃑ |𝑖𝑖𝑛𝑛𝑒𝑒𝑆𝑆 − 𝐾𝐾𝐿𝐿∇𝑇𝑇 ∙ 𝑛𝑛�⃑ |𝑖𝑖𝑛𝑛𝑒𝑒𝐿𝐿 ( 21 ) 
 
 𝑇𝑇𝑖𝑖𝑛𝑛𝑒𝑒 = 𝑇𝑇𝑚𝑚 − �
𝛶𝛶𝑇𝑇𝑀𝑀
𝜌𝜌𝐿𝐿𝑓𝑓
� 𝜅𝜅𝑆𝑆𝑆𝑆 −
𝑉𝑉𝑛𝑛
𝜇𝜇
 ( 22 ) 
 
 
donde T ≡ T(x,t) denota la temperatura, K la conductividad térmica, con subíndices S y L 
para el sólido y el líquido, respectivamente, ρ la densidad del sólido y del líquido, cp el 
calor específico a presión constante, D el coeficiente de difusión térmica, Lf el calor latente 
de fusión por masa de solidificación, ϒ la energía de la superficie sólido/líquido, Tm la 
temperatura de fusión, κSL la curvatura local de la intercara sólido/líquido, Vn la velocidad 
normal local de la intercara y μ la movilidad atómica local de la intercara. El subíndice int 
se refiere a la intercara y los superíndices S y L se refieren a la evaluación en la intercara en 
el lado del sólido y del líquido, respectivamente. (12) 
El Problema de Stefan es un problema de frontera libre, en el cual se busca una solución 
u a una ecuación diferencial parcial en un dominio, con una parte desconocida Γ de su 
frontera. Así, se deben determinar u y Γ. Adicionalmente a las condiciones frontera de un 
dominio desconocido, se debe indicar una condición en la frontera libre. Si se considera la 
fusión de hielo, la temperatura satisface la ecuación de calor en la región de líquido, y sin 
embargo esta región, o la intercara sólido/líquido, se desconoce y debe determinarse a la 
vez que la temperatura dentro de la región del líquido. (16) 
La manera clásica de resolver un problema de frontera libre es por medio de un modelo 
con una intercara de espesor igual a cero, es decir, una intercara definida. En él, una 
discontinuidad clara en propiedades o una variación en los flujos y funciones 
termodinámicas ocurre a través de la intercara. Las propiedades interfaciales de la 
transformación de solidificación (como de otras transformaciones limitadas por difusión) 
20 
 
 
Consideraciones teóricas 
 
pueden describirse por ecuaciones de intercara definida análogas al Problema de Stefan, sin 
embargo, existen varias limitantes al modelar problemas de frontera libre mediante modelos 
de intercara definida: 
• El modelo de intercara definida apropiado no se conoce para muchos fenómenos. 
• La simulación numérica es de extrema dificultad debido a las interacciones 
complejas entre intercaras complicadas, que se someten a unión y constricción 
durante una transformación de fase. 
• Los códigos numéricos son largos y complejos, especialmente en tres dimensiones. 
Como alternativa, surgió el método de campo de fases, una técnica relativamente nueva 
de modelado de evolución microestructural caracterizada por considerar un espesor de 
intercara finito, cuyo uso ha ido en incremento debido a sus orígenes fundamentales y a que 
evita algunos de los problemas asociados con los modelos de intercara definida. (4) (8) 
El método de campo de fases incluye además del campo de temperaturas usual, un 
campo continuo denominado campo de fases o parámetro de orden. Este campo asume 
valores constantes en el interior de cada fase, interpolando continuamente entre sus valores 
en cada fase a través de una capa límite delgada, usada para describir la intercara entre 
fases; es decir, permite bosquejar la intercara en una región difusa. Por ello, a los modelos 
usados en el método de campo de fases se les conoce también como modelos de intercara 
difusa. (4) (12) 
Un parámetro de orden es una cantidad que parametriza el cambio de simetría de una 
fase madre, desordenada en el caso del líquido a solidificar, a una fase hija, ordenada en el 
caso del sólido formado, que aparece tras la transformación. Por ello, el campo de fases 
puede verse como un parámetro que describe el grado de cristalinidad u orden o desorden 
atómico dentro de una fase. Puede ser visto también como un parámetro que proporciona 
una descripción fundamental de una intercara atómica difusa. (12) 
 
1.3 Formulación de Kobayashi 
La formulación propuesta por Kobayashi (4) (5) (17) consiste en un modelo de campo de fases 
para simular la formación de estructuras dendríticas en metales puros, formadas según el 
balance de la tensión superficial y la fuerza motriz termodinámica, sobreenfriamiento, 
21 
 
 
Consideraciones teóricas 
 
tomando en cuenta la anisotropía de energía interfacial, que afecta drásticamente la forma 
de los cristales. (5) (17) 
Al simular la solidificación de metales puros, se considera que la velocidad de 
crecimiento de los cristales está limitada sólo por el proceso de extracción de calor de la 
intercara, que mantiene la temperatura interfacial debajo de la temperatura de equilibrio. 
El modelo incluye dos variables: un campo de fases ϕ(x,t) y un campo de temperaturas 
T(x,t). La variable de campo de fases ϕ(x,t) es un parámetro de orden. En la posición x y el 
tiempo t, ϕ = 0 indica la existencia de fase líquida y ϕ = 1 indica la existencia de fase 
sólida. La intercara sólido/líquido se expresa por una transición suave de los valores entre 0 
y 1. (4) (5) 
Se considera que la energía libre es del tipo Ginzburg-Landau: 
 
 
 𝐺𝐺(𝜙𝜙,𝑚𝑚) = �
1
2
𝜀𝜀2|∇𝜙𝜙|2 + 𝐹𝐹(𝜙𝜙,𝑚𝑚)𝑑𝑑𝒙𝒙 ( 23 ) 
 
 
donde ε es un parámetro que determina el espesor de la capa y la movilidad de la intercara. 
La anisotropía se incluye en el modeloal asumir que ε depende de la dirección del vector 
normal externo en la intercara (representado por -∇ϕ). Así, la Ecuación (23) se modifica: 
 
 
 𝐺𝐺(𝜙𝜙,𝑚𝑚) = � 
1
2
𝜀𝜀(−∇𝜙𝜙)2|∇𝜙𝜙|2 + 𝐹𝐹(𝜙𝜙,𝑚𝑚)𝑑𝑑𝒙𝒙 ( 24 ) 
 
 
El valor de ε se puede determinar mediante la relación: 
 
 
 𝜀𝜀 = 𝜀𝜀�̅�𝜎(𝑐𝑐) ( 25 ) 
 
 
donde 𝜀𝜀 ̅representa el valor promedio de ε y σ(θ) la anisotropía, que a su vez se expresa por: 
 
 
 𝜎𝜎(𝑐𝑐) = 1 + 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿(𝑐𝑐 − 𝑐𝑐𝑜𝑜) ( 26 ) 
22 
 
 
Consideraciones teóricas 
 
donde el parámetro δ se refiere a la magnitud de anisotropía, j al número de simetría de 
anisotropía y θ es un ángulo entre el vector normal externo en la intercara y una dirección 
determinada. El valor de (θ – θ0) se asigna a cada valor de ∇ϕ. 
Se considera que la energía libre F(ϕ,m) reproduce una función potencial de doble pozo, 
donde un pozo representa la fase líquida y otro la fase sólida, que se expresa 
matemáticamente como: 
 
 
 𝐹𝐹(𝜙𝜙,𝑚𝑚) =
1
4
𝜙𝜙4 − �
1
2
−
1
3
𝑚𝑚�𝜙𝜙3 + �
1
4
−
1
2
𝑚𝑚�𝜙𝜙2 ( 27 ) 
 
 
donde m representa la fuerza motriz para la solidificación y su valor absoluto es menor a 
0.5. (5) 
La ecuación diferencial parcial de Allen-Cahn (18) a resolver es: 
 
 
 𝜏𝜏
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝐺𝐺
𝜕𝜕𝜙𝜙
 ( 28 ) 
 
 
donde τ es una constante positiva que fija la escala temporal. Al sustituir la Ecuación (27) 
en la Ecuación (24) y el resultado en la Ecuación (28), se obtiene la siguiente ecuación 
diferencial, que representa la evolución de la intercara y es una de las ecuaciones a resolver 
en el modelo: 
 
 
 
𝜏𝜏
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
= −
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜀𝜀𝜀𝜀′
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
� +
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜀𝜀𝜀𝜀′
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
� + ∇ ∙ (𝜀𝜀2∇𝜙𝜙)
+ 𝜙𝜙(1 − 𝜙𝜙) �𝜙𝜙 −
1
2
+ 𝑚𝑚� 
( 29 ) 
 
 
donde ε’ es la primera derivada de ε con respecto a θ. La fuerza motriz m se define como: 
 
 
23 
 
 
Consideraciones teóricas 
 
 𝑚𝑚(𝑇𝑇) = �
𝛼𝛼
𝜋𝜋
� atan{𝛾𝛾(𝑇𝑇𝑒𝑒 − 𝑇𝑇)} ( 30 ) 
 
donde α es una constante positiva menor a 1, requisito para que se cumpla la condición 
previamente mencionada de |m| < 0.5 en todos los valores de T, γ es un parámetro 
adimensional y Te y T son las temperaturas de equilibrio y enfriamiento, respectivamente. 
La ecuación para la temperatura adimensional T como una función del tiempo 
adimensional t, que es la segunda ecuación a resolver en el modelo, se deriva de la ley de la 
conservación de la energía y se expresa como: 
 
 
 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
= ∇2𝑇𝑇 + 𝜅𝜅
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
 ( 31 ) 
 
 
donde κ es el calor latente adimensional. La temperatura T varía entre 0 y 1, que 
corresponden a las temperaturas de enfriamiento y equilibrio, respectivamente. Las 
soluciones a las Ecuaciones (29) y (31) producen resultados equivalentes. (4) (5) 
 
1.4 Método de Diferencias Finitas 
El primer paso de toda simulación es proponer el problema física, química o 
termodinámicamente en la forma de un formalismo matemático, que incluye 
frecuentemente una serie de ecuaciones diferenciales parciales. 
En la mayoría de los casos el problema es no lineal y no existe una solución analítica, por 
lo que la resolución de dichas ecuaciones es complicada. Por ello, se recurre a un método 
numérico para obtener la solución. 
Entre los métodos numéricos desarrollados hasta ahora, el Método de Diferencias Finitas 
es el más simple y de más fácil implementación en un lenguaje de programación. (19) 
El principio que emplea el Método de Diferencias Finitas para resolver ecuaciones es la 
sustitución de las derivadas en las ecuaciones diferenciales parciales, ya sean derivadas 
temporales o espaciales, por una expresión de diferencia apropiada, encargada de 
aproximarlas. (20) 
Dicha expresión es calculada mediante diferencias entre los valores de una función en 
puntos determinados, llamados nodos, de una malla. 
24 
 
 
Consideraciones teóricas 
 
Si se considera una serie de nodos en una malla regular, el espaciado puede ser 
expresado por: 
 ℎ =
𝐿𝐿
𝑁𝑁 + 1
 ( 32 ) 
 
 
donde (N + 1) es el número de intervalos en que está dividida la longitud L. En ella se 
pretende calcular los valores de una función, c(xk), en los N puntos internos del dominio. La 
función c(x) puede ser expandida en una serie de Taylor alrededor de los puntos xk de la 
malla: 
 
 
 
𝑐𝑐(𝜕𝜕) = 𝑐𝑐(𝜕𝜕𝑘𝑘) + �
𝑑𝑑𝑐𝑐
𝑑𝑑𝜕𝜕
�
𝑥𝑥𝑘𝑘
(𝜕𝜕 − 𝜕𝜕𝑘𝑘) + �
𝑑𝑑2𝑐𝑐
𝑑𝑑𝜕𝜕2
�
𝑥𝑥𝑘𝑘
(𝜕𝜕 − 𝜕𝜕𝑘𝑘)2
2!
+ �
𝑑𝑑3𝑐𝑐
𝑑𝑑𝜕𝜕3
�
𝑥𝑥𝑘𝑘
(𝜕𝜕 − 𝜕𝜕𝑘𝑘)3
3!
+ ⋯ 
( 33 ) 
 
 
Si se adopta la siguiente nomenclatura: 
 
 
 𝑐𝑐𝑘𝑘 = 𝑐𝑐(𝜕𝜕𝑘𝑘) ( 34 ) 
 
 𝑐𝑐𝑘𝑘±1 = 𝑐𝑐(𝜕𝜕𝑘𝑘±1) ( 35 ) 
 
 𝑐𝑐𝑘𝑘′ = �
𝑑𝑑𝑐𝑐
𝑑𝑑𝜕𝜕
�
𝑥𝑥𝑘𝑘
 ( 36 ) 
 
 𝑐𝑐𝑘𝑘′′ = �
𝑑𝑑2𝑐𝑐
𝑑𝑑𝜕𝜕2
�
𝑥𝑥𝑘𝑘
 ( 37 ) 
 
 𝑐𝑐𝑘𝑘′′′ = �
𝑑𝑑3𝑐𝑐
𝑑𝑑𝜕𝜕3
�
𝑥𝑥𝑘𝑘
 ( 38 ) 
 
 
los valores de c(x) en los nodos a la derecha e izquierda del nodo k están dados por: 
25 
 
 
Consideraciones teóricas 
 
 𝑐𝑐𝑘𝑘+1 = 𝑐𝑐𝑘𝑘 + 𝑐𝑐𝑘𝑘′ ℎ + 𝑐𝑐𝑘𝑘′′
ℎ2
2
+ 𝑐𝑐𝑘𝑘′′′
ℎ3
6
+ 𝑂𝑂(ℎ4) ( 39 ) 
 
 
 𝑐𝑐𝑘𝑘−1 = 𝑐𝑐𝑘𝑘 − 𝑐𝑐𝑘𝑘′ ℎ + 𝑐𝑐𝑘𝑘′′
ℎ2
2
− 𝑐𝑐𝑘𝑘′′′
ℎ3
6
+ 𝑂𝑂(ℎ4) ( 40 ) 
 
 
Al combinar linealmente estas dos ecuaciones, se obtienen las aproximaciones de la 
primera y segunda derivada para todos los puntos k de la malla: 
 
 
 𝑐𝑐𝑘𝑘+′ =
𝑐𝑐𝑘𝑘+1 − 𝑐𝑐𝑘𝑘
ℎ
+ 𝑂𝑂(ℎ) ( 41 ) 
 
 𝑐𝑐𝑘𝑘−′ =
𝑐𝑐𝑘𝑘 − 𝑐𝑐𝑘𝑘−1
ℎ
+ 𝑂𝑂(ℎ) ( 42 ) 
 
 𝑐𝑐𝑘𝑘′ =
𝑐𝑐𝑘𝑘+1 − 𝑐𝑐𝑘𝑘−1
2ℎ
+ 𝑂𝑂(ℎ2) ( 43 ) 
 
 𝑐𝑐𝑘𝑘′′ =
𝑐𝑐𝑘𝑘+1 − 2𝑐𝑐𝑘𝑘 + 𝑐𝑐𝑘𝑘−1
ℎ2
+ 𝑂𝑂(ℎ2) ( 44 ) 
 
 
Los subíndices + y – se usan para distinguir la derivada central de la derivada de la 
derecha y de la derivada de la izquierda, respectivamente. 
Las Ecuaciones (41) y (42) tienen precisión de orden h, es decir, al sustituir las derivadas 
por alguna de las expresiones de diferencia, el error cometido al truncar la serie de Taylor 
tiende a cero de forma proporcional a h cuando el número de nodos tiende al infinito. Así, 
si el espaciamiento entre nodos h se divide entre dos, el error de truncamiento también se 
divide entre dos, y se gana precisión en los cálculos. 
En el caso de las Ecuaciones (43) y (44), que tienen precisión de orden h2, al dividir el 
espaciamiento de nodos entre dos, el error de truncamiento se divide entre cuatro. 
La primera derivada de una función con respecto al tiempo puede aproximarse al 
modificar la Ecuación (41): 
 
26 
 
 
Consideraciones teóricas 
 
 𝑐𝑐𝑒𝑒+′ =
𝑐𝑐𝑘𝑘𝑒𝑒+1 − 𝑐𝑐𝑘𝑘𝑒𝑒
∆𝜕𝜕
+ 𝑂𝑂(∆𝜕𝜕) ( 45 ) 
 
 
No es posible aproximarla con la Ecuación (42), debido a que la condición previa a la 
condición inicial de la función es desconocida. 
La Ecuación (45), con precisión de orden Δt, permite calcular valores en las etapas de 
tiempo t + 1, y es llamada una aproximación hacia adelante. 
Si como ejemplo se pretende encontrar una solución numérica a una ecuación general de 
flujo conservativo: 
 
 
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
= −𝑉𝑉
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
 ( 46 ) 
 
 
donde V es una constante, usando las aproximaciones correspondientes a las Ecuaciones 
(43) y (45), la Ecuación (46) puede expresarse como: 
 
 
 
𝑐𝑐𝑘𝑘𝑒𝑒+1 − 𝑐𝑐𝑘𝑘𝑒𝑒
∆𝜕𝜕
= −𝑉𝑉 �
𝑐𝑐𝑘𝑘+1𝑒𝑒 − 𝑐𝑐𝑘𝑘−1𝑒𝑒
2ℎ
� ( 47 ) 
 
 
que puede ser reescrita como: 
 
 𝑐𝑐𝑘𝑘𝑒𝑒+1 = 𝑐𝑐𝑘𝑘𝑒𝑒 −
𝑉𝑉∆𝜕𝜕
2ℎ
(𝑐𝑐𝑘𝑘+1𝑒𝑒 − 𝑐𝑐𝑘𝑘−1𝑒𝑒 ) ( 48 ) 
 
Si se pretende resolver numéricamente una ecuación de difusión: 
 
 
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
= −𝐷𝐷
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2
 ( 49 ) 
 
 
la aproximación puede expresarse como: 
27 
 
 
Consideraciones teóricas 
 
 𝑐𝑐𝑘𝑘𝑒𝑒+1 = 𝑐𝑐𝑘𝑘𝑒𝑒 −
𝐷𝐷∆𝜕𝜕
ℎ2
(𝑐𝑐𝑘𝑘+1𝑒𝑒 − 2𝑐𝑐𝑘𝑘𝑒𝑒 + 𝑐𝑐𝑘𝑘−1𝑒𝑒 ) ( 50 ) 
 
 
A las Ecuaciones (48) y (50), representadas gráficamente en la figura 15, se les conoce 
como el Método Explícito de Diferencias Finitas. (19) (20) (21)Figura 15. Representación gráfica del Método Explícito de Diferencias Finitas: (a) Aproximación 
para una ecuación diferencial parcial de primer orden (b) Aproximación para 
una ecuación diferencial parcial de segundo orden. (21)
28 
 
 
Metodología numérica 
 
2. Metodología numérica 
 
Para simular la evolución de la microestructura dendrítica, se usó un código en 
FORTRAN llamado “Dendrite.f95”, en el cual, las Ecuaciones (29) y (31) se resolvieron 
simultáneamente en dos dimensiones usando el Método Explícito de Diferencias Finitas 
utilizando una malla de 301 x 301 nodos. 
Las etapas de distancia Δx y de tiempo Δt elegidas fueron 0.03 unidades de distancia y 
2x10-4 unidades de tiempo, respectivamente. Los valores seleccionados para los parámetros 
restantes en las distintas simulaciones se resumen en la tabla 1. 
 
 
Tabla 1. Parámetros de la formulación de Kobayashi usados durante las simulaciones 
Parámetro Valor 
𝜺𝜺� 0.01 
δ 0.00, 0.02, 0.05, 0.08 
j 0.0, 4.0, 6.0 
m 1.0 
α 0.9 
γ 10.0 
τ 0.0003 
κ 1.0, 1.5, 1.8, 2.2 
 
 
Los archivos de datos generados por el programa Dendrite.f95 posteriormente se 
graficaron y se usaron para crear secuencias de video. 
En cada nueva simulación se modificaron las condiciones iniciales de magnitud de 
anisotropía, δ, número de simetría de anisotropía, j, y calor latente adimensional, κ, a fin de 
simular las condiciones indicadas en la tabla 1. 
Se modificaron las condiciones de un parámetro a la vez, δ constante y κ variable o lo 
opuesto, usando condiciones de δ = 0.02 y κ = 1.8 cuando éstos son el parámetro constante; 
y se simularon dichas condiciones para dos estructuras cristalinas, cúbica y hexagonal, para 
lo cual se usó un valor de j = 4.0 y j = 6.0, respectivamente. 
29 
 
 
Metodología numérica 
 
La figura 16 muestra la metodología seguida para obtener imágenes y secuencias de 
video para cada simulación. 
 
Metodología Numérica
Escritura del programa Dendrite.f95
Compilación en Lahey ED Developer
Ejecución del programa (creación de archivos .DAT)
¿Condiciones 
actualizadas?
Sí
No
Importación de archivos .DAT como hojas de matriz en OriginPro 9.1
¿Existen errores?
No
Ejecución de rutina personalizada para generación de gráficas
Exportación de gráficas como archivos de imagen
Importación de archivos de imagen en Adobe Premier Pro CC 2015
Ajuste de duración de todas las imágenes a 00:00:00:01
Creación de una secuencia con las imágenes
Interpretación de resultados
Sí
 
Figura 16. Diagrama de flujo correspondiente a la simulación de la solidificación en 
metales puros por el método de campo de fases. 
30 
 
 
Metodología numérica 
 
Para crear el código del programa Dendrite.f95 se usó FORTRAN 95 como lenguaje de 
programación y el software Lahey ED Developer versión 3.80 como compilador. El código 
se incluye como apéndice en este trabajo. 
El programa consiste de los siguientes elementos: 
• Un módulo “mdata” para almacenar la información sobre las variables a usar, a fin 
de poder ser usada en las distintas subrutinas del programa. 
• Una subrutina “initial” donde se indican las condiciones iniciales de la simulación: 
valores de variables y posición de núcleos. 
• Una subrutina “gradandlaplace” cuya función es calcular las variables y operadores 
necesarios para la resolución de las ecuaciones. 
• Una subrutina “evolution” usada para la resolución de las ecuaciones. 
• Una subrutina “printdata” encargada de la generación de archivos de datos (con 
formato .DAT) donde se almacena la información de la evolución cada vez que se 
cumplen 20 ciclos del programa. 
Tras cada ejecución del programa se obtuvieron 500 archivos de datos para cada campo, 
ϕ y T, debido a que el programa ejecuta 10000 ciclos y se crea un archivo de datos 
únicamente de los ciclos múltiplos de 20. 
A fin de poder analizar la evolución microestructural, los archivos de datos generados 
por el programa deben transformarse en gráficas y posteriormente en secuencias de video. 
Para estos fines se usaron los softwares OriginPro 9.1 y Adobe Premiere Pro CC 2015, 
respectivamente. 
Para graficar la información guardada en los archivos de datos se empleó la siguiente 
serie de pasos en OriginPro 9.1: 
i. Abrir un nuevo libro de matrices dando clic el ícono “New Matrix” en la barra de 
herramientas. 
ii. Abrir el menú de importación de archivos ASCII dando clic en el ícono “Import 
Multiple ASCII” en la barra de herramientas. Una vez abierto este menú, 
seleccionar los archivos a importar y dar clic en “Add Files” y posteriormente en 
“OK”. 
iii. En el cuadro de diálogo que se abre al ejecutar la orden anterior, seleccionar la 
opción “Start New Sheets” en el menú “Import Mode” y dar clic en “OK”, lo que 
31 
 
 
Metodología numérica 
 
comenzará la traducción de los archivos ASCII a matrices, almacenando los datos 
en hojas consecutivas de un mismo libro. 
iv. Iniciar la rutina personalizada, que se encargará de graficar cada hoja de matriz en 
el proyecto, dando clic en el ícono “Custom Routine” en la barra de herramientas. 
La rutina programada consiste en el siguiente código, escrito en el lenguaje 
LabTalk, desarrollado para crear rutinas en Origin: 
 
 
doc -e LB {plotm im:=<active> plot:=PlotTypeID ogl:=<new 
template:=TemplateName>;} 
 
 
en ella, debe reemplazarse el texto “PlotTypeID” por un número de tres cifras 
característico de cada tipo de gráfica en Origin, “226” para las gráficas usadas en 
este trabajo, y el texto “Template Name” por el nombre de una plantilla creada 
previamente, que contiene el formato de las gráficas a generar, “Dendrite” en este 
trabajo. 
Este código debe haber sido designado previamente como la rutina personalizada, 
seleccionando la opción “Script Window” en el menú “Window”, y seleccionando 
la opción “Open” en el menú “File(Text)” para posteriormente seleccionar el 
archivo Custom.ogs y reemplazar el contenido de este por el código de la rutina 
creada. 
v. Seleccionar la opción “Export Graphs” en el menú “File”. En el cuadro de diálogo 
que se abre, seleccionar el formato de salida y la resolución de la imagen: en este 
trabajo se eligieron imágenes .png con 300 DPI. Al dar clic en “OK”, se exportan 
los archivos de imagen. 
 
32 
 
 
Resultados 
 
3. Resultados 
 
Los resultados que se presentan a continuación representan el crecimiento simulado de 
cristales individuales, cuya nucleación fue heterogénea sobre la superficie de una partícula 
de impureza localizada en el centro de la malla. Se considera que el metal solidifica a partir 
de líquido estático, es decir, en ausencia de convección. 
En las simulaciones se presenta el efecto del cambio en tres variables: magnitud de 
anisotropía cristalina, δ, que representa la simulación de metales solidificándose bajo 
distintas condiciones de tensión superficial, transporte de calor y de interacción entre su 
intercara y el entorno; calor latente adimensional, κ, que representa la simulación de 
metales con distintos calores latentes de fusión; y número de simetría de anisotropía, j, que 
representa la simulación de metales con diferentes simetrías de crecimiento, es decir, 
distintas estructuras cristalinas. 
 
3.1 Simulaciones de simetría de anisotropía perfecta 
En esta sección se incluyen las simulaciones que corresponden a los casos ideales de 
cristales que se solidifican con simetría de anisotropía perfecta, es decir, sin direcciones 
preferenciales de crecimiento características de alguna estructura cristalina. Las 
condiciones usadas en las simulaciones correspondientes a esta sección se resumen en la 
tabla 2. 
 
 
Tabla 2. Condiciones usadas para las simulaciones de simetría de anisotropía perfecta 
Número de Figura 
Magnitud de 
Anisotropía 
Cristalina ( δ ) 
Calor Latente 
Adimensional ( κ ) 
Número de 
Simetría de 
Anisotropía ( j ) 
17 0.000 1.0 0.0 
17 0.020 1.0 0.0 
18 0.000 1.8 0.0 
18 0.020 1.8 0.0 
 
 
Lafigura 17 muestra las simulaciones donde el calor latente adimensional, κ, es unitario. 
33 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 17 muestran la evolución de un cristal poligonal 
simulado bajo condiciones de simetría de anisotropía perfecta e isotropía cristalina, que 
presenta geometría casi circular. 
Las imágenes (d), (e) y (f) de la figura 17 muestran la evolución de un cristal poligonal 
simulado bajo condiciones de simetría de anisotropía perfecta y baja anisotropía cristalina, 
δ = 0.020. A pesar del valor de anisotropía distinto a cero con el que se simuló, no se 
aprecian cambios en la geometría del cristal. 
Es evidente que ambos cristales presentan altas velocidades de crecimiento, ya que a un 
tiempo de 0.32, casi todo el líquido disponible ha solidificado. 
 
 
 
Figura 17. Evolución de la solidificación de cristales bajo condiciones de j = 0.0 y κ = 1.0. 
(a) t = 0.08; (b) t = 0.2; (c) t = 0.32; con δ = 0.000. 
(d) t = 0.08; (e) t = 0.2; (f) t = 0.32; con δ = 0.020. 
 
 
La figura 18 muestra las simulaciones donde el calor latente adimensional tiene un valor 
alto, κ = 1.8. 
34 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 18 muestran la evolución de un cristal simulado 
bajo condiciones de simetría de anisotropía perfecta e isotropía cristalina, que presenta 
separación de puntas. 
Las imágenes (d), (e) y (f) de la figura 18 muestran la evolución de un cristal simulado 
bajo condiciones de simetría de anisotropía perfecta y baja anisotropía cristalina, δ = 0.020. 
Este cristal presenta separación de puntas y una velocidad de crecimiento mayor que la del 
cristal correspondiente a las imágenes (a), (b) y (c). 
Ambos cristales presentan bajas velocidades de crecimiento, ya que a un tiempo de 0.6, 
aún falta por solidificar una importante porción de líquido. 
 
 
 
Figura 18. Evolución de la solidificación de cristales bajo condiciones de j = 0.0 y κ = 1.8. 
(a) t = 0.2; (b) t = 0.4; (c) t = 0.6; con δ = 0.000. 
(d) t = 0.2; (e) t = 0.4; (f) t = 0.6; con δ = 0.020. 
 
 
35 
 
 
Resultados 
 
3.2 Simulaciones de magnitud de anisotropía 
En esta sección se presentan las evoluciones de cristales con distintos valores de anisotropía 
cristalina. En todas las simulaciones presentadas en esta sección se usó un valor fijo de κ = 
1.8. Los valores de anisotropía cristalina y número de simetría de anisotropía usados en esta 
sección se resumen en la tabla 3. 
 
 
Tabla 3. Condiciones usadas para las simulaciones de anisotropía 
Número de Figura 
Magnitud de Anisotropía 
Cristalina ( δ ) 
Número de Simetría de 
Anisotropía ( j ) 
19 0.000 4.0 
19 0.000 6.0 
20 0.005 4.0 
20 0.010 4.0 
20 0.020 4.0 
20 0.050 4.0 
20 0.080 4.0 
20 0.120 4.0 
21 0.005 6.0 
21 0.010 6.0 
21 0.020 6.0 
21 0.050 6.0 
21 0.080 6.0 
 
 
La figura 19 muestra las simulaciones en condiciones de isotropía cristalina, δ = 0.000, 
para la estructura cúbica, imágenes (a), (b) y (c); y la estructura hexagonal, imágenes (d), 
(e) y (f). 
Las imágenes (a), (b) y (c) de la figura 19 muestran la evolución de un cristal de 
estructura cúbica simulado bajo condiciones de isotropía cristalina, δ = 0.000, que aunque 
inicialmente presenta una forma poligonal, con el tiempo desarrolla separación de puntas. 
36 
 
 
Resultados 
 
Las imágenes (d), (e) y (f) de la figura 19 muestran la evolución de un cristal de 
estructura hexagonal simulado bajo condiciones de isotropía cristalina, δ = 0.000. No se 
aprecian rasgos característicos de dicha estructura. Este cristal presenta separación de 
puntas y una velocidad de crecimiento menor que la del cristal correspondiente a las 
imágenes (a), (b) y (c). 
Ambos cristales presentan bajas velocidades de crecimiento. 
 
 
 
Figura 19. Evolución de la solidificación de cristales bajo condiciones de κ = 1.8 y δ = 0.000. 
(a) t = 0.2; (b) t = 0.4; (c) t = 0.6; con j = 4.0. 
(d) t = 0.2; (e) t = 0.4; (f) t = 0.6; con j = 6.0. 
 
 
La figuras 20 y 21 muestran cristales con estructura cúbica, simulados con diferentes 
condiciones de magnitud de anisotropía cristalina, usando valores de δ = 0.005, 0.01, 0.020 
y δ = 0.050, 0.080, 0.120, respectivamente. 
 
 
37 
 
 
Resultados 
 
 
 
 
Figura 20. Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y κ = 1.8. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.005. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con δ = 0.010. 
(g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con δ = 0.020. 
 
 
 
 
38 
 
 
Resultados 
 
 
 
 
Figura 21. Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y κ = 1.8. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.050. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con δ = 0.080. 
(g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con δ = 0.120. 
 
 
39 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 20 muestran la evolución de un cristal cuya 
geometría es parcialmente dendrítica. Aunque se presentan brazos primarios y secundarios, 
se observan remanentes de la estructura no dendrítica: puntas adicionales en direcciones 
que no corresponden a las de crecimiento de acuerdo a la estructura cristalina simulada e 
inestabilidades de la intercara en la zona central. 
Las imágenes (d), (e) y (f) de la figura 20 muestran la evolución de un cristal cuya 
geometría es casi totalmente dendrítica. Aunque aún existen remanentes de la estructura de 
puntas separadas, la geometría del cristal es casi completamente dendrítica. 
Las imágenes (g), (h) e (i) de la figura 20 muestran la evolución de un cristal dendrítico 
típico de la estructura cúbica simulada, que presenta brazos primarios y brazos secundarios 
pequeños creciendo con dirección ortogonal a estos. 
Las imágenes (a), (b) y (c) de la figura 21 muestran la evolución de un cristal dendrítico 
cúbico con brazos primarios gruesos y crecimiento diferente en cada brazo secundario, 
obtenida al simular la solidificación del cristal con un valor moderadamente alto de 
anisotropía cristalina. 
Las imágenes (d), (e) y (f) de la figura 21 muestran la evolución de un cristal dendrítico 
cúbico con brazos primarios gruesos y un crecimiento notable en los brazos secundarios. 
Puede observarse la interferencia de los brazos secundarios con crecimiento rápido en el 
desarrollo de los brazos secundarios con crecimiento lento. 
Las imágenes (g), (h) e (i) de la figura 21 muestran la evolución de un cristal dendrítico 
cúbico simulado bajo condiciones de alta anisotropía cristalina, δ = 0.120, que presenta 
brazos secundarios asimétricos y que crece con una velocidad menor a la de los cristales 
presentados en las imágenes (a), (b), (c) y (d), (e), (f). 
Puede observarse un aumento gradual en la velocidad de crecimiento de los cristales de 
las figuras 20 y 21, que no continúa en la evolución expuesta en las imágenes (g), (h) e (i) 
de la figura 21. 
La figuras 22 y 23 muestran cristales con estructura hexagonal, simulados con diferentes 
condiciones de magnitud de anisotropía cristalina, usando valores de δ = 0.005, 0.01, 0.020 
y δ = 0.050, 0.080, respectivamente. 
 
 
 
40 
 
 
Resultados 
 
 
 
 
Figura 22. Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y κ = 1.8. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.005. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con δ = 0.010. 
(g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con δ = 0.020. 
 
 
 
 
41 
 
 
Resultados 
 
 
 
 
Figura 23. Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y κ = 1.8. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con δ = 0.050. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con δ = 0.080. 
 
 
Las imágenes (a), (b) y (c) de la figura 22 muestran la evolución de un cristal dendrítico 
típico de la estructura hexagonal simulada, que presenta brazos primarios y brazos 
secundarios. 
Las imágenes (d), (e) y (f) de la figura 22 muestran la evolución de un cristaldendrítico 
hexagonal similar al presentado en las imágenes (a), (b) y (c), distinto de este en el 
crecimiento ligeramente más rápido del cristal y en la geometría de los brazos secundarios. 
Las imágenes (g), (h) e (i) de la figura 22 muestran la evolución de un cristal dendrítico 
similar a los presentados en las imágenes (a), (b), (c) y (d), (e), (f), distinto de estos en el 
menor número de brazos secundarios y la ligeramente mayor velocidad de crecimiento. 
 
42 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 23 muestran la evolución de un cristal dendrítico 
hexagonal con menor velocidad de crecimiento en comparación a las evoluciones expuestas 
en la figura 22, con menor cantidad de brazos secundarios, obtenida al simular la 
solidificación del cristal bajo condiciones de alta magnitud de anisotropía cristalina. 
Las imágenes (d), (e) y (f) de la figura 23 muestran la evolución de un cristal dendrítico 
hexagonal que presenta una velocidad de crecimiento menor a la del cristal expuesto en las 
imágenes (a), (b) y (c), con brazos secundarios pequeños, obtenida al simular la 
solidificación del cristal bajo condiciones de alta magnitud de anisotropía cristalina. 
 
3.3 Simulaciones de calor latente adimensional 
En esta sección se presentan las evoluciones de cristales con distintos valores de calor 
latente adimensional. En todas las simulaciones presentadas en esta sección se usó un valor 
fijo de δ = 0.020. Los valores de calor latente adimensional y número de simetría de 
anisotropía usados en esta sección se resumen en la tabla 4. 
 
 
Tabla 4. Condiciones usadas para las simulaciones de calor latente adimensional 
Número de Figura 
Calor Latente 
Adimensional ( κ ) 
Número de Simetría de 
Anisotropía ( j ) 
24 1.0 4.0 
24 1.0 6.0 
25 1.5 4.0 
25 1.8 4.0 
25 2.2 4.0 
26 1.5 6.0 
26 1.8 6.0 
26 2.2 6.0 
 
 
La figura 24 muestra las simulaciones donde el calor latente adimensional, κ, es unitario, 
para la estructura cúbica, imágenes (a), (b) y (c); y la estructura hexagonal, imágenes (d), 
(e) y (f). 
43 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 24 muestran la evolución de un cristal poligonal, 
con forma similar a un cuadrado, que se vuelve convexa con el tiempo hasta ser similar a 
un círculo. 
Las imágenes (d), (e) y (f) de la figura 24 muestran la evolución de un cristal poligonal, 
con forma similar a un hexágono, que se vuelve cóncava con el tiempo. 
Ambos cristales presentan altas velocidades de crecimiento. 
 
 
 
Figura 24. Evolución de la solidificación de cristales bajo condiciones de κ = 1.0 y δ = 0.020. 
(a) t = 0.08; (b) t = 0.2; (c) t = 0.32; con j = 4.0. 
(d) t = 0.08; (e) t = 0.2; (f) t = 0.32; con j = 6.0. 
 
 
Las figuras 25 y 26 muestran cristales simulados con diferentes condiciones de calor 
latente adimensional, usando valores de κ = 1.5, 1.8 y 2.2, con estructura cúbica y 
hexagonal, respectivamente. 
 
 
44 
 
 
Resultados 
 
 
 
 
Figura 25. Evolución de la solidificación de cristales bajo condiciones de j = 4.0 y δ = 0.020. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con κ = 1.5. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con κ = 1.8. 
(g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con κ = 2.2. 
 
 
 
 
45 
 
 
Resultados 
 
 
 
 
Figura 26. Evolución de la solidificación de cristales bajo condiciones de j = 6.0 y δ = 0.020. 
(a) t = 0.2; (b) t = 0.32; (c) t = 0.4; con κ = 1.5. 
(d) t = 0.2; (e) t = 0.32; (f) t = 0.4; con κ = 1.8. 
(g) t = 0.2; (h) t = 0.32; (i) t = 0.4; con κ = 2.2. 
 
 
46 
 
 
Resultados 
 
Las imágenes (a), (b) y (c) de la figura 25 muestran la evolución de un cristal dendrítico 
cúbico, que presenta brazos primarios gruesos y brazos secundarios pequeños. 
Las imágenes (d), (e) y (f) de la figura 25 muestran la evolución de un cristal dendrítico 
cúbico similar al presentado en las imágenes (a), (b) y (c), distinto de este en el crecimiento 
más lento del cristal. 
Las imágenes (g), (h) e (i) de la figura 25 muestran la evolución de un cristal dendrítico 
similar a los presentados en las imágenes (a), (b), (c) y (d), (e), (f), distinto de estos en la 
menor velocidad de crecimiento. 
Las imágenes (a), (b) y (c) de la figura 26 muestran la evolución de un cristal dendrítico 
hexagonal, que presenta brazos primarios gruesos y brazos secundarios poco desarrollados. 
Puede observarse la interferencia de los brazos secundarios con crecimiento rápido en el 
desarrollo de los brazos con crecimiento lento, lo que ocasiona una geometría asimétrica. 
Las imágenes (d), (e) y (f) de la figura 26 muestran la evolución de un cristal dendrítico 
hexagonal con brazos secundarios claramente desarrollados, con una velocidad de 
crecimiento menor a la del cristal presentado en las imágenes (a), (b) y (c). 
Las imágenes (g), (h) e (i) de la figura 26 muestran la evolución de un cristal dendrítico 
hexagonal con una velocidad de crecimiento menor a la de los cristales expuestos en las 
imágenes (a), (b), (c) y (d), (e), (f), que presenta brazos primarios delgados y brazos 
secundarios poco desarrollados, con una geometría carente de simetría. 
Puede observarse una disminución gradual en la velocidad de crecimiento de los cristales 
de las figuras 25 y 26. 
 
 
 
 
 
47 
 
 
Discusión 
 
4. Discusión 
 
4.1 Comparación de dendritas en metales puros con dendritas simuladas 
Los cristales y estructuras dendríticas han sido observados de manera experimental en gran 
cantidad de trabajos. A continuación se presentan fotografías de cristales dendríticos y se 
comparan con las simulaciones obtenidas en este trabajo. 
La figura 27 muestra (a) una dendrita de austenita, (b) el cristal correspondiente a dicha 
dendrita modelado en tres dimensiones por medio del Método de Campo de Fases y (c) una 
simulación obtenida en este trabajo. 
 
 
 
Figura 27. Comparación entre (a) Imagen de Microscopio Electrónico de Barrido (MEB) de una 
dendrita de austenita; (b) Cristal equiaxial calculado con un modelo de Campo de 
Fases correspondiente a dicha dendrita; (22) (c) Simulación obtenida con 
las condiciones de t = 0.2, j = 4.0, κ = 1.8 y δ = 0.020. 
48 
 
 
Discusión 
 
Aunque en la figura 27 la dendrita de austenita, imagen (a), puede parecer distinta a la 
obtenida en dos dimensiones en este trabajo, imagen (c), la imagen muestra un brazo 
primario sobre el cual se desarrollan brazos secundarios, al igual que en la simulación de 
este trabajo, que muestra una vista total del cristal, con cuatro brazos primarios y brazos 
secundarios pequeños creciendo desde estos. Esto puede comprobarse con el cristal 
modelado correspondiente a la dendrita de austenita, imagen (b), cuya vista superior 
mostraría una geometría igual a la de la simulación del presente trabajo. 
Las imágenes (a) y (b) de la figura 28 muestran dendritas de Succinonitrilo (SCN), un 
compuesto orgánico usado como alternativa a los metales durante estudios experimentales 
debido a que solidifica a temperatura ambiente en una estructura cúbica centrada en el 
cuerpo (BCC) y es transparente, lo que permite un análisis a fondo de las estructuras 
formadas. Al solidificar en una estructura BCC, los brazos primarios de la dendrita se 
desarrollan en las seis direcciones < 100 >, manteniendo un ángulo ortogonal entre cada 
brazo. (3) (12) 
 
 
 
Figura 28. Comparación entre (a) Micrografía de una dendrita equiaxial de Succinonitrilo (SCN); 
(b) Dendrita de Succinonitrilo con brazos secundarios casi periódicos; (3) (c) Simulación 
obtenida con las condiciones de t = 0.2, j = 4.0, κ = 1.5 y δ = 0.020. 
 
 
La imagen (a) de la figura 28 muestra la vista superior de un cristal equiaxial similar al 
simulado en la imagen (b) de la figura 27. Al comparar la imagen (a) con la imagen (c) se 
49 
 
 
Discusión 
 
prueba la similitud entre las dendritas observadas experimentalmente y las simuladas en 
este trabajo, como se afirma anteriormente. 
La figura

Continuar navegando