Logo Studenta

Alg y Geo A-Capitulo 1- 2023 - Matías Romano

¡Este material tiene más páginas!

Vista previa del material en texto

Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
,
Vectores en Rn
Definición 1. .
Sea n ∈ N,
a) Llamamos vector de Rn a toda n-úpla ordenada de números reales.
b) El conjunto de vectores de n componentes reales, es entonces
Rn = {(x1, x2, · · · , xn)/∀i = 1, · · · , n; xi ∈ R}.
Observaciones:
Denotamos los vectores con letras mayúsculas, por ejemplo A, en el caso que se preste a confusión
colocamos el śımbolo → sobre el nombre del vector y escribimos
−→
A .
Por ejemplo, A ∈ Rn, quiere decir que A es un vector de Rn.
Las componentes del vector se denotan con letras minúsculas.
Por ejemplo dado A ∈ Rn, se escribe A = (a1, a2, · · · , an).
Anaĺıticamente el vector A = (a1, a2, · · · , an) se identifica con el punto A(a1, a2, · · · , an) por lo
que no haremos distinción a menos que sea necesario.
Representación gráfica
Para representar graficamente un vector utilizamos
una flecha (segmento dirigido) con origen en el ori-
gen del sistema de referencia y extremo en el punto
cuyas coordenadas coinciden con las componentes del
vector.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 1
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Ejemplo. .
V = (2, 4), es un vector de dos componentes reales entonces, V ∈ R2.
A = (3, 4, 5) es un vector de tres componentes reales entonces, A ∈ R3.
C = (1,−1, 5, 2,−1) es un vector de cinco componentes reales entonces, C ∈ R5.
graficamente:
en R2 en R3
Definición 2 (Igualdad de vectores ). .
Sean A = (a1, a2, · · · , an), B = (b1, b2, · · · , bn) ∈ Rn
A = B ⇔ ∀ i = 1, · · · , n; ai = bi.
Es importante que recuerdes que para comparar dos vectores deben tener el mismo número
de componentes.
Ejercicio. .
Dados los vectores U = (2, x2,−4) y V = (2, 16, x), determine x ∈ R tal que U = V .
Resolución.
Debemos determinar x ∈ R tal que U = V , es decir,
(2, x2,−4) = (2, 16, x)
por la definición de igualdad de vectores, como los dos tienen la misma cantidad de componentes, cada
componente del vector U debe ser igual a la correspondiente del vector V , esto es
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 2
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn

2 = 2
x2 = 16
−4 = x
=⇒

2 = 2
x = 4 ó x = −4
x = −4
=⇒
{
x = −4
Respuesta:
U = V si x = −4
Definición 3 (Suma de vectores). .
Dados A = (a1, a2, · · · , an) ∈ Rn y B = (b1, b2, · · · , bn) ∈ Rn, la suma de A y B es el vector
A+B = (a1 + b1, a2 + b2, · · · , an + bn) ∈ Rn
.
Ejemplo. .
Dados los vectores de R4, A = (2, 2,−4, 0) y B = (2, 16,−1, 1),
A+B =(2 + 2, 2 + 16, (−4) + (−1), 0 + 1)
A+B =(4, 18,−5, 1)
Es importante que recuerdes que para sumar vectores, deben tener el mismo número de
componentes.
Propiedades (de la suma). .
1. La suma de vectores es conmutativa.
∀A, B ∈ Rn, A+B = B +A
2. La suma de vectores es asociativa
∀A, B, C ∈ Rn, (A+B) + C = A+ (B + C)
3. Existe elemento neutro para la operación suma de vectores.
∃ θ = (0, 0, · · · , 0) ∈ Rn: ∀A ∈ Rn, θ +A = A+ θ = A
4. Cada vector tiene su opuesto respecto de la operación suma.
∀A ∈ Rn, ∃A′ ∈ Rn : A+A′ = A′ +A = θ
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 3
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Demostración. .
1. Sean A = (a1, a2, · · · , an), B = (b1, b2, · · · , bn) ∈ Rn
A+B = (a1, a2, . . . , an) + (b1, b2, · · · , bn)
= (a1 + b1, a2 + b2, · · · , an + bn), por definición de suma de vectores
= (b1 + a1, b2 + a2, · · · , bn + an), aplico en c/componente conmutatividad de la suma en R
= (b1, b2, · · · , bn) + (a1, a2, · · · , an), por definición de suma de vectores
= B +A
Probamos que:
∀A,B ∈ Rn, A+B = B +A
2. Queda para los alumnos
3. Sean A = (a1, a2, · · · , an) , θ = (0, 0, · · · , 0) ∈ Rn
A+ θ = (a1, a2, · · · , an) + (0, 0, · · · , 0)
= (a1 + 0, a2 + 0, · · · , an + 0) por definición de suma de vectores
= (a1, a2, · · · , an) 0 es neutro para la suma en R
= A
probamos que , A+ θ = A
Como la suma de vectores es conmutativa, θ +A = A+ θ = A
Por lo tanto queda probado que:
∃ θ ∈ Rn : ∀A ∈ Rn, A+ θ = θ +A = A
4. Sea A = (a1, a2, · · · , an) ∈ Rn y θ ∈ Rn.
Queremos determinar la existencia de A′ = (a′1, a
′
2, · · · , a′n) ∈ Rn tal que A+A′ = θ = A′ +A.
A+A′ = θ
(a1, a2, · · · , an) + (a′1, a′2, · · · , a′n) = (0, 0, · · · , 0)
(a1 + a
′
1, a2 + a
′
2, · · · , an + a′n) = (0, 0, · · · , 0) por definición de suma de vectores.
Por definición de igualdad de vectores
∀i = 1, 2, · · · , n; ai + a′i = 0
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 4
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
por existencia de opuesto de un número real
∀i = 1, 2, · · · , n; a′i = −ai
hemos obtenido las componentes del vector A′, por lo tanto:
A′ = (a′1, a
′
2, · · · , a′n) = (−a1,−a2, · · · ,−an) ∈ Rn y cumple que, A + A′ = θ y como la suma de
vectores es conmutativa A′ +A = A+A′ = θ
A′, como se puede probar que es el único vector con esta propiedad, se lo denomina opuesto de
A ∈ Rn y se denota −A , ( A′ = −A ).
Queda probado que:
∀A = (a1, a2, · · · , an) ∈ Rn, ∃ −A = (−a1,−a2, · · · ,−an) ∈ Rn : (−A) +A = A+ (−A) = θ
Interpretación geométrica de la suma.
Para vectores de R2
Sean V = (x1, y1) y U = (x2, y2)
el vector suma
V + U = (x1 + x2, y1 + y2)
Gráficamente se cumple la
Regla del paralelogramo
Podemos generalizar para vectores de Rn y concluir, gráficamente, que la suma de los vectores V y
U , pertenecientes a Rn, es el vector diagonal del paralelogramo de lados V y U , con origen en el origen
del sistema de coordenadas y extremo en el punto V + U .
La existencia y unicidad del vector opuesto para cada vector de Rn nos permite
definir la diferencia entre dos vectores
Definición 4 (Diferencia de vectores). .
Sean A,B ∈ Rn, A−B = A+ (−B)
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 5
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Ejemplo. .
Dados los vectores A = (2, 2,−4, 0) y B = (2, 16,−1, 1) ∈ R4,
A−B =(2− 2, 2− 16, (−4)− (−1), 0− 1)
A−B =(0,−14,−3,−1)
Interpretación geométrica de la resta
Como A−B = A+ (−B), por
la interpretación geométrica de
la suma de vectores A−B es la
diagonal del paralelogramos de
lados A y −B, que
por igualdad de vectores es el vector diagonal, con origen en B y extremo en A, del paralelogramo
de lados A y B.
Llamamos al vector
−−→
BA, Vector Localizado
−−→
BA = A−B,
Si el origen del vector es el punto A y el extremo es el punto B el vector es,
−−→
AB = B −A,
que es el opuesto del vector
−−→
BA
Ejemplo. .
Dados A = (1, 2) y B − (3, 1).Determinemos los vectores,
−−→
BA y
−−→
AB
−−→
BA = A−B = (1, 2)− (3, 1) = (−2, 1).
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 6
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
−−→
AB = B −A
= (3, 1)− (1, 2)
= (2,−1)
Definición 5 (Producto de un escalar por un vector). .
Sean λ ∈ R y A = (a1, a2, . . . , an) ∈ Rn , el producto del escalar λ por el vector A es el vector
λA = (λa1, λa2, . . . , λan) ∈ Rn
Ejemplo. .
Sean λ = −2 y A = (1,−2, 3) ∈ R3
λA = (−2)(1,−2, 3) = ((−2) · 1, (−2) · (−2), (−2) · 3) = (−2, 4,−6)
Propiedades (del producto por escalar). .
1. ∀λ, µ ∈ R, ∀A ∈ Rn, λ(µA) = µ(λA) = (µλ)A
2. ∀λ, µ ∈ R, ∀A ∈ Rn, (λ+ µ)A = λA+ µA
3. ∀λ ∈ R, ∀A,B ∈ Rn, λ(A+B) = λA+ λB
Demostración. Quedan para el alumno.
Consecuencias.
1. ∀A ∈ Rn, 1A = A
2. ∀A ∈ Rn, (−1)A = −A
3. Dados λ ∈ R y A ∈ Rn, λA = θ ⇔ λ = 0 o A = θ
Demostración. .
1. y 2. Queda para el alumno.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 7
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
3. Sean λ ∈ R , A = (a1, a2, · · · , an) ∈ Rn
λA = θ ⇔ λ(a1, a2, · · · , an) = (0, 0, · · · , 0)
⇔ (λa1, λa2, · · · , λan) = (0, 0, · · · , 0) por def. de producto de escalar por vector
⇔ ∀i = 1, 2, · · · , n; λai = 0 por def. de igualdad de vectores
⇔ ∀i = 1, 2, · · · , n; λ = 0 o ai = 0 por producto de dos num. reales igual a 0
⇔ λ = 0 o ∀i = 1, 2, · · · , n; ai = 0
⇔ λ = 0 o A = (0, 0, · · · , 0)
⇔ λ = 0 o A = θ
Definición 6 (Producto escalar o producto interno en Rn). .
Dados A = (a1, a2, · · · , an), B= (b1, b2, · · · , bn) ∈ Rn el producto escalar de A y B, que denotamos
A ·B, es el número real que se obtiene de la siguiente manera:
A ·B = a1b1 + a2b2 + · · ·+ anbn ∈ R
usando la notación abreviada para la suma:
A ·B =
n∑
i=1
aibi
Cuando multiplicas escalarmente dos vectores obtienes como resultado un número real. Re-
cuerda que sólo puedes multiplicar vectores con igual número de componentes.
La notación para indicar el producto escalar de vectores es el punto “ · ”.
Ejemplo. Dados los vectores A = (2, 2,−4, 0) y B = (2,−6,−1, 1),
A ·B =2 · 2 + 2 · (−6) + (−4) · (−1) + 0 · 1
A ·B =4− 12 + 4 + 0
A ·B =− 4
Propiedades (del producto escalar). .
1. ∀A, B ∈ Rn, A ·B = B ·A
2. ∀A,B,C ∈ Rn, A · (B + C) = A ·B +A · C
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 8
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
3. ∀λ ∈ R, ∀A, B ∈ Rn, (λA) ·B = A · (λB) = λ (A ·B)
4. ∀A ∈ Rn, A ·A ≥ 0 y (A ·A = 0⇔ A = θ)
Demostración. .
1. Sean A = (a1, a2, · · · , an), B = (b1, b2, · · · , bn) ∈ Rn
A ·B = (a1, a2, · · · , an) · (b1, b2, · · · , bn)
= a1b1 + a2b2 + · · ·+ anbn, por la definición de producto escalar de vectores
= b1a1 + b2a2 + · · ·+ bnan, el producto de números reales es conmutativo
= (b1, b2, · · · , bn) · (a1, a2, · · · , an) por la definición de producto escalar de vectores
= B ·A
Por lo tanto:
∀A,B ∈ Rn, A ·B = B ·A
2. Sean A = (a1, a2, · · · , an), B = (b1, b2, · · · , bn), C = (c1, c2, · · · , cn) ∈ Rn
A · (B + C) = (a1, a2, · · · , an) · [(b1, b2, . . . , bn) + (c1, c2, · · · , cn)]
= (a1, a2, . . . , an) · (b1 + c1, b2 + c2, . . . , bn + cn) por la definición de suma de vectores
= a1 · (b1 + c1) + a2 · (b2 + c2) + · · ·+ an · (bn + cn) por la definición de producto escalar
= a1b1 + a1c1 + a2b2 + a2c2 + · · ·+ anbn + ancn prop. distributiva del producto respecto
de la suma en R,en cada sumando
= (a1b1 + a2b2 + · · ·+ anbn) + (a1c1 + a2c2 + · · ·+ ancn) por prop. conmuti. y asociat. de + en R
= (a1, a2, . . . , an) · (b1, b2, . . . , bn) + (a1, a2, . . . , an) · (c1, c2, . . . , cn) por la definición de producto escalar
= A ·B +A · C
Queda probado que:
∀A,B,C ∈ Rn, A · (B + C) = A ·B +A · C
3. la demostración queda como ejercicio.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 9
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
4. Sea A = (a1, a2, · · · , an) ∈ Rn,
A ·A =
(∗1)
a1a1 + a2a2 + · · ·+ anan =
(∗2)
n∑
i=1
a2i (∗3)
(∗1) por definición de producto escalar
(∗2) por definición de potencia en R
Como: ∀i = 1, · · · , n; ai ∈ R⇒ ∀i = 1, · · · , n; a2i ≥ 0, luego
∑n
i=1 a
2
i ≥ 0
de (∗3), A ·A =
n∑
i=1
a2i ≥ 0⇒ A ·A ≥ 0
Probaremos ahora que A ·A = 0⇔ A = θ
A ·A = 0⇔
n∑
i=1
a2i = 0 de (∗3)
⇔ ∀i = 1, · · · , n; a2i = 0 por suma de números reales no negativos
⇔ ∀i = 1, · · · , n; ai = 0
⇔ (a1, a2, · · · , an) = (0, 0, · · · , 0)
⇔ A = θ
Definición 7 (Norma de un vector). .
Sea A ∈ Rn llamaremos norma de A al número real
‖A‖ =
√
A ·A
Observación:
‖A‖ está bien definida pues A ·A ≥ 0 y tiene sentido calcular, en R,
√
A ·A
‖A‖ =
√
A ·A⇐⇒ ‖A‖2 = A ·A
Si A = (a1, a2, · · · , an), A ·A =
∑n
i=1 a
2
i y por lo tanto ‖A‖ =
√
n∑
i=1
a2i
Ejemplo. .
Sea A = (2,−1, 5), aplicando la tercera observación
‖A‖ =
√
22 + (−1)2 + 52 =
√
4 + 1 + 25 =
√
30
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 10
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Interpretación geométrica de la norma de un vector en R2
Sea A = (a, b) , Q = (a, 0) ,
Los punto A,Q,O determinan un triángulo
rectángulo, cuyos catetos miden |a| y |b|, por el teo-
rema de Pitágoras sabemos que la longitud de la
hipotenusa es
√
|a|2 + |b|2 =
√
a2 + b2
Por observación de la definición de norma
‖A‖ =
√
a2 + b2
por lo tanto ‖A‖ es la longitud de la hipotenusa es
decir, la longitud del vector A.
Podemos generalizar este resultado para Rn y concluir que ‖A‖ es la longitud del vector
A, o lo que es lo mismo, la distancia del punto A al origen del sistema de referencia.
Propiedades. .
1. ∀A ∈ Rn, ‖A‖ ≥ 0 y ‖A‖ = 0 ⇔ A = θ
2. ∀A ∈ Rn, ∀λ ∈ R, ‖λA‖ = |λ| ‖A‖
3. Desigualdad Triangular
∀A,B ∈ Rn, ‖A+B‖ ≤ ‖A‖+ ‖B‖
Demostración. .
1. La demostración queda para los alumnos. Se sugiere utilizar las propiedades del producto escalar.
2. sean λ ∈ R, A ∈ Rn
‖λA‖ =
√
(λA) · (λA) por definición de norma de un vector
=
√
(λλ)(A ·A) por propiedades del producto escalar
=
√
λ2 ‖A‖2 por definición de norma de un vector
=
√
λ2
√
‖A‖2 propiedad de la ráız cuadrada para números reales no negativos
= |λ| | ‖A‖ | propiedad de valor absoluto
= |λ| ‖A‖ por ser ‖A‖ ≥ 0 , | ‖A‖ | = ‖A‖
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 11
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
3. Aceptamos sin demostración para Ingenieŕıas, PU. , Lic. en Informática y Lic. en F́ısica
Un vector se dice unitario si su norma es 1
Definición 8 (Distancia en Rn). .
Dados A y B ∈ Rn, la distancia entre A y B es el número real no negativo
dist(A,B) = ‖
−−→
AB‖.
Propiedades. .
Las propiedades son consecuencia de la definición de norma, por lo tanto las aceptamos sin demostra-
ción.( Los alumnos de Lic. y Prof. en Matemática deben hacer las demostraciones)
1. ∀ A,B ∈ Rn, dist(A,B) > 0 ∧ dist(A,B) = 0⇔ A = B.
2. ∀ A,B ∈ Rn, dist(A,B) = dist(B,A).
3. ∀ A,B,C ∈ Rn, dist(A,B) ≤ dist(A,C) + dist(C,B).
Definición 9 (Vectores paralelos). .
Dados A,B ∈ Rn, A ‖ B ⇐⇒ ∃ λ ∈ R− {0} : A = λB
Dados B ∈ Rn, si θ ‖ B, por la definición de vectores paralelos
∃ λ ∈ R− {0} : θ = λB
como λ 6= 0 podemos asegurar que B = θ.
Concluimos que: el vector nulo es paralelo sólo a śı mismo .
Ejemplos. .
Dados los vectores A = (2, 4,−1), B = (1, 8,−2) y C = (1, 2,−12)
¿ El vector A es paralelo al vector B?. Para responder esta pregunta vamos a utilizar la definición
de vectores paralelos, A ‖ B ⇐⇒ ∃ λ ∈ R− {0} / A = λB.
Vamos a averiguar si existe un escalar λ diferente de 0 que verifique la igualdad A = λB
(2, 4,−1) = λ(1, 8,−2)
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 12
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
por la definición de producto de escalar por vector
(2, 4,−1) = (λ, 8λ,−2λ)
por definición de igualdad de vectores
2 = λ
4 = 8λ
−1 = −2λ
⇐⇒

λ = 2
λ = 48
λ = −1−2
⇐⇒

λ = 2
λ = 12
λ = 12
=⇒ no existe λ
Respuesta:
No existe λ ∈ R− {0} : A = λB, por lo tanto A no es paralelo a B
¿ El vector A es paralelo al vector C?.
A = (2, 4,−1) = 2(1, 2,−12) = 2C
por lo tanto ; ∃ λ = 2 ∈ R− {0} : A = λC
Respuesta:
A‖C
Importante
Geométricamente dos vectores,no nulos, son paralelos si tienen la misma dirección.
Decimos que dos vectores paralelos, no nulos, tienen el mismo sentido si el escalar que los relaciona
es mayor que 0 y tienen sentido contrario si el escalar es menor que 0.
En el gráfico: A ‖ B ‖ C
A y B tienen la misma dirección y sentido contrario,
∃λ ∈ R− {0} / A = λB, con λ < 0
C y B tienen la misma dirección y el mismo sentido ,
∃γ ∈ R− {0} / C = γB, con γ > 0
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 13
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
La relación de paralelismo cumple las siguientes propiedades que aceptaremos sin de-
mostración ( Los alumnos de Lic. y Prof. en Matemática deben hacer las demostraciones)
Propiedades. .
1. Propiedad reflexiva
∀A ∈ Rn, A ‖ A
2. Propiedad simétrica
∀A,B ∈ Rn : A ‖ B ⇒ B ‖ A
3. Propiedad transitiva
∀A,B,C ∈ Rn : (A ‖ B ∧B ‖ C ⇒ A ‖ C)
Enunciaremos un teorema que aceptaremos sin demostración
Teorema 1 (Desigualdad de Cauchy Schwarz). .
∀A,B ∈ Rn, |A ·B| ≤ ‖A‖‖B‖ ∧ |A ·B| = ‖A‖‖B‖ ⇐⇒ A ‖ B ó A = θ ó B = θ.
Definición 10 (Vector unitario en una dirección dada o Versor en una dirección dada). .
Dado un vector A ∈ Rn−{θ}, llamamos vector unitario o versor, en la dirección de A al vector E ∈ Rn
tal que
E ‖ A y ‖E‖ = 1
Es importante que recuerdes que el vector A debe ser diferente del vector nulo, θ, de no
ser aśı no tienes dirección para determinar versor.
Obtención de la fórmulapara determinar versor en una dirección dada
Sea A ∈ Rn − {θ}, por la definición de versor, E ∈ Rn, E ‖ A y ‖E‖ = 1.
Por definición de vectores paralelos,
E ‖ A⇔ ∃λ ∈ R− {0} : E = λA
Para determinar el vector E debemos obtener el valor del escalar λ,
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 14
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
como E = λA
‖E‖ = ‖λA‖
por hipótesis ‖E‖ = 1 por lo tanto
1 = ‖λA‖
por propiedad de norma
1 = |λ| ‖A‖
La ‖A‖ 6= 0 porque A 6= θ, podemos dividir ambos miembros por el número ‖A‖, resultando
|λ| = 1
‖A‖
⇒ λ = ± 1
‖A‖
determinado dos valores para el escalar λ, obtenemos dos versores en la dirección del vector A
E1 =
1
‖A‖
A por ser el escalar positivo, E1 tiene la dirección y el sentido de A
E2 =
−1
‖A‖
A por ser el escalar negativo, E2 tiene la dirección y sentido contrario de A
Ejemplo. .
Dado el vector A = (6,−8),
la norma de A es, ‖A‖ =
√
62 + (−8)2 =
√
36 + 64 = 10
los versores en la dirección de A son:
E1 =
1
‖A‖
A =
1
10
(6,−8) =
(
3
5
,
−4
5
)
E2 =
−1
‖A‖
A =
−1
10
(6,−8) =
(
−3
5
,
4
5
)
Versores fundamentales
En R2, hay dos versores fundamentales (también se los llama vectores canónicos),
e1 = (1, 0) (también se designa
−→
i ), es el versor fundamental en la dirección del ejex
e2 = (0, 1) (también se designa
−→
j ), es el versor fundamental en la dirección del ejey
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 15
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
En R3, hay tres versores fundamentales (también se los llama vectores canónicos),
e1 = (1, 0, 0) (también se designa
−→
i ), es el versor fundamental en la dirección del ejex
e2 = (0, 1, 0) (también se designa
−→
j ), es el versor fundamental en la dirección del ejey
e3 = (0, 0, 1) (también se designa
−→
k ), es el versor fundamental en la dirección del ejez
Definición 11 (Vectores perpendiculares). .
Dados A,B ∈ Rn, A⊥B ⇔ A ·B = 0
Teorema 2 (Teorema de Pitágoras en Rn). .
Dados A,B ∈ Rn, A ⊥ B ⇔ ‖A+B‖2 = ‖A‖2 + ‖B‖2
Demostración. Sean A,B ∈ Rn
Observemos que:
‖A+B‖2 = (A+B) · (A+B) por def. de norma
= A ·A+A ·B +B ·A+B ·B por prop. distribut. del producto escalar respecto de la suma de vectores
= ‖A‖2 +A ·B +A ·B + ‖B‖2 por def. de norma y prop. conmutativa del prod. escalar
= ‖A‖2 + 2A ·B + ‖B‖2
por lo tanto
‖A+B‖2 = ‖A‖2 + 2A ·B + ‖B‖2 (∗∗)
Para demostrar el teorema debemos probar la condición necesaria y la suficiente
i) (⇒) Hipótesis: A ⊥ B Tesis: ‖A+B‖2 = ‖A‖2 + ‖B‖2
‖A+B‖2 = ‖A‖2 + 2A ·B + ‖B‖2 por (∗∗)
por hipótesis A ⊥ B y por definición de vectores perpendiculares A ·B = 0, reemplazando
‖A+B‖2 = ‖A‖2 + 2 · 0 + ‖B‖2
‖A+B‖2 = ‖A‖2 + 0 + ‖B‖2
Por lo tanto:
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 16
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
‖A+B‖2 = ‖A‖2 + ‖B‖2
ii) (⇐) Hipótesis: ‖A+B‖2 = ‖A‖2 + ‖B‖2 Tesis: A ⊥ B
por hipótesis
‖A+B‖2 = ‖A‖2 + ‖B‖2
Reemplazando ‖A+B‖2 por (**)
‖A‖2 + 2A ·B + ‖B‖2 = ‖A‖2 + ‖B‖2
por existencia de elemento neutro para la suma de números reales 2A ·B = 0⇒ A ·B = 0
por la definición de vectores perpendiculares
A ·B = 0 ⇒ A ⊥ B
De I) y II), queda demostrado el teorema.
Definición 12 (Proyección vectorial ortogonal de un vector sobre otro). .
Dados A,B ∈ Rn, con B 6= θ. La proyección vectorial ortogonal de A sobre B es el vector P ∈ Rn :
P = λB, con λ ∈ R
−→
PA ⊥ B
Es importante que recuerdes que el vector B debe ser diferente del vector nulo, θ, de no
ser aśı no tienes dirección donde proyectar el vector A.
Obtención del vector P , proyección vectorial ortogonal de A sobre B
Sea A,B ∈ Rn con B 6= θ, el vector P cumple
(1) P = λB, con λ ∈ R y
(2)
−→
PA ⊥ B
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 17
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
De (2), por definición de vectores perpendiculares
−→
PA ·B = 0
por vector localizado (A− P ) ·B = 0
por la propiedad distributiva del producto escalar respecto de la suma de vectores
A ·B − P ·B = 0
por (1) P = λB, reemplazando
A ·B − λB ·B = 0
por propiedades del producto escalar y definición de norma
A ·B − λ‖B‖2 = 0
por hipótesis B 6= θ por lo tanto ‖B‖2 6= 0, luego, de la ecuación anterior
λ =
A ·B
‖B‖2
Determinado el valor del escalar, queda determinado el vector P = λB
P =
A ·B
‖B‖2
B
Notación:
Para indicar proyección del vector A sobre B 6= θ escribimos:
PA,B =
A ·B
‖B‖2
B
Si la proyección es del vector B sobre el vector A 6= θ, escribimos:
PB,A =
A ·B
‖A‖2
A
Ejemplo. .
Dados A = (1,−1) y B = (3, 4), el vector proyección vectorial ortogonal de A sobre B es
PA,B =
A ·B
‖B‖2
B =
(1,−1) · (3, 4)
‖(3, 4)‖2
(3, 4) =
−1
25
(3, 4) =
(
−3
25
,
−4
25
)
Definición 13 (Proyección escalar de un vector sobre otro). .
Dados A,B ∈ Rn, con B 6= θ. Proyección escalar de A sobre B es la norma del vector proyección
vectorial ortogonal de A sobre B.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 18
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Obtención de la proyección escalar de A sobre B
Sean A,B ∈ Rn con B 6= θ, por proyección vectorial ortogonal de A sobre B
P =
A ·B
‖B‖2
B
aplicando norma al vector se tiene:
‖P‖ =
∥∥∥∥ A ·B‖B‖2 B
∥∥∥∥ =(1)
∣∣∣∣ A ·B‖B‖2
∣∣∣∣ ‖B‖ =(2) |A ·B|‖B‖2 ‖B‖ = |A ·B|‖B‖
(1) por propiedad de norma , ‖λA‖ = |λ|‖A‖, pues A ·B
‖B‖2
es un número real.
(2) por propiedad de valor absoluto y ‖B‖2 > 0.
Por lo tanto:
‖P‖ = |A ·B|
‖B‖
es la proyección escalar del vector A sobre B
Definición 14 (Ángulo determinado por dos vectores). .
Dados A y B ∈ Rn − {θ} . El ángulo que determinan los vectores A y B, ϕ, es el que cumple las
siguientes condiciones:
0 ≤ ϕ ≤ π
cosϕ =
A ·B
‖A‖ ‖B‖
Es importante que recuerdes que los vectores A y B deben ser diferentes del vector nulo.
Cuando hablamos del ángulo entre A y B denotamos, ^(A,B).
Ejemplo. .
Sean A = (1,−2, 1) y B = (1, 1, 2), determinar ϕ = ^(A,B).
cosϕ =
A ·B
‖A‖ ‖B‖
=
(1,−2, 1) · (1, 1, 2)√
12 + (−2)2 + 12
√
12 + 12 + 22
=
1√
6
√
6
=
1
6
Por la definición de ángulo entre vectores:
ϕ = arc cos 16 con 0 ≤ ϕ ≤ π
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 19
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Podemos mostrar que el ángulo entre vectores paralelos y perpendiculares esta en
concordancia con la definición de paralelismo y perpendicularidad de vectores.
Proposiciones.
1. Equivalencia de la definición de vectores paralelos
Dados A,B ∈ Rn − {θ}
^(A,B) = 0 ó ^(A,B) = π ⇔ A ‖ B
Demostración
Sea ϕ = ^(A,B),
ϕ = 0 o ϕ = π ⇔
(∗1)
cosϕ = ±1 ⇔
(∗2)
A ·B
‖A‖ ‖B‖
= ±1 ⇔
(∗3)
|A ·B|
‖A‖ ‖B‖
= 1
⇔
(∗4)
|A ·B| = ‖A‖ ‖B‖ ⇔
(∗5)
A ‖ B
(*1) (⇐) por 0 ≤ ϕ ≤ π
(⇒) pues cos 0 = 1 y cosπ = −1
(*2) por definición de ángulo en Rn
(*3) aplicando valor absoluto en ambos miembros.
(*4) (⇐) por la hipótesis ‖A‖ 6= 0, ‖B‖ 6= 0 luego ‖A‖‖B‖ 6= 0 .
(*5) por la hipótesis A 6= θ,B 6= θ entonces, por la desigualdad de C-S A ‖ B
2. Equivalencia de la definición de vectores perpendiculares.
Dados A,B ∈ Rn − {θ}
^(A,B) =
π
2
⇔ A ⊥ B
Demostración
Sea ϕ = ^(A,B),
ϕ =
π
2
⇔
(∗∗1)
cos
π
2
=
A ·B
‖A‖ ‖B‖
⇔
(∗∗1)
0 =
A ·B
‖A‖ ‖B‖
⇔
(∗∗2)
A ·B = 0 ⇔
(∗∗3)
A ⊥ B
(**1) por definición de ángulo entre vectores
(**2) (⇐) por la hipótesis ‖A‖ 6= 0, ‖B‖ 6= 0 luego ‖A‖‖B‖ 6= 0 .
(**3) por definición de vectores perpendiculares
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 20
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Los productos que definiremos a continuación sólo se pueden aplicar en R3
Definición 15 (Producto Vectorial). .
Dados A = (a1, a2, a3) ∈ R3 y B = (b1, b2, b3) ∈ R3, el producto vectorial de A y B en ese orden, es el
vector:
A×B = (a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1) ∈ R3
Regla práctica A×B = (a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1)
Ejemplo. A = (1,−1,−3) , B = (2,−1, 0)
Regla práctica:
A×B = ((−1) · 0− (−3) · (−1) , (−3) · 2− 1 · 0 , 1 · (−1)− (−1) · 2)
A×B = (−3, −6 , 1)
Ejemplos. .
Realice los cálculos y compruebe los resultados.
A = (2, 1,−3) , B = (3,−1, 2)A×B = (−1,−13,−5)
Para los vectores canónicos de R3
e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)
e1 × e2 = (0, 0, 1) = e3
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 21
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
e2 × e3 = (1, 0, 0) = e1
e3 × e1 = (0, 1, 0) = e2
e2 × e1 = (0, 0,−1) = −e3
e1 × e2 6= e2 × e1 podemos concluir que el producto vectorial no es conmutativo.
(e1 × e2)× e2 = e3 × e2 = −e1
e1 × (e2 × e2) = e1 × θ = θ
(e1 × e2)× e2 6= e1 × (e2 × e2) podemos concluir que el producto vectorial no es asociativo.
Propiedades (del producto vectorial). .
1. El producto vectorial es anticonmutativo
∀A,B ∈ R3, A×B = −B ×A
2. Distributividad del producto respecto de la suma
∀A,B,C ∈ R3, A× (B + C) = A×B +A× C
(A+B)× C = A× C +B × C
3. Asociatividad mixta.
∀λ ∈ R, ∀A,B ∈ R3, (λA)×B = A× (λB) = λ(A×B)
4. ∀A,B ∈ R3, A×B ⊥ A y A×B ⊥ B
5. ∀A,B ∈ R3, ‖A×B‖2 = ‖A‖2 ‖B‖2 − (A ·B)2
6. ∀A,B ∈ R3, A×B = θ ⇔ A ‖ B ∨ A = θ ∨ B = θ
7. ∀A,B ∈ R3 − {θ}, ‖A×B‖ = ‖A‖ ‖B‖ senϕ con ϕ = ^(A,B)
8. Sean A,B ∈ R3 − {θ} lados de un paralelogramo:
Área del paralelogramo de lados A, B = ‖A×B‖
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 22
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Demostración. .
1. Sean A = (a1, a2, a3) ∈ R3 y B = (b1, b2, b3) ∈ R3.
A×B = (a1, a2, a3)× (b1, b2, b3)
por la definición de producto vectorial
= (a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1)
sacando factor común -1 en cada componente
= (−1(−a2b3 + a3b2) , −1(−a3b1 + a1b3) , −1(−a1b2 + a2b1))
por definición de producto de escalar por vector
= (−1)(−a2b3 + a3b2 , −a3b1 + a1b3 , −a1b2 + a2b1)
en cada componente conmuto los sumandos
= (−1)(a3b2 − a2b3 , a1b3 − a3b1 , a2b1 − a1b2)
en cada componente, conmuto los productos de números reales
= (−1)(b2a3 − b3a2 , b3a1 − b1a3 , b1a2 − b2a1)
por definición de producto vectorial
= (−1)(b1, b2, b3)× (a1, a2, a3)
= (−1)B ×A
= −B ×A
2. Queda para el alumno.
La demostración se puede hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
3. Queda para el alumno.
La demostración se puede hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 23
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
4. Sean A = (a1, a2, a3) ∈ R3 y B = (b1, b2, b3) ∈ R3.
A×B ·A = (a1, a2, a3)× (b1, b2, b3) · (a1, a2, a3)
= (a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1) · (a1, a2, a3) por la definición de producto vectorial
= (a2b3 − a3b2)a1 + (a3b1 − a1b3)a2 + (a1b2 − a2b1)a3 por la definición de producto escalar
= a2b3a1 − a3b2a1 + a3b1a2 − a1b3a2 + a1b2a3 − a2b1a3 por distrib. del prod. respecto de la + en R
= a2b3a1︸ ︷︷ ︸
(1)
− a3b2a1︸ ︷︷ ︸
(2)
+ a3b1a2︸ ︷︷ ︸
(3)
− a1b3a2︸ ︷︷ ︸
(1)
+ a1b2a3︸ ︷︷ ︸
(2)
− a2b1a3︸ ︷︷ ︸
(3)
cancelando términos iguales
= 0
Probamos que A×B ·A = 0 y por la definición de vectores perpendiculares
A×B ⊥ A
Queda para ustedes probar que: A×B ⊥ B
5. Queda para el alumno.
La demostración se pueden hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
6. Para demostrar esta propiedad utilizaremos 5) y desigualdad de Cauchy Shwarz
A×B = θ ⇔ ‖A×B‖ = 0 por propiedad de norma de un vector
⇔ ‖A×B‖2 = 0
⇔ ‖A‖2 ‖B‖2 − (A ·B)2 = 0 por propiedad 5)‖A×B‖2 = ‖A‖2 ‖B‖2 − (A ·B)2
⇔ ‖A‖2 ‖B‖2 = (A ·B)2 ambos miembros son no negativos, puedo aplicar ráız cuadrada
⇔
√
(‖A‖ ‖B‖)2 =
√
(A ·B)2
⇔ | ‖A‖ ‖B‖ | = |A ·B| por propiedad de valor absoluto
⇔ ‖A‖ ‖B‖ = |A ·B| el producto de normas es un número real no negativos
⇔ A ‖ B ∨ A = θ ∨ B = θ por la desigualdad de C-S
7. Sean A,B ∈ R3 − {θ}, sea ϕ = ^(A,B)
Por la definición de ángulo entre vectores A ·B = ‖A‖ ‖B‖ cosϕ
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 24
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
y por la propiedad 5)
‖A×B‖2 = ‖A‖2 ‖B‖2 − (A ·B)2
reemplazando A ·B se tiene:
‖A×B‖2 = ‖A‖2 ‖B‖2 − (‖A‖ ‖B‖ cosϕ)2
‖A×B‖2 = ‖A‖2 ‖B‖2 − ‖A‖2 ‖B‖2 cos2 ϕ
‖A×B‖2 = ‖A‖2 ‖B‖2(1− cos2 ϕ)
por identidad trigonométrica sen2 ϕ+ cos2 ϕ = 1 por lo tanto 1− cos2 ϕ = sen2 ϕ, remplazando
‖A×B‖2 = ‖A‖2 ‖B‖2 sen2 ϕ
aplicando ráız cuadrada en ambos miembros que son números no negativos y por propiedad de
valor absoluto
‖A×B‖ = ‖A‖ ‖B‖ | senϕ|
por definición de ángulo entre vectores 0 6 ϕ 6 π y en ese intervalo senϕ > 0, por lo tanto
| senϕ| = senϕ
reemplazando queda probado que:
‖A×B‖ = ‖A‖ ‖B‖ senϕ
8. Dado el paralelogramos de lados A y B, el área, que denotamos con Área (A,B), es igual a
la longitud de la base b, por la longitud de la altura h.
Área (A,B) = b · h
Si consideramos como base del paralelogramo el lado A como
se indica en el dibujo, la longitud de la base es ‖A‖
b = ‖A‖ (∗1)
Para determinar la altura h, consideremos lo siguiente:
Si α = ^(A,B), por definición de ángulo entre vectores, 0 6 α 6 π y por lo tanto, senα > 0.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 25
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Luego: senα =
h
‖B‖
⇒ h = ‖B‖ senα (∗2)
Reemplazando (*1) y (*2) en
Área (A,B) = b · h
Área (A,B) = ‖A‖ ‖B‖ senα,
por propiedad del producto vectorial: ‖A×B‖ = ‖A‖ ‖B‖ senα.
Por lo tanto
Área (A,B) = ‖A×B‖
Definición 16 (Triple producto escalar o doble producto mixto). .
Sean A,B y C ∈ R3 se define triple producto escalar al número real:
(A B C) = A×B · C ∈ R.
Propiedades (triple producto escalar). .
1. ∀A, B, C ∈ R3, (A B C) = (B C A) = (C A B) (propiedad ćıclica)
2. ∀A, B, C ∈ R3, (A B C) = −(B A C)
3. Sean A, B, C ∈ R3 − {θ} aristas de un paraleleṕıpedo, |(A B C)| es el volumen de dicho
paraleleṕıpedo.
4. Sean A, B, C ∈ R3, (A B C) = 0 si y solo si los vectores son coplanares
(Vectores coplanares son vectores tales que los puntos que los identifican pertenecen a un plano
que pasa por el origen.)
Demostración.
1. Sin demostración.
2. Sean A, B, C ∈ R3
(A B C) = A×B · C (por def. de triple producto escalar)
= −(B ×A) · C (por propiedad antisimétrica del producto vectorial)
= −(B ×A · C) (por propiedad del producto escalar)
= −(B A C) (por def. de triple producto escalar)
Luego probamos que: (A B C) = −(B A C)
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 26
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
3. Sean A, B, C ∈ R3 − {θ} aristas de un paraleleṕıpedo.
el volumen, que denotamos con V ol (A,B,C), es igual a área de la base por la longitud de la
altura.
V ol (A,B,C) = área de la base · h (1)
Si consideramos la base del paraleleṕıpedo al paralelogramo de lados A y B, el área está dada
por ||A × B||, por propiedad del producto vectorial (notar que ||A × B|| ≥ 0 ). La altura del
paraleleṕıpedo es el segmento perpendicular a la base trazado desde el vértice opuesto hasta dicha
base. Es decir, el vector altura H = PC,A×B y su longitud es la altura del paraleleṕıpedo de base
A y B, en consecuencia
||H|| = ||PC,A×B|| =
|C ·A×B|
||A×B||
Por lo tanto, reemplazando en (1)
V ol (A,B,C) = ||A×B|| |C·A×B|||A×B||
= |C ·A×B|
= |A×B · C)| (por propiedad conmutativa del producto escalar)
= |(A B C)| (por def. de triple producto escalar)
Luego
V ol (A,B,C) = |(A B C)|
4. Sin demostración.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 27
Álgebra y Geometŕıa Anaĺıtica Vectores en Rn
Ejercicios teóricos de integración 1.
1. Califique con verdadero o falso las siguientes proposiciones:
∀A, B ∈ Rn, ‖A+B‖ = ‖A‖+ ‖B‖
∀A, B ∈ Rn, |A ·B| = ‖A‖‖B‖
2. Sean A, B, C ∈ Rn.
a) Demuestre que: ‖A+B‖2 = ‖A‖2 + 2A ·B + ‖B‖2
b) Utilizando el apartado a) obtenga una expresión general para: ‖A−B‖, ‖A+2C‖ y ‖3A−B + 2C‖.
Mg. I. Lomas - Mg. E. Fernández FACET - UNT 28

Continuar navegando