Logo Studenta

ACEROA AL CARBONO-1

¡Este material tiene más páginas!

Vista previa del material en texto

INTRODUCCION
Se puede definir al acero como una aleación de hierro con pequeñas cantidades de otros elementos, es decir, hierro combinado con un 1% aproximadamente de carbono, y que hecho ascua y sumergido en agua fría adquiere por el temple gran dureza y elasticidad. Hay aceros especiales que contienen además, en pequeñísima proporción, cromo, níquel, titanio, volframio o vanadio. Se caracteriza por su gran resistencia, contrariamente a lo que ocurre con el hierro. Este resiste muy poco la deformación plástica, por estar constituida solo con cristales de ferrita; cuando se alea con carbono, se forman estructuras cristalinas diferentes, que permiten un gran incremento de su resistencia. Ésta cualidad del acero y la abundancia de hierro le colocan en un lugar preeminente, constituyendo el material básico del S.XX. Un 92% de todo el acero es simple acero al carbono; el resto es acero aleado: aleaciones de hierro con carbono y otros elementos tales como magnesio, níquel, cromo, molibdeno y vanadio. En el presente trabajo se describen las características y composiciones del mismo.
El acero es una aleación de hierro con una pequeña proporción de carbono, que comunica a aquellas propiedades especiales tales como dureza y elasticidad. En general, también se pueden fabricar aceros con otros componentes como manganeso, níquel o cromo. El hierro es un constituyente fundamental de algunas de las más importantes aleaciones de la ingeniería. El hierro es un metal alotrópico, por lo que puede existir en más de una estructura reticular dependiendo fundamentalmente de la temperatura. Es uno de los metales más útiles debido a su gran abundancia en la corteza terrestre (constituyendo más del 5% de esta, aunque rara vez se encuentra en estado puro, lo más normal es hallarlo combinado con otros elementos en forma de óxidos, carbonatos o sulfuros) y a que se obtiene con gran facilidad y con una gran pureza comercial. Posee propiedades físicas y mecánicas muy apreciadas y de la más amplia variedad.
           
            El hierro técnicamente puro, es decir, con menos de 0.008% de carbono, es un metal blanco azulado, dúctil y maleable, cuyo peso específico es 7.87. Funde de 1536.5ºC a 1539ºC reblandeciéndose antes de llegar a esta temperatura, lo que permite forjarlo y moldearlo con facilidad. El hierro es un buen conductor de la electricidad y se imanta fácilmente.
 
El acero al carbono, constituye el principal producto de los aceros que se producen, estimando que un 90% de la producción total producida mundialmente corresponde a aceros al carbono y el 10% restante son aceros aleados. Estos aceros son también conocidos como aceros de construcción, La composición química de los aceros al carbono es compleja, además del hierro y el carbono que generalmente no supera el 1%, hay en la aleación otros elementos necesarios para su producción, tales como silicio y manganeso, y hay otros que se consideran impurezas por la dificultad de excluirlos totalmente –azufre, fósforo, oxígeno, hidrógeno. El aumento del contenido de carbono en el acero eleva su resistencia a la tracción, incrementa el índice de fragilidad en frío y hace que disminuya la tenacidad y la ductilidad.
El principal producto siderúrgico es el acero, siendo aproximadamente el 90% de la producción acero al carbono y el 10%, acero aleado. Por lo tanto, el material metálico más importante para la industria es el acero al carbono.
El acero al carbono es una aleación de composición química compleja. Además de hierro, cuyo contenido puede oscilar entre 97,0-99,5%-, hay en él muchos elementos cuya presencia se debe a los procesos de su producción (manganeso y silicio), a la dificultad de excluirlos totalmente del metal (azufre, fósforo, oxígeno, nitrógeno e hidrógeno) o a circunstancias casuales (cromo, níquel, cobre y otros). El aumento del contenido de carbono en el acero eleva su resistencia a la tracción, incrementa el índice de fragilidad en frío y hace que disminuya la tenacidad y la ductilidad. Los aceros se clasifican teniendo en cuenta sus propiedades y utilización, en tres grandes grupos: aceros de construcción, aceros de herramientas y aceros inoxidables.
ACERO AL CARBONO 
El acero de construcción constituye una proporción importante de los aceros producidos en las plantas siderúrgicas. Con esa denominación se incluye a aquellos aceros en los que su propiedad fundamental es la resistencia a distintas solicitaciones (fuerzas tanto estáticas como dinámicas). De esta forma se los separa respecto a los aceros inoxidables, a los aceros para herramientas, a los aceros para usos eléctricos o a los aceros para electrodomésticos o partes no estructurales de vehículos de transporte. Cabe aclarar que en este concepto de Acero de construcción se pueden englobar tanto los aceros para construcción civil como para construcción mecánica.
 Históricamente un 90% de la producción total producida mundialmente corresponde a aceros al carbono y el 10% restante son aceros aleados. Sin embargo, la tendencia es hacia un crecimiento de la proporción de los aceros aleados en desmedro de los aceros al carbono. En esta tendencia tiene importancia la necesidad de aligerar pesos tanto para el caso de las estructuras (con el consiguiente ahorro en las fundaciones) como los requerimientos de menor consumo por peso en los automóviles, unido en este caso a la necesidad de reforzar la seguridad ante impactos sin incrementar el peso de los vehículos.
Clases de aceros al carbono
1. Aceros al carbono que se usan en bruto de laminación para construcciones metálicas y para piezas de maquinaria en general. 
2. Aceros al carbono de baja aleación y alto límite elástico para grandes construcciones metálicas, puentes, torres, etc. 
3. Aceros al carbono de fácil mecanización en tornos automáticos. En estos aceros son fundamentales ciertas propiedades de orden mecánico, como la resistencia a la tracción, tenacidad, resistencia a la fatiga y alargamiento, Estas propiedades dependen principalmente del porcentaje de carbono que contienen y demás aleantes.
Tratamientos térmicos de los aceros al carbonoRecocido:
El objeto de este tratamiento es ablandar el acero, homogenizar su estructura y composición química y aumentar su ductilidad. Se aplican varios tipos de recocido. Temple y revenido: Al dar a los aceros al carbono un temple y revenido se consiguen muy buenas características cuando el perfil es delgado. En un acero al carbono bien templado o revenido, el valor del limite elástico suele llegar a ser un 75% de la carga de rotura. Cuando interesa fabricar piezas con resistencia de 38 a 55 kg/mm2 es, en general, muy poco ventajoso el tratamiento térmico (temple y revenido) por tratarse de aceros de bajo contenido de carbono (0,15 a 0,30%). Cuando quieren fabricarse piezas con esas resistencias conviene, en general, utilizar aceros en bruto de forja, laminados o normalizados. Sin embargo, en casos excepcionales, cuando se desea conseguir la mejor combinación de características (resistencia, alargamiento y alto limite elástico), se pueden templar y revenir los aceros de 0,15 a 0,30% de C, obteniéndose resistencias variables de 38 a 55 kg/mm2, alargamientos y limites de elasticidad ligeramente superiores a los que corresponden al estado normalizado.
Cuando se trata de piezas de gran espesor el tratamiento es casi inútil, porque se presenta el problema de poca penetración de temple o templabilidad.
Los aceros al carbono templados y revenidos con porcentajes de carbono variables de 0,25 a 0,55%, se suelen emplear generalmente con resistencias comprendidas entre 55 y 90 kg/mm2 y a veces, en casos excepcionales como en la fabricación de muelles, se usan hasta resistencias de 150 a 200 kg/mm2.
El empleo de los aceros al carbono templados y revenidos para la fabricación de piezas con esas resistencias tiene varias ventajas. Una muy importante es que el limite de elasticidad es más elevado que en los aceros normalizados o recocidos, y otra que la combinación de características (resistencia yalargamiento) también se mejora.
En cambio, si esa resistencia se consigue templando y reviniendo la pieza después de mecanizada, el trabajo de torno o fresa se podrá hacer previamente en estado recocido mucho más fácil.
En el caso de que por mecanizado haya que quitar material, es preferible, como hemos dicho, mecanizar en estado de recocido y luego templar y revenir, dejando generalmente en el mecanizado un exceso de medidas para eliminar luego las deformaciones que se producen en el temple y revenido. Cuando la cantidad de material a eliminar por mecanizado es pequeña, puede convenir templar y revenir el material y luego mecanizar las piezas, pudiéndolas dejar así a las medidas definidas.
TRATAMIENTOS TERMICOS DE LOS ACEROS AL CARBONO 
· Recocido: El objeto de este tratamiento es ablandar el acero, homogeneizar su estructura, composición química y aumentar su ductilidad. Se aplican varios tipos de recocido.
· Recocido de regeneración: Cuando después de la forja o laminación se desea mecanizar en las mejores condiciones posibles los aceros con porcentajes de carbono variables de 0.35 a 0.60%.
· Recocido de ablandamiento: En algunos casos en que interesa disminuir la dureza de los aceros al carbono.
· Recocidos contra acritud: Se emplea para aceros de bajo contenido en carbono (inferior a 0.30%) que han sufrido un fuerte trabajo en frío por laminado o estirado y en los que la dureza ha aumentado por deformación de los cristales, habiéndose disminuido al mismo tiempo la ductilidad y el alargamiento hasta límites tan bajos que no se puede seguir el proceso mecánico de transformación en frío porque se rompe el acero.
· Recocido globular: En algunos casos excepcionales en que se interesa que los aceros queden con estructuras globulares debe calentarse durante largo tiempo el acero a temperaturas entre 700º a 740ºC y luego enfriar lentamente. De esta forma el material tiene una extraordinaria ductilidad.
· Temple y revenido: Al dar a los aceros al carbono un temple y revenido se consiguen muy buenas características cuando el perfil es delgado. En un acero al carbono bien templado o revenido, el valor del límite elástico suele llegar a ser un 75% de la carga de rotura.
Cuando interesa fabricar piezas con resistencia de 89kg/mm2 es, en general, muy poco ventajoso el tratamiento térmico (temple y revenido) por tratarse de aceros de bajo contenido de carbono (0,15 a 0,30%). Cuando quieren fabricarse piezas con esas resistencias conviene, en general, utilizar aceros en bruto de forja, laminados o normalizados. Sin embargo, en casos excepcionales, cuando se desea conseguir la mejor combinación de características (resistencia, alargamiento y alto límite elástico), se pueden templar y revenir los aceros de 0,15 a 0,30% de C, obteniéndose resistencias variables de 38 a 55 kg/mm2, alargamientos y límites de elasticidad ligeramente superiores a los que corresponden al estado normalizado.
Cuando se trata de piezas de gran espesor el tratamiento es casi inútil, porque se presenta el problema de poca penetración de temple o templabilidad.
Los aceros al carbono templados y revenidos con porcentajes de carbono variables de 0,25 a 0,55%, se suelen emplear generalmente con resistencias comprendidas entre 55 y 90 kg/mm2y a veces, en casos excepcionales como en la fabricación de muelles, se usan hasta resistencias de 150 a 200 kg/mm2.
El empleo de los aceros al carbono templados y revenidos para la fabricación de piezas con esas resistencias tiene varias ventajas. Una muy importante es que el límite de elasticidad es más elevado que en los aceros normalizados o recocidos, y otra que la combinación de características (resistencia y alargamiento) también se mejora.
En cambio, si esa resistencia se consigue templando y reviniendo la pieza después de mecanizada, el trabajo de torno o fresa se podrá hacer previamente en estado recocido mucho más fácil.
En el caso de que por mecanizado haya que quitar material, es preferible, como hemos dicho, mecanizar en estado de recocido y luego templar y revenir, dejando generalmente en el mecanizado un exceso de medidas para eliminar luego las deformaciones que se producen en el temple y revenido. Cuando la cantidad de material a eliminar por mecanizado es pequeña, puede convenir templar y revenir el material y luego mecanizar las piezas, pudiéndolas dejar así a las medidas definidas.
· Normalizado: Este tratamiento consiste en calentar el acero a unos 50ºC por encima de la temperatura crítica Ac y enfriarlo luego al aire. Su empleo es importante cuando la estructura cristalina del acero es gruesa por haber sufrido calentamientos a temperaturas muy elevadas, o porque el trabajo de forja ha sido insuficiente para destruir la estructura en bruto de colada o la estructura cristalina no es la correcta.
· Temple y revenido: Al dar a los aceros al carbono un temple y revenido se consiguen muy buenas características cuando el perfil es delgado. En un acero al carbono bien templado o revenido, el valor del limite elástico suele llegar a ser un 75% de la carga de rotura.
Cuando interesa fabricar piezas con resistencia de 38 a 55 Kg/mm2 es, en general, muy poco ventajoso el tratamiento térmico (temple y revenido), ya que por tratarse de aceros de bajo contenido de carbono (0.15 a 0.30%). Cuando quieren fabricarse piezas con esas resistencias en general, conviene utilizar aceros en bruto de forja, laminados o normalizados. Sin embargo en casos excepcionales cuando se desea conseguir la mejor combinación de características (resistencia, alargamiento y alto limite elástico) se pueden templar y revenir los aceros de 0.15 a0.30% de C obteniéndose, resistencias variables de 38 a 55 Kg/mm2, alargamientos y limites de elasticidad ligeramente superiores a los que corresponden al estado normalizado. Cuando se trata de piezas de gran espesor el tratamiento es casi inútil porque se presenta el problema de poca penetración de temple o templabilidad.
Los aceros al carbono templados y revenidos con porcentajes de carbono variables de 0.25 a 0.55%, se suelen emplear generalmente con resistencias comprendidas entre 55 y 90 Kg/mm2 y, a veces, en casos excepcionales como el de fabricación de muelles, se usan hasta resistencias de 150 a 200 Kg/mm2.
El empleo de los aceros al carbono templados y revenidos para la fabricación de piezas con esas resistencias tiene varias ventajas. Una muy importante es que el limite de elasticidad es más elevado que en los aceros normalizados o recocidos, y otra que la combinación de características (resistencia y alargamiento) también se mejora.
En cambio si esa resistencia se consigue templando y reviniendo la pieza después de mecanizada, el trabajo de torno o fresa se podrá hacer previamente en estado recocido mucho más fácil.
En el caso de que por mecanizado haya que quitar material, preferible, como hemos dicho, mecanizar en estado de recocido y luego templar y revenir, dejando generalmente en el mecanizado un exceso de medidas para eliminar luego las deformaciones que se producen en el temple y revenido. Cuando la cantidad de material a eliminar por mecanizado es pequeña puede convenir templar y revenir el material y luego mecanizar las piezas pudiéndolas dejar así a las medidas definidas. 
ACEROS AL CARBONO PARA CEMENTACION
· Acero 1010:
· Acero muy tenaz, para piezas de pequeño tamaño y forma sencilla, en las cuales no sean necesarios altos valores de resistencia mecánica (bujes, pasadores, etc.).
· Se usa con temple directo en agua.
· En estado normalizado o como laminado sirve para piezas embutidas o estampadas en frío.
· Acero 1015:
· Para construcciones mecánicas de baja resistencia.
· Tiene los mismos usos del 1010 pero se prefiere cuando se necesita un corazón más duro y tenaz.
· Acero 1022:
· Para partes de vehículos y maquinaria que no sean sometidas a grandes esfuerzos mecánicos.
· Posee mejor resistencia en el núcleo que el 1015.
Aceros al carbono de temple y revenido
· Acero 1020:
· Esta clase de acero puede ser empleado en piezas que no estén sometidasa fuertes esfuerzos mecánicos. 
· Considerando la escasa penetración de temple que tiene, generalmente se usa en estado normalizado.
· Puede emplearse en estado templado y revenido para piezas de pequeño espesor.
· Puede ser cem4entado cuando se requieren en el núcleo propiedades mecanizas más altas de las que pueden obtenerse con el tipo 1015 en cuyo caso se aplican las mismas normas de cementación que las especificadas para este acero.
· Acero 1030:
· Acero para temple y revenido para los más amplios usos, tales como ejes, árboles y todas aquellas piezas que no estén sometidas a fuertes esfuerzos mecánicos.
· Como no tiene gran penetración de temple, este tipo de acero es aconsejable solamente para piezas templadas y revenidas de tamaño pequeño.
· Acero 1040:
· La templabilidad de este acero es mejor que la de los dos anteriores; se usa para piezas de máquinas de pequeño y mediano espesor y sirve para piezas que deban ser templadas a inducción, o con soplete.
· Acero 1045:
· Es un acero muy apropiado para piezas de pequeño tamaño que deban templarse a inducción, obteniéndose una dureza superficial de 54-56 Rc.
· Se emplea para herramientas forjadas de todo tipo, como: hachas, azadones, rastrillos, picas, martillos de varios usos, porras, etc.
· Acero 1050:
· Gracias a la buena penetración de temple que tiene este acero, es apto para piezas de máquinas que deban soportar esfuerzos altos, longitudinales y transversales, pero sin impactos continuos.
· Para piezas de pequeño espesor es preferible el temple en aceite; para las piezas de mayor espesor y forma sencilla, en agua.
· Acero 1055:
· Tiene más o menos los mismos usos del 1050. Sirve para fabricar pasadores que deban soportar esfuerzos muy elevados. En este caso se pueden templar las piezas por inducción.
· usan para herramientas agrícolas que deban tener más resistencias que las fabricadas con acero 1045.
· Acero 1060:
· Como acero de construcción tiene los mismos usos que el 1055, pero para piezas que deban tener una resistencia mecánica más elevada.
· Como acero de corte sirve para herramientas de trabajas plásticos, madera y materiales no ferrosos (latan, bronce, etc).
· Este acero tiene una buena penetración de temple, aun en piezas de tamaño medio y con temple en aceite. Con temple de inducción y con temple al soplete se pueden obtener buenos resultados en piezas de no muy alta resistencia mecánica que sean sometidos a desgaste.
· Este acero puede ser también usado para resortes.
· Acero 1070:
· Como acero de construcción para todo tipo de piezas que requieran al ta resistencia y que sean sometidas a fuertes esfuerzos mecánicos, por ejemplo: partes móviles de molinos y trituradoras y cuchillas para moler materiales blandos.
· Como acero para resortes sirve para fabricar este tipo de piezas con excelente calidad y con especialidad aquellas de tipo helicoidal.
· Como acero para herramientas para todas las piezas que requieran dureza, tenacidad y resistencia al desgaste.
NOTA: las temperaturas de revenido son:
Como acero de construcción 560ºC/640ºC
Como acero de resortes 420ºC/480ºC
Como acero de herramientas 200ºC/350ºC
· Acero 1095:
· Este es el acero al carbono de mayor resistencia, usado para la fabricación de resortes de todos los tipos y para todos los usos. A semejanza de los otros tipos con porcentajes de C más bajo, que puede ser también trefilado a través de tratamientos térmicos adecuados, puede emplearse también en frío para la construcción de resortes especiales.
· Acero 1541(0.36-0.44% de C):
· Para partes que deban tener un límite de fluencia alto y fuerte resistencia al desgaste. Particularmente apto para forjar, por ejemplo: herramientas agrícolas y de mano.
· Se usa para fabricar tornillería de alta resistencia y es uno de los aceros más apropiados para la fabricación de grapas automotores. 
ACEROS AL CARBONO DE ALTA MAQUINABILIDAD (RESULFURAD0S)
Esta clase de aceros se usa en aquellos casos donde se desea una maquinabilidad mejor que la de los aceros al carbón. Se logran costos más bajos aumentando la producción con mayores velocidades de maquinado y mejor vida de la herramienta, o eliminando operaciones secundarias a través de una mejoría en la superficie terminada. La adición de azufre ocasiona algún sacrificio en las propiedades de soldabilidad, forja y conformación en frío.
SAE 1110 - 1111 - 1112 - 1113:
· Tienen excelentes características de maquinabilidad y buena resistencia estirados en frío. Estos aceros se pueden cianurar o carburar. La maquinabilidad aumenta en este grupo al aumentar el azufre, el cual se combina principalmente con el manganeso del acero y precipita como inclusiones de sulfuros, las cuales favorecen la maquinabilidad al proporcionar la formación de virutas pequeñas, y al suministrar un lubricante propio evita que las virutas se agarren a la herramienta y emboten el filo. Al disminuir esta adherencia, se necesita menos potencia, se mejora la superficie y la velocidad de maquinado se puede doblar en comparación de un acero no resulfurado.
SAE 1108 - 1109 - 1116 - 1117 - 1118 - y 1119:
· Los aceros de este grupo se usan cuando se necesita una combinación de buena maquinabilidad y respuesta a tratamiento térmico. En variedades de bajo carbono se usan para partes pequeñas que deben cianurarse o carbonitrurarse.
SAE 1117 - 1118 y 1119:
· Tienen más manganeso para mejor templabilidad, permitiendo temple en aceite después de la carburación.
SAE 1132 - 1137 - 1140 - 1141 - 1144 - 1145 - 1146 y 1151:
· Cada tipo tiene características comparables a los aceros al carbono del mismo nivel del carbón. Se usan para partes donde es necesario una gran cantidad de maquinado, o donde la presencia de roscas, estrías, u otra operación ofrece problemas especiales de herramental.
SAE 1132 -1137 - 1141 - 1144:
· De alto manganeso ofrecen mayor templabilidad y los tipos de alto carbono son adecuados para temple en aceite, para temple por inducción o para temple con llama.
Otra clasificación del acero desde el punto de vista de su producción es: Efervescente, Calmado, Semicalmado o Tapado.
En los aceros efervescentes sólo se ha eliminado una pequeña parte del oxígeno mientras dura el proceso de solidificación, lo que deja una capa exterior o cerco relativamente libre de carbono, o sea que el centro del lingote tiene un mayor contenido de carbono que el exterior. Esta superficie con una porción de carbono extremadamente baja es muy dúctil, tiene excelentes cualidades de su superficie y muy buenas características para su conformado en frío.
Los aceros calmados son lo opuesto a los efervescentes; a estos aceros se les ha extraído gran cantidad de oxígeno, de donde resulta un acero relativamente libre de carbono. Los aceros calmados son útiles cuando se necesitan técnicas severas de conformado, pero siempre requiere un tratamiento térmico al terminar la técnica de conformado de manufactura.
Los aceros semicalmados tienen una composición y propiedades mecánicas que varían entre las de los aceros efervescentes y los calmados. Los aceros tapados combinan las características de los aceros efervescentes y las de los semicalmados o sea, el cerco de carbono se forma en la superficie del acero, y el grueso de la sección transversal interior tiene las características del acero semicalmado.
TIPOS DE ACEROS:
         En las aleaciones Fe-C pueden encontrarse hasta once constituyentes diferentes, que se denominan: ferrita, cementita, perlita, austenita, martensita, troostitasorbita, bainita, ledeburita, steadita y grafito.
 
 
 FERRITA:
 	Aunque la ferrita es en realidad una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es tan pequeña que no llega a disolver ni un 0.008% de C. Es por esto que prácticamente se considera la ferrita como hierro alfa puro. La ferrita es el más blando y dúctil constituyente de los aceros. Cristaliza en una estructura BCC. Tiene una dureza de 95 Vickers, y una resistencia a la rotura de 28 Kg/mm2, llegando a un alargamiento del 35 al 40%. Además detodas estas características, presenta propiedades magnéticas. En los aceros aleados, la ferrita suele contener Ni, Mn, Cu, Si, Al en disolución sólida sustitucional. Al microscopio aparece como granos monofásicos, con límites de grano más irregulares que la austenita. El motivo de esto es que la ferrita se ha formado en una transformación en estado sólido, mientras que la austenita, procede de la solidificación.
   
            La ferrita en la naturaleza aparece como elemento proeutectoide que acompaña a la perlita en:
· Cristales mezclados con los de perlita (0.55% C).
· Formando una red o malla que limita los granos de perlita (0.55% a 0.85% de C).
·  Formando agujas en dirección de los planos cristalográficos de la austenita.
CEMENTITA
 	  Es carburo de hierro y por tanto su composición es de 6.67% de C y 93.33% de Fe en peso. Es el constituyente más duro y frágil de los aceros, alcanzando una dureza de 960 Vickers. Cristaliza formando un paralelepípedo ortorrómbico de gran tamaño. Es magnética hasta los 210ºC, temperatura a partir de la cual pierde sus propiedades magnéticas. Aparece como:
 
· Cementitaproeutectoide, en aceros hipereutectoides, formando un red que envuelve a los granos perlíticos.
· Componente de la perlita laminar.
· Componente de los glóbulos en perlita laminar. 
· Cementita alargada (terciaria) en las uniones de los granos (0.25% de C)
 
PERLITA 
Es un constituyente compuesto por el 86.5% de ferrita y el 13.5% de cementita, es decir, hay 6.4 partes de ferrita y 1 de cementita. La perlita tiene una dureza de aproximadamente 200 Vickers, con una resistencia a la rotura de 80 Kg/mm2 y un alargamiento del 15%. Cada grano de perlita está formado por láminas o placas alternadas de cementita y ferrita. Esta estructura laminar se observa en la perlita formada por enfriamiento muy lento. Si el enfriamiento es muy brusco, la estructura es más borrosa y se denomina perlita sorbítica. Si la perlita laminar se calienta durante algún tiempo a una temperatura inferior a la crítica (723 ºC), la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, recibiendo entonces la denominación de perlita globular.   
 
AUSTENITA
            Este es el constituyente más denso de los aceros, y está formado por la solución sólida, por inserción, de carbono en hierro gamma. La proporción de C disuelto varía desde el 0 al 1.76%, correspondiendo este último porcentaje de máxima solubilidad a la temperatura de 1130 ºC.Laaustenita en los aceros al carbono, es decir, si ningún otro elemento aleado, empieza a formarse a la temperatura de 723ºC. También puede obtenerse una estructura austenítica en los aceros a temperatura ambiente, enfriando muy rápidamente una probeta de acero de alto contenido de C a partir de una temperatura por encima de la crítica, pero este tipo de austenita no es estable, y con el tiempo se transforma en ferrita y perlita o bien cementita y perlita.
 
            Excepcionalmente, hay algunos aceros al cromo-niquel denominados austeníticos, cuya estructura es austenítica a la temperatura ambiente. La austenita está formada por cristales cúbicos de hierro gamma con los átomos de carbono intercalados en las aristas y en el centro. La austenita tiene una dureza de 305 Vickers, una resistencia de 100 Kg/mm2 y un alargamiento de un 30 %. No presenta propiedades magnéticas.
 
MARTENSITA  
            Bajo velocidades de enfriamiento bajas o moderadas, los átomos de C pueden difundirse hacía afuera de la estructura austenítica. De este modo, los átomos de Fe se mueven ligeramente para convertir su estructura en una tipo BCC. Esta transformación gamma-alfa tiene lugar mediante un proceso de nucleación y crecimiento dependiente del tiempo (si aumentamos la velocidad de enfriamiento no habrá tiempo suficiente para que el carbono se difunda en la solución y, aunque tiene lugar algún movimiento local de los átomos de Fe, la estructura resultante no podrá llagar a ser BCC, ya que el carbono está “atrapado” en la solución). La estructura resultante denominada martensita, es una solución sólida sobresaturada de carbono atrapado en una estructura tetragonal centrada en el cuerpo. Esta estructura reticular altamente distorsionada es la principal razón para la alta dureza de la martensita, ya que como los átomos en la martensita están empaquetados con una densidad menor que en la austenita, entonces durante la transformación (que nos lleva a la martensita) ocurre una expansión que produce altos esfuerzos localizados que dan como resultado la deformación plástica de la matriz.
 
            Después de la cementita es el constituyente más duro de los aceros. La martensita se presenta en forma de agujas y cristaliza en la red tetragonal. La proporción de carbono en la martensita no es constante, sino que varía hasta un máximo de 0.89% aumentando su dureza, resistencia mecánica y fragilidad con el contenido de carbono. Su dureza está en torno a 540 Vickers, y su resistencia mecánica varía de 175 a 250 Kg/mm2 y su alargamiento es del orden del 2.5 al 0.5%. Además es magnética.
 
BAINITA          
     Se forma la bainita en la transformación isoterma de la austenita, en un rango de temperaturas de 250 a 550ºC. El proceso consiste en enfriar rápidamente la austenita hasta una temperatura constante, manteniéndose dicha temperatura hasta la transformación total de la austenita en bainita.
 
LEDEBURITA
            La ledeburita no es un constituyente de los aceros, sino de las fundiciones. Se encuentra en las aleaciones Fe-C cuando el porcentaje de carbono en hierro aleado es superior al 25%, es decir, un contenido total de 1.76% de carbono.
 	La ledeburita se forma al enfriar una fundición líquida de carbono (de composición alrededor del 4.3% de C) desde 1130ºC, siendo estable hasta 723ºC, decomponiéndose a partir de esta temperatura en ferrita y cementita
COMPOSICION QUIMICA
La composición química de los aceros al carbono es compleja, además del hierro y el carbono que generalmente no supera el 1%, hay en la aleación otros elementos necesarios para su producción, tales como silicio y manganeso, y hay otros que se consideran impurezas por la dificultad de excluirlos totalmente –azufre, fósforo, oxígeno, hidrógeno. El aumento del contenido de carbono en el acero eleva su resistencia a la tracción, incrementa el índice de fragilidad en frío y hace que disminuya la tenacidad y la ductilidad.
· Acero dulce: El porcentaje de carbono es de 0,25%, tiene una resistencia mecánica de 48-55 kg/mm2 y una dureza de 135-160 HB. Se puede soldar con una técnica adecuada.
· Aplicaciones: Piezas de resistencia media de buena tenacidad, deformación en frío, embutición, plegado, herrajes, etc.
· Acero semidulce: El porcentaje de carbono es de 0,35%. Tiene una resistencia mecánica de 55-62 kg/mm2 y una dureza de 150-170 HB. Se templa bien, alcanzando una resistencia de 80 kg/mm2 y una dureza de 215-245 HB.
· Aplicaciones: Ejes, elementos de maquinaria, piezas resistentes y tenaces, pernos, tornillos, herrajes.
· Acero semiduro: El porcentaje de carbono es de 0,45%. Tiene una resistencia mecánica de 62-70 kg/mm2 y una dureza de 180 HB. Se templa bien, alcanzando una resistencia de 90 kg/mm2, aunque hay que tener en cuenta las deformaciones.
· Aplicaciones: Ejes y elementos de máquinas, piezas bastante resistentes, cilindros de motores de explosión, transmisiones, etc.
· Acero duro: El porcentaje de carbono es de 0,55%. Tiene una resistencia mecánica de 70-75 kg/mm2, y una dureza de 200-220 HB. Templa bien en agua y en aceite, alcanzando una resistencia de 100 kg/mm2 y una dureza de 275-300 HB.
· Aplicaciones: Ejes, transmisiones, tensores y piezas regularmente cargadas y de espesores no muy elevados.
ACEROS DE CONSTRUCCIÓN.
Son los aceros que se utilizan para la fabricación de piezas, órganos o elementos de máquinas, motores, instalaciones, carriles, vehículos, etc.
· Aceros al carbono que se usan en bruto de laminación para construcciones metálicas y para piezas de maquinaria en general.
· Aceros de baja aleacióny alto límite elástico para grandes construcciones metálicas, puentes, torres etc.
· Aceros de fácil mecanización en tornos automáticos.
Los aceros de construcción generalmente se emplean para la fabricación de piezas, órganos o elementos de maquinas y de construcción de instalaciones. En ellos son fundamentales ciertas propiedades de orden mecánico, como la resistencia a la tracción, tenacidad, resistencia a la fatiga y alargamiento
Aceros ordinarios al carbono que se usan en bruto de forja o laminación.
Se incluyen los aceros cuyas propiedades dependen principalmente del porcentaje de carbono que contienen. Se emplean en grandes cantidades para la construcción de estructuras metálicas de edificios, para elementos y piezas de maquinaria, motores, ferrocarriles, etc., y su contenido de carbono suele variar desde 0.03 a 0.70%. 
Además siempre contienen pequeñas cantidades de manganeso y silicio que se emplean como elementos auxiliares en los procesos de fabricación, fósforo y azufre que son impurezas perjudiciales que provienen de las materias primas (lingotes, chatarra, combustibles y minerales).
En general los aceros ordinarios contienen: 
Mn < 0.90%, Si < 0.50%, P < 0.10%, S < 0.10%
De acuerdo con las propiedades mecánicas, se establecen una serie de grupos de aceros ordenados por su resistencia a la tracción. Cuando se desean resistencias de 38 a 55 Kg/mm2 se emplean aceros en bruto de forja o laminación. Para resistencias de 55 a 80 Kg/mm2 se emplean unas veces los aceros al carbono en bruto de forja y laminación, y otras veces se emplean los aceros al carbono tratados (templados y revenidos), para resistencias superiores a 80 Kg/mm2 se suelen emplear aceros tratados.
ACEROS DE BAJO CONTENIDO DE CARBONO
Estos aceros contienen menos del 0.25% C, no adquieren dureza sensible con un temple.Su resistencia media en estado normalizado varia de 35 a 53 Kg/mm2 y los alargamientos de 33 a 23%. Teniendo en cuenta sus características, se suelen agrupar en tres clases:
Denominación Características aproximadas
R (Kg/mm2) A% Carbono%
Semidulces, Dulces, Extradulces 5045 <40 2528>30 0.200.15<0.08
R: resistencia a la tracción
A: alargamiento
Con estos aceros de 0.06 a 0.25% de carbono, se fabrican los puentes de ferrocarril, las grandes estructuras de las estaciones, las columnas metálicas de las líneas eléctricas, los cascos de los buques, las estructuras de las casas, las carrocerías de los automóviles, los tubos de las bicicletas, los clavos, los alfileres, las cerraduras de las puertas, los asientos de las clases y muchos objetos más que utilizamos diariamente. En la mayoría de los casos se utiliza el acero tal como viene de las acerías, sin darle ningún tratamiento térmico especial.
Aceros semiduros forjados o laminados para la construcción de piezas de maquinaria en general.
Los aceros ordinarios de contenido en carbono comprendido entre 0.25 y 0.70% de C que se emplean en estado bruto de forja o laminación se suelen emplear para piezas de maquinaria en general. 
Aceros de 0.30% de C. Ejes para vagones, ruedas, piezas de maquinaria, etc. 
(R=57 Kg/mm2, A = 23%) Aceros de 0.40% e C. Elementos de maquinas y motores, alambres para cables, ejes para locomotoras, etc.
 (R = 65 Kg/mm2, A = 19%)Aceros de 0.50% de C. Bandejas, alambres, flejes, herramientas agrícolas forjadas etc. 
(R = 74 Kg/mm2, A=17%). Aceros de 0.60% de C. Para fleje duro, alambre, herramientas para agricultura, etc. (R = 82 Kg/mm2, A = 15%).
Influencia de elementos extraños en las características mecánicas de los aceros de bajo contenido en carbono.La presencia de fósforo y azufre, salvo en muy pocas ocasiones, es perjudicial para la calidad de los aceros, procurándose eliminar esos elementos en los procesos de fabricación. En general se recomienda que en los aceros ordinarios el contenido de cada uno de esos elementos no pase del 0.06%, y en los aceros de calidad se suele exigir porcentajes de fósforo y azufre inferiores a 0.03%.
El azufre cuando se presenta como sulfuro de hierro, provoca durante los procesos de forja o laminación del acero poca resistencia y a veces se agrieta por iniciarse la fusión de éste, que se encuentra en el acero en forma de retícula en la microestructura del acero. Por el contrario cuando aparece como sulfuro de manganeso, tiene una temperatura de fusión muy elevada, y no da paso a la fragilidad en caliente; en ambos casos el alargamiento y la resistencia del acero queda muy disminuido.
El fósforo se encuentra siempre disuelto en los granos de ferrita a los que comunica gran fragilidad.
APLICACIONES DEL ACERO:
CONSTRUCCION CIVIL:
Una parte importante del acero producido se dirige a la construcción civil. Dentro de este rubro pueden determinarse dos utilizaciones principales: hormigón armado y construcción en acero. La primera usa el hierro redondo como refuerzo del hormigón, trabajando el primero en general a la tracción y el segundo a la compresión. En el caso de la construcción en acero HYPERLINK "https://es.wikipedia.org/wiki/Acero_al_carbono"1se usan elementos tales como perfiles unidos mediante conexiones empernadas o soldadas. Una utilización que está teniendo crecimiento importante es la construcción mixta HYPERLINK "https://es.wikipedia.org/wiki/Acero_al_carbono"2 que combina las estructuras de acero embebidas en hormigón armado ó el hormigón armado dentro de un tubo estructural.
Otras aplicaciones
Además de la construcción civil existen diversas aplicaciones del acero en la construcción mecánica tales como máquinas, partes móviles de automóviles o camiones ( ejes, parantes) Otro uso importante son los cascos de los buques, los tubos de las bicicletas, los clavos, los alfileres, las cerraduras de las puertas, los asientos de las clases y muchos objetos más que utilizamos diariamente. En la mayoría de los casos se utiliza el acero tal como viene de las acerías, sin darle ningún tratamiento térmico especial.
Con estos aceros se fabrican los puentes de ferrocarril, las grandes estructuras de las estaciones, las columnas metálicas de las líneas eléctricas, los cascos de los buques, las estructuras de las casas, las carrocerías de los automóviles, los tubos de las bicicletas, los clavos, los alfileres, las cerraduras de las puertas, los asientos de las clases y muchos objetos más que utilizamos diariamente. En la mayoría de los casos se utiliza el acero tal como viene de las acerías, sin darle ningún tratamiento térmico especial.
LA ESTRUCTURA DEL ACERO AL CARBONO A BAJAS TEMPERATURAS 
A altas temperaturas, los átomos de hierro y carbono, conviven felizmente como austenita. Por el contrario, a bajas temperaturas, se cumple todo lo contrario. Los átomos de carbono, son forzados a migrar formando estructuras que dependen del ritmo de enfriamiento desde el estado austenítico. Enfriamiento Lento Si el enfriamiento de la austenita es relativamente lento, habrá suficiente tiempo para que los átomos de carbono migren de una forma extrema. Así, la mayoría de los átomos de hierro formarán ferrita por si mismos que es la forma virtual más pura de acero con estructura cúbica centrada en el cuerpo. Los restantes átomos de acero, se unirán a los átomos de carbono en una relación de tres átomos de acero por cada átomo de carbono. Esta relación de tres a uno se expresa químicamente con la fórmula Fe3C una sustancia cerámica frágil llamada cementita. La combinación de capas de cementita alternadas con capas de ferrita, formarán cristales de perlita. La perlita consiste en siete partes de ferrita suave y dúctil y una parte de cementita dura y frágil. Esta estructura, por su combinación, es lo suficientemente dúctil como para soportar la ingente cantidad de laminaciones en frío necesarias para producir el alambre. Nº 5 8 T
La microestructura de un acero al carbono enfriado despacio, dependerá de su contenido en carbono. Para composiciones hipoeutectoides de acero como el alambre cortado, la estructura lentamente enfriada consistirá en perlita con algo de ferrita dúctil – donde la cantidad de ferrita aumentará conla disminución del contenido de carbono. Para composiciones hipereutectoides de acero como la granalla fundida, la estructura lentamente enfriada consistirá en perlita con algo de cementita primaria frágil – donde la cantidad de cementita primaria aumentará con el incremento de contenido de carbono. Afortunadamente, la granalla de acero fundido no necesita ser enfriada lentamente en ninguna de sus fases de fabricación.
Enfriamiento Rápido Si la austenita es enfriada rápidamente, no se da el tiempo suficiente como para que los átomos de carbono migren de la estructura bien hacia perlita ócementita. El templado a temperaturas inferiores lejanas a la temperatura crítica de 730ºC (véase la fig.3) induce en la estructura un cambio realmente catastrófico. A temperatura ambiente, el acero al carbono austenítico contiene tanta energía, que “explota” en una estructura llamada martensita. Se crean agujas de martensita y después se propagan, casi a la velocidad del sonido, en cualquiera de las veinticuatro direcciones de cada grano de austenita. A medida que las agujas se van generando, creciendo y chocando entre ellas a la vez que se combinan, se crean enormes cantidades de micro estreses. La estructura enredada de martensita es muy difícil de deformar – de ahí su dureza. 
La correspondiente fragilidad puede ser reducida mediante un post temple. El calentado a unos pocos cientos de grados Celsius, permitirá la migración de átomos de carbono a posiciones más cómodas reduciendo los niveles de micro estrés. La estructura resultante es conocida como martensita templada. El templado incrementa la tenacidad y la deformabilidad. La estructura cristalina de la martensita es casi idéntica (que es cúbica centrada en el cuerpo). Un cubo tiene tres bordes de igual longitud. Los átomos de carbono en la austenita templada, hacen una oscilación hacia uno de los tres bordes (véase la fig.6) al mismo tiempo que la austenita de estructura cúbica centrada en cara se transforma en una estructura cúbica centrada en el cuerpo de átomos de acero. Los átomos de carbono son más pequeños que los de acero, pero aún así deben ser desplazados para que encajen en los espacios disponibles. Este tipo de estructura cristalina es llamada “centrada en el cuerpo tetragonal”. Debido a que los átomos de carbono desplazan átomos de acero en una de las tres posibles direcciones, esa dirección “c” se hace más larga que las otras direcciones “a”.
La tetragonalidad, ó ratio c/a, incrementa con el contenido de carbono. La dureza se incrementa proporcionalmente al incremento de la tetragonalidad.
Del enfriamiento rápido a las temperaturas de temple El templado de acero al carbono austenítico con plomo fundido ó sales, crea una estructura intermedia entre la martensita y la perlita, llamada bainita. Así, se puede dar una migración significativa de carbono de forma que se formen partículas minúsculas de cementita dentro de la matriz de ferrita. El templado de alambre con plomo fundido ó sales antes del cortado, lo usa al menos un gran fabricante de granalla de alambre cortado. La diferencia entre el templado en frío convencional y el templado en caliente.
Trabajo en frío El trabajo en frío del acero al carbono aumenta su dureza, pero reduce su ductilidad. Una vez alcanzada una dureza máxima, esta comienza a caer – “worksoftening”. La granalla de acero fundida no es trabajada en frío antes de su uso. Por el contrario la granalla de alambre cortado sufre gran cantidad de trabajo en frío como parte necesaria del proceso de acondicionado y estirado del alambre. En el alambre estirado se debe recuperar la ductilidad en las fases de estirado. El proceso de corte del alambre estirado en cilindros supone una gran deformación plástica en la zona de corte. Esto induce un trabajo de endurecimiento localizado e incluso puede provocar una transformación de fase. Algunas especificaciones, indican que la granalla se debe de producir con dos niveles de dureza. La granalla de alambre cortado de alta dureza se puede fabricar si se controla el contenido de carbono, y las contribuciones del trabajo en frío y del tratamiento térmico. La dureza de la granalla de acero fundido se controla mediante el contenido de carbono y el nivel de temple.
LA FORMA:
Cuando el acero líquido se atomiza, aparecen formas cuasi esféricas. Las esferas, tienen el ratio de superficie/volumen más pequeño. Por lo tanto, la energía superficial es minimizada si las gotas son esféricas. La generación de la forma partiendo de cilindros de alambre cortado es mucho más complicada. El acondicionamiento es usado para pasar partículas de forma cilíndrica a forma cuasi esférica. El cambio de la forma, se da por una combinación de deformación plástica y erosión a medida que las partículas son lanzadas contra superficies duras. La especificación SAE J441 indica que cualquier tamaño de granalla de alambre cortado debe ser fabricada con alambre del mismo diámetro. Por ejemplo, SCW/ CW-41 se debe fabricar usando alambre de un diámetro de 41 milésimas de pulgada. 41 milésimas de pulgada es 1mm. Si un cilindro de 1mm de diámetro y 1 mm de longitud se convierte en una esfera perfecta por deformación, esta tendrá un diámetro de 1,144mm. 
En la realidad, el acondicionado del alambre cortado tiene una gran componente de deformación plástica y una mínima incidencia de la componente de erosión. La cantidad total de cada una de ellas, aumentará con el grado de acondicionamiento. Hay tres grados de acondicionado reconocidos: Acondicionado, Doble Acondicionado y Acondicionado Esférico. Los grados de deformación plástica y erosión aumentarán a medida que se alcance la esfericidad. El ratio entre los dos componentes se verá afectado en diferente medida por las propiedades metalúrgicas del alambre cortado. La erosión se puede medir pesando la misma cantidad de partículas de alambre cortado en cada fase de acondicionamiento. El autor, no dispone de información definitiva a la hora de escribir este artículo. Pero la información disponible, indica que la pérdida de masa es aproximadamente de 1-2% para el grado “Acondicionado”, 2-3% para el “Doble Acondicionado” y 3-5% para el grado de “Acondicionado Esférico”.
PROCESO DE ENFRIAMIENTO LENTO DEL ACERO.
 
            Estudiaremos los cambios que se producen en la región de los aceros, cuando sometemos al sistema a procesos de enfriamiento lento desde una estructura austenítica inicial. A partir de la figura 7.10 tenemos una muestra de  acero hipoeutectoide que contiene 0.2% de C. En el intervalo austenítico, la aleación consiste en una solución sólida intersticial uniforme. Cada grano contiene 0.2% de C disuelto en los espacios de la estructura reticular de hierro FCC. Al enfriarse lentamente no sucede nada destacable hasta que la línea GJ se intercepta en el punto X1. Esta línea se conoce como línea de temperatura crítica superior del lado hipoeutectoide, y se designa como A3. El cambio alotrópico de Fe FCC a Fe BCC tiene lugar a 1666ºF para Fe puro y disminuye en temperatura con el aumento del contenido de carbono, como lo muestra la línea A3; por tanto, en X1, la ferrita debe empezar a formarse en las frontera de grano de la austenita. Como la ferrita puede disolver muy poco carbono, en aquellas áreas que cambien a ferrita, el carbono debe salir de la solución antes de que los átomos se reajusten por sí mismos  a la estructura BCC. El carbono que sale de la solución es disuelto en la austenita restante, así que, conforme el enfriamiento avanza y la cantidad de ferrita aumenta, la austenita restante se hace más rica en carbono. El contenido en carbono se desplaza gradualmente a lo largo de línea A3. Finalmente, la línea HJ se alcanza en el punto X2. Esta línea se conoce como línea de temperatura crítica inferior en el lado hipoeutectoide y se designa como A1. La línea A1 es la de temperatura eutectoide y constituye la mínima temperatura a la que puede existir el hierro FCC bajo condiciones de equilibrio. Precisamente por encima de línea A1, la microestructura consta de aproximadamente25% de austenita y 75% de ferrita. Toda la austenita presente (que contiene el 0.8% de C) experimenta ahora la reacción eutectoide expuesta  anteriormente. Darse cuenta que la austenita cambia al interceptarse la línea A1 ;por tanto cuando la reacción se ha completado, la microestructura final mostrará aproximadamente un 25% de perlita y un 75% de ferrita.
 
            Vamos a considerar la reacción eutectoide con más detalle. La austenita cambia a ferrita y esta es una solución sólida intersticial en la que cada grano disuelve 0.8% de C en Fe FCC; sin embargo la ferrita es Fe BCC y disuelve muy poco carbono, de modo que el cambio de estructura cristalina no puede ocurrir hasta que los átomos de carbono salgan de la solución. Por tanto, el primer paso es precipitar los átomos de carbono para formar placas de cementita (carburo de hierro). En el área adyacente a la placa de cementita, el hierro se vacía de carbono y los átomos se reagrupan por sí mismos para formar ferrita BCC. A cada lado de la placa de cementita se forman delgadas capas de ferrita. El proceso continua con la formación de capas alternas de cementita y ferrita para la mezcla en forma de huella dactilar conocida como perlita. La reacción generalmente comienza en la frontera de grano de austenita, con la perlita creciendo a lo largo de la frontera y dentro del grano.
 Los cambios descritos serían similares para cualquier acero hipoeutectoide, la única diferencia estaría en la cantidad relativa de ferrita y perlita. De esta forma, cuanto más próximos nos hallemos de la composición eutectoide (0.8% de C), más perlita tendremos en la microestructura. Así, la microestructura de un acero al 0.4% de C lentamente enfriado muestra aproximadamente un 50% de perlita, en tanto que la composición eutectoide (0.8% de C) muestra un 100% de perlita.
 
            Las propiedades mecánicas de una aleación dependen de las características individuales de cada una de las fases que la componen y de la forma en que estas últimas estén ordenadas para formar la estructura. Sabemos que la ferrita es relativamente suave, con baja resistencia tensil, en tanto que la cementita es dura, con muy baja resistencia tensil. Podremos deducir pues, que la combinación de estas dos fases en la forma eutectoide (perlita), producirá una aleación de resistencia tensil mucho mayor que la de cualquiera de las fases individuales. Como la cantidad de perlita aumenta con un incremento en el contenido de carbono para aceros hipoeutectoides, la resistencia y la dureza Brinell también aumentará hasta la composición eutectoide. La ductilidad, expresada por el porcentaje de elongación y reducción de área, y la resistencia al impacto disminuyen al aumentar el contenido de carbono.
DISTRIBUCION DE TAMAÑOS DE GRANALLA FUNDIDA Y DE ALAMBRE CORTADO 
En un mundo perfecto, seríamos capaces de cortar el alambre en cilindros idénticos, cada uno de los cuales recibiría un acondicionado y acabado idénticos de forma que tuviesen tamaños idénticos. En el mundo real, hay una “distribución normal” de tamaños para cada lote. En cualquier caso, la distribución habitual es pequeña con lo que casi todas las partículas de alambre cortado son muy similares. Una colada completa de granalla, tiene una variación similar a aquella de una distribución normal. El posterior tamizado, divide la colada en diferentes categorías por tamaños. Dentro de una categoría de granalla fundida, la distribución es aproximadamente lineal. 
Granalla Nueva
La relativa uniformidad del tamaño de la granalla de alambre cortado, es considerada habitualmente como una ventaja cuando se compara con la variación en tamaños de un lote de granalla fundida tamizada. De un modo esquemático e idealizado, la Fig10 muestra las diferencias de las distribuciones de tamaño entre granalla de alambre cortado y granalla de fundición nuevas.
La granalla de acero se muestra como una distribución lineal uniforme. Las distribuciones reales, podrían tener algo de pendiente positiva ó negativa con algo de curvatura. 
Granalla Usada
En el momento en el que una partícula de granalla es usada para impactar un objeto, pierde algo de su masa. Así, la distribución de tamaños cambia. Es muy habitual hacer recargas de granalla para compensar la pérdida de granalla y la pérdida de masa debida a la rotura de algunas partículas. Estas recargas, también modifican la distribución de tamaños. Analizado como un modelo simple, considérese una carga de granalla de alambre cortado que ha perdido, debido al desgaste, el 10% del tamaño de forma uniforme, y ha sido recargada con un 10% de granalla nueva del mismo lote. Tendremos una nueva distribución de tamaños “bimodal”, tal y como lo muestra la Fig. 11, esto es, la distribución normal de la granalla usada (tamaño medio reducido a 0.9) y granalla nueva (tamaño medio de valor 1).
Sucesivas recargas de granalla de alambre cortado nueva generarán una distribución de tamaños “multimodal” más amplia. En el caso de no variar los parámetros de ajuste, la carga operativa cambiará haciendo, progresivamente, más cobertura y menos intensidad. El desgaste y la rotura de la granalla de fundición en un equipo, generará el correspondiente cambio en la distribución de tamaño en una carga determinada. Este cambio puede ser ilustrado de una manera simplificada. Asumido que (a) una carga de granalla de fundición determinada tiene una distribución de tamaño lineal y uniforme con límites máximo y mínimo de 0.8 y 1.2 (unidades indeterminadas) y que (b) hay una pérdida uniforme del 10% en tamaño, repuesta por un 10% de granalla nueva del mismo lote. La distribución de tamaño cambia en la recarga. La fracción mayor de granalla (1.16 a 1.2) se desgasta en un 10% de forma que este tamaño tiene ahora una frecuencia cero. La fracción desgastada, sustituirá a la siguiente fracción que en si será una sustitución de una fracción de menor tamaño. La Fig.12 representa el resultado neto del desgaste asumiendo una distribución uniforme y lineal entre los límites de 1.16 y 0.8. Se asume que la granalla inmediatamente superior a 0.8 se eliminará por el tamizado en el momento en el que se desgaste por debajo de un tamaño de 0.8.
En el modelo ideal de la Fig.12 el tamaño medio de la granalla de fundición es 1.0 que caerá a 0.98 después de un desgaste del 10% (y antes de la recarga). Esto es solo una reducción del 2% - que tendrá un efecto marginal en la cobertura y la intensidad. En la Fig.13 se ha modelizado el efecto de una única recarga, del 10% de granalla uniforme, del lote original. La distribución de tamaño, dejará de ser uniforme. La nueva mezcla recargada tendrá un tamaño medio de 0.982 de forma que la cobertura y la intensidad se verán afectadas de forma muy leve. La repetición de recargas provocaría una cambio pequeño pero constante a menores tamaños medios con lo que los efectos podrían llegar a ser significantes. La forma de anular/reducir este efecto sería la de hacer recargas con granalla nueva de valor medio a aquel de la fracción de mayor tamaño. En nuestro ejemplo, 1.18.
DISCUSIÓN
La granalla de acero al carbono es muy eficaz como medio de shotpeening en masa. La combinación necesaria de dureza, tenacidad, durabilidad, cuasi-esfericidad y bajo coste, se consigue controlando la composición química, tratamiento térmico y método de fabricación. Puede resultar sorprendente que el mismo objetivo pueda ser conseguido utilizando dos técnicas de fabricación radicalmente diferentes – la fundición y el acondicionamiento del alambre cortado. La granalla de fundición, difiere del alambre cortado en casi todos los aspectos: contenido en carbono, forma, distribución de tamaño y estructura metalúrgica. Es esencial un grado de maleabilidad si se quiere convertir en cuasi-esféricos los cilindros de alambre cortado. Esto, requiere de estructuras hipoeutectoides. Las estructuras de fundición, son habitualmente más débiles que aquéllas forjadas con la misma composición química. Es por ello que los aceros hipereutectoides se usan para hacer granallas defundición, ya que son potencialmente más duros que los aceros hipoeutectoides. Los modelos usados en este artículo, son muy simples y deben de ser tomados con precaución. En cualquier caso, sirven para destacar diferencias potenciales como la creación de cobertura y la intensidad.
A0- Diagrama Hierro-Carbono (Fe-C
CONCLUSION
De acuerdo con la calidad, los aceros se clasifican según el proceso de producción y van desde los aceros de calidad ordinaria obtenidos por proceso Bessemer, los Siemens Martín, los de hornos eléctrico, etc; hasta los aceros obtenidos por electro - refinación de escorias, desgasificación en vacío y procesos de pulvimetalurgia, para obtener aceros calidad herramienta.
Los aceros son de mucha utilidad, bien sea en construcción civil o herramientas industriales en el que es capaz de ser templado y revenido. La diferencia importante con los aceros de maquinaria es que los de herramientas son fabricados bajo condiciones cuidadosamente controladas para garantizar su calidad. 
Bibliografía
· Millán Gómez, Simón (2006). Procedimientos de Mecanizado. Madrid: Editorial Paraninfo. ISBN 84-9732-428-5.
· LarburuArrizabalaga, Nicolás (2004). Máquinas. Prontuario. Técnicas máquinas herramientas. Madrid: Thomson Editores. ISBN 84-283-1968-5.

Continuar navegando