Logo Studenta

FII_PRO_1314_Problemas Termodinamica

¡Este material tiene más páginas!

Vista previa del material en texto

TERMODINÁMICA 
 1 
 
 
 
 
PROBLEMAS DE FÍSICA II 
 
Curso 2013 – 2014 
 
Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio 
 
1. TERMODINÁMICA 
 
TERMODINÁMICA 
 2 
 
 
TERMODINÁMICA 
 3 
PROBLEMA 1.1 
Procesos e intercambio de energía 
Describir, para cada ciclo dibujado, los procesos que lo forman indicando los signos de los calores y 
trabajos intercambiados. Todos los diagramas son p-V y los procesos son los básicos conocidos 
recorridos por gases ideales (isotermos, adiabáticos, isobaros, isocoros), en los siguientes casos: 
 1) Si se realizan en sentido horario. 
 2) Si se realizan en sentido antihorario. 
 3) En la figura a) indicar, de los dos posibles ciclos ABCEA y ABDEA, cuál es el de mayor 
rendimiento y en cuál es mayor el trabajo realizado por ciclo supuesto positivo. 
 
 
 
TERMODINÁMICA 
 4 
Solución 
1) 
 a) AB W > 0 Q = 0 
 BC W < 0 Q > 0 
 CE W < 0 Q = 0 
 EA W > 0 Q < 0 
 
 b) AB W = 0 Q > 0 
 BC W < 0 Q > 0 
 CD W = 0 Q < 0 
 DA W > 0 Q < 0 
 
 c) AB W = 0 Q > 0 
 BC W < 0 Q = 0 
 CA W > 0 Q < 0 
 
 d) AB W > 0 Q = 0 
 BC W < 0 Q > 0 
 CD W < 0 Q = 0 
 DA W > 0 Q < 0 
 2) Todos los signos cambiados 
 3) ηABCEA > ηABDEA WABCEA < WABDEA 
 
 
TERMODINÁMICA 
 5 
PROBLEMA 1.2 
Identificación de procesos 
Se tiene un conjunto de sistemas formados por cámaras rellenas del mismo gas ideal realizando 
distintos procesos. Todas las paredes interiores de los sistemas son móviles, y las exteriores son 
fijas, excepto aquellas que reciben trabajo W y la pared derecha del recinto F. Inicialmente, el gas 
en todas las cámaras está en equilibrio a temperatura T0, presión p0 y volumen V0. En el exterior, la 
temperatura y presión son siempre constantes. Todos los procesos se realizan muy lentamente: las 
resistencias comunican un calor Q y sobre los émbolos (casos 4, 5 y 6) se realiza un trabajo W. En 
cada sistema, descríbase el proceso que realiza cada gas y dibújese en un diagrama p-V. 
 
 
Solución 
 
 1) B adiabática, pA = pB, VA+VB = Cte 
 2) TD = T0, pC = PD, VC+VD = Cte 
 3) TE = TF, pE = pF = p0, E ≡ F 
 4) TG = TH, pG = pH QG+H = 0 
 5) TJ = T0, pI = pJ, I adiabática 
 6) K ≡ L adiabáticas, pK = pL 
 
 
TERMODINÁMICA 
 6 
PROBLEMA 1.3 
Primer principio 
Cuando un sistema evoluciona de A a B a lo largo del camino ACB (véase figura), la cantidad de 
calor que hay que suministrarle es QACB = 80 kJ y el trabajo que realiza es WACB = -30 kJ. 
Determínese: 
 1) La cantidad de calor que es necesario suministrar al sistema si evoluciona según el camino 
ADB, sabiendo que el trabajo realizado en ese caso vale WADB = -10 kJ. 
 2) La cantidad de calor intercambiado por el sistema, indicando si es absorbido o cedido, cuando 
vuelve a su estado inicial a lo largo del camino BIA, si el trabajo realizado sobre el sistema en 
ese caso es WBIA = 20 kJ. 
3) Si la energía interna en A y D es: UA = 0 J y UD = 88 J, hállese el calor absorbido en las 
transformaciones AD y DB. 
 
 
 
 
Solución 
 
 1) QADB = QACB + WACB - WADB = 60 000 J 
 2) QBIA = - (QACB + WACB) - WBIA = -70 000 J Calor cedido 
 3) QAD = (UD - UA) - WADB = 10 088 J 
 QDB = QADB + WADB - (UD - UA) = 49 912 J 
 
 
 
TERMODINÁMICA 
 7 
PROBLEMA 1.4 
Ciclos 
Una máquina térmica cuya sustancia de trabajo son dos moles de He, supuesto ideal, realiza el ciclo 
abcda siguiente: 
 ab) isobara a la presión pa = 7.2 atm siendo el volumen Va = 11.2 litros. 
 bc) adiabática, siendo Vc = 22.4 litros. 
 cd) isoterma a la temperatura tc = 68.25 ºC. 
 da) adiabática. 
 
Dibuje un ciclo compatible con los datos numéricos anteriores e indique: 
 1) Valores de presión, temperatura y volumen en el estado d. 
 2) El trabajo realizado por ciclo. 
 3) El rendimiento del ciclo (en %). 
Solución 
 
1) Td = 341.25 K pd = 2.89 atm Vd = 19.36 litros 
2) W = -4.47 atm.l 
 3) η = 35 % 
 
PROBLEMA 1.5 
Ciclo de Carnot 
Un ciclo de Carnot se realiza entre las isotermas TC = 400 K y TF = 300 K. Durante la expansión 
isotérmica se comunica al gas ideal el calor QC = 500 cal. Se pide calcular: 
 
 1) El trabajo efectuado durante la expansión isotérmica. 
 2) El calor extraído del gas durante la compresión isotérmica. 
 3) El trabajo realizado por el gas durante la compresión isotérmica. 
 4) El rendimiento del ciclo. 
Solución 
 
1) W = - QC = -2090 J 
 2) QF = - QC (TF / TC) = -1567.5 J 
 3) W = - QF = 1567.5 J 
 4) η = 1 - (TF / TC) = 0.25 
 
TERMODINÁMICA 
 8 
PROBLEMA 1.6 
Cálculos de Entropía 
Un mol de un gas perfecto realiza el ciclo 1-2-3-1 de forma reversible. De 1 a 2 es comprimido 
isotérmicamente hasta que V2 = V1/27. De 2 a 3 sufre una expansión adiabática, y de 3 a 1 una 
transformación isobárica. Se pide calcular la variación de entropía del gas en cada uno de los tres 
procesos anteriores. 
 
Solución 
 
 S12 = -27.4 J/K ; S23 = 0 ; S31 = 27.4 J/K 
 
PROBLEMA 1.7 
Procesos Termodinámicos 
En el interior de un recipiente de volumen V0 y paredes adiabáticas, se tienen juntos una lámina 
adiabática y un émbolo no adiabático (véase AB en la figura) que pueden deslizar sin rozamiento 
por el interior del cilindro, sujetos inicialmente ambos por topes. Inicialmente, lámina y émbolo 
dividen al recipiente en dos recintos iguales (1) y (2). En los dos recintos hay un mismo gas ideal 
monoatómico: n1 moles a temperatura T1 en el recinto (1), y n2 moles a temperatura T2 en el (2). Se 
realizan los siguientes procesos: 
a) Se retira la lámina adiabática (no el émbolo) y los topes, y se espera a alcanzar el equilibrio. 
b) Mediante un mecanismo externo se desplaza muy lentamente el émbolo hasta que el volumen de 
(1) se reduce a la mitad de su valor inicial. 
Se pide: 
1) Temperatura y presión del gas en el equilibrio final después del proceso a). 
2) Incremento de entropía de los dos recintos en el proceso a). 
3) Trabajo realizado en el proceso b). 
 
 
TERMODINÁMICA 
 9 
Solución 
a) 1 1 2 2
1 2
n T n T
T
n n
 

 1 1 2 2
0
n RT n RT
p
V
  1 21 0 2 0
1 2 1 2
;
n n
V V V V
n n n n
  
 
 
 
b) 
1 2
1 1 2 2
1 0 2 0
1 1
ln ln ln ln
1 / 2 1 / 2
V VT T
S n R S n R
T V T V 
   
             
 
c) 
1 2
1 2 1 2
( 1) ( 1)
1 2 1 1 2 2 1 2
1 2 1 2 1 2
( ) 4 4
( ), ,
1 3( )
n n
n n n nn n R n T n T n n
W T T T
n n n n n n
 

 
                   
 
 
PROBLEMA 1.8 
Procesos Termodinámicos 
En el interior de un cilindro adiabático, de sección transversal A, se tiene un émbolo adiabático E 
que divide al cilindro en dos recintos. Uno contiene Ar y el otro igual número de moles de He. El 
émbolo E se halla a su vez unido por un muelle de constante k a otro émbolo adiabático E’ que hace 
las veces de pared del cilindro (véase figura). El recinto en cuyo interior está el muelle contiene Ar. 
La otra pared del cilindro FF´ es diatérmica y fija, y está en contacto con un baño térmico a 
temperatura T0. En el equilibrio inicial, el He y el Ar tienen valores iguales de presión p0 y volumen 
V0. 
Lentamente se desplaza el émbolo E´ hacia la derecha hasta que la presión del recinto de He se hace 
igual a 2p0. Hallar: 
a) Volumen final del recinto de Ar. 
b) Calor intercambiado por el sistema con el exterior. 
 
 
 
TERMODINÁMICA 
 10 
Solución 
a) ArV  tal que 
5/30 0
0 05/3
2 Ar
Ar
Ap V V
V Ap k
V A
       
 
b) 0 00
0
ln 2, ,
p V
Q nRT n
RT
   
 
PROBLEMA 1.9 
Procesos Termodinámicos 
Un recipiente de paredes adiabáticas contiene en su interior un litro de agua y un cilindro de paredes 
diatérmicas de L = 80 cm de longitud. Éste, a su vez, tiene en su interior un émbolo diatérmico 
móvil (véase figura) que inicialmente está sujeto mediante topes. En el estado inicial de equilibrio 
termodinámico hay un mol de He ala presión de pHe0 = 5 atm y a la temperatura de tHe0 = 25ºC, y 
una cantidad desconocida de Ar a la presión de pAr0 = 1 atm. 
 
En un determinado momento se quitan los topes sin aporte de energía y se espera a alcanzar el 
equilibrio (Considérese la cV del agua constante y que, a diferencia de los gases, su proceso es 
reversible). Se pide: 
 
a) Temperatura final del agua. 
b) Longitud final del compartimiento de He, LHe. 
c) Variación de entropía de todo el sistema. 
 
 
Solución 
a) tf = 25 ºC 
b) LHe = 60 cm 
c) S = 0.032 atm l/K 
 
TERMODINÁMICA 
 11 
PROBLEMA 1.10 
Procesos Termodinámicos 
Se tienen n moles de un gas ideal monoatómico en un depósito diatérmico cerrado por un émbolo E, 
de masa M y área A, sobre el que hay vacío, pero sobre el que se puede hacer trabajo mediante un 
mecanismo externo. 
Inicialmente, con el émbolo libre, hay equilibrio en contacto con un baño térmico a temperatura T1. 
A partir de ahí se realizan los siguientes procesos: 
 
a) Se deja un peso Mg encima del émbolo E y se espera a alcanzar el equilibrio, manteniendo 
el baño térmico. 
b) Se aísla adiabáticamente el depósito, y enganchando el mecanismo externo, se baja 
lentamente E hasta alcanzar la temperatura T3 = 2T1. (Durante este proceso se ha quitado el 
peso Mg). 
c) Se quita el aislamiento, se rodea el depósito de un baño térmico a temperatura T3 y se sube 
lentamente E hasta que la presión es la inicial. 
d) Se retira el mecanismo, se cambia el baño de temperatura T3 por el inicial de temperatura T1, 
y se espera a alcanzar el volumen del equilibrio inicial. 
 
Hallar el rendimiento del proceso global considerado como un ciclo. 
 
Solución 
 = 1 – 1/(2ln2) 
 
TERMODINÁMICA 
 12 
PROBLEMA 1.11 
Ciclo 
Un motor de gasolina se idealiza por el ciclo de Otto (Nicolaus Otto, 1832-1891, ingeniero alemán) 
mostrado en la figura. El tramo ab consiste en una compresión; el bc, en una explosión; el cd, en 
una expansión y el da es un escape (refrigeración de la mezcla). Se supone que en vez de admitir 
mezcla nueva fría, que trae energía interna química (combustión externa), circula siempre la misma 
mezcla, que intercambia calor con el exterior (combustión interna). Hallar el rendimiento para un 
gas ideal sabiendo que se conoce la relación entre volúmenes V2/V1 y su coeficiente de Poisson . 
 
 
Solución 
 
 = 1 – (V1/V2) 
 
 
TERMODINÁMICA 
 13 
PROBLEMA 1.12 
Ciclo 
Un gas ideal monoatómico evoluciona cíclicamente como se indica en la figura en un ciclo presión-
entalpía. La evolución 1-2 es adiabática y se conocen las relaciones entre volúmenes =V2/V1 y 
energía internas =U3/U2Se pide: 
 
a) La relación entre los volúmenes V4/V3. 
b) El rendimiento del ciclo. 
 
 
Solución 
a)V4/V3 = 1 / ()
b)
1
1
1
1
(1 ) ( 1) ln( )


  



 
  
 
 
TERMODINÁMICA 
 14 
EXAMEN 2011-2012.1 
n moles de un gas ideal de constante  evolucionan según el ciclo reversible de la figura en el plano 
(T,V). Inicialmente su temperatura es T0 y ocupa un volumen inicial VA = V0 que aumenta mediante 
la expansión adiabática AB hasta VB = 2V0. La presión es constante a lo largo de BC y su 
temperatura aumenta en CA mientras se mantiene el volumen VC = V0 constante. En función de T0 
se pide: 
1. Las temperaturas en B y C. 
2. La variación de la energía interna en BC y CA. 
3. El valor absoluto del trabajo en BC y CA. 
4. El valor absoluto de los calores intercambiados en BC y CA. 
5. El rendimiento del ciclo. 
 
Solución 
1. (1 )0 02 ; 2B CT T T T
    
2. 0 02 ; (1 2 )
1 1BC CA
nRT nRT
U U 
 
      
 
 
3. 0 2 ; 0BC CAW nRT W
  
4. 0 02 ; (1 2 )
1 1BC CA
nRT nRT
Q Q 
 
   
 
 
5. 
2
1
1 2

 

  
 
 
 
TERMODINÁMICA 
 15 
EXAMEN 2011-2012.2 
Se tienen n moles de un gas ideal monoatómico de constante adiabática  = 5/3 que evolucionan 
según el ciclo reversible ABCDA mostrado en el diagrama (P,T) de la figura. En el estado A los 
valores de la temperatura y de la presión son TA = T0 y PA = P0. Entre A y B el gas evoluciona 
isobaricamente hasta alcanzar una temperatura TB = 3T0. Entre B y C la evolución es isotérmica. 
Entre C y D el gas evoluciona a volumen constante hasta alcanzar en D una presión PD = P0/k, 
siendo k una constante k  10. El ciclo se cierra con un proceso adiabático que lleva de D a A. 
Respecto de este ciclo, se pide: 
1) La temperatura en D. 
2) La presión en C y el volumen en D (respecto del volumen VA en el estado A). 
3) Los valores absolutos de los trabajos en los procesos AB y BC. 
4) Los valores absolutos de los trabajos en los procesos CD y DA. 
5) La variación de entalpía en el proceso AB. 
6) Los calores intercambiados en los procesos BC y CD. 
7) La variación de entalpía en el ciclo. 
8) La variación de la entropía en el proceso AB. 
9) La variación de la entropía en los procesos BC y CD. 
10) El rendimiento de un motor de Carnot operando entre las temperaturas TA y TC. 
 
 
TERMODINÁMICA 
 16 
Solución 
1) 2/5 0DT k T
 
2) 3/5 3/503 ;C D AP k P V k V
  
3) 3/50 02 ; 3 ln( / 3)AB BCW nRT W nRT k  
4) 2/50
3
0; (1 )
2CD DA
W W nRT k    
5) 05ABH nRT  
6) 3/5 2/50 0
3
3 ln( / 3); ( 3)
2BC CD
Q nRT k Q nRT k    
7) 0cicloH  
8) 
5
ln(3)
2AB
S nR  
9) 
5
ln(1/ 3)
2BC CD
S S nR    
10) 
2
3
  
 
 
TERMODINÁMICA 
 17 
EXAMEN 2012-2013.3 
Se tiene un cilindro diatérmico en contacto con un baño térmico a temperatura T0. El cilindro se 
divide en dos recintos iguales (a y b) por un embolo diatérmico E1 de masa despreciable que puede 
deslizar sin rozamiento (ver figura). En cada recinto se tienen n moles de un gas ideal de coeficiente 
. La parte superior del cilindro se cierra mediante otro embolo E2 adiabático de masa m que 
también desliza sin rozamiento siendo la presión exterior despreciable. Inicialmente el sistema se 
encuentra en equilibrio mecánico y térmico. A continuación se realizan consecutivamente los dos 
procesos siguientes: 
 
i) Se fija E2 y se eleva cuasiestáticamente E1 hasta reducir el 
volumen inicial V0 del compartimento “a” hasta V0/2. 
j) Se fija E1, se aísla adiabáticamente el cilindro y se libera E2. 
El sistema evoluciona no estáticamente hasta alcanzar el 
equilibrio. 
 
 
Determinar: 
1) El calor Qi que recibe el sistema del baño térmico durante el proceso i. 
2) El incremento de entropía del gas contenido en el recinto b durante el proceso i, biS . 
3) La temperatura final del sistema en el proceso j, Tj. 
4) El volumen total del sistema al finalizar el proceso j, Vj. 
 
Solución 
 
1) 
3
0 4lniQ nRT 
2) Sa
b  nR ln 3
2 
3) Tb 
 3
2  1 
T
0
 
4) V
j

2   2  1
 1 
V
0
 
 
vacio
m
E 10
T
E 2
a
b
 
 
TERMODINÁMICA 
 18 
EXAMEN 2012-2013.4 
En la figura se muestra un cilindro de paredes adiabáticas y sección transversal S. Una de las bases 
del cilindro es un émbolo móvil que se desplaza sin rozamiento sujeto a un muelle de constante 
elástica K y sometido a una presión exterior constante p0. Dentro del cilindro se encuentran n moles 
de un gas ideal de coeficiente . El gas tiene inicialmente una presión p0 y ocupa un volumen V0 tal 
como se indica en la figura. El muelle se encuentra inicialmente sin comprimir. Una resistencia 
calienta el interior del cilindro suministrando un calor Q al gas, de manera que al final del proceso 
se alcanza un equilibrio cuando el muelle se comprime una longitud . Considérese S = 2, V0 = 
33, K = 2p0 y Q = 14p03. Se pide: 
 
 
 
 
 
 
1) La presión final pf en el interior del cilindro. 
2) El trabajo W realizado sobre el gas. 
3) El índice adiabático del gas. 
4) El incremento de entalpía del gas. 
5) El incremento de entropía S del gas. 
 
Solución 
 
1) pf  3p0 
2) 302W p   
3) 1.75  
4) 3091
H p
 

 
  
5)  ln(4 / 3) ln 3
(1)
nR
S 

  


Continuar navegando

Materiales relacionados

93 pag.
problemariotermodinamica2012tapia-170906161232

User badge image

Camila Fernanda Ogaz Valenzuela

113 pag.
24 pag.
Preguntas resueltas termo

UNINASSAU

User badge image

Sergio Diego