Logo Studenta

Teoría de Elasticidad, Timoshenko

¡Este material tiene más páginas!

Vista previa del material en texto

Otros títulos de interés 
TEORIA DE PLACAS y LAMINAS 
porS. Tlmoshenko y Wolnowsky-Krieger 
.IN DICE •. ··Flexlón de ·placas rectangulares largas en una super-
fjciecilínd¡'ic~,-'-Fle)(16n pura de placas.-Flexlón simétrica de 
placas circulares. Pequeñas deformaciones de placas bajo carga.-
Placas rectangulares simplemente apoyadas. -Placas rectangulares 
con diversas condic[ones ~e borde.~Placas rectangulares contl-
nuas.-Placas . sobre cimentación elás.tlca.-Placas de varias for-
mas.-Métodos especiales y aproximados en la teoría de placas.-
Flexión de placas anls6tropas.-Flexlón de placas bajo la acci6n 
combinada de cargas laterales y fuenas en el plano medio de 
la placa.-Grandes flechas de las placas.-Deformación de láminas 
sin flexión.-Teorfa general de láminas ciHndricas.-Lámlnas con 
forma de superficie de revolución cargadas simétricamente res-
pecto a su eje. 
Tamaño: 16 x 24 cm. Encuadernación: Tela. Número de páginas: 624. 
DINAMICA SUPERIOR 
por S. Tlmoshenko y D. H. Young 
INDICE. Dindmica de la portlcula: Ecuación diferencial del mo-
vimiento rectilfneo. Cuadratura gráfica. Cuadratura numérica. 
Movimiento rectilíneo en un medio resistente. Vibraciones libres 
con amortiguamiento viscoso. Oscilaciones forzadas. Integración 
numérica. Movimiento armónico plano. Movimiento planetario. 
Movimiento de un proyectil.-Dinámica de un sistema de partltulas: 
Principio de la cantidad de movimiento. MovImiento rectlllneo de 
una masa variable. Choque. Compensación de una máquina alter-
nativa: de un cilindro, multlcilíndrica. Energía cinética y trabajo. 
Cálculo de volantes.-Dinámlca de las sistemas vinculados: Ecua- . 
ciones de los vlnculos. Coordenadas y fuerzas generalizadas. 
Principio de d'Alembert. Ecuaciones de Lagrange. Principio de 
Hamilton.-Teoria de Jos oscilaciones pequeñas: Oscilaciones libres 
de ~ sistemas conservativos. Osel latiónes lineales de dos masas 
acopladas. Oscilaciones forzadas de sistema con dos grados de 
libertad. Oscilaciones con amortiguamiento viscoso. Sistema 
de varios grados de libertad. Amortiguadores de velocidad varia-
bles.-Rotación de un cuerpo "gido o/rededor de un punto fijo: Ecua-
ciones del movimiento alrededor de un punto fijo. Movimiento 
libre de un giroscopio. Momento girosc6pico de un giroscopio 
simétrico y asimétrico. El compás giroscópico. El péndulo giros-
cópico. El estabilizador giroscópico para buques. Estabilización 
de vagón monor,.i!. 
Tamaño: 16 X i4~~m:Encuadernoción: Tela. 
EDICIONES URMO. S. A. 
Espartero.10.BILBAo-9 
TEORIA 
DE LA 
ELASTICIDAD 
.. 
........ 
.~ 
1: 
1 .i.:~ 
I~ 
! )!c" 
l·::·,··, 
~ \:; 
I ::;;;" 
ti <{:'; 
f :~r. 
~,J .;:( 
.. ~ .. 
~ .. ;;::: 
~ :(.\ 
"~ :~Kr 
s 
~ /" 
~ ';; 
i .;;;-
~ .i:: 
~ ·t' 
I ';.:'. 
1':1:: 
t :;:; . 
• i 
'of 
~ 
~ 
t. 
~ 
~ a " 
[ '.:, 
¡ .: 
i':~;' 
~ "', 
i:;' 
1I 
ELAS 
2.' EDICION EN ESPAii!OL: 1975 
\,:~~; .•. ~ i· '. 
11 
~"i~'¡' 
i ·~~r· .. 
¡ :.,,' 
1 !k. 
J ]t 
l··· ... ! ~r;.;:¡:.·R 
J i.r 
I ;J~'~' 
I ~{ 
i.:::''':,· 
~ ... '~ 
~ ,:'. 
=J. ... ~~ 
•
i. .::'" 
Ji" .1···· 
. 2 '::.: 
~/. 
i ,< 
I ': ;;. 
~ 
~ 
~ 
~ 
i 
~ 
~ 
~ 
~ 
~ 
Flc:¡o~¡;rzro 
troMpe 
AP-/TA-
ELAS 
s. TIMOSHENKO 'Y 
J. N. GOOnffiR 
Profesores de Ingeniería Mecánicu 
de la Universidad de Stanford 
Traducido por 
ALBERTO FUENTES PEREZ 
Licenciado en Ciencias Físicas 
Colaborador del Instituto 
Eduardo Torroja 
de In Construcción y el Cemento 
] eCe de la Sección de Física del 
Laboratono de Ensayos 
de la Compañía General de 
Asfaltos y Portland Asland 
URMO. S. A. DE EDICIONES 
J DEAJURIAGUERRA IO·SILBAD·9 
Unica traducción autorizada al castellano de la obra en lengua inglesa The()ry 
af ~lastl"city Copyright, 1934, by the Unitcd Engineering Trustees, lne. Copyright, 
1951; by the McGraw-Hill Book Company, lnc. Nueva York. 
© Urmo, S. A. de Ediciones 
J. de AJurlJguerrJ, 10 - BllbJo-9 
Hecho el depósito que mJrt.IIJ ley 
1968 
Impreso en Esp.1ii.l por: 
Fotocomposlción: 
Artes Gr,uicJs GrrJe/mo, S. A. 
Impresión: 
Publidisn 
Prllltcd 1Il SpJIIl 
Depóllto legJI: SE-1018-2009 
I.S.B.N.978-84-314-0231-0 
i'~" !.~: 
1:11: 
1 ~¿:; 
I )K~: 
l·$,~ 
1':C 
~.Ii' 
J ':.;'\ 
! 
I • i 
! 
~ 
I 
i 
i 
Prólogo a la 
El notable desarrollo y clasificación de la teoría de la elasticidad y de 
sus aplicaciones, ocurrido desde que la primera edición fue escrit;¡, es 
reflejado en las numerosas adiciones y enmiendas introducidas en la edición 
presente. La estructura de la obra sigue siendo la misma en su mayor parte_ 
Las cuestiones referentes al método fotoelástico, problemas bidimen-
sionales en coordenadas curvilíneas y tensiones de origen térmico han sido 
ampliadas y redactadas de nuevo, constituyendo ahora capítulos indepen-
dientes que presentan muchos métodos y soluciones que no se encontraban 
en la edición anterior. Se ha añadido un apéndice en el que se expone el 
método de las diferencias finitas y sus aplicaciones, incluyendo el método 
de relajación. Asimismo, en los otros capítulos, se han introducido nuevas 
preguntas que tratan sobre la teoría de la QrosetaJ), tensiones gravitato-
rias', prinGipio de Saint-Venant, componentes de la rotación, teorema 
de reciprocidad, carácter aproximado de las soluciones de los estados 
tensionales planos, centro de torsión y centro de flexión, concentración 
de las tensiones de torsión en las zonas de transición, estudio aproximado 
de secciones delgadas .sometidas a torsión y flexión y cilindro de sección 
circular sometido en una banda de su superficie a la acción de una presión. 
Pensando en los alumnos se han incluido al final de cada capítulo, desde 
el primero hasta el dedicado a la torsión, algunos problemas. 
Agradecemos vivamente las numerosas sugerencias y consejos de los 
le'ctores del libro. 
PALO ALTO, CALIFORNIA 
Febiero, 1951 
S, TIMOSHENKO 
J.] N. GOODIER 
":',' ' 
........ 
Prólogo a la primer 
Durante los últimos años, la teoría de la elasticidad ha sido aplicada 
a la resolución de numerosos problemas de ingeniería. E;xisten muchos 
casos, en efecto, en los que, los métodos elementales de la resistencia de 
materiales resultan inadecuados para obtener la distribución tensional, 
que se produce en las estructur-as, debiendo hacerse uso de los métodos de 
la teoría de la elasticidad. Este es el caso, por ejemplo, de las tensiones 
locales que se producen en la pl'Oxirnidad de los puntos de aplicación de 
las cargas" o de los soportes de las vigas, de la distribución tensional en 
cuerpos cuyas. dimensiones son todas del mismo orden de magnitud, de 
las tensiones en rodillos y en bolas de cojinetes. De igual forma, la teoría 
elemental no permite estudiar el estado tensional existente en aquellas 
zonas de vigas o ejes en las que la sección cambia bruscamente. Como se 
sabe, los ángulos entrantes originan fuertes concentraciones de tensiones, 
las cuales pueden causar fisuras, especialmente si la estructura sufre es-
fuerzos oscilantes. La mayoría de los casos de fractura que se dan en las 
piezas de máquinas tienen ese origen. 
En los últimos años, se ha avanzado considerablemente en la reso-
lución "de esos problemas, de importancia práctica tan notable. En ciertos 
casos, en los que es difícil obtener la solución exacta, se ha hecho uso de 
métodos aproximados. En otros, han sido empleados procedimientos ex-
perimentales. Uno de ellos es el método foto elástico, aplicable a problemas 
bidimensionales. El equipo para ensayos fotoelástico puede encontrarse 
hoy en universidades y en muchos laboratorios de investigación indus-
trial. Los resultados de los ensayos foto elásticos ,han sido especialmente 
útiles para el estudio de la concentración de tensiones en puntos de zonas 
de variación rápida de la sección transversal yen" ángulos entrantes. Sin 
lugar a dudas, estos resultados han influenciado notablemente el diseño 
10 PROLOGO A LA PRIMERA llDlClON 
de las piezas de maquinaria, ayudando a eliminar las zonas débiles en las 
que las fisuras pueden iniciarse. 
Otro ejemplode la aplicación fecunda de los métodos experimentales, 
es el empleo de la película de jabón para la determinación de las tensiones 
de torsión y flexión en piezas prismáticas. El difícil problema de la inte-
gración de una ecuación diferencial sometida a unas ciertas condiciones 
de contorno se reduce, en este caso, a la medida de las pendientes y de-
flexiones de una película de jabón convenientemente estirada y cargada. 
Los experimentos demuestran que de esta forma se obtiene, no sólo una 
imagen de la distribución tensional, sino también la necesaria infonnación 
cuantitativa sobre la misma, con una exactitud suficiente para las apli-
caciones prácticas. 
La analogía eléctrica proporciona, también, un medio para estudiar 
las tensiones producidas por la torsión en las zonas de transición de ejes 
de diámetro variable. La analogía entre el problema de la torsión de placas 
y el de la elasticidad bidimensional, ha sido aplicado también con éxito 
en la resolución de importantes problemas de ingeniería. 
Al preparar este libro se ha intentado facilitar a los ingenieros, de 
manera sencilla, el conocimiento fundamental necesario de la teoría 
de la. elasticidad. Se ha querido también presentar la solución de ciertos 
problemas especiales que pueden ser de importancia práctica, así como 
describir los métodos aproximados y experimentales de resolución de los 
problemas de elasticidad. 
Pensando en las aplicaciones prácticas de la teoría de la elasticidad, 
hemos omitido algunos temas de gran interés teórico y aquellas que en 
el momento actual no presentan ninguna aplicación práctica inmediata, 
para dar lugar al estudio de problemas concretos. Sólo considerando tales 
casos con todo detalle y comparando los resultados dados por los métodos 
exactos con las soluciones aproximadas dadas en los textos elementales 
de resistencia de materiales, puede el proyectista adquirír un conocimiento 
profundo de la distribución de tensiones en las estructuras, enseñán-
dosele las ventajas de los métodos rigurosos del análisis tensiana!. 
Al estudiar problemas especiales, se ha aplicado, en la mayoría de 
los casos, el método de la determinación directa de las tensiones y se 
han empleado· las écuaciones de compatibilidad expresadas en función 
de las componentes de la tensión. Este método es más familiar a los in-
genieros, los cuales se interesan, por lo general, por la magnitud de las 
tensiones. Una adecuada introducción de funciones de tensión suele sim-
plificar este método, haciéndolo más sencillo que aquel en el que las ecua-
ciones de equilibrio son expresadas en función de los corrimientos. 
En numerosos casos, se ha hecho uso del método de la energía elástica. 
De esta forma, la integración de ecuaciones diferenciales, queda susti-
tuida por la búsqueda de las condiciones de mínimo de una cierta integra!. 
Este problema de cúlculo variacional se reduce, usando el método de Ritz, 
PROLOGO A LA PRIMERA EDlCION 11 
a la sencilla obtención del mínimo de una función. De esta forma, se 
encuentran soluciones aproximadas útiles en muchos casos de Ímportan-
cia práctica. 
Con el fin de simplificar, el libro· comienz1;l con los problemas bidi-
mensionales, pasando luego, cuando el lector se ha familiarizado con los 
métodos de resolución de los problemas de la teoría de la elasticidad, a 
los tridimensionales. Aquellas partes del libro que siendo importantes, se 
pueden omitir en una primera lectura, van impresas en letra pequeña. 
El lector puede estudiar tales problemas después de haber acabado con 
las partes más esenciales de la obra. 
Las deducciones matemáticas son presentadas en forma elemental 
no requiriendo, por lo general, mayores conocimientos que los dados en 
las escuelas de ingeniería. Si los problemas son más complicados, se dan 
todas las explicaciones necesarias y los cálculos intermedios con el fm de 
que el lector pueda seguir sin dificultad los desarrollos matemáticos. 
Sólo en unos pocos casos son presentados los resultados finales sin detallar 
la deducción de los mismos. En ese caso, se incluye la referencia de los 
trabajos en los que tales deducciones pueden ser encontradas. 
Las numerosas notas que contiene este libro dan la referencia de los 
trabajos y libros sobre teoría de la elasticidad que pueden ser de impor-
tancia práctica. Tales referencias pueden ser de interés para los ingenieros 
que deseen estudiar algún problema especial con mayor detalle. Ellas 
nos dan también una visión del desarrollo moderno de la teoría de la elas-
ticidad, pudiendo ser de interés para aquellos graduados que se especia-
lizan en. este campo. . 
En la preparación de este libro se ha utilizado una obra sobre el mismo 
tema (Theory 01 Elasticity, vol. 1, San Petersburgo, Rusia, 1914-), cons-
tituido por una serie de conferencias dadas· en diversas escuelas de in-
geniería rusas. 
El autor ha sido ayudado en su trabajo por el Dr. L. H. Donnell y 
el Dr. J. N. Goodier, quienes revisaron el manuscrito y le sugirieron 
diversas correcciones. El autor agradece asimismo a los profesores G. H. 
Mac CuIlongh, E~ E. Weibel, M. Sadowsky y D. H. Young, la colabora-
ción prestada en la preparación final del libro y en la lectura de algunas 
partes del manuscrito. Queda también reconocido al señor L. s. Veenstra 
por la· realización de los dibujos y a la señora E. D. Webster por su trabajo 
de mecanografía. . . 
UNIVERSIDAD DE MICHIGAN 
Diciembre, 1933 
S. TIMOSHENKO 
PRÓLOGO A LA SEGUNDA EDICIÓN. 
PRÓLOGO A r.A PRIMERA EDICIÓN 
NOTACIONES • • • • • • • . • 
CAPho!.o 1 
INTRODUCCION 
1. Elasticidad • . . . • . 
2. 
3. 
4. 
5. 
6. 
Tensiones ..........•..•.•...... 
Notaciones correspondientes a las fuerzas ya las tensiones 
Componentes de la tensión . . . 
Componentes de la deformación . 
Ley de Hooke 
Problemas ..... . 
) .. , 
. '"\' CAPiTULO 2 
TENSIONES 'PLANAS y DEFORMACIONES PLANAS 
7 
9 
19 
21 
22 
23 
24 
25 
27 
31 
7. Tensiones planas. . . . 32 
8. Defonnación plana . . 32 
9. Tensiones en un punto. 34 
10. Defonnación en un punto 39 
11. Medida de las defonnaciones superficiales . 41 
12. Construcción del circulo de Mohr a partir de las medidas realizadas 
con uria roseta. . • . . . . . . . . 43 
13. Ecuaciones diferenciales de equilibrio 43 
14. Condiciones de contorno . . . 45 
15. Ecuaciones de compatibilidad . 45 
16. Función de tensión. 48 
Problemas. ',.. . . . . . . . 50 
INDICI! 
CAPÍTULO 3 
PROBLEMAS BIDIMENSIONALES 
EN COORDENADAS RECTANGULARES 
:·E¡áll~qion.es polinómicas - . . - . . . . . . - . • . . . 
Pr'im:lo:io de Saint-Venant. . . . ...•.•..... 
Determinación de los desplazamientos. • . . • . . . . • . . . 
20. Flexión de una pieza en voladizo con carga en su extremidad libre 
21. Flexión de una viga uniformemente cargada. • . . . . . . . . 
22. Otros casos de flexión de vigas bajo cargas continuas • . • . . . 
23. Solución del problema de la elasticidad plana por medio de una serie 
de Fourier ••••...........•.•..•..... 
24. Otras aplicaciones de las series de Fourier. Caso en que la carga a con-
siderar es el peso. 
Problemas ...... , ., .....•.......... 
CAPiTULO 4 
PROBLEMAS JlIDIMENSIONALES 
EN COORDENADAS POLAlUlS 
25. Ecuaciones generales en coordenadas polares . . . . 
26. Distribución de tensiones simétricas respecto a un eje 
27. Flexión simple de piezas curvas . . . . . . . . . . 
28. Componentes de la deformación en coordenadas polares 
29. Distribución simétrica de tensiones: desplazamientos 
30. Discos giratorios . . . . .. . • . . . . • . . . . . 
31. Ménsula curva cargada en su extremo libre . . . . . . 
·32. Influencia de un orificio circular sobre la distribución de tensiones 
existente en una placa. . . . . . '. . . . . . . . . . 
33. Fuerza concentrada en un punto de un borde rectilíneo. 
34. Caso general de carga normal al borde recto de una placa . 
35. Cuña con carga en la punta. . . . . . . . . • . 
3.6. Carga concentrada sobre una viga . . . . . . . • . • . 
37. Tensiones en un disco circular . . . . . • . • .. . . 
38... Placa indefinida con carga concentrada en un punto. . • . 
39. Solución general del problema bidimensional en coordenadas polares 
40. Aplicaciones de la solución general en coordenadas polares 
41. Cuña cargada sobre sus caras 
Problemas ......................... . 
CAPiTULO 5 
EL METODO FOTOELASTICO 
42. Medida fotoelástica de tensiones. • . . . . . . • . 
43. Polariscopio circular . . . . . . • . • . . . . . . 
#. Ejemplos de determinación fotoelástica de las tensiones . 
45. Determinación de las tensiones principales. 
46. Fotoelasticidad tridimensional. . . . . . . . . . . . 
52 
56 
57 
58 
63 
68 
70 
77 
78 
80 
83 
86 
91 
92 
95 
99 
104 
111 
118 
123 
125 
134 
139 
144 
149 
151 
153 
159 
164 
167 
170 
171 
INDICI! 15 
CAPITULO 6 
METODOS' ELASTO-ENERGETICOS 
47. Energía potencial elástica . . . . 174 
48. Principio de los trabajos virtuales. 179 
49. Teorema de Castigliano. . . . . 191 
50. Principio del mín,imo trabajo. . . . 195 
51. Aplicaciones del principio de mínimo trabajo. Placas rectangulares 196 
52. Anchura eficaz de alas de las vigas en T. 201 
53. Arrastre por tensión cortante. • 207 
Problemns. . . • . . • . . . . . . . 207 
CAPÍTULO 7 
PROJlLEMAS BIDIMENSIONALES 
EN COORDENADAS CURVILlNEAS 
54. Funciones de variable compleja . . . • . . 210 
55. Funciones analhicas y ecuación de Laplace. . 212 
Problemas. • . . • • . . . . . . . . • . 214 
56. Expresión de la función de tensión mediante funciones armónicas y 
complejas . . . . . • . . . . . . . . . . . . . . • . • • .. 214 
57. Desplazamientos correspondientes a una determinada función de 
tensión . . . . . . . . . . . . . . . . . . . . . . . . . .. 217 
58. Tensiones y desplazamientos expresados en función de los potenciales 
complejos. . . . . . • . . . . . . . . . . . . . . . . • • .. 219 
59. Resultante de las tensiones que actúan sobre una curva. Condiciones 
de contorno . . . . . . . . . . . . . . . . . . 221 
60. Coordenadas curvilíneas . . . . . . . . . . . . . 223 
61. Componentes de la tensión en coordenadas curvilíneas. 227 
Problemas. . . . . . • . . . . . . . . . • . . . 229 
62~ 'Soluciones en coordenadas elipticas. Placa sometida a un esfuerzo de 
tracción uniforme . . . • . . . . . . . . . . . . . • . . . .. 230 
63. Influencia de un orificio elíptico en una placa sometida a tracción simple. 234 
64. Contornos hiperbólicos. Entalladuras.' 237 
65. Coordenadas bipolares. . . . . . 239 
66. Soluciones en coordenadas bipolares 241 
Otras coordenadas curvilíneas . 245 
CAPÍTULO 8 
TENSIONES Y DEFORMACIONES EN TRES DIMENSIONES 
67. Definición de la tensión en un punto. . . . . 
68. Tensiones principales. . . . . . . . . . . . 
69. Elipsoide de las tensiones y superficie directriz 
70. Detenninación de las tensiones principales. . . 
71. Determinación de la tensión tangencial máxima. 
72. Defonnación homogénea . . . . 
73. Defonnacíón en un punto . . • 
74. Ejes principales de deformación . '; . 
75. Rotación. . . 
Problemas. ",' . • • . • . . . 
247 
248 
250 
251 
252 
254 
255 
258 
260 
262 
INDICE 
CAPÍTULO 9 
TEOREMAS GENERALES 
Ecuaciones diferenciales de equilibrio 263 
Condiciones de compatibilidad. . . . 265 
Determinación de los desplazamientos. 268 
Las ecuaciones de equilibrio como funciones de los desplazamientos. 269 
Solución general para los desplazamientos 270 
Principio de superposición.. 271 
Unidad de la solución. • . . . . . . . . 272 
Teorema de reciprocidad. . . . . • . .. . •....• 274 
Carácter aproximado de las soluciones de los estados tensionales planos. 277 
Problemas. . . . . . . . . . . . • . • . . . . . . . . . • .. 279 
CAPÍTULO ·10 
PROBLEMAS ELE:MENTALES 
DE ELASTICIDAD TRlDI:MENSIONAL 
85. Tensión uniforme . . . . . . • . . . . . . . . . • 
86. Barra prismática extendida por acción de su propio peso. 
87. Torsión de ejes cilíndricos de sección circular constante. 
88. Flexión simple de barras prismáticas . . . . . . 
89. Flexión simple de placas planas . . . . . . . . . . . 
CAPÍTtr!.O 11 
TORSION 
90. Torsión de barras prismáticas . . . . 
91. Barras de sección transversal elíptica . 
92. Otras soluciones elementales. . . . . 
93. Analogía con In membrana. . . . .. . 
94. Torsión de barras de sección rectangular estrecha. 
95. Torsión de barras de sección rectangular . . . . 
96. Resultados complementarios . . • . . . . . . . . . . . . . . 
97. Resolución de problemas de torsión por el método elasto-energético. 
98. Torsión de perfiles laminados . . • . . . . . . . . . . . • . 
99. Empleo de películas de jabón para resolver problemas de torsión . 
100 .. Analogías hidrodinámicas. . . . • . . .. . 
101. Torsión de árboles .. huecos .... ' . . . . . . . . . . . ... 
102. Torsión de tubos' de pared delgada . . . . . . . . . . . . • . . 
103. Torsión de una barra en la que se impide el alabeo de una d .. las sec-
ciones transversales. . . • . • . . . . . . . . 
104. Torsión de árboles circulares de diámetro variable 
Problemas ............ . 
281 
282 
285 
287 
291 
294 
300 
302 
306 
310 
312 
316 
318 
324 
327 
329 
332 
336 
340 
342 
351 
INDICE 17 
CAPíTULO 12 
FLEXION DE Pl~ZAS PRlSMATICAS 
105. Flexión de una pie:¡a en voladizo 355 
106. Función de tensión. . . . . 357 
107. Sección transversal circular . . 359 
108. Sección transversal elíptica . . 360 
109. Sección transversal rectangular. 362 
110. Resultados complementarios . 368 
111. Secciones transversales no simétricas . 370 
112. Centro de flexión o centro de corradura 372 
I 1, Ih,:"lu"ción de los problemas de flexión por el método de la película 
de Jabon . . . . . . . . . . 376 
114. Desplazamientos . . . . . . 380 
115. Otros estudios sobre la flexión 380 
CAPíTULO 13 
DlSTRIBUCION TENSIONAL SIMETRlCA RESPECTO AL EJE 
EN UN SOLIDO DE REVOLUCION 
116. Ecuaciones generales. . . . 382 
117. Soluciones polinómicas. . . 386 
118. Flexión de una placa circular 388 
119. Caso de disco giratorio considerado corno problema tridimensional 391 
120. Sólido de extensión indefinida cargado en uno de sus puntos . . 394 
121. Recipiente esférico sometido a una presión uniforme interior o exterior. 396 
122. Tensiones locales alrededor de una cavidad esférica . . . .. 399 
123. Fuerza sobre el contorno de un cuerpo semiindefmido ...... t. 402 
124. Sólido semiindefinido sometido a la acción de una carga distribuida 
sobre una zona de su plano limitante. . . . . . . . 406 
125. Presión entre dos cuerpos esféricos en contacto. . . . 4'13 
126. Caso general de presión entre dos cuerpos en contacto. 419 
127. Choque de esferas. . . . . . . . . . . . . . . . 424 
128. Deformación de un cilindro circular cargado simétricamente. 426 
129. Cilindro circular sometido a la acción de una presión sobre una banda 
de su superficie . . . . . . . . . . . . . . . . . . 430 
130. Torsión de un sector de anillo de se.cción circular.. . . . 433 
131. Flexión simple de un sector de anillo de sección circular. 438 
CAPÍTULO 14 
TENSIONES DE ORIGEN TERMICO 
132. Casos sencillos de tensiones de origen témlico. . . . . . • . . .. 441 
133. Algunos problemas planos de tensiones de origen térmico. . . . ., 446 
134. Disco circular delgado. Repartición de temperaturas simétrica respecto 
al centro . . . . . • . • . . . . . . . 448 
135. Cilindro largo de sección circular. . . . . 450 
136. Tensiones de origen térmico en una esfera. 459 
137. Ecuaciones generales. 463 
138. Tensiones in~ciales. . . • • . . . . . . 467 
INDICE 
. " Problemas bidimensionales con flujo estacionario de calor 
. Solución de las ecuaciones general,es • . . • • . . . . . 
CAPiTULO 15 
PROPAGACION DE ONDAS EN :MEDIOS ELASTICOS 
470 
475 
14i'. Movimiento generado por fuerzas • . . . 480 
142. Ondas longitudinales en barras prismáticas. 480 
143. Choque longitudinal de dos barras. . • . • . . . . . . . • . .. 486 
144. Ondas de dilatación y ondas de distorsión en medios elásticos isótropos. 495 
145. Ondas planas. . . . . • . . . . . • . . • . . . • . . . . .. 496 
146. Propagación de ondassobre la superfiCie de un cuerpo elástico . .. 499 
ApÉNDICE 
APLICACIONES DE LAS ECUACIONES 
EN DIFERENCIAS FINITAS EN ELASTICIDAD 
1. Deducción de las ecuaciones en diferencias finitas. . 
2. Métodos de aproximación sucesiva . 
3. Métodos de relajación. . . . . • . 
4. Redes triangulares y hexagonales. . 
5. Relajación en ~rupo y en bloque. . . . . . . . 
6. Torsión de barras de sección múltiplemente conexa 
7. Punto?pró::,imo~ ~l contorno. . . . • . . . . . 
8. Ecuaclon blannomca. . . • . . . • . . . . . 
9. Torsión de árboles circulares de diámetro variable 
[NDICI! DE AUTOBl!S • •• ••.•••••• 
INDICI! ALFABÉTICO • • • • • • • • • • • • •••• 
503 
5.07 
510 
515 
520 
521 
523 
525 
534 
539 
543 
x,Y,z 
r, fJ 
~, r¡ 
R, '1', O 
N 
1, m, n 
A 
No 
Coordenadas rectangulares. 
Coordenadas polares. 
Coordenadas curvilíneas ortogonales; a veces coor-
denadas rectangulares. 
Coordenadas esféricas. 
NOITIlal exterior a la superficie de un cuerpo. 
Cosenos directores de la normal exterior. 
Area de una sección transversal. 
Momentos de inercia de una sección transversal 
respecto a los ejes x e y, respectivamente. 
Momento polar de inercia de una sección trims-
versal. 
g Aceleración de la gravedad. 
/} 
q 
Densidad. 
Intensidad de una carga distribuida en forma 
uniforme. 
p Presión .. 
X, Y, Z Componentes de una fuerza másica por unidad de 
volumen. 
X. Y, i Componentes de una fuerza superficial actuando 
sobre la superficie de un cuerpo por unidad de 
superficie. 
M Momento flector. 
M, Momento torsor. 
U%, u., G, Componentes normales de tensiones, paralelas a 
los ejes x. y, y z, respectivamente. 
u. Componente normal de tensiones paralelus a n 
G" Uo Tensiones normales, radial y tangencial, respec-
tivamente, en coordenaqas polares. 
U!, G, Componentes Ilormale* de la tensión en coorde-
nadas curvilíneas. ' 
tI" tID, tI, Componentes normales en coordenadas cilíndricas. 
~ 8=~+~+~=~+~+~ 
p. G. .l 
TEORIA DE LA ELASTICIDAD 
f Tensión t311gencial. 
T~u, Tu. fJl' Componentes de la tensión tangencial en coorde-
nadas rectangulares. 
T, o Tensión tangencial en coordenadas polares. 
7:"1 Tensión tungencial en coordenadas curvilíneas. 
T,O, 'Co .. T" Componentes de la tensión tangencial en coorde-
nadas cilíndricas. 
S Tensión total en un plano. 
u, '11, w Componentes de los desplazamientos. 
E Elongación unitaria. 
E" ~"'~. Proyecciones de la elongación unitaria sobre los 
ejes :x, Y. y W. 
E,. EQ Elongaciones unitarias radial y tangencial en coor-
denadas polares. 
e = ~, + "11 + E. Dilatación cúbica. 
y Deformación tangencial. 
r"'lI' r .. " Y., Componentes de la deformación tangencial en coor-
denadas rectangulares. 
r, o' )'& .. y,. Componentes de la deformación tangencial en coor-
denadas cilíndricas. 
pE 
E Módulo de elasticidad. 
G Módulo de rigidez. 
" Coeficiente de Poisson. 
Constantes de Lamé. 
(1 + ,.) (1 - 2.) 
~ 
'P (z), X(z) 
Función de tensión. 
Potenciales complejos; funciones de la variable com-
pleja z = x + iy. 
'i Variable compleja conjugada x - iy. 
e Rigidez torsional. 
O Angulo específico de torsión. 
F = 2GB Expresión usada en problemas de torsión. 
V Energía de deformación. 
V, Energía de deformación por unidad de volumen. 
t Tiempo. 
T Intervalo de tiempo. Temperatura. 
a Coeficiente de dilatación térmica. 
1. Elasticidad. Todos los materiales estructurales presentan en 
cierto grado la propiedad de elasticidad, es decir, si las fuerzas exteriores 
que deforman la estructura no rebasan un cierto límite, la deformación 
desaparece cuando se suprimen tales fuerzas. En este libro, se supondrá 
que los cuerpos que sufren la acción de las fuerzas exteriores son perfec-
tamente elásticos, es decir, recuperan su forma inicial después de suprimir 
las fuerzas. 
La estructura molecular de los cuerpos elásticos no será considerada. 
Se supondrá que la materia del cuerpo elástico es homogénea distribuyén-
dose con con~inuidad en su volumen, de forma que cualquier elemento 
extraído de él, posee sus mismas propied~des físicas. Para simplificar los 
razonamientos se supondrá también que el cuerpo es ¡sótropa, es decir, 
las propiedades elásticas son las mismas en todas las direcciones. 
. Los materiales estructurales no cumplen, en general, las condiciones 
señaladas anterionnente. Un material tan importante ¡;omo el acero, por 
ejemplo, consiste en cristales diferentes, distintamente orientados como 
puede verse al observarlo al microscopio. El material dista mucho de ser 
homogéneo, pero la experiencia muestra que las soluciones de la teoría 
elástica, admitiendo las condiciones de homogeneidad e isotropÍa, pueden 
ser aplicadas a las estructuras de acero con gran exactitud. La explica-
ción es que los cristales son muy pequeños: generalmente hay millones 
en un centímetro cúbico. Mientras que las propiedades elásticas de un 
~ristal pueden variar mucho con lu dirección, los cristales están general-
mente orientados al azar y las propiedades elásti¿as de las piezas grandes 
corresponden a los promedios de las propiedades 'cristalinas. Siempre que 
las dimensiones gepmétricas de un cuerpo sean grandes comparadas con las 
dimensiones de ''los cristales, la suposición de homogeneidad puede ser 
TEORIA nI': LA ELASTIClDAD 
con gran exactitud y si los cristales están orientados al azur, el ma-
.. ser tratado también como isótropo. 
. a causa de ciertos procesos tecnológicos, tales como el lami-
¡.JnOU</ll1ll.Ul1 una cierta orientación de los cristales del metal, las pro-
Ul"U"'~". elásticas dependen de la dirección y debe considerarse la condición 
., anisotropía. Tal condición se da, por ejemplo, en el cobre laminado 
eri frío. 
.tn :Z1l 
Fw. 1 FJC.2 
2. Tensiones. Supongamos que el cuerpo representado en la fi-
gura 1, se encuentra en equilibrio. Bajo la acción de las fuerzas exterio-
res p .. "', P?, se producirán fuerzas interiores que actuarán entre las dis-
tintas partes del cuerpo. Para determinar la magnitud de esas fuerzas en 
cualquier punto O, supongamos al cuerpo dividido en dos partes A y B. 
mediante la sección plana mm que contiene a dicho punto. Si consideramos 
una de esas regiones, por ejemplo, la A, se puede establecer que está en 
equilibrio bajo la acción de las fuerzas exteriores Pi, .oo, P? Y las fuerzas 
interiores, repartidas en la sección mm., que representan la acción del 
material de la regióIl B sobre el material de la región A. Se supondrá 
que estas fuerzas se distribuyen con continuidad en la sección mm, de la 
misma forma que la presión hidrostática o la presión del viento se distri-
buyen de forma continua en la superficie sobre la cual actúan. La magni-
tud de tales fuerzas se define generalmente por su intensidad, o sea, por 
la fuerza que actúa sobre el área unidad. Cuando se trata de fuerzas inte-
riores, la intensidad se lIuma tensión. 
En el caso sencillo de una barra prismática, sometida a tracción bajo 
la acción de fuerzas distribuid.ls uniformemente sobre sus extremos (fig. 2), 
las fuerzas interiores se distribuyen también uniformemente sobre cual-
quier sección plana mm. En consecuencia, la intensidad de esta distribu-
ci6n, la tensión, puede obtenerse dividiendo la fuerza P por el área A 
de la sección recta. 
INTRODUCCION 23 
En el caso que acabamos de considerar, la tensión era uniforme en 
toda la sección recta. En el caso general de la figura 1, la tensión no se 
distribuye uniformemente en mm. Para· obtener la magnitud de la tensión 
que actúa sobre el pequeño elemento de área bA, que comprende al 
punto O, suponemos que las fuerzas que actúan a través de este área ele-
mental, debidas a la acción del material de la· parte B sobre el material 
de la parte A, se reducen a una resultante P. Si el área bA disminuye con 
continuidad, el valor límite del cociente bPt"A nos da la magnitud de 
la tensión, que actúa sobre la sección mm en el punto O. La dirección que 
tiene iJP en el límite, es la dirección de la tensión. En general, la tensión 
estIÍ inclinada respecto al elemento de superficieiJA sobre el cual actúa 
descomponiéndose entonces en sus dos componentes: una tensión normal, 
perpendicular al elemento c3A y una temión tangencial o cortante, que actúa 
en el plano de !lA . 
3. Notaciones correspondientes a las fuerzas y a las tensiones. 
Las fuerzas exteriores que pueden actuar sobre un cuerpo, son de dos cla-
ses. Las fuerzas distribuidas sobre la superficie ,del cuerpo, tales como 
la presión mutua ejercida entre dos cuerpos o la presión hidrostática, se 
llaman fuerzas superficiales. Las fuerzas distribuidas sobre el volumen 
del cuerpo, tales como las fuerzas gravitatorias, las fuerzas magnéticas, o en 
el caso de que exista movimiento, las fuerzas de inercia, se llaman fuerzas 
masicas. La fuerza por unidad de superficie será descompuesta, en ge-
neral, en sus tres componentes paralelas a los ·ejes coordenados y usa-
remos para tales componentes la notación X, Y, Z. Descompondremos 
asimismo la fuerza másica por unidad de volumen en sus tres componentes 
que designaremos mediante las letras X, . Y, Z. 
Usaremos la letra (J para designar la tensión normal y la t" para la ten-
sión tangencial. Para indicar. la dirección del plano sobre el cual actúa 
la tensión, añadiremos subíndices a la letra que expresa la tensión. Si con-
sideramos un pequeño elemento cúbico en el punto O (fig. 1), con sus 
aristas paralelas a los ejes coordenados, la notación para los componentes 
de las tensiones que actúan sobre las caras del cubo es la indicada en la 
figura 3, en la que se señalan, asimismo, los sentidos positivos asignados 
a aquéIlas. Para las caras perpendiculares al eje y, por ejemplo, las com-
ponentes normales de las tensiones que actúan sobre ellas son señaladas 
por Uy • El subíndice y indica que la tensión actúa sobre un plano normal 
al eje y. Se considera positiva a la tensión normal cuando se trata de una 
tracción y negativa si se trata de una compresión. 
La tensión tangencial se descompone en sus dos componentes para-
lelas a los ejes coordenados. En este caso, se usal\ dos subíndices: el pri-
mero indica la dirección normal 111 plano en cuestión y el segundo, la 
dirección de la componente de la tensión en sí misma. Si consideramos, 
por ejemplo, las caras perpendiculares al eje y, la componente en la direc-
TEORIA DE LA ELASTICIDAD 
s~fialaqa por Ty ", y la de dirección·z por 'y.' Como sentido posi-
.. .'c9mponentes de la tensión tangencial que aetúa sobre cualquier 
toma: el sentido positivo de los ejes coordenados, si una tracción 
, .. . a esa misma cara apuntara en el sentido positivo del eje corres-
'ponqiente. Si la tracción apuntara en sentido contrario al del eje corres-
pondiente, el sentido positivo de las componentes de la tensión tangencial 
""=--I---..."J..-;y 
FIG. 3 
sería el opuesto al de los ejes coordenados. Basándonos en esta regla los 
sentidos positivos de todas las componentes de la. tensión, que ac~an 
.sobre la cara de la derecha del elemento cúbico de la figura 3, coinciden 
con los sentidos de los semiejes positivos. Por el contrarío en la cara 
izquierda del elemento, los sentidos positivos están invertidos. 
4. Com ponentes de la tensión. De acuerdo con lo dicho en el 
párrafo anterior, resulta que para cada par de caras paralelas de un ele-
mento cúbico, como el representado en la figura 3, se necesita un símbolo 
para representar la componente normal.de la tensión y dos más para las 
. componentes de la tensión tangencial. Se requieren, por lo tanto, tres 
símbolos para describir las tensiones normales que actúan sobre las caras 
de un cubo elemental,. a saber, (J:t:, 11", 11. Y seis 7:",u, 7:y ", '",., 'z:t:, ryz> "C%y, 
para los esfuerzos tangencialegl. 
De la consiclerªción del equilibrio del elemento, se deduce que el 
número de símbolos para las tensiones tangenciales puede ser reducido 
a tres. Si consideramos el momento respecto al eje x de las fuerzas que 
actúan sobre el bloque elemen tal, sólo tenemos que tener en cuenta las 
tensiones representadas en la figura 4. Las fuerzas másicas, tales como el 
peso del elemento, pueden ser despreciadas puesto·· que al reducir las 
dimensiones del elemento disminuyen con el cubo de las dimensiones 
lineales, mientras que las tensiones superficiales 10 hacen con el cuadrado 
, En realidad seria más correcto decir esfuerzo tangencial específico ya que la palabra 
esfuerzo no implica que se trate de un área unidad. 
INTRODUCCION 25 
de las mismas. Resulta, pues, que para elementos muy pequeños, las fuer-
za·s másicas son infinitésimos de mayor orden que las fuerzas superfi-
ciales. De igual forma, los momentos: debidos a la distribución no uni-
forme de las fuerzas normales son infinitésimos de orden superior que los 
debidos a las fuerzas tangenciales, pudiendo también ser despreciados 
en el límite. Representando entonces las dimensiones del elemento de la 
figura 4 por dx, dy, dz y puesto que la fuerza sobre cada cara es el pro-
ducto del área por el valor de la tensión en el punto central de la misma, 
la ecuación de equilibrio para los momentos respecto al eje. x queda así: 
'1"'11 d:r; dy dz = 'Cu. d:r; dy di!. 
ecuaciones se obtienen de forma semejante, llegándose al 
resultado siguiente: 
(1) 
Por tanto, para cada dos caras perpendiculares entre sí, las componen-
tes de la tensión de cortadura superficial perpendiculares a la línea de 
intersección de esas c.-¡ras, son iguales. . 
.. El sistema de tensiones que actúa sobre los planos coordenados que 
pasan por un punto, está en consecuencia definido por las seis canti-
dades <F" l1y, 11., "C TY = '''''> Tu = "" "/% = · •• v, las cuales reciben el 
nombre de componentes de la tensión en el punto considerado. 
Como se verá más adelante (§ 67), estas seis componentes permite~ 
determinar el esfuerzo actuante sobre cualquier plano que pase por el 
punto considerado. 
5. Componentes de la deformación. Al estudiar la deformación 
de un cuerpo elástico, se supondrá que hay vínculos suficientes que im-
piden su movimiento como cuerpo rígido, de forma que no es posible 
el desplazanliento de las partículas del cuerpo ~in una deformación del 
mismo. l 
En este libro sólo se estudiarán deformacioneS pequeñas, tales como se 
dan en las estructuras reales. El pequeño desplazamiento de las partículas 
TEORlA DE LA ELASTICIDAD 
);1J';l,lJ;~¡J'U .. defo.rmado, es descompuesto generalmente en sus com-
. v, ·w paralelas a los ejes x, Y. z, respectivamente. Se supondrá 
.. ~mponentes son muy pequeñas y que varían con continuidad 
:el volumen del cuerpo. Consideremos un pequeño elemento 
.. dz de un cuerpo elástico (fig. 5). Si el cuerpo se deforma y u, v, w, 
Flo.6 
son las componentes del desplazamiento del punto 0, el desplazamiento 
en la dirección x de un punto próxi~o A, situado en el eje de las x, será 
au 
u + az rlz 
debido al incremento (8u/ox)dx de la función u, que corresponde al cambio 
de la coordenada x. El aumento de la longitud del elemento OA debido 
. a la deformación, es por lo tanto (ou/ox)dx. En consecuencia, el alarga-
miento especíjico en el punto 0, según la dirección x es 'iJu/ax. De igual 
forma, puede demostrarse que el alargamiento específico en las direc-
ciones Y y z viene dado por las derivadas av/ay y aw/oz. El alargamiento 
específico será designado, en lo sucesivo, mediante las expresiones defor-
maciÓ'n longitudinal o simplemente deformaci6n. 
Consideremos ahora la' variación del ángulo formado por los elementos 
OA y OB (fig. 6). Si u y v son los desplazamientos del punto O en las 
direcciones:x e y, los·del punto A en la dirección y, y del B en la dirección x 
vienen dados respectivamente por: 
v + (ov/'iJx)dx y u + (ou/oy)dy 
A causa de estos desplazamientos, la nueva dirección O'A' del elemento 
OA forma con la dirección inicial un pequeño ángulo, indicado en la fi-
gura, igual a ov/ox. De igual forma, la dirección O'B' forma con OE el 
ángulo íJu/íJy. Se sigue de ello que el ángulo AOB, inicialmente recto, 
formado por los elementos OA y OB, ha variado en la cantidad av/ax+ 
+ Gu/ay. Esta es la deformación tangencial (también es llamada dejorma-
INTRODUCCION 27 
cton angular) o deslizamiento del ángulo comprendido entre los planos 
xz e yz. De igual forma, se obtiene la deformación tangencial de los án-
gulos formados por los planos xy y xz.y los yx e yz. 
Representaremos mediante la letra E la deformación longitudinal 
y mediante la y, la deformación tangencial. Para indicar la dirección 
de las deformaciones, utilizaremos los mismos subíndices que pata las 
componentes de las tensiones. De donde resulta que: 
ou 
e =-, 
~ a::c 
au OV 
'Y:v = ay + a::r;' 
av 
Eu = ay' 
ou OW 
'Y •• = - +-, az OX 
aw 
E. = iJ~ 
av aw 
"fu. = ;rz + ay 
(2) 
Como veremos más adelante, conocidas las deformaciones longitudiriales 
. en tres direcciones perpendiculares y las tres deformaciones tangenciales 
correspondientes a esas direcciones, se puede determinar la deformación 
correspondiente a una dirección cualquiera y el deslizamiento del ángulo 
formado por dos direcciones cualesquiera (§ 73). Las seis componentes 
'(;" ... ')1" .. reciben el nombre de componentes de la deformación. 
6. Ley de Hooke. La relación entre las componentes de la tensión 
y de la deformación, ha sido establecida experimentalmente y se conoce 
bajo el nombre de ley de Hooke. 
Imaginemos un paralelepípedo rectangular infinitésimo, con sus aris-' 
tas paralelas a los ejes coordenados, sometido a la acción de una tensión 
normal (1", distribuida uniformemente sobre dos caras opuestas. La ex-
periencia demuestra que en el caso de un material isótropo, las tensiones . 
. normales no producen distorsión angular del elemento~ La magnitud de 
'la deformación longitudinal viene dada por la ecuación: 
11", 
E", = E (a) 
en la que E es el módulo de elasticidad longitudinal. Los materiales usados, 
en ingeniería tienen módulos muy altos en relación con las tensiones 
admisibles y la deformación (a) es muy pequeña. En el caso del acero 
de construcción es, generalmente, inferior a 0,001. 
La dilatación del elemento en la dirección x viene acompañada de las 
contracciones laterales. 
O"z 
Eu = -v E' 0': El:;:::: -p E. eb) 
, j . 
en las cuales JI es una constante llamada coeficiente :(ie Poisson. Para muchos 
materiales el coeficiente de Poisson puede igualarse a 0,25. Para el acero 
de construcción 'es generalmente 0,3. 
TEORIA DE LA ELASTICIDAD 
(¡;l) y (h) pueden usarse "también en el caso de com-
,f,'}"'~""~'~""" del intervalo elástico, el módulo de elasticidad 
~(j.~:ti(!lel~te :de Poisson son iguales en compresión y tracción. 
elemento anterior es sometido a la acción de las tensiones nor-
.. ~; J': '/T,,; a.; distribuidas uniformemente sobre sus caras, las com-
. ¡, . .., ;1<. 1.1 ,It'formación result:lIltc' pueden obtenerse usando las ecua-
.... 'Ca) y (h). La experiencia demuestra tJlIC p.lI .. l "bL\:lIcr estas com-
'ponentes, tenemos que superponer (as deformaciones producidas por cada 
una de las tres tensiones. La aplicación de este método de superposición 
nos lleva a: 
1 
e", = E [o-" - lI(fTv + u.)] 
1 
Eu = E [crv - lI(cr", + u.)J (3) 
E. :d i [o-. - v(cr" + uv)] 
En io sucesivo, usaremos a menudo el método de superposición para cal-
cular las deformaciones y tensiones totales producidas por varias fuerzas. 
Este método es legítimo siempre que las deformaciones sean pequeñas 
y que los pequeños desplazamientos correspondientes no afecten sustan-
cialmente la acción de las fuerzas exteriores. En tales casos, despreciare-
mos los pequeños cambios de las dimensiones de los cuerpos. deformados 
y los pequeños desplazamientos de los puntos de aplicación de las fuerzas 
exteriores, basando nuestros cálculos en las dimensiones y forma iniciales 
del cuerpo. Los desplazamientos resultantes se obtendrán por' super-
posición, en forma de funciones lineales de las fuerzas exteriores, como 
hicimos al deducir la ecuación (3). 
Hay, sin embargo, casos excepcionales en los que deformaciones 
pequeñas no pueden ser despreciadas, debiendo ser tenidas en cuenta. 
Un ejemplo de ello es el caso en el que actúan sobre una barra delgada 
fuerzas axiales y laterales. Las fuerzas axiales, actuando solas, produ-
cen um\ tracción o una compresión simple, pero pueden ejercer una in-
fluencia esencial sobre la flexión de la barra si actúan acompañadas de 
fuerzas laterales. AÍ calcular la deformación de la barra bajo tales condi-
ciones, el efecto de la flecha de flexión sobre el momento de las fuerzas 
exteriores debe ser considerado, aun cuando dicha flecha sea muy pe-
queñal. En este caso la flecha no es función lineal de las fuerzas y no puede 
ser obtenida por simple superposición. ., 
En las ecuaciones (3), la relación entre alargamientos y tensiones está 
completamente definida mediante las constantes E y Y. Estas rpismns 
, Varios ejemplos pueden verse en S. Timoshc"ko, Slrenglh oJ Moleríais, vol. II, pá. 
gmas 25-49. . 
INTRODUCCION 29 
constantes pueden ser usadas también para definir la relación entre de-
formaciones y tensiones tangenci~les. 
Z 
(a) 
Fw. 7 
h 
oy~ 0je 
:y O":z: 
(ó) 
Consideremos el caso particular de deformación del paralelepípedo 
rectangular, sobre el cual all = - a. y a" = O. Aislando un elemento 
'. abcd mediante planos paralelos al eje x que forman 45D con los ejes y y z 
. (fig. 7), se puede ver, sumando las fuerzas paralelas y perpendiculares 
a be, que la tensión normal sobre las caras de este elemento es nula y 
que la tensión tangencial sobre las mismas es: 
Ce) 
: . Tal estado tensional recibe el nombre de esfuerzo cortante simple. El 
alargamiento del elemento vertical Ob, es igual al acortamiento de los 
'elementos' horizontales Oa y Oc, de donde despreciando un infinitésimo 
'de segundo orden se deduce que las longitudes ah y be no cambian du-
rante la deformación. El ángulo formado por ah y be cambia, sin embargo, 
y la magnitud de la deformación tangencial y puede deducirse del estudio 
.' . del triángulo abe. Después de deformado' se cumple: 
Oc 
-= 
Ob 
Sustituyendo los valores de fv Y €. dados por (3) tenemos: 
1 (1 +'11)<1". 
E. = E (a. - vu,,) = E 
(1 + v)O'. 
E fU = 
y advirtiendo que para valores pequeño¡; lit, i' 
'Ir 'Y 
tg '4 - tg '2 \I - 1: , 2 =---
TEORIA DE LA ELASTICIDAD 
c(lcontramps que 
2(1 + 7I)u.. 2(1 + v}r 
'Y= E = E (4) 
De esta forma, la relación entre la deformación tangencial y la tensión 
tangencial está definida conociendo E y v. A menudo, se usa la notación: 
E 
G = 2(1 + JI) (5) 
Entonces la ecuación (4) queda 
La constante G definida por (5) recibe el nombre de módulo de elasticidad 
tangencial o módulo de rigidez. 
Si sobre las caras de un elemento actúan tensiopes tangenciales, como 
en el caso de la figura 3, la deformación del ángulo formado por dos ejes 
coordenados cualesquiera, depende únicamente de las componentes de 
las tensiones tangenciales paralelas a tales ejes, y su valor es: 
(6) 
Las deformaciones longitudinales (3) y los deslizamientos (6) son indepen-
dientes unos de otros. En consecuencia, el caso general de deformación 
producida por tres tensiones normales y tres tangenciales, se resuelve 
mediante la superposición de las tres deformaciones dad¡¡s por la ecuación 
(3) y de los deslizamientos obtenidos mediante las ecuaciones (6). 
Las ecuaciones (3) y (6) nos dan las componentes de la deformación 
en función de las componentes de la tensión. A veces, sin embargo, es 
necesario tener las componentes de la tensión expr.esadas como función 
de las componentes de la deformación. Esto se consigue de la manera 
siguiente. Sumando las ecuaciones (3) y usando la notación 
e = E: + EU + E. 
8 = 0',,+ u, + u= (7) 
llegamos a la siguiente relación entre la dilatación cúbica e y la suma de 
las tensiones normales 
1- 271 
e=-E- 8 
En el caso de una presión hidrostática p tenemos 
u .. = o'v = u. = -p 
(8) 
y la ecuación (8) nos da 
INTRoDuccroN 
e = _ 3(1 .,... 2v)p 
. E 
31 
expresión que representa la relación entre la dilatación cúbica e y la 
presión hídrostática p.La cantidad E/3(1 - 2v) se denomina' módulo de elasticidad de vo-
lmnen. 
Empleando las notaciones (7) y despejando uz , GIl' u., en las ecuaciones 
(3), obtenemos 
vE E 
u: = (1 + p)(1 _ 2v) e + 1 + V E" 
vE E' 
u" = (1 + v)(1 _ 21') e + 1 + V E" 
vE E 
0". = (1 + v)(1 _ 21') e + 1 + y E. 
o bien, usando la notación 
A = vE 
(1 + 11)(1 - 2,,) 
y la ecuación (5) llegamos a 
0'. = Xe + 2GE= 
O'~ = Xe + 2Gev 
u. = 116 + 2Ge; 
Problemas 
(9) 
(10) 
(11) 
l. Demostrar que las ecuaciones O) siguen siendo válidas si el elemento de 
la figura 4 está en movimiento y tiene una aceleración angular, como si fuera un 
cuerpo rígido. 
2. Supongamos un material elástico conteniendo un gran número de pequeñas 
partículas imanadas, distribuidas regularmente, de forma que un campo magnético 
ejer<la sobre cualquier elemento dx, dy, dz Un momento I,d,,', dy, dz, respecto a 
un eje paralelo al eje x. ¿Qué forma tomará la ecuación (l)? 
3. Dar algunas razones que justifiquen el que la fónnula (2) sea válida solamente 
para pequeñas deformaciones. ' 
4. Una lámina elásticn se encuentra entre dos placas perfectamente rígidas a, 
las que está pegada. La lámina es comprimida entre las dos placas siendo u, la ten-
'_ aión de compresión. Suponiendo que la adherencia a las plncas impide toda defor-
mación lateral €., €y encontrar el módulo de Young aparente (o',/€.) en función 
de E y l'. Demostrar que si el material de la lámina es ¡¡asi incompresible bajo Jos 
efectos de una presión hidrostática el valor del módulo qe Young aparente es muy 
superior a E. ' 
5. Deducir la e.;uaeión (8) a partir de las (11), (10) Y (5). 
y 
7. Tensiones planas. Si una placa delgada es cargaoa mediante 
fuerzas aplicadas en su contorno, paralelas al plano de la placa y distribuidas 
uniformemente en su espesor (fig. 8), las componentes de la tensión 
a., '''''' 'IIZ son nulas sobre ambas caras de la placa y puede suponerse, 
en principio, que también lo son en el interior de la misma. El estado ten-
sional queda entonces especificado por <1~, rfy Y ':rll Y es denominado 
...-----1--:11: z 
y y 
FW.8 
estado tensional plar"!.o. Puede asimismo suponerse que estas tres compo-
nentes son independientes de Z, o sea, no varían a través del espesor de 
la placa, siendo en consecuencia función de x e y solamente. 
8. Deformación plana. Una simplificación semejante se da en el 
otro caso extremo, en el que la dimensión del cuerpo·en la dirección del 
eje z es muy grande. Si un cuerpo largo cilíndrico o prismático es cargado 
mediante fuerzas perpendiculares a la dirección longitudinal que no 
varían en esa <{irección, puede suponerse que todas las secciones rectas 
están en iguales condiciones. En principio, podemos imaginar que las 
secciones extremas se encuentran confinadas entre planos rígidos fijos, 
TnNsIONES PLANAS Y DEFORMAClONES PLANAS 33 
de forma que cualquier desplazamiento en la dirección axial sea imposible 
(el efecto de retirar tales planos será estudiado más adelante). Dado que 
no hay desplazamiento axial en los extremos y que por simetría ocurre 
otro tanto con la sección central, se puede suponer que lo mismo le sucede 
a cualquier otra sección recta, encontrándonos entonces con un estado 
de deformaciólt plana. 
,----,-----.;1: 
7if\tt;"XlV",'yMtp'Xt9};(bi)f\CvAlQ"tij};m",..",,,," 
y 
r'ro.9 
Flc. 11 
y 
PIC. 10 
Existen muchos problemas importantes que son dc este tipo: muro 
de contención sometido a una presión lateral (Hg. 9), túnel o alcantarilla 
(fig. 10), tubo cilíndrico sometido a una presión interna, rodillo cilíndrico 
comprimido por fuerzas contenidas en el plano diametral como en el caso 
de un cojinete de rodillos (fig. 11). . 
En todos los casos, por supuesto, las condiciones de carga no deben 
variar con la longitud. Dado que las condiciones son las mismas en todas 
las secciones rectas, bastará con considerar una rebanada contenida entre 
dos secciones separadas una longitud unidad. Las componentes u y v 
del desplazamiento dependen de x e y pero no de z; y puesto que el des-
plazamiento longitudinal w es cero las ecuaciones (2) quedan así: 
~ - 'I1!ORlo\ 01: loA r.l~STICIIMO 
_ iJv + iJw _ O 
'Y~. - iJz ay-
Bu 8w 
'Yo, = iJz + iJ:¡; = o 
8w 
E.=-=O 
iJz 
(a) 
34 TEORIA DE LA ELASTICIDAD 
La tensión normal longitudinal a. puede' ser expresada en función de 
x e y mediante la ley de Hooke [ecuaciones (3)]. Puesto que 17= = O ten-
dremos que: 
(T. - lI(rT: + 0',,) = O 
o 10 que es lo mismo: 
(b) 
Estas tensiones noonales actúan sobre tod~ls las secciones rectas, 
incluyendo las extremas, donde representan las fuerzas requeridas para 
mantener el estado de defoonación plana y son ejercidas por los planos 
rígidos extremos. 
Las ecuaciones (a) y (b) muestran que 'xz y 'lJ< son nulos y mediante 
la ecuación (b) l1z puede Ser expresado en función de x e y: De esta foona, 
el problema de deformaCión plana, al igual que el estado tensional plano, 
se reduce a la detenninación de l1", rJy Y >"/1' funciones solamente de x e y. 
9. Tensiones en un punto. Conocidas las componentes de la ten-
sión {1'", l1y , >." en cualquier punto de Ulla placa, que se encuentra en 
un estado de tensión o deformación plano, la tensión que actúa sobre 
cualquier plano perpendicular a la placa, que pase por ese punto, puede 
'~==±::==-.;;B __ X 
y 
FIO. 12 
calcularse a partir de las ecuaciones de la estática. Sea O el punto en cues-
tión y supongamos 'que conocernos las componentes de la tensión l1 
O'y >"'V (fig. 12). Para encontrar la tensión que actúa sobre cualquier pla;~ 
que contenga al eje z y que esté inclinado respecto a los ejes x e y, tome-
mos un plano Be paralelo a él y próximo a O de foona que el prisma OBe 
formado por este plano y los planos coordenados sea muy pequeño. 
Puesto. ~ue las tensiones varían con continuidad en el volumen del cuerpo, 
la tenslOn que nctúa sobre el plano Be tiende a la tensión actuante sobre 
el plano paralelo que pasa por O, cuando el elemento se hace cada vez 
más pequeño. 
Al discutir las condiciones de equilibrio de un pequeño prisma trian-
TENSIONES PLANAS Y DEFORMACIONES PLANAS 35 
guIar, las fuerzas 'másicas pueden ser despreciadas por ser infinitésimas 
de orden superior (pág. 25). De forma semejante, si el elemento es muy 
pequeño, puede despreciarse la variación de las tensiones sobre las caras 
y suponer que se distribuyen uniformemente sobre' ellas. Las fuerzas 
que actúan sobre el prisma triangular pueden por lo tanto determinarse, 
multiplicando las componentes de la tensión por el área de las caras. 
Sea N la dirección de la normal al plano Be y señalemos los cosenos de 
los ángulos formados por la normal N y 10'5 ejes x e y por: 
cos Na; = 1, cos Ny = m 
Entonces, si A señala el área de la cara Be del elemento, las áreas de 
las otras caras serán Al y Am. 
Si indicamos por X e Y las componentes de la tensión que actúan 
sobre la cara Be, las ecuaciones de equilibrio del elemento prismático 
quedan así: 
x = W., + m-r.1J 
r = mO'lJ + l'T:v (12) 
De este modo, las componentes de la tensión que actúan sobre cualquier 
plano definido por los cosenos l y m pueden calcularse fácilmente a partir 
de las ecuaciones (12) supuesto que las componentes (1"" {1'y, 'I'",y de la tensión 
en O sean conocidas. 
Sea a el ángulo foonado por la normal N y el eje x, de foona que 
1 = cos a y m = sen a. Los componentes normal y tangencial de la tensión 
que actúa sobre el plano Be puederi deducirse de las ecuaciones (12), 
resultllndo: 
rT = X (lOS el + Y sen a; = rT. C082 el + O'usen2 el 
+ 2r"" sena cos el 
r = Y cos el - X sen rx ;" T:rJ(COS 2 a - sen2 a) 
+ (rTlJ - 0'",) sen a COS a 
(13) 
Podemos deducir de (13) que el ángulo a puede ser elegido de formll 
que la tensión tangencial , se anule. Esto ocurre cuando: 
'T"1i(cos2 el - sen2 a) + (<T~ - l1,,) sen a (lOS el = O 
de donde: 
~ sen a COS el 1 2 
(J'", - O'u = C062 el - sen2 a - 2 tg el (14) 
A partir de esta ecuación se pueden encontrar dos direcciones perpen-
diculares entresí, para las cuales la tensión ta;ngencial se anula. Estas 
direcciones se llaman direcciones principales y' las tensiones normales 
correspondientel! tensiones principales. 
36 rEORIA DE LA EI..ASTICIDAD 
Si las direcciones principales son tomadas como ejes x e y, ,'''u es cero 
y las ecuaciones (13) se simplifican quedando así: 
u = u", 0052 IX + G"vsen2 IX 
T = t sen 2a(ull - a",) (13') 
. La variación tic las componentes u y r cuando cambia el ángulo " 
puede representarse gráficamente mediante un diagrama en el que a y 7 
son tomadas como coordenadas!. A cada plano corresponde un punto en 
el diagrama cuyas coordenadas son los valores de G" y T correspondientes. 
En la figura 13 tenemos un diagrama de ese género, en el cual los puntos 
A y B de abscisas rI. y <Ty respectivamente, corresponden a los planos 
perpendiculares ª las direcciones principales. l?uede demostrarse que las 
componentes de la tensión correspondientes a un plano cualquiera Be 
que forme un ángulo a (fig. 12), están representadas por las coordenadas 
de un punto situado en una circunferencia de diámetro AB. Para hallar 
ese punto basta con medir a partir de A, en el sentido de crecimiento de 
los ángulos a de la figura 12, un arco que subtienda un ángulo igual a 
2a. Si D es el punto obtenido, resultará de la figura; 
OF Ort + rtF rI" + rTl} u", - /Tv = .., v. = -r + --2- COS 201 = u", cos2 a + ullsen2 a 
DF = en sen 2~ = 1(rT% - /Tu) sen 2~ 
Comparando estas expresiones con las ecuaciones (13') se ve que 
las coordenadas del punto D dan los valores numéricos de las componentes 
de la tensión que actúa en el plano Be, cuya inclinación es Cl. Para obtener 
la coincidencia de signo de la componente tangencial, llevaremos los r 
positivos hacia arriba y consideraremos los esfuerzos tangenciales como 
positivos cuando el sentido de rotación del par que originan es el del mo-
vimiento de .Ias agujas del reloj, como ocurre para las caras be y ad del ele-
mento abed (fig. 13b). Las tensiones tangenciales que obran en las caras 
ab y de del mismo elemento son de sentido contrario y, por lo tanto, 
se consideran como negativasB• 
Al girar el plano,Be alrededor de un eje perpendicular al plano xy 
(fig. 12) en el sentido de l~s agujas del reloj, el ángulo 11 varía de O a n/2 
y el punto D, en la figura 13, ·se mueve de A a B de forma que la semi-
circunferencia inferior nos da la variación de la tensión para los valores 
de a comprendidos entre esos límites. La semicircunferencia superior 
da las tensiones pam 
n/2 G, a G n 
I Este método gráfico es debido a o. Multr, Zivilingenietlr, 1882, pág. 113. Véase también 
'u Tecllllische Medru",'k, 2." ediCIón, 1914. . 
, Esta regla Se utIliza solamente en la construcCIón del diagrama de Mohr. Fuera de ahí 
es vólida In regla dada en la pág. 23. 
TENSIONES PLANAS Y DEFORMACIONES PLANAS 37 
Prolongado el radio eD hasta el punto DI (fig. 13), es decir tomando 
el ángulo :r + 2a en lugar de 2a se obtienen las tensiones correspon-
dientes al plano perpendicular a Be (fig. 12). Se ve así que las tensiones 
tangenciales que actúan sobre dos planos perpendiculares entre sí, son 
igu~les en valor absoluto, cosa que ya habíamos demostrado. En lo que 
(a) 
a-ó 
tOI a_e 
FlG. 13 
(!J) 
se refiere a las tensiones normales, vemos en la figura que OF, --1- OF = 
= 20e, es decir, la suma de las tensiones normales correspondientes 
a planos perpendiculares entre sí permanece constante al variar u. 
La tensión tangencial máxima viene dada en el diagrama (fig. 13) 
por la máxima ordenada de la circunferencia, o lo que es lo mismo por 
su radio. Tenemos entonces 
U:r; - rTy 
=-2- (15) 
Dicha tensión actúa sobre el plano bisector del ángulo formado por 
las tensiones principales el cual corresponde a a = 71/4. 
El diagrama puede utilizarse también en el caso en que una o las dos 
tensiones principales son negativas (compresión). Basta solamente con 
cambiar el signo de la abscisá para las tensiones ncgatÍ\las. La figura 14a 
representa el caso en que ambas tensiones principales son negativas y la 
figura 14b el de esfuerzo cortante puro. 
De las figuras 13 y 14 se deduce que el estado tensional exisknte en un punto 
puede ser considerado como el resultado de la yuxtllposición de otros dos: uno phm() 
equitensionnl ' de magnitud la ubscisa del centro del círculo, y otro de esfuerzo 
cortante cuya magnitud es el radio del círculo. Cuando se superponen varias dis-
tribuciones de tensión los estados equltensionales (d~ tracción o compresión) pueuen 
. ser sumados algébricamente. Los esfuerzos cortantes deben añadirse temiendo en 
cuen ta las direcciones de los planos sobre los cuales actúan. Se demuestra que ,11 
I N. del T. U.momos estado plano cqultenslOnal !l aquel en el que a, = 'l. Y T," = O. 
38 TEORIA DE LA ELASTICIDAD 
superponer dos sistemas de esfuerzo cortante puro, cuyos planos de máxima ten-
sión tangencial forman un ángulo p, el sistema resultante constituye también un 
caso de esfuerzo cortante puro. En la figura 15, por ejemplo, se determina la tensión 
que actúa sobre un plano, definido por el ángulo a, y que está originada por dos 
esfuerzos cortantes simples de magnitudes TI y r2 que actúan; uno en los planos 
xz e yz (fig. 1Sa) y el otro en los planos que forman con estos. últimos el ángulo {1 
(a) 
FIG.14 
(6) 
(fig. 15b). En In figuTll ISa las coordenadas del punto D representan las tensiones 
tangencial y norm,,! producid:!s sobre el plano CB por el primer sistema, mientras 
las coorde",ldns de DI (fig. 15b) dan las tensiones sobre el mismo plano para el 
segundo sistema. Sumando OD y OD, geométricamente obtenemos OG, tensión 
resultante sobre ese plano, cuyas componentes tangencial y. normal vienen dadas 
;y 
~
1 
2a: 
., ·2,8 
O (T 
(ó) 
FIG. 15 
por las coordenadas de G. Adviértase que la magnitud de OC no depende de a. 
Por tanto, la superpoMición de los estados de esfuerzo cortante simple origina un 
círculo de Mohr correspondiente también a un esfuerzo cortunte de radio OG 
estundo dada la inclinación de los planos de máxima tensión tangencial por Uf; 
ángulo igual a la mitad del GOD. 
TENSIONES PLANAS Y DEFORMACIONES PLANAS 39 
Un diagrama cómo el de la figura 13 puede usarse también para deter-
minar las tensiones principales, si se conocen las componentes de la 
tensión u." t111, 7::r1l correspondientes a. dos planos perpendiculares entre 
:.sí (fig. 12). En tal caso se comienza dibujando los puntos D y DI que 
'. 'representan las tensiones que actúan sobre los dos planos coordenados 
(fig. 16). De esta forma se obtiene el diámetro DD¡ del círculo. Construido 
el círculo, las tensiones principales !TI y (12 vienen dadas por su intersec-
: . ción con el eje de abscisas. De 'la figura se deduce: 
0"1 = OC + ~l! = lT. t tT,,+ ~(~y +7=1}2 
0"2 = OC - CD = rF. t tTlJ _ ~(tT., ; uuY + Tz¡¡2 (16) 
En cuanto a la tensión tangencial máxima viene dada por el radio 
del círculo, es decir: 
Tm" = ~ CUl - qz) = ~(CTZ ; ([lJr + 'fzv'J. (17) 
De esta forma todas las características del estado tensional en un 
punto pueden obtenerse conociendo tan sólo las tres comp~nentes t1"" 
10. Deformación en un punto. Cuando se conocen las compo-
. nentes €,,,, €,,, ,'.>:/1 de la deformación en un punto, puede determinarse la 
deformación longitudinal y tangencial de orientación cualquiera, en ese 
mismo punto. 
Al producirse una deformación, el elemento lineal PQ (fig. 17a) que une 
los puntos (x, y) y (x + dx, y + dy) sufre una traslación, una extensión 
(o contracción) y un giro convirtiéndose en el elemento P'Q'. Las compo-
nentes del desplazamiento de P son u y v y las del d,e Q: 
iJu iJu 
~. + iJx dx + ay ay, 
oV . all v+-ax+-dy ax ay 
40 TEORIA DE LA ELASTICIDAD 
Si el elemento P'Q' (Hg. t 7a) es trasladado de forma que P' coincida 
eón P, llevándolo a la posición PQ" de la figura 17b, los segmentos QR 
y RO" representarán las componentes del desplazamiento de O con rela-
ción a P. En consecuencia: 
RQ" av d + av a = ax x dy y (a) 
Flc.17Las componentes QS y SQ" de este desplazamiento relativo, la pri-
mera normal y la segunda pal'alela a PQ" respeetivam'ente, pueden de-
ducirse de las anteriores obteniéndose las expresiones: 
QS = -QR sen (} + RQ" cos O, SQ" = QR cas e + RQ" sen O (b) 
en las que el pequeño ángulo QPS ha sido despreciado frente a O. Puesto 
que el segmento QS puede identificarse con un arco de circunferencia 
de centro en P, SQ" nos da el alargamiento de PQ. La deformación lon-
gitudinal de rQ' señalada por fo, es, en consecuencia, SQ"/PQ y su ex-
presión deducida de (b) y (a) queda: 
ES = cos IJ (au dx + au dY) + sen (J (av dx av dY) 
, ax ds a y ds ax as + ay ds 
8u (au av) av 
= a:c C082 e + ay + ax sen 8 cos O + alen2 IJ 
o lo que es lo mismo: 
E~ = Ez cos~ 8 + 'Y%1/ sen (} cos ti + E.sen! 8 (e) 
expresión de la defó~mación longitudinal en la dirección O. 
El ángulo q'o girado por PQ es igual a QS/PQ y la ex.presión del mismo 
deducida de (b) y (a) es: 
(au d:c + 8u dY) + e (all d:c + av dY) oh = - sen O ax d8 ay ds cos éJ:c ds ay ds 
() 
av (av élU) au "'e = - cos2 O + - - - sen Ocas 9 -:- -a sen2 9 ax ay éJ:c y (d) 
TENSIONES PLANAS Y DEFORM/l.CIONES PLANAS 41 
, El elemento PT nonnal a PQ forma con el eje x el ángulo O + ("./2) Y el 
" , V'o + ~ ¡Jor él sufrido se d~duce de (á) sustituyendo () por O + 11:/2. 
que cos [O ,,1- (n/2)] = - sen O y sen [1} + (:n:/2)] = cos e Be-
: gamos a: 
av (élV au) 8u "'e+'!! = - 5"n2 (} - - - - sen 8 cos 8 - - C082 O 
2 ax ay élx ay (e) 
.JJadeformación tangencial Yo para las direcciones PQ, PT es 'fo - V'o+-f 
, ,~iferencia cuya expresión es: 
(au au) (av Ou) . 'Y9 = - + - (cos2 /J - sen! e) + - - - 2sen O cos 8 a,¡; ay ay ox 
,he = -h"ll (C082 8 - sen2 8) + (EU- E,,) sen (} cos 8 (1) 
De la comparación con las fórmulas (13) se deduce que las expre-
!iiones (e) y ifJ pueden obtenerse a partir de ellas sin más que cambiar 
, ;;. por Eo , T por Yo/2, 0'", por Ex, O'y por Ey, T:z;y por 1,,,,"/2 ya por O. En canse-
'c;:uencia toda conclusión referente a (j y T deducida de (13) admite otra 
semejante aplicable a fo Y 1'6/2 deducida de Ce) y (f). De ahí que podamos 
enunciar los siguientes resultados. Existen dos valores de e, que difieren 
900 para los que Yo = O. Tales valores vienen dados por: 
_ 'Y"", _ = tg 2/J 
E. - Eu 
Las deformaciones Eo correspondientes son las deformaciones przncz.-
pales~ Se puede dibujar un círculo de Mohr análogo al de la figura 13 Ó 16, 
cuyas ordenadas y abscisas representen a Yo/2 y En respectivamente_ Los 
", valores máximo y mínimo de fe son las defonnaciones principales El y E2 -
, 'El valor máximo de Yo /2 está representado por el radio del círculo, vi-
riiendo dada la deformaciÓn angular m-áxima 1'Om~" por la expresión: 
'Y~ "'.~ = El - E2 
11. Medida de las deformaciones superficiales. Las defor-
maciones longitudinales se miden muy a menudo mediante extensómetros 
a resistencia eléctrica' _ Tales extensómetros consisten en resistencias 
eléctricas embebidas en un soporte aislante que es pegado a la superficie. 
Cuando la superficie se deforma la resistencia eléctrica varía y la defor-
mación puede, en consecuencia, ser medida eléctricamente. 
El liSO de tales extensómetros es sencillo cuando se conocen las direc-
ciones principales. Si se coloca un extensómetro ¡;iguicndo cada dirección 
lUna mformaclón detallada es dada en el Ilalldhook of Experullelllal Stress Analj's/v. 
capítulos 5 y 9. '_, 
42 TEORIA DE LA ELASTICIDAD 
'principal lje obtiene directamente la medida de El y Ea. Las tensiones prin-
cipales 0"1) Il"o pueden entonces deducirse empleando la ley de Hoolce, 
ecuación (3), en la que se hace a", = al, l1u = 0'2 Y 11, = O, condición esta 
última que nace de suponer que no actúa ninguna fuerza sobre la super-
ficie a la que se han pegado los extensómetros. Entonces: 
Cuando no se conocen, a priori, las direcciones principales es nece-
sario realizar tres medidas. El estado de deformación, en efecto, está 
completamente determinado si se pueden medir E . ., fu Y y:¡;u' Sin embargo, 
o·~ __ ~~~ ____ ~ __ 
(e) 
Fu:;. 18 
puesto que los extensómctros miden deformaciones longitudinales y no 
tangenciales es necesario realizar la medid¡¡ de la deformación longitudinal 
en el punto según tres direcciones. El conjunto de tres extensómetros 
que realiza esta medida recibe el nombre de «roseta'). Co~ocidas esas tres 
deformaciones se puede dibujar el círculo de Mohr, mediante la sencilla 
construcción! dada en el § 12 Y determinar las direcciones principales. 
Sean los tres extensómetros de la roseta los representados mediante las 
líneas continuas de la .figura 18a en la que la línea a trazos corresponde 
a la dirección de la deformación principal Elo que forma el ángulo <p con 
el primer extensómetro. 
Si como direcciones x e y de las ecuaciones (e) y (f) del § 10 se hubie-
ran tomado las dire~ciones principales, E" sería E¡, I:y 1:2 Y y"v cero. Las 
ecuaciones serían entonces: 
es = El cos~ {} + ~2 sen2 9, 
en las que (J es el ángulo medido a partir de la dirección de €¡. Las mismas 
ecuaciones pueden escribirse: 
ee = 'Hel + E2) + i(El - El) COS 28, 
I Glenn Murphy, .'J. Applied Mecha/lics (Tralls. A.S.M.E.), vol. 12, pág. A-209, 1945; 
N. J. Hoff, ibíd. 
TENSIONES PLA\'IAS y DE~'ORMACIONES PLANAS 43 
se ve que los valores de E8 y ! Yo están representados por el punto 
"de la circunferencia de la figura 18c. Si 8 toma el valor rP, P se convierte 
el punto A de la figura 18b fortnanc;lo FA con el eje E el ángulo 2 <p. 
abscisa de este punto que es E~ ha sido medida. Si (} toma el valor 
+ a, P se desplaza a B mediante el incremento angular AFB = 2a y 
abscisa conocida- es Ea+<f>. Si, finalmente, (} toma el valor p + a + P, 
se mueve hasta e aumentando el ángulo en BFe = 2{J Y siendo la abs-
también medida, Ea,p+.¡.. Partiendo de esto vamos a estudiar ahora 
dibujar el circulE) cuando se conocen esas tres abscisas y los dos án-
a y p. 
del círculo de Mobr a partir de las medidas 
con una roseta. Tomemos un eje E horizontal con un 
cualquiera O' (fig. 18b) a partir del cual se llevan las deformacio-
medidas €.¡., €a.~ y Ea.p_.p. Por los puntos así determinados tra-
:: cemos rectas normales al eje e. Elegido un punto cualquiera D en la normal 
Ea "'~' se trazan las rectas DA y De que forman con esa normal los 
a y p y que cortan a las otras en los puntos A y e. La circunfe-
buscada es la que pasa por los puntos B, A, e y su centro F está 
por la intersección de las mediatrices de los segmentos 
y DA. Dado que el ángulo AFB es 2a por ser doble del ADB y que por 
mismo el BFe es 2f3, ocurre que los tres puntos A, B Y e representan 
deformaciones en la dirección de los, extensómetros. Los puntos A, 
y e, en efecto, guardan dentro del círculo el intervalo angular requerido 
tienen las abscisas correctas. Si trazamos ahora el eje Eo, que se can-
ean OF, las distancias de O a las intersecciones de la circunferencia 
este eje nos dan El y E •• El ángulo 2 <p es el formado por el eje con 
medido a partir del eje en el sentido de las agujas del reloj, y su co-
:1l'lJLJ,JUlt:I,lLU nos informa sobre cuá~es son las dil'ecciones principales. 
\ Ecuaciones diferenciales de equilibrio. Consideremos ahora 
,: ,,~f.equilibrio de un pequeño bloque rectangular de espesor unidad cuyas 
: '9tras dimensiones son h y k (fig. 19). Las tensiones que actúan sobre las 
" 'caras 1, 2, 3, 4- y sus direcciones positivas son indicadas en la figura. Puesto 
,,'que las tensiones que actúan en el material varían de un punto a otro el 
valor de (/%, por ejemplo, no es exactamente el mismo en la cara 1 que en 
'" la cara 3. Los símbolos U z , ay, 7:",y se refieren al punto (x, y), punto central 
<lel rectángulo de la figura 19. Los valores en los puntos centrales de las 
" son indicados por (0'",)1) (O'Z)3 etc. y dado que las caras son muy 
"pequeñas, las fuerzas, correspondientes se obtienen multiplicando estos 
valores por el área d~ la cara sobre la cual actúan). 
, 
I Uno considernción más exacta introduciría infinitésimosde orden superior que desapa-
,recen en el proceso.,final en el que se tiende al límite. 
44 TEORIA DE LA ELASTICIDAD 
Las fuerzas másicas que actúan sobre el bloque, que fueron despre-
ciadas por ser un infinitésimo de orden superior al considerar el equilibrio 
del prisma triangular de la figura 12, deben ser ahora tenidas en cuenta 
puesto que son del mismo orden de magnitud que los términos debidos 
¡;t (O"Y}4 
Iy (roc:y~ 
"":::";:=:4:1.===:.... 
(.:l:.y) 
2 (t:;,;;y).t 
(t:;cy)z 
(O"y'z 
FIC.19 
a la variaCl0n de los componentes de la tensión, términos éstos que son 
considerados ahora. Si X e Y indican los componentes de la fuerza másica 
por unidad de volumen la ecuación de equilibrio para las fuerzas que 
actúan en la dirección x queda así: 
(G'",hk - (G'.)"k + (r=vhh - (r",,)¡h + Xhk = O 
que dividiendo por hk da 
(er.)1 - (cr",h + (r""h - (r:v), + X = O 
h l~ 
Si ahora hacemos tender el volumen del bloque a cero, es decir h ....,.. 0, 
k -+ O e! límite de [(0'.)1 - (u",)a]/h es OU,jOT Y de forma semejante el 
de [(1:,..). - (1:",,)4]/k es OrTvloy • Si el mismo proceso es seguido con 
fuerzas que actúan en la dirección y, las ecuaciones de equilibrio quedan 
así: 
au., + fJr:v + X = O 
fJ:c ay 
~~ +aro:y + y = o 
ay éJx 
(18) 
En las aplicaciones prácticas la única fuerza másica existente es el peso. 
En consecuencia, tomando el eje y vertical y hacia abajo y llamando f! a 
la densidad, las ecuaciones (18) sc convierten en: 
(19) 
Estas son las ecuaciones diferenciales de equilibrio, correspondientes 
':' á problemas elásticos bidimension!lles. 
" 14. Condiciones de contorno. Las ecuacIOnes (18) o (19) deben 
ser satisfechas en todos los' puntos de! cuerpo considerado. Ahora bien, 
, las componentes de la tensión varían de punto 11 punto de la placa y al 
llegar a sus bordes deberán equilibrar las fuerzas exteriores aplicadas en 
:' los' mismos, de modo tal que dichas fuerzas pueden ser consideradas 
como una continuación de la distribución interna de los esfuerzos. Las 
FIC. 20 
condiciones de equilibrio en e! borde de la placa pueden deducirse de las 
',c'cuaciones (12). Suponiendo al prisma triangular elemental aBC de la 
figura 12, dispuesto de manera que la cara BC coincida con un elemento 
'superficial del contorno de la placa, como se ve en la figura 20, y llamando 
X e Y 11 las componentes de las fuerzas superficiales, por unidad de su-
perficie en ese punto del contorno, dichas ecuaciones serán para este caso: 
X = ler. + m;o:y 
y = .mcru + lrzv (20) 
en las cuales 1 y 1n son los cosenos directores de la normal N al contorno. 
,',' En el caso particular de una placa rectangular, se toman, por lo ge-
, lleral, los ejes coordenados paralelos a sus cantos y las condiciones de 
contorno expresadas en (20) pueden simplificarse. Tomando, por ejem-
plo, un borde de la placa paralelo al eje x, tendremos para esta parte del 
contorno que la normal N es paralela al eje y, de modo que 1 = O y m = ± 1 
con Jo que las ecuaciones (20) se reducen a: ' 
Se deberá tomar el signo pOSItIVO cuando la normal N tenga el sen-
tido del semieje positivo de las y y el signo negativo para el sentido con-
trario de N. De aquí resulta, que las componentes de las tensiones que se 
desarrollan en el contorno de la placa son iguales a las componentes de las 
fuerzas superficiales, ,referidas a la upidad de á~ea periférica. . . 
15. Ecuaciones de compatibilidad. El problema de la teoría de 
la elasticidad con:siste, en general, en determinar el estado tensioIlal que 
TEORIA DI! LA EI./lSTICIDAD 
s~ orIgma en un cuerpo sometido a la acción de determinadas fuerzas. 
'En el caso de problemas bidimen1lionales, es necesario para ello resolver· 
las ecuaciones diferenciales de equilibrio (18) y la solución debe ser tal, 
que satisfaga las condiciones de contorno (20). Dichas ecuaciones .dedu-
cidas de las ecuaciones de la estática, aplicables a cuerpos absolutamente 
rígidos, contienen las tres componentes uz , au, 'XII' no bastando para la 
detenninación de las mismas. El problema es estáticamente indetermi-
nado y para su solución es necesario considerar la deformación elástica 
del cuerpo. 
La expresión matemática de la condición de compatibilidad entre la 
distribución de tensiones y la existencia de las funciones continuas u, v, 
'W, que definen la deformación se obtiene a partir de las ecuaciones (2). 
En los problemas bidimensionales deberán considerarse solamente tres 
componentes de la deformación, a saber: 
av 
ell = éJy' (a) 
Estas tres componentes de la deformación son expresables en función 
de u y v y, por lo tanto, sus valores no pueden ser arbitrarios sino que han 
de estar ligados entre sí. La relación existente -entre ellos se deduce fácil-
mente de (a). Derivando dos veces respecto a y la primera ecuación de 
(a), dos veces respecto a x la segunda y respecto a x e y la tercera, ob-
tenemos: 
éJ2e", a2Eu a 2"(=1I 
aya + ox2 = ax ay (21) 
Esta ecuaClon diferencial se llama condici6n de compatibilidad y debe 
ser satisfecha por las componentes de la deformación, para asegurar la 
existencia de las funciones u y v vinculadas a aquéllas por las ecuacio-
nes (a). 
Aplicando la ley de Hooke [ecuaciones (3)J la condición (21) puede 
expresarse en función de los componentes de la tensión. 
En el caso de un estado tensional plano las ecuaciones (3) se reducen a: 
1 1 
E~ =. E (O'., - VfTu), eu = 1Jj (0'11 - VIT~) (22) 
1 2(1 + v) 
'Y:w = lJ'T"" = E 'I''''lI (23) 
y sustituyendo en (21) se tiene: 
az aa ( = 2(1 + v) a2T=1I ay2 (ITe - VITv) + ax2 IT1/ - !lIT:) ax ay (b) 
Mediante las ecuaciones de equilibrio podemos dar a esta ecuación una 
forma diferente. En primer término, consideremos el caso en que el peso 
TENSIONES PLANAS Y DEFORMACIONES PLANAS 47 
cuerpo es la única fuerza másica, al cual corresponden las ecuaciones 
equilibrio (19). Diferenciando la primera de éstas respecto a x y la 
:sel(U:naa respecto a y y luego sumándolas se tiene: 
2 a2T"" = _ ;JaIT", _ a2crll 
iJx ay ax2 ay2 
sustitución de estos valores en la ecuación (b) se llega a la ecuación 
compatibilidad en función de las componentes de la tensión: 
(::2 + :;2) (U., + (Iv) = O (24) 
Si se procede análogamente con las ecuaci9nes generales de equilibrio 
tendrá: 
(O~2 + aéJ;a) (0'% + 0'1/) = -(1 + v) (~; + ~~) (25) 
En el caso de una deformación plana (§ 8) se tiene: 
0', = v(fT~ + O'JI) 
.Y de acuerdo con la ley de' Hooke [ecuaciones (3)) resultará: 
1 
E: = E [(1 - 1'2)0'= - 1'(1 + 1')0'11] 
1 
Eu = 1Jj [(1 - !lS)lTu - v(l + 1')11':] 
(26) 
2(1 + v) 
"1=11 = E 'I'=v (27) 
en la ecuaClOn (21) y teniendo en cuenta, como antes, las 
ecuaciones de equilibrio (19) concluimos que la ecuación de compati-
.b.ilidad (24), es válida también en el caso de la deformación plana. Para 
·.el caso general de fuerzas másicas las ecuaciones (21) y (18) nos permiten 
bir la ecuación de compatibilidad bajo la forma siguiente: 
(a2 02) - 1 (ax ay) éJx2 + aya (0'% + IT,¡) = - 1 - l' éJx + ay (28) 
Las ecuaciones de equilibrio (18) o (19) conjuntamente con las con-
diciones de contorno (20) y una de las ecuaciones de compatibilidad que 
. quedan consignadas, constituyen un sistema de ecuaciones que, por lo 
permite la determinación completa de la distribución de las ten-
.. l:1iones en un problema bidimensional'. Más adelante se tratan los C'Il<O!l 
:. 1 En problemas tensionales planos existen condiciones de compatibilidad dl"tUlI." ,1, 1.ls 
. (21) que no son cumplidas por nuestras suposiciones. S}n embargo, en el § 84 d~?,ostrarcmos 
que pese a ello, los métodos pre • .,ntlldos en este capItulo dan lIna aproXlmaclon aceptable 
.' para placas delgadas:-. 
TBORIA DE LA ELASTICIDAD 
. particulares en los que es necesario agregar otras consideraciones (§ 39). 
$s . interesante destacar que cuan~o las fuerzas másicas son constantes, 
en las ecuaciones que determinan la distribución de (as tensiones no apa-
·recen las constantes elásticas del material, lo que quiere decir que la dis-
tribución

Continuar navegando

Materiales relacionados