Logo Studenta

Séries e Convergência

¡Este material tiene más páginas!

Vista previa del material en texto

1 
 
 INSTITUTO TECNOLOGICO DE 
CERRO AZUL 
 
 
 
CALCULO INTEGRAL 
ALUMNO: 
 CRISTIAN SÁNCHEZ HERNÁNDEZ 19500474 
 
UNIDAD: 4 
Series. 
 DOCENTE: 
ING. RODOLFO ABDIEL CERON DELGADO 
 
CARRERA: 
INGENIERIA EN SISTEMAS COMPUTACIONALES 
 
CERRO AZUL, VER .2022 
 
 
 
 
 
 
2 
 
Series. 
 
4.1 Definición de sucesión. 
 
SUCESIÓN. - Si el dominio de una función es el conjunto de enteros positivos, 
entonces los elementos en el rango pueden arreglarse en un orden 
correspondiente a los valores crecientes de n: ... se 
consideran funciones cuyo dominio es el conjunto de enteros positivos y cuyos 
elementos del rango son números reales. 
 
Una sucesión es una función cuyo dominio es el conjunto de enteros positivos 
(naturales), suele denotarse mediante 
 
sirve para números naturales 
 
 
 
 
 
 
 
http://www.codecogs.com/eqnedit.php?latex=f
http://www.codecogs.com/eqnedit.php?latex=f(n)
http://www.codecogs.com/eqnedit.php?latex=f(1),f(2),f(3),......,f(n)
http://www.codecogs.com/eqnedit.php?latex=(a_%7Bn%7D)o(a_%7Bn%7D)%5E%7Boo%7D_%7Bn=1%7D.
https://sites.google.com/site/ciclopezlopezmiriamj/4-series/4-1-definicion-de-sucesion/1.png?attredirects=0
 
3 
 
 
4.2 Definición de serie. 
 
Una serie es una sucesión de un conjunto de términos formados según una ley 
determina. 
 
Por ejemplo, 1,4,9,16,25 
 
Es la suma indicada de los términos de una secesión. Así de las sucesiones 
anteriores obtenemos la serie: 
1+4+9+16+25 
 
Cuando el número de términos es limitado, se dice que la sucesión o series finita. 
Cuando el número de términos es ilimitado, la sucesión o serie se llama sucesión 
infinita. 
El término general o término enésimo es una expresión que indica la ley de 
formación de los términos. 
 
4.2.1 Finita 
 
Una serie numérica es un conjunto especial de números que se forma 
ordenadamente siguiendo determinada ley o condición, así por ejemplo. 
 
 
2, 4, 6, 8, 10, 12, 14 
2, 4, 8, 16, 32, 64,.... 
1, 1/2, 1/3, 1/4, 1/5 
3, 6, 10, 12, 14, 20 
 
 
Cuando la sucesión tiene un último término se dice que la sucesión es finita. 
 
xi = 0 para todo i > n y yi = 0 para todo i > m. En este caso el producto de 
Cauchy de 
Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy 
es directamente la multiplicación de las series. 
 
 
xi = 0 para todo i > n y yi = 0 para todo i > m. 
 
http://1.bp.blogspot.com/-0DBMd-Kw4dA/TeQTzglJFoI/AAAAAAAAACE/PJ2gixnk1uA/s1600/6.jpg
 
4 
 
En este caso el producto de Cauchy de y se verifica 
es . 
 
Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy 
es directamente la multiplicación de las series. 
 
 
4.2.2 Infinita 
 
Es un arreglo ordenado de números reales, uno para cada entero positivo. Mas 
formal mente una sucesión infinita es una función cuyo dominio es el conjunto de 
enteros positivos y cuyo rango es un conjunto de números reales. Podemos indicar 
una sucesión mediante a1 ,a2 ,a3,...., simplemente por {an} 
 
Se puede especificar una sucesión dando suficientes términos iniciales para 
establecer un patrón como en 
 
1, 4, 7, 10, 13, .... 
 
mediante una formula explicita para el n-énesimo termino, como en 
 
an = 3n-2, n ≥ 1 
 
Para alguna , sea y . Entonces 
 
 
 
por definición y la fórmula binomial. Dado 
que, formalmente, y , se ha demostrado 
que . Como el límite del producto de Cauchy de 
dos series absolutamente convergentes es igual al producto de los límites de 
esas series, se ha demostrado por lo tanto la fórmula exp(a + b) = 
exp(a)exp(b) para todo . 
 
 
 
5 
 
4.3 Serie numérica y convergencia. Criterio de la razón. Criterio de 
la raíz. Criterio de la integral. 
 
Convergencia: considere las cuatro sucesiones recién definidas. Cada una tiene 
valores que se aplican cerca de 1. Para que una sucesión converja a 1, primero 
debe ocurrir que los valores e la sucesión se acerquen a 1. Pero deben de hacer 
algo más que estar cerca; deben permanecer cerca, para toda n más allá e cierto 
valor. Esto descarta la sucesión {cn}. además, cerca significa arbitrariamente cerca, 
es decir, entro de cualquier distancia no anulada con respecto a 1, lo cual incluye a 
{dn}. Aunque la sucesión {dn} no converge; decimos que diverge. 
 definición: La sucesión {an} se dice que converge a L y escribimos: 
Lim n->∞ , an=L 
Si para cada número positivo ɛ existe un numero positivo correspondiente a N tal 
que 
n>= N -> |an-L|< ɛ 
Si no hay un numero finito L al que converja una sucesión, se dice que 
este diverge, o que es divergente. 
 
**Criterio de D'Alembert (Criterio de la Razón) 
 
Sea una serie Ʃk=1(ak), tal que ak > 0 ( serie de términos positivos). 
Si existe 
 
 
 
 
Con {L €[0,+ ∞)} , el Criterio de D'Alembert establece que: 
• si L < 1, la serie converge. 
• si L > 1, entonces la serie diverge. 
• si L = 1, no es posible decir algo sobre el comportamiento de la serie. 
En este caso, es necesario probar otro criterio, como el criterio de Raabe. 
 
**Criterio de Cauchy (Raíz Enécima) 
 
 
Entonces, si: 
http://1.bp.blogspot.com/-9Rh-C0GDCIw/T_zDB_ZznqI/AAAAAAAAAEA/5Z28PgqIDzA/s1600/1.png
http://1.bp.blogspot.com/-VVRuvrUCKH0/T_zEIYmRxMI/AAAAAAAAAEI/54HJTkTHl1s/s1600/2.png
 
6 
 
• L < 1, la serie es convergente. 
• L > 1 entonces la serie es divergente. 
• L=1, no podemos concluir nada a priori y tenemos que recurrir al 
criterio de Raabe, o de comparación, para ver si podemos llegar a alguna 
conclusión. 
 
4.4 Series de potencias. 
 
Series de Potencias 
Una serie de potencias es aquella que tiene la forma: 
 
 
 
En donde “x” es una variable y los cn son constantes, llamadas “constantes de la 
serie” y cada “x”, fija, la serie (1) es una serie de constantes que podemos probar 
para ver si es convergente. Una serie de potencias puede converger ante ciertos 
valores de “x” y divergir de otros. La suma de la serie de una función: 
 
 
 
 Cuyo dominio es el conjunto de todas las para las cuales la serie es convergente. 
Observe que es parecida a un polinomio. La única diferencia es que tiene una 
cantidad infinita de términos. 
Se llama serie de potencias en (x-a), o serie de potencias centrada en a o serie de 
potencia alrededor de a. 
Ejemplo: 
 
 
¿Para qué valores de la serie es convergente? 
 
 
 
 
 
Al aplicar la regla de comparación. Si denota con como se acostumbra, el n-ésimo 
término de la serie, después Si . 
 
http://2.bp.blogspot.com/-H9NXsxrvPd0/T_3g6DpTMeI/AAAAAAAAACM/UoA5BsFiw_4/s1600/1c.bmp
http://4.bp.blogspot.com/-OCOhNsMPfCQ/T_3hLvDfR7I/AAAAAAAAACU/wggQyg6pEa0/s1600/2c.bmp
http://2.bp.blogspot.com/-xqFTTnw4xbc/T_3hYNO6QaI/AAAAAAAAACc/83xiolGEQHs/s1600/3c.bmp
http://3.bp.blogspot.com/-62Rd4UbkU3I/T_3huhLGfFI/AAAAAAAAACk/AknwAlPBT8g/s1600/4c.bmp
 
7 
 
 
 
 
Según la regla de comparación, la serie es divergente cuando. En estos términos, 
la serie dada converge cuando x=0 
 
4.5 Radio de convergencia. 
El radio de convergencia de una serie de potencias es el radio del círculo de 
convergencia al cual la serie converge. Dicho círculo se extiende desde el valor que 
anula la base de las potencias hasta la singularidad más cercana de la función 
asociada a la serie. 
Toda función analítica f(z) tiene asociada una serie de potencias en torno un punto 
no singular, denominada serie de Taylor: 
Figura 1. La gráfica muestra la serie de potencias en torno al valor a=1 para la 
función f(x). Su radio de convergencia es r=2. Fuente: Fanny Zapata. 
Donde a es el centro del círculo de convergencia, z la variable independiente de la 
función y los cn son coeficientes relacionados con las derivadas de la función f en el 
punto z=a. 
El radio de convergencia r es un número real positivo que define la región: 
https://www.lifeder.com/graficas/
 
8 
 
|z – a| < r 
Donde la serie converge. Fuera de esa región la serie diverge, es decir toma valores 
infinitos. Cuandoel radio de convergencia es infinito, entonces la serie converge en 
todo el plano complejo. 
Índice del artículo 
¿Cómo se determina el radio de convergencia? 
Para que una serie sea convergente es necesario que el valor absoluto de los 
términos sucesivos vaya en disminución cuando el número de términos sea muy 
grande. En forma matemática se expresaría de la siguiente manera: 
 
Usando las propiedades de los límites en la expresión anterior se obtiene: 
 
Aquí r es el radio de convergencia y |z – a| < r es el círculo de frontera abierta en el 
plano complejo donde la serie converge. En caso que el valor a y la variable z sean 
números reales, entonces el intervalo abierto de convergencia sobre el eje real 
será: (a – r, a+r). 
Serie de Taylor 
La serie de Taylor de una función f(x) en torno a un valor a en el que la función tiene 
infinitas derivadas, es una serie de potencias que se define como: 
 
 
9 
 
En el entorno | x – a | < r, con r como el radio de convergencia de la serie, se tiene 
que la serie de Taylor y la función f(x) coinciden. 
Por otra parte, el radio de convergencia r es la distancia que hay del punto a y la 
singularidad xs más cercana al punto a, siendo los puntos singulares aquellos 
valores donde el límite de la función tiende a infinito. 
Es decir, que cuando x → xs entonces f → ±∞. 
Ejemplos 
Ejemplo 1 
Sea S(x) la serie de potencias dada por la siguiente expresión: 
S(x) = 1 – x + x2– x3+ x4– …….+(-1)n ⋅ xn + …. 
Para determinar la región donde la serie converge, calculamos el cociente entre el 
término (n-ésimo + 1) y el término (n-ésimo): 
 
El valor absoluto del cociente anterior es |x| y su límite cuando n → ∞ también 
es |x|. 
Para que la serie sea convergente es necesario que: 
 
Entonces el radio de convergencia de esta serie es r=1, ya que la misma converge 
para los valores de x que están a una distancia menor que 1 respecto del centro x 
= 0. 
Ejemplo 2 
 
10 
 
Se quiere encontrar la serie de Taylor de la función f(x) = 1 / (1 + x) en torno al 
punto x=0 y determinar su radio de convergencia. 
Para encontrar la serie tomamos las derivadas sucesivas de la función f(x), de las 
cuales mostraremos las tres primeras: 
 
Tomando en cuenta que el término de orden cero de la serie de Taylor es: 
 f(0)=1, 
El de primer orden: f’(0)/1! 
Segundo orden: 
 f’’(0)/2! 
Tercer orden: 
 f’’’(0)/3! 
Y así sucesivamente, se tiene que la serie de Taylor de la función dada es: 
f(x) = 1 – x + x2 – x3 + x4 – …….+(-1)n ⋅ xn + …. 
Que coincide con la serie de potencia estudiada en el ejemplo 1. 
Ya hemos dicho que el radio de convergencia de una serie de Taylor es la distancia 
desde el centro de la expansión en serie, que en nuestro caso es el valor x=0 hasta 
la primera singularidad de la función f(x). 
https://www.lifeder.com/potencia-fisica/
 
11 
 
Como nuestra función tiene una singularidad (es decir, un infinito) en x = -1, la 
distancia entre el valor -1 y el centro de expansión 0 es |-1 – 0| = 1, se concluye que 
el radio de convergencia de la serie de Taylor es 1. 
Este resultado coincide plenamente con el obtenido en el ejemplo 1 por otro método. 
El hecho de que la zona de convergencia de la serie de Taylor sea el intervalo 
abierto (-1, 1) implica que la función y la serie coinciden en este intervalo, pero no 
fuera del mismo. 
Eso se muestra en la figura 2, donde se han tomado 41 términos de la serie de 
Taylor, dibujada mediante la línea azul continua, mientras que la función original se 
muestra en línea roja de segmentos. 
Figura 2. Se muestra la función f(x) (en rojo) y su serie de potencias (o serie de 
Taylor en azul). Puede verse como los primeros 41 términos de la serie convergen 
entre -1 y 1. Además la función y su serie coinciden solo en la región de 
convergencia. 
 
 
 
 
 
4.6 Serie de Taylor. 
 
12 
 
 
La serie de Taylor es una serie funcional y surge de una ecuación en la cual se 
puede encontrar una solución aproximada a una función. Proporciona una buena 
forma de aproximar el valor de una función en un punto en términos del valor de la 
función y sus derivadas en otro punto. 
 
Por supuesto, para hacer esta aproximación sólo se pueden tomar unas cuantas 
expresiones de esta serie, por lo que el resto resulta en un error conocido como el 
término residual, es a criterio del que aplica la serie en número de términos que ha 
de incluir la aproximación. Pueden resolver por aproximación funciones 
trigonométricas, exponenciales, logarítmicas etc. La serie de Taylor se basa en ir 
haciendo operaciones según una ecuación general y mientras más operaciones 
tenga la serie más exacto será el resultado que se está buscando. 
 
En matemáticas, la serie de Taylor de formula función f infinitamente derivable (real o 
compleja) definida en un intervalo abierto (a-r, a+r) se define con la siguiente suma: 
 
 
 
 
 
¡Aquí, n! es el factorial n y f (n)(a) indica la n-ésima derivada de f en el punto a. 
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es 
igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie 
converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una 
función es analítica si y solo si se puede representar con una serie de potencias; los 
http://es.wikipedia.org/wiki/Matem%C3%A1ticas
http://es.wikipedia.org/wiki/Funci%C3%B3n
http://es.wikipedia.org/wiki/Intervalo_abierto
http://es.wikipedia.org/wiki/Factorial
http://es.wikipedia.org/wiki/Derivada
http://es.wikipedia.org/wiki/Teorema_de_Taylor
http://1.bp.blogspot.com/-fG5lRPrcUig/Td1dccJUEhI/AAAAAAAAAA8/oigbvvWRu04/s1600/grafica2.jpg
http://1.bp.blogspot.com/-xgx9z8v-jUk/Td1dy_oiwXI/AAAAAAAAABA/Nd5p1jqJ4ng/s1600/2.PNG
 
13 
 
coeficientes de esa serie son necesariamente los determinados en la fórmula de la 
serie de Taylor. 
Si a = 0, a la serie se le llama serie de Maclaurin. 
Algunas funciones no se pueden escribir como serie de Taylor porque tienen 
alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo 
en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo, f(x) 
= exp(−1/x²) se puede desarrollar como serie de Laurent. 
 
 
 
¡Donde n! es el factorial de n 
F(n) es la enésima derivada de f en el punto a Como se puede observar en la 
ecuación, hay una parte en la cual hay que desarrollar un binomio (x-a) n por lo que 
para simplificar el asunto se igualara a "a" siempre a 0. Para fines prácticos no afecta 
mucho en el resultado si se hacen muchas operaciones en la serie. Teorema de 
Taylor: Si la función f y sus primeras n+1 derivadas son continuas en un intervalo 
que contiene a a y a x, entonces el valor de la función en un punto x está dado por: 
La expansión en series de Taylor de n-ésimo orden debe ser exacta para un 
polinomio de n-ésimo orden. Para otras funciones continuas diferenciables, como 
las exponenciales o sinusoidales, no se obtiene una estimación exacta mediante un 
número finito de términos. 
 El valor práctico de las series de Taylor radica en el uso de un número finito de 
términos que darán una aproximación lo suficientemente cercana a la solución 
verdadera para propósitos prácticos. ¿Cuántos términos se requieren para obtener 
una “aproximación razonable”? La ecuación para el término residual se puede 
expresar como: 
 
 
Significa que el error de truncamiento es de orden hn+1. El error es proporcional al 
tamaño del paso h elevado a la (n+1)-ésima potencia. 
 
 Existen series de Taylor para: 
• Función exponencial 
• Logaritmo natural 
Error de Propagación: 
Supóngase que se tiene una función f(u). Considere que ũ es una aproximación 
de u (ũ = u+h, con h tamaño de paso). Por lo tanto, se podría evaluar el efecto de la 
http://es.wikipedia.org/wiki/Singularidad
http://es.wikipedia.org/wiki/Serie_de_Laurent
http://1.bp.blogspot.com/-V_0Rs6oSCDg/Td1eTNewIAI/AAAAAAAAABE/qhaY5S47fXg/s1600/2.1.PNG
http://4.bp.blogspot.com/-07X0J5ghNbM/Td1e6hF9lWI/AAAAAAAAABI/ikytPML9lEk/s1600/2.3.PNG14 
 
discrepancia entre u y ũ en el valor de la función. 
 
 
 
 
Función e 
Se puede aplicar la ecuación de las series de Taylor como mas sencillo le resulte a 
cada quien, una de tantas formas la explicare aquí. Lo primero que se hace es 
derivar unas 3 o 4 veces la función, esto porque algunas funciones empiezan a tener 
un patrón repetitivo después de cierto numero de derivaciones, como la función e. 
Después se tiene que sustituir "a" en cada una de las derivadas, pero como se 
decidió que "a" era 0 se sustituye un 0 en cada derivada y se observa que resultados 
da. 
 
 
 
 
Esto de sustituir en cada derivada es solo para simplificar la ecuacion de la serie y 
para darnos una idea de como se comporta la funcion. Una vez que se tiene una 
idea del comportamiento de la funcion se puede ir empezando a armar la ecuación 
de la serie. 
 
 
 
Con las primeras operaciones que se hicieron al principio se puede ver como se ira 
llenando la serie mientras más elementos se le agreguen para que el resultado sea 
más preciso. 
 
Todo esto fue para ver cómo es la serie de la función e, ahora para conocer algún 
resultado simplemente se sustituye en donde quedaron las x y ya está, por ejemplo: 
 
http://2.bp.blogspot.com/-RBrLe3w12xA/Td1f5n1sMdI/AAAAAAAAABM/0mESGa0rnws/s1600/2.4.PNG
http://4.bp.blogspot.com/-v5byUo2e5eI/Td1gjxXMACI/AAAAAAAAABQ/v2L8M1ZLfMU/s1600/2.5.PNG
http://3.bp.blogspot.com/-oyFxotKjImY/Td1g2_T3UTI/AAAAAAAAABU/x3X6tGXHue4/s1600/2.6.PNG
 
15 
 
 
 
Función Coseno 
Para el coseno el procedimiento es el mismo. 
Primero se deriva varias veces la función y se sustituye en valor de "a" en cada una 
para observar el patrón. 
 
 
 
Después se va llenando la serie de Taylor para después hacer una ecuación 
general: 
 
 
 
Por último, se desarrolla la ecuación general para cualquier caso: 
 
 
 
http://1.bp.blogspot.com/-airg2T1ReBU/Td1hQrWcuxI/AAAAAAAAABY/NUwyhtz_fuQ/s1600/2.7.PNG
http://4.bp.blogspot.com/-mMQzw53yVuc/Td1hzbdI8tI/AAAAAAAAABc/JkNPtWNa7hc/s1600/2.8.PNG
http://1.bp.blogspot.com/-fdSt7f8FmZY/Td1ic-K8uoI/AAAAAAAAABg/vUDnNhO6FU8/s1600/2.9.PNG
http://1.bp.blogspot.com/-oUPUTscJIBA/Td1ivLmc4PI/AAAAAAAAABk/s5q6TyJoYcA/s1600/3.PNG
 
16 
 
4.7 Representación de funciones mediante la serie de Taylor. 
En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real 
o compleja) definida en un intervalo abierto (a-r, a+r). 
 
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es 
igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie 
converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. 
Una función es analítica si y solo si se puede representar con una serie de potencias; 
los coeficientes de esa serie son necesariamente los determinados en la fórmula de 
la serie de Taylor. 
 
Si a = 0, a la serie se le llama serie de Maclaurin. 
 
Esta representación tiene tres ventajas importantes: 
La derivación e integración de una de estas series se puede realizar término a 
término, que resultan operaciones triviales. 
Se puede utilizar para calcular valores aproximados de la función. 
Es posible demostrar que, si es viable la transformación de una función a una serie 
de Taylor, es la óptima aproximación posible. 
 
A continuación, se enumeran algunas series de Taylor de funciones básicas. Todos 
los desarrollos son también válidos para valores complejos. 
 
Función exponencial y logaritmo natural: 
 
 
 
 
 
 
 
Serie geométrica: 
https://1.bp.blogspot.com/--jwryAc24Uo/Xt6rZXbpHQI/AAAAAAAAAEA/JLKZDDOTecQsfzz0NltSpNt6zARJUieTACK4BGAsYHg/s200/images%2B%25281%2529.jpeg
https://1.bp.blogspot.com/-qo3ijNnWpUs/ULv5bhFVkGI/AAAAAAAAAFs/oVmgHXVtp-k/s1600/1.png
https://4.bp.blogspot.com/-yaZv1RWzAII/ULv5cTjEALI/AAAAAAAAAF0/lNdFSRZP3TQ/s1600/2.png
 
17 
 
 
 
 
 
Teorema del binomio: 
 
 
 
Funciones trigonométricas: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
https://3.bp.blogspot.com/-6JvOY6T-nTM/ULv5dXa9ZwI/AAAAAAAAAF8/hP64otz_brU/s1600/3.png
https://2.bp.blogspot.com/-hjz07KWBwWo/ULv689X9tSI/AAAAAAAAAGU/z-B-Bs6qBfk/s1600/1.png
https://2.bp.blogspot.com/-iDSiGWdLals/ULv6pqH_y4I/AAAAAAAAAGE/J--i-v6jNbE/s1600/1.png
https://4.bp.blogspot.com/-o2tPFAS3Itw/ULv6q4dE2PI/AAAAAAAAAGM/K3RpIjVPFU8/s1600/2.png
 
18 
 
4.8 Cálculo de integrales de funciones expresadas como serie de 
Taylor. 
 
Este teorema permite obtener aproximaciones polinómicas de una función en un 
entorno de cierto punto en que la función sea diferenciable. Además, el teorema 
permite acotar el error obtenido mediante dicha estimación. 
 
La serie de Taylor de una función f de números reales o complejos que es 
infinitamente diferenciable en un entorno de números reales o complejos, es la serie 
de potencias: 
 
O en forma compacta: 
 
 
que puede ser escrito de una manera más compacta como donde n! es el factorial 
de n yf(n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es 
definida como la propia fy(x− a)0 y 0! son ambos definidos como uno. 
 
 
CASO DE UNA VARIABLE 
Este teorema permite aproximar una función derivable en el entorno reducido 
alrededor de un punto a: E (a, d) mediante un polinomio cuyos coeficientes 
dependen de las derivadas de la función en ese punto. Más formalmente, si n ≥ 0 
es un entero y una función que es derivable n veces en el intervalo cerrado [a, x] 
y n +1 veces en el intervalo abierto (a, x). 
Donde denota la factorial de , y es el resto, término que depende de "x" 
y es pequeño si x está próximo al punto . Existen dos expresiones para que se 
mencionan a continuación: 
 
 
donde y "x", pertenecen a los números reales, "n" a los enteros y es un número 
real entre y "x": 
 
 
19 
 
Si es expresado de la primera forma, se lo denomina Término 
complementario de Lagrange, dado que el Teorema de Taylor se expone como una 
generalización del Teorema del valor medio o Teorema de Lagrange, mientras que 
la segunda expresión de R muestra al teorema como una generalización del 
Teorema fundamental del cálculo integral. 
 
Para algunas funciones , se puede probar que el resto, , se aproxima 
a cero cuando se acerca al ∞; dichas funciones pueden ser expresadas como series 
de Taylor en un entorno reducido alrededor de un punto "a" y son denominadas 
funciones analíticas. 
 
El teorema de Taylor con expresado de la segunda forma es también válido 
si la función tiene números complejos o valores vectoriales. Además existe una 
variación del teorema de Taylor para funciones con múltiples variables. 
 
 
 
CASO DE VARIAS VARIABLES 
El teorema de Taylor anterior puede generalizarse al caso de varias variables como 
se explica a continuación. Sea B una bola en RN centrada en el punto a, y f una 
función real definida sobre la clausura cuyas derivadas parciales de orden n+1 
son todas continuas en cada punto de la bola. El teorema de Taylor establece que 
para cualquier : 
 
Donde la suma se extiende sobre los multi-índices α (esta fórmula usa la notación 
multi-índice). El resto satisface la desigualdad: 
 
 
para todo α con |α|=n+1. Tal como sucede en el caso de una variable, el resto puede 
expresarse explícitamente en términos de derivadas superiores. 
 
 
 
 
 
 
20 
 
Bibliografía 
(s.f.). Obtenido de https://sites.google.com/site/ciclopezlopezmiriamj/4-series/4-1-
definicion-de-sucesion 
Adrian, S. R. (s.f.). blogspot. Obtenido de 
http://unidad4series.blogspot.com/2012/07/42-serie-numerica-y-
convergencia-prueba.html 
Bautista, O. J. (s.f.). blog spot. Obtenido de http://oswango-
investigacion.blogspot.com/p/unidad-
4.html#:~:text=Una%20serie%20es%20una%20sucesi%C3%B3n,formados
%20seg%C3%BAn%20una%20ley%20determina.&text=Cuando%20el%20
n%C3%BAmero%20de%20t%C3%A9rminos,sucesi%C3%B3n%20o%20ser
iede%20llamasucesi%C3%B3n%20 
Hernandez, F. V. (s.f.). blog spot. Obtenido de 
http://fermnn.blogspot.com/2012/07/43-serie-de-potencias.html 
IVAN, H. M. (s.f.). blog spot. Obtenido de 
http://calculointegralunidad4.blogspot.com/2012/07/411-finita.htmlIVAN, H. M. (s.f.). blog spot. Obtenido de 
http://calculointegralunidad4.blogspot.com/2012/07/412-infinita.html 
IVAN, H. M. (s.f.). blogspot. Obtenido de 
http://calculointegralunidad4.blogspot.com/2012/07/47-calculo-de-
integrales-de-funciones.html 
porfirio, r. (s.f.). blogspot. Obtenido de 
http://reyesporfirio.blogspot.com/2011/05/45-serie-de-taylor.html 
rodriguez, j. r. (s.f.). blog spot. Obtenido de 
https://calculointegrlfacil.blogspot.com/2020/06/46-representacion-de-
funciones-mediante.html 
Zapata, F. (s.f.). lifeder. Obtenido de https://www.lifeder.com/radio-de-
convergencia/

Continuar navegando