Logo Studenta

Reporte de prácticas 1-5 lab de fisica lV - Salvador Hdz M

¡Este material tiene más páginas!

Vista previa del material en texto

Universidad Autónoma de Nuevo León 
Facultad de Ingeniería Mecánica y Eléctrica 
 
Ing. Magda Patricia Estrada Castillo 
 
Alumno: Salvador Hernández Martínez 
Matricula: 2078047 
Brigada: 414 
Carrera: IMTC 
 
Periodo: Agosto-diciembre 2021 
Fecha de entrega: 16/09/2021 
 
 
 
Práctica # 1 introducción al laboratorio 
El ojo es uno d ellos instrumentos más versátiles de la naturaleza y desde el primero 
que fue capaz de ver en adelante la raza humana a tratado de ampliar su 
experiencia visual más allá de su nariz colectiva para proyectar la mirada hacia las 
maravillas del mundo, grandes y pequeñas, próximas y distantes. Naturalmente 
para hacer un examen completo no basta solo una percepción de la luz, sino que 
se requiere una clara perspectiva de sus propiedades. Las propiedades de la luz se 
comprenden mejor por el simple hecho de que la luz es una onda. 
Esto quiere decir que la luz debe tener propiedades comunes a todas las ondas, por 
ejemplo, las ondas pueden extenderse uniformemente hacia afuera a partir de una 
simple perturbación puntual pero las ondas debidas a un conjunto de fuentes 
cuidadosamente coordinadas pueden sumarse hasta formar frentes de ondas 
planas llamadas ondas planas. 
Se puede hacer que las ondas planas a su vez se propaguen de nuevo en todas 
direcciones porque las ondas se curvan alrededor de las esquinas y cuando los 
frentes de ondas se encuentran entre sí, pueden interferir formando ondas más 
fuertes o débiles. Ciertamente las ondas del agua hacen todo esto, pero es posible 
que las ondas de la luz lo hagan también. 
Ver la conexión entre el agua y la luz puede presentar más dificultades que ver las 
letras en la pared, por ejemplo, nadie intentó con más empeño que Galileo ampliar 
la visión convencional, pero como él mismo pudo comprobar, no todo el mundo ve 
las cosas del mismo modo ni acepta a primera vista lo que es nuevo, pero hasta 
1610 al menos hasta cierto punto tenía una poderosa herramienta en que apoyar 
sus razonamientos aunque en contra de la opinión popular Galileo no inventó el 
primer telescopio práctico, hizo un uso intensivo de él, y al final del siglo 16 su 
telescopio de refracción simple disparó la astronomía hacia el futuro, tal como 
revelan sus dibujos Galileo vio los anillos de saturno. 
Tal y como había dicho en la ciencia de la astronomía, también llevó a cabo un 
enorme avance en el campo, en contra de otra opinión popular, las gafas no son tan 
modernas como parecen, de hecho, en una sucesión de modelos desde el siglo 18, 
han venido constituyendo las gafas de cierto espectáculo, sin embargo, mientras 
que las monturas han estado sujetas al capricho de este, el diseñador de lentes se 
ha basado ordinariamente en un principio científico invariable. 
Este principio se aplica también a las lentes de los microscopios y de los telescopios, 
se llama refracción, la reflexión ocurre cuando la luz penetra en un medio como el 
cristal y se desvía, haciendo uso de este fenómeno los fabricantes de gafas, 
microscopios y telescopios pueden tallar lentes curvas que concentren la luz en un 
punto. 
Pero antes de eso es posible ver la refracción en un estado natural, de aquí un claro 
ejemplo: un prisma de vidrio no solo desvía o refracta un rayo de luz, también revela 
que la simple luz blanca está compuesta por todos los colores del arcoíris, este 
proceso se llama dispersión. 
Fue observado muy claramente por Isaac Newton que investigó tanto la refracción 
como la dispersión, según Milton la luz estaba constituida por partículas que 
obedeciendo la ley de inercia viajaban a través del espacio vacío en línea recta. 
Para Newton la refracción o desviación de la luz con materia, podría explicarse por 
la atracción gravitatoria entre luz y material, sin embargo, aproximadamente al 
mismo tiempo y en relación con el mismo asunto, surgió en Holanda un punto de 
vista opuesto. 
Una onda es una perturbación que se propaga desde un lugar a otro e 
independientemente de que se trate de ondas electromagnéticas, ondas del agua o 
cualquier otra clase de ondas, todas ellas tienen ciertas propiedades en común, por 
ejemplo, la frecuencia de una onda multiplicada por su longitud de onda es igual a 
su velocidad, las ondas mecánicas pueden ser longitudinales o transversales, 
mientras que las ondas electromagnéticas son siempre transversales y en el 
espacio vacío viajan siempre a la velocidad de la luz. 
Aunque tengan siempre la misma velocidad pueden tener frecuencias y longitudes 
de onda muy diferentes, al ser así estas ondas llegan tan lejos que crean el espectro 
electromagnético completo. 
De hecho, cuando las ondas electromagnéticas tienen una longitud de onda en el 
estrecho intervalo de 400 a 700 nanómetros constituyen la luz visible es el espectro 
desde el rojo al violeta, puntos de longitudes de onda más cortas llamadas luz 
ultravioleta son irradiadas por el sol, aunque esas radiaciones invisibles sean 
peligrosas para los seres vivientes, son absorbidas y convertidas en inofensivas por 
el ozono en la atmósfera de la tierra. 
Más cortos son aún los rayos X, las longitudes de onda son del tamaño de los 
átomos, finalmente los rayos gamma con las longitudes de onda más cortas de 
todas tan pequeñas como los propios núcleos atómicos, se crean en las reacciones 
nucleares. 
Práctica # 2 Estudio del fenómeno de la reflexión de la luz 
 
Hipótesis 
Se espera que el ángulo en el que se refleje va a depender del material de la 
superficie con el que choque el rayo de luz por ejemplo si es un espejo el rayo saldrá 
con el mismo ángulo porque todo lo que entra lo refleja y un cuerpo opaco absorberá 
la luz y no reflejará nada. 
Marco teórico 
La reflexión de la luz es el cambio de dirección de los rayos de luz que ocurre en un 
mismo medio después de incidir sobre la superficie de un medio distinto. Se rige por 
dos principios o leyes de la reflexión: 
El rayo incidente, el reflejado y la normal a la superficie en el punto de incidencia 
están en el mismo plano 
El ángulo del rayo incidente iˆ y el de reflexión rˆ son iguales 
iˆ=rˆ 
 
 
 
 
 
 
Reflexión 
El ángulo que forman el rayo incidente y el reflejado con la normal a la superficie de 
separación (en color rojo) es el mismo. 
En la reflexión no cambia la velocidad de la luz v, ni su frecuencia f, ni su longitud 
de onda λ. 
Atendiendo a las irregularidades que pueden existir en la superficie de reflexión, 
podemos distinguir dos tipos de reflexiones de la luz: 
 
Reflexión especular: Se produce cuando las irregularidades del medio son 
pequeñas en comparación con la longitud de onda de la luz incidente y se proyectan 
varios rayos sobre este. 
Reflexión difusa: Se produce cuando las irregularidades del medio son de un orden 
de magnitud comparable al tamaño de la longitud de onda de la luz incidente y se 
proyectan varios rayos sobre este 
 
Reflexión especular y difusa 
A la izquierda, la reflexión especular en la que los rayos se mantienen paralelos tras 
producirse la reflexión. A la derecha, la reflexión difusa donde los rayos se 
entrecruzan unos con otros en todas direcciones. 
Ley de la Reflexión 
Un rayo incidente sobre una superficie reflectante, será reflejado con un ángulo 
igual al ángulo de incidencia. Ambos ángulos se miden con respecto a la normal a 
la superficie. Esta ley de la reflexión se puede derivar del principio de Fermat. 
 
 
 
 
 
 
La ley de la reflexión da la familiar imagen reflejada en un espejo plano, en el que 
la distancia de la imagen detrás del espejo, es la misma que la distancia del objeto 
frente al espejo 
 
Mediciones y cálculos 
 
 
 
 
 
 
 
 
Conclusiones 
1.En discusión con todos los equipos del grupo se debe concluir acerca del 
cumplimiento de la ley de la reflexión para diferentes tipos de superficies. 
Si se cumplió la ley y como esperaba en la hipótesis, con cada reflexión de losespejos, sus formas y ángulos indicados. 
2. Concluya acerca de las características del fenómeno de la reflexión en superficies 
pulidas (espejos) y en superficies rugosas. ¿Qué tipo de reflexión es el más 
comúnmente observado en la práctica diaria? 
La reflexión es muy interesante, aunque vimos más en superficies brillosas. 
3. Discuta acerca del cumplimiento de la aproximación de rayos mencionada 
anteriormente. ¿Qué sería necesario hacer, para que fuera más adecuada esta 
aproximación? 
Que la abertura circular estuviera en un estado lo más perfecto posible, sin ser 
mayor ni menor que la longitud de onda. 
4. Mencione algunos ejemplos de aplicaciones de la reflexión de la luz. 
La luz solar reflejándose sobre el agua de algún rio, La luz solar cuando da directo 
a algún edificio con vidros que no permiten la vista hacia el interior, pero son 
reflejantes. 
Bibliografía 
https://www.fisicalab.com/apartado/reflexion-refraccion-luz 
𝜃𝑖 𝜃𝑟 
 0 
5 
10 
15 
20 
25 
30 
0 
5 
10 
15 
20 
25 
30 
𝜃𝑖 𝜃𝑟 
5 
10 
15 
25 
5 
10 
15 
25 
𝜃𝑖 𝜃𝑟 
 0 
5 
10 
15 
20 
0 
5 
10 
15 
20 
𝜃𝑖 𝜃𝑟 
5 
10 
15 
20 
N o 
refleja 
Práctica # 3 Estudio del fenómeno de la refracción de la luz 
 
Hipótesis 
Se espera que el rayo que va desde el aire al acrílico pierda la dirección original 
mas no la intensidad con la que sale e inversamente si el rayo se proyecta desde el 
acrílico al aire, pienso que si se deformaría o no saldría con la misma intensidad con 
la que incide. 
Marco teórico 
La refracción de la luz es el cambio de dirección de los rayos de luz que ocurre tras 
pasar estos de un medio a otro en el que la luz se propaga con distinta velocidad. 
Se rige por dos principios o leyes de la refracción: 
El rayo incidente, el refractado y la normal a la superficie en el punto de incidencia 
están en el mismo plano 
La ley de Snell de la refracción, que marca la relación entre el ángulo de incidencia 
iˆ, el de refracción rˆ, y los índices de refracción absolutos de la luz en los medios 1 
y 2, n1 y n2, según: 
 
 
 
 
 
 
 
 
Refracción 
La refracción de la luz ocurre cuando esta pasa de un medio transparente con un 
determinado índice de refracción a otro, también transparente, con uno distinto. 
Observa, en la imagen de la izquierda, que cuando la velocidad de propagación en 
el nuevo medio es menor, y por tanto es mayor el índice de refracción, el rayo se 
acerca a la normal. En la imagen de la derecha vemos el caso contrario, en el que 
el rayo se aleja de la normal. 
No confundas el ángulo rˆ en los casos de reflexión y refracción. Hemos optado por 
darles el mismo nombre ya que lo habitual es que te centres en uno u otro fenómeno. 
Si vas a resolver un ejercicio en el que tengas que estudiar ambos a la vez, te 
recomendamos que cambies el nombre a cualquiera de ellos. Ten presente que el 
rayo reflejado permanece en el medio del rayo incidente. El rayo refractado, en 
cambio, pasa a uno distinto. 
 
Por otro lado, observa que a partir de las relaciones que se establecen entre el 
índice de refracción absoluto y el relativo podemos escribir: 
 
 
 
 
Donde v1 y v2 es la velocidad de la luz en los medios 1 y 2 respectivamente y n2,1 
es el índice de refracción relativo del medio 2 respecto al 1. 
En la refracción no cambia la frecuencia de la luz f, ya que esta depende de la 
fuente, pero al hacerlo su velocidad v, debe cambiar también su longitud de onda λ. 
Dado que el color con el que percibimos la luz depende de la frecuencia, este no 
cambia al cambiar de medio. 
Recuerda que el índice de refracción depende de la longitud de onda, por lo que 
cuando un pulso de luz es policromático (está compuesto por varias longitudes de 
onda), al refractares se produce la dispersión. 
 
Principio de Fermat y la Refracción 
Principio de Fermat: la luz sigue la trayectoria de menor tiempo. La ley de Snell se 
puede derivar de este principio estableciendo la derivada del tiempo = 0. 
 
 
 
 
 
 
 
 
 
 Mediciones y cálculos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜃𝑖 𝜃𝑟 
 10 
20 
30 
40 
50 
60 
7 
14 
20 
26 
32 
37 
𝜃𝑖 𝜃𝑟 
 5 
20 
30 
35 
40 
45 
9 
31 
49 
59 
75 
No 
hay 
 Conclusiones 
Concluya acerca de la forma en que se comporta el rayo de luz en la superficie 
entre los dos medios. Describa hacia donde se desvía el rayo de luz (se acerca o 
se aleja de la normal), para cada caso. 
Formule la ley de la refracción de la luz, a partir de los resultados que obtuvo en 
los experimentos anteriores. ¿Cómo puede introducir la magnitud índice de 
refracción? 
El índice de refracción deberá ser mayor a uno ya que este es el cociente del 
índice de la velocidad de la luz en el vacío entre la de la velocidad de la luz en un 
medio específico. 
Proponga una forma de determinar el índice de refracción del acrílico del 
semicilindro. Determine esta magnitud y compruebe si su valor es cercano al 
reportado en las tablas del libro de texto. ¿Podría decir cuál es la velocidad de la 
luz en este material? ¿Es mayor o menor que en el aire? 
La velocidad es menor 
Para el caso cuando la luz incide desde el acrílico al aire, ¿cómo describe el 
comportamiento del rayo refractado? ¿Qué nuevo fenómeno tuvo lugar en este 
caso? ¿Conoce el nombre de este fenómeno? ¿Qué relación tiene con las fibras 
ópticas? 
Al pasar por un ángulo mayor el ángulo crítico se produce una reflexión interna 
total y hace que el ángulo total de salida sea de 90° 
¿Por qué el objeto de acrílico se construyó en forma de semicilindro? ¿Puede 
explicar esto a partir de los resultados experimentales? 
Para observar como el rayo laser hace la reflexión a través del cuerpo de una 
manera más fácil de visualizar 
Además del rayo refractado, ¿observó algún otro rayo que sale de la superficie de 
separación entre el acrílico y el aire? ¿Qué rayo es éste y qué ley cumple? 
Se observo un rayo reflejado el cual cumple la ley de snell 
Se comprobó la hipótesis planteada ya que dependía mucho la posición en la que 
se encontrara el medio circulo con el cual se comprobó la ley de snell. El rayo 
incidente tenía su refracción en un ángulo diferente y por el contrario si usábamos 
el acrílico del lado curvo hacia el aire, este se concentraba la mayor parte del 
medio circulo. 
Bibliografía 
https://www.fisicalab.com/apartado/reflexion-refraccion-luz 
Práctica # 4 Estudio de las lentes 
Hipótesis 
Se espera que entre mas angosto sea el lente mayor será la distancia 
focal el cual correspondería a una lente divergente 
Marco teórico 
Las lentes son medios transparentes de vidrio, cristal o plástico limitados por dos 
superficies, siendo curva al menos una de ellas. 
 
Una lente óptica tiene la capacidad de refractar la luz y formar una imagen. La luz 
que incide perpendicularmente sobre una lente se refracta hacia el plano focal, en 
el caso de las lentes convergentes, o desde el plano focal, en el caso de las 
divergentes. 
 
 
 
 
 
 
 
 
 
 
Existen principalmente tres tipos de lentes convergentes: 
 Biconvexas: Tienen dos superficies convexas 
 Planoconvexas: Tienen una superficie plana y otra convexa 
 Cóncavoconvexas (o menisco convergente): Tienen una superficie 
ligeramente cóncava y otra convexa 
Las lentes convergentes son más gruesas por el centro que por el borde, y 
concentran (hacen converger) en un punto los rayos de luz que las atraviesan. A 
este punto se le llama foco (F) y la separación entre él y la lente se conoce como 
distancia focal (f). 
 
Observa que la lente (2) tiene menor distancia focal que la (1). Decimos, entonces, 
que la lente (2) tiene mayor potencia que la (1). 
La potencia de una lente es la inversa de su distancia focal y se mide en dioptrías 
si la distancia focal la medimos en metros. 
Las lentes convergentes se utilizan en muchos instrumentos ópticos y también para 
la correcciónde la hipermetropía. Las personas hipermétropes no ven bien de cerca 
y tienen que alejarse los objetos. Una posible causa de la hipermetropía es el 
achatamiento anteroposterior del ojo que supone que las imágenes se formarían 
con nitidez por detrás de la retina. 
 
Mediciones y cálculos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusiones 
Concluya acerca de las características de las lentes en cuanto a su forma y su poder 
de convergencia, caracterizada por su distancia focal. 
Cada tipo de lente tiene su característica es cuando a la distancia focal, el lente 
convexo intersecta hacia el lado contrario de la fuente de luz, mientras que el lente 
cóncavo intersecta la fuente de la luz 
 
¿Cuál lente tiene mayor distancia focal, la que tiene mayor curvatura en las 
superficies o menor curvatura? 
El lente divergente tiene mayor distancia focal 
 
¿Pudiera utilizarse una lente cuya forma fuera con dos superficies planas para 
enfocar un haz de luz? 
Suponiendo que tendría superficies planas, no se desenfocaría el haz de luz 
 
Pruebe a explicar por qué en los proyectores de diapositivas éstas deben colocarse 
en forma invertida para obtener una imagen derecha. 
Los proyectores deben colocarse de una forma invertida para obtener una imagen 
derecha ya que se utilizan lentes convexos para ampliar la imagen entonces la 
imagen se voltea 
 
Concluya acerca del cumplimiento de las hipótesis formuladas por su equipo en esta 
práctica de laboratorio. 
Si se cumplió porque el lente con mayor distancia focal si es el divergente 
Bibliografía 
https://www.educaplus.org/luz/lente1.html#:~:text=Una%20lente%20%C3%B3ptica
%20tiene%20la,el%20caso%20de%20las%20divergentes. 
 
 
 
 
Práctica # 5 Estudio de instrumentos ópticos 
 
Hipótesis 
Se espera que la lente se deba colocar a una distancia mayor respecto a la imagen 
representada porque se necesita que la imagen sea el triple de su tamaño original 
y debe colocarse otro lente convergente para que la imagen no se vea al revés. 
 
Marco teórico 
Instrumentos Ópticos 
Por su excesiva sencillez, los dioptrios no se utilizan como sistemas ópticos, sino 
que éstos se encuentran constituidos normalmente por sucesiones de dioptrios 
esféricos dispuestos entre varios medios y con centros de curvatura alineados. 
Los sistemas ópticos centrados resultantes sirven como fundamento de los 
instrumentos complejos, como microscopios, anteojos, telescopios, etcétera. 
Sistemas ópticos centrados 
Los sistemas ópticos centrados, corrientemente series alineadas de dioptrios 
esféricos, están constituidos básicamente por lentes y espejos. 
 
Una lente es un conjunto de dos dioptrios esféricos. Como caso particular, cuando 
su grosor es insignificante en comparación con los radios de los dioptrios que la 
integran, se habla de lente delgada, cuya ecuación es: 
 
 
 
siendo x la coordenada horizontal del punto objeto, x ¿la del punto imagen y f ¿la 
distancia focal imagen. 
Construcción de imágenes mediante lentes 
Para el estudio de las lentes se recurre a los principios de la óptica geométrica, 
utilizándose rayos similares a los empleados en los dioptrios esféricos: paralelo, 
que incide en paralelo al eje óptico y que se refracta para cortar al eje imagen y 
central, que incide sobre el centro de la lente y surge de la misma en paralelo al 
eje óptico. Estos dos rayos se utilizan para construir gráficamente las imágenes 
que resultan del uso de una lente delgada. 
 
 
Diversos tipos de lentes. 
 
Clases de lentes y potencia 
Según su naturaleza, las lentes delgadas se clasifican en dos grandes grupos: 
 
Convergentes, donde la distancia focal imagen es positiva, con lo que la imagen 
es real y se forma detrás del centro de la lente. Según su geometría, las lentes 
convergentes pueden ser biconvexas, plano-convexas y meniscos convergentes. 
Divergentes, con distancia focal imagen negativa, lo que significa que la imagen 
formada es virtual y aparece delante del centro de la lente. Las lentes divergentes 
se clasifican en bicóncavas, plano-cóncavas y meniscos divergentes. 
Potencia de una lente 
Para conocer el grado de convergencia de una lente, se define su potencia como 
el valor inverso de la distancia focal: 
La unidad de la potencia es la dioptría, o potencia de una lente cuya distancia 
focal es 1 m. En un sistema de dos lentes yuxtapuestas (con centros de curvatura 
que coinciden), la potencia total es igual a la suma de las potencias individuales de 
cada fuente. Si las lentes no están yuxtapuestas, sino a una distancia d una de 
otra, la potencia total es: 
 
 
 
Espejos planos y esféricos 
En los sistemas ópticos centrados se usan como componentes esenciales 
superficies reflectantes llamadas espejos, pulidas de modo que reflejan más del 
95% de la energía luminosa que les llega. 
 
En los sistemas de espejos pueden aplicarse las mismas leyes que en las lentes, 
si se considera la reflexión como una forma especial de refracción donde la luz 
pasa de un medio de índice de refracción n a otro medio hipotético (en realidad, el 
mismo) cuyo índice fuera ¿n. Si se aplica este principio, cabe distinguir dos clases 
generales de espejos: 
 
Espejos planos, en los cuales la imagen de un punto objeto vendría dada por una 
forma simplificada de la ecuación del dioptrio plano (ver t53): x ¿= -x. 
Espejos esféricos, donde la formación de imágenes se regirá por la ecuación del 
dioptrio esférico sustituyendo el índice de refracción del segundo medio por ¿n. 
Un espejo esférico tiene un único foco principal, que se sitúa en el punto medio 
entre el centro del espejo y su vértice. El aumento lateral del espejo esférico es: 
 
Mediciones y cálculos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusiones 
Concluya acerca de la utilidad práctica de las fórmulas empleadas en los cálculos. 
La formula proporcionada fue muy útil ya que se confirmo que el aumento practico 
fue el mismo que el teórico que se pedía 
Concluya acerca de si fueron válidas las hipótesis propuestas por su equipo de 
trabajo. En caso de existir diferencias entre los valores teóricos y los 
experimentales explique sus causas. 
Se confirmo la hipótesis 
Este diseño fue realizado en base a un esquema óptico determinado del proyector 
de diapositivas. Indique qué aclaraciones debe hacerse a los usuarios del 
proyector para que coloquen las diapositivas en la forma correcta para obtener 
imágenes con las características deseadas para ser proyectadas durante una 
presentación. 
El proyector volteara la imagen automáticamente, podría colocarse el proyector 
colgado del techo sobre una mesa y así la imagen estaría derecha 
Si le pidieran que proponga otro esquema óptico para este proyector, ¿qué diseño 
propondría?, ¿qué ventajas o desventajas tendría este diseño en comparación al 
anterior? 
Propondría que ya tuviera los lentes convergentes para que la salida de la imagen 
ya fuera derecha y así no se batallaría en la forma de acomodar el proyector ni las 
diapositivas 
 
Bibliografía 
https://www.hiru.eus/es/fisica/instrumentos-opticos

Continuar navegando