Logo Studenta

Diseño y Mantenimiento de Ductos de Gas

¡Este material tiene más páginas!

Vista previa del material en texto

INSTITUTO POLITECNICO NACIONAL 
 
 
ESCUELA SUPERIOR DE INGENIERIA QUIMICA E 
INDUSTRIAS EXTRACTIVAS 
 
INGENIERIA QUIMICA PETROLERA 
 
Diseño, Mantenimiento de Ductos y Transportación de Gas 
Natural. 
 
TESIS PARA OBTENER EL TITULO DE INGENIERO QUIMICO 
PETROLERO 
PRESENTA 
 CHRISTIAN AIDE TECAMACHALTZI CASIANO 
 
 
ASESOR ING. JOSE LUIS CHAVEZ ALCARAZ 
 
 
 
 
 
Abril,2013 
 
 
CONTENIDO 
 
Resumen 1 
 
Introducción 3 
 
Capítulo I Ductos y Mantenimiento 
� Descripción-Características Técnicas del Gas Natural 6 
� Ductos 25 
� Mantenimiento 30 
 
Capitulo II Diseño de la Tubería 
� Ejemplo de Diseño de un Ducto para Transportar Gas 
en Chiapas 27 
 
Capitulo III Corrosión. 
� Técnicas para Controlar la Corrosión 50 
� Clasificación de los Inhibidores de Corrosión 59 
� Diagnostico de Corrosión Interna 62 
� Alternativas de Protección 74 
� Control de Calidad 80 
 
Capitulo IV Compresión. 
� Clasificación de los Compresores 84 
� Ventajas y Desventajas de los Compresores 89 
� Factores de Diseño de Compresores 92 
 
Capitulo V Estudio Económico. 
� Evaluación Financiera del Proyecto 100 
� Indicadores de Rentabilidad 101 
 
 
Conclusiones Y Recomendaciones. 105 
 
 Bibliografía. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AGRADECIMIENTOS 
 
El siguiente trabajo primeramente agradezco a Dios por haberme permitido llegar 
hasta este momento donde se cierra un ciclo muy importante de mi vida y 
comienzan los retos profesionales, donde de igual manera seguirá a mi lado. 
Por otro lado quiero agradecer a la persona más importante de mi vida, mi 
abuelita, que nunca dudo un solo segundo de mí y mantuvo la confianza hasta el 
final, de igual manera a mi mamá que donde se encuentra siempre estuvo 
cuidando mis pasos a cada momento. 
Agradecer a mi papá, familia y amigos que hicieron posible este logro, por su 
cariño, apoyo y comprensión, que me mostraron para hacer este sueño realidad. 
A mis profesores durante la carrera profesional han aportado un granito de arena a 
mi formación, a mi asesor por su tiempo y dedicación, que con su experiencia ha 
logrado que pueda terminar este trabajo con éxito. 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
RESUMEN 
Una vez realizado el análisis referente a los niveles de producción, demanda y 
eventual agotamiento del petróleo y gas natural, se crea la incertidumbre sobre las 
acciones preventivas en materia energética, México no es la excepción de dichos 
agotamientos energéticos, el consumo de energía en las ramas de la industria 
manufacturera, eléctrica, cementera, residencial así como de hornos entre otras, y 
están dependientes del uso de combustibles fósiles, entre los que se encuentran 
el petróleo, el carbón y el gas natural; ellos conforman el 89% del consumo total 
de energía primaria a nivel mundial. No obstante, las reservas de estas fuentes 
energéticas son finitas e incapaces de abastecer la demanda energética durante 
los próximos 100 años. Este punto lleva a la investigación sobre el tiempo que 
tardará la demanda en superar la oferta de otras fuentes de energía que puedan, 
en un momento dado, sustituir a los energéticos fósiles, de manera tal que la 
producción o extracción, tanto de petróleo como de gas natural, no sea 
económicamente viable. Por lo anterior es necesario comenzar a considerar 
seriamente las alternativas energéticas existentes, como las Energías 
Renovables, ya que de ellas dependerá la intensidad con que afectará a la 
comunidad mundial la extinción de sus principales recursos energéticos primarios. 
Por esta razón, el trabajo realizado se ha orientado, en primera instancia, hacia el 
estudio de un medio de transporte sustentable basado en la cuantificación de 
reservas de petróleo y gas natural existentes en la Tierra; con el objetivo de 
analizar el agotamiento de estos recursos considerando el aumento de su 
producción y demanda a nivel mundial. 
Los esfuerzos hechos para cuantificar las reservas probadas, probables y posibles 
no es muy prometedora, por esta razón, se han adoptado tecnologías que 
puedan dar una aproximación de los recursos naturales que se tienen (gas natural 
y petróleo) para así poder aumentar la producción de estos de una manera 
económica y racional y tener la capacidad de transportar el producto y seguir 
abasteciendo la demanda del petróleo a nivel nacional. 
El transporte de combustibles fósiles por ductos resulta ser más económico, aun 
siendo estos por mar o tierra y se requieren de conocimientos de aspecto técnicos 
relacionados con el comportamiento del gas natural, sus propiedades, sus 
problemas de transporte y los métodos que se utilizarán para llevarlo de un lugar a 
otro, sin dejar a un lado los aspectos relacionados con la seguridad, conservación 
del medio ambiente para que así se pueda seguir contando con una industria en 
constante progreso e innovación; haciendo la de clase internacional por sus 
avances técnicos. 
 
 
 
2 
INTRODUCCION 
El objetivo de este trabajo es presentar un proceso de diseño de líneas de 
conducción de hidrocarburos que permita efectuarlo en forma segura y económica 
posible; de manera que sirva de fuente de consulta para las personas interesadas 
en el diseño de ductos para el transporte de combustibles, así mismo presentar la 
manera en que se determina la factibilidad de estos proyectos. 
Cuando se analiza la información referente al Gas Natural, permite conocer con 
cierto grado de detalle la situación actual que prevalece para este recurso no 
renovable; por lo que al analizar la situación actual del Gas Natural en México 
permite predecir las perspectivas del mismo en los próximos años ya que este 
hidrocarburo va teniendo mucha demanda en los diversos sectores consumidores 
como son: La Industria; Eléctrica, comercios, textil, cerámicas, cementos y 
fundición de metales entre otros y para los usuarios directos como son: 
El residencial, comercial y en transporte, este ultimo hoy en día es el que va a 
tener mas demanda que los sectores residenciales y comercial debido a que el 
Gas Natural puede ser utilizado como combustible alterno en los motores de 
combustión interna y se tiene como proyecto el convertir todo el Transporte 
Publico tanto de carga como pasajeros en la Zona Metropolitana de la Ciudad de 
México. 
Tradicionalmente, tanto en México como el resto del mundo, la explotación y la 
utilización del Gas Natural han sido relegadas a un segundo plano, ocupando la 
Explotación, Procesamiento del Petróleo Crudo. Debido a que el Gas Natural era 
un subproducto al explotarse el Petróleo Crudo, sin embargo, hoy en día el gas 
esta ocupando un lugar muy importante en el Mercado Nacional e Internacional. 
En los últimos años en México la demanda de gas ha venido acrecentándose a un 
ritmo superior que el de oferta, este rezago en la oferta se debe principalmente a 
dos factores: a las severas restricciones presupuestales de la cual ha sido objeto 
la actividad Exploratoria de la Industria del Gas Natural, y a que los yacimientos 
que se encuentran en Explotación están en declinación. 
El empleo del Gas Natural como materia prima energética es un hecho 
relativamente reciente; En años anteriores no se contaba con uso alguno y por lo 
tanto se tenía que quemar en los campos como (gas de desecho), además no se 
tenía tecnología para su procesamiento. Pero poco a pocose empezó a utilizar en 
las calderas de los campos petroleros para la generación de vapor y así accionar 
las bombas de perforación. 
Actualmente, en México el Gas Natural se utiliza como combustible y materia 
prima en el sector Petrolero siendo este de mayor consumo, y los sectores que le 
siguen en consumo son los siguientes: 
 
 
3 
Industria, Eléctrica, Residencial, Comercial y de Transporte este ultimo es el que 
menos consume este hidrocarburo, ya que recientemente se han incorporado 
como carburante en el parque vehicular en la Zona Metropolitana de la Ciudad de 
México; hoy en día, se usa el Gas Natural en flotillas vehiculares del transporte 
público y se tiene bastante demanda, ya que presenta característicamente de alto 
rendimiento económico y sobre todo un beneficio ecológico. 
Adicionalmente, el gas natural es utilizado como materia prima en diversos 
procesos químicos e industriales. De manera relativamente fácil y económica 
puede ser convertido a hidrogeno, etileno, o metanol; los materiales básicos para 
diversos tipos de plásticos y fertilizantes. 
 
 
 
 
 
4 
ANTECEDENTES 
El Gas Natural es una mezcla de hidrocarburos e impurezas que se extrae de los 
yacimientos petrolíferos ya sean terrestres o marinos. Su principal componente es 
el Metano, el cual se encuentra hasta en un 90%, en algunos tipos de gas, 
mientras que en otros pueden ser de 80% o menor. 
Otros componentes del Gas Natural presentes en concentraciones menores son: 
Etano, Propano y Butano, de igual forma se encuentran presentes otros 
compuestos gaseosos no hidrocarburos como: 
Dióxido de carbono, acido sulfhídrico, Helio, Argón, en la siguiente TABLA 1.1 se 
muestra la composición general que presenta el gas Natural. 
TABLA 1.1 
CARACTERISTICAS DEL GASNATURAL 
DENSIDAD, gr/1 ± 20° C y 300 lb/in 2 132.1 
PODER CALORIFICO BRUTO, 
Kcal/Kg 
11,950.0 
PODER CALORÍFICO NETO, Kcal/Kg 11,856.0 
RELACION CARBONO / HIDROGENO 3.923 
TABLA 1.2 
FUENTE: IMP, LABORATORIO DE EMISIONES VEHICULARES. 
 
 
 
COMPUESTOS DEL GAS NATURAL % MOL 
METANO 70 
ETANO 10 
PROPANO 9 
N-BUTANO 3 
ISO-BUTANO 2 
N-PENTANO 0.8 
ISO-PENTANO 0.8 
HEXANO + 1.7 
Agua 0.3 0.3 
DIOXIDO DE CARBONO 7.4 
 
 
5 
 
 
 
 
CAPITULO I 
 
DUCTOS Y MANTENIMIENTO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6 
DESCRIPCIÓN-CARACTERISTICAS TÉCNICAS DEL GAS 
NATURAL 
¿QUE ES EL GAS NATURAL? 
El Gas Natural es una mezcla de hidrocarburos parafínicos e impurezas que se 
extrae de los yacimientos ya sean terrestres o marinos. Su principal componente 
es el Metano, el cual se encuentra hasta en un 98%, en algunos tipos de gas, 
mientras que en otros pueden ser de 55% o menor. 
 
 
Figura 1.0 Principales Componentes de una Muestra d e Gas natural 
 
El ácido Sulfhídrico es la impureza mas indeseable que puede encontrarse este 
gas es altamente tóxico y corrosivo, al quemarse resultan productos de 
combustión que contienen óxidos de azufre que son a su vez corrosivos para la 
mayor parte de los materiales, así como perjudiciales para la vida humana, animal 
y vegetal. 
Estos gases presentes en el gas natural denominados ácidos, deben ser tratados 
para eliminar estas impurezas antes de proceder a su comercialización. Los 
constituyentes inertes, como nitrógeno, suelen ser ignorados; su único 
inconveniente es que disminuye el poder calorífico, excepto en el caso en que 
 
 
7 
dichos componentes se encuentran en cantidades muy importantes y pueden 
afectar considerablemente la combustión o la compatibilidad con otros gases. 
Otro componente inerte es el Helio, cuando se encuentran presente en cantidades 
superiores al 0.2% en volumen, puede ser interesante recuperarlo, aunque esta 
cifra puede variar en función de la localización de los yacimientos petrolíferos. 
Por otro lado, la extracción del gas de los yacimientos de realiza con procesos 
similares a los que se usan para la extracción del Petróleo Crudo; existen dos 
tipos de gas: Gas Natural asociado y Gas Natural No Asociado. 
El gas natural asociado es aquel que se produce conjuntamente con el Petróleo 
crudo y se extrae primero el gas y después el petróleo, y el gas natural no 
asociado es aquel que se produce solo, generalmente este gas sale libre de gases 
ácidos y no necesariamente se requiere de tratamiento. 
Para la extracción del gas se realiza en primer lugar las actividades de 
explotación, que son el conjunto de tareas de campo y oficina cuyo objetivo 
consiste en descubrir mayores reservas y evaluar las posibilidades gasiferas de 
nuevas regiones. 
Con base en los descubrimientos logrados por los trabajos de exploración, 
empiezan las actividades de explotación que desarrollan los campos petroleros, 
tomando en cuenta factores como la dimensión de la estructura, espesor del 
estrato productor, características de la roca almacenadora, posibilidades de 
producción y análisis económicos de la cantidad de perforaciones necesarias, 
entre otros. 
Finalmente, el pozo ya en producción se conecta con la tubería de descarga para 
conducir el hidrocarburo a la tubería de separación que segrega el aceite del gas, 
y esos continúan su curso para los diferentes ductos. 
En la mayoría de estos yacimientos existen cantidades variables de gas, ya sean 
en solución con el petróleo o en una capa gaseosa encima del mismo (casquete). 
Cuando el gas está disuelto en el petróleo, necesariamente se extrae junto con el, 
en sus orígenes el gas natural era considerado como un subproducto no deseado 
de la explotación petrolera en la medida en que en la mayoría de los yacimientos 
se encontraba asociado al crudo extraído, lo que algunas veces genera peligrosas 
condiciones para las actividades de perforación y de producción. 
Sin embargo, el gas que se encuentra en una capa por encima del petróleo raras 
veces se le extrae hasta después de extraer el petróleo, si se extrae antes, se 
reducirá el factor de recuperación del petróleo. 
 
 
8 
En algunas estructuras solo existe el gas natural. Este es llamado Gas Natural No 
Asociado y su origen corresponde a alguno de los siguientes mecanismos: 
a) Degradación bioquímica de la materia prima orgánica en rocas 
sedimentarias poco profundas y de edades geológicas relativamente 
recientes, en cuyo caso, como el gas de los pantanos, la composición es 
casi exclusivamente dióxido de carbono y metano. 
b) Degradación química de residuos en rocas profundas antiguas. 
El Gas Natural denominado Asociado, a las condiciones de presión y 
temperatura existentes en los yacimientos, los líquidos se encuentran 
saturados de gases, que se desprenden durante el proceso de extracción. 
En este tipo de gas, el contenido de etano es generalmente mas alto que en 
los gases no asociados y contienen cantidades importantes de propano y 
butano, así mismo tiene hidrocarburos mas pesados, por lo que suelen ser una 
fuente importante de gas licuado y gasolinas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9 
DEMANDA TOTAL DE COMBUSTIBLES 
En el periodo 2006-2014 se espera que el gas natural incremente su participación 
en el mercado de combustibles, pasando de 28 a 38% 
 
Esperando que en el mismo periodo la participación del combustóleo se reduzca 
de un 17% a 8%. 
Retos y oportunidades 
La Asociación Mexicana de Gas Natural (AMGN) destaca que este energético 
tiene varios retos en el país, entre los que destacan: 
• Alcanzar el desarrollo eficiente en el sector energético mexicano, tanto en 
términos económicos como en técnicos. 
• Garantizar un abastecimiento suficiente de energéticos a precios 
competitivos. 
• Contar con políticas de precios de energéticos eficientes y no 
distorsionantes. 
• Mantener e incrementar la producción de gas natural. 
• Desarrollar una infraestructura basta y gasífera para el país. 
Con respecto a las ventajas, la AMGN indicó que existen principalmente tres: 
• La posición geográfica de México. 
• El impacto del Shale Gas –tipo de gas que se encuentraalojado en la roca 
madre en los yacimientos mexicanos. 
• Dinámicas de los precios 
 
 
 
 
 
10 
GAS NATURAL ASOCIADO Y GAS NATURAL NO ASOCI ADO. 
El gas natural asociado: es aquel que se produce conjuntamente con el Petróleo 
crudo y se extrae primero el gas y después el petróleo aunque la mayoría de las 
veces viene disuelto en el petróleo. 
El gas natural no asociado: es aquel que sale del yacimiento libre de ácidos, y no 
esta en contacto con el petróleo crudo. 
El primero por lo general se tiene que mandar a un tratamiento de endulzamiento 
el cual consiste en eliminar las impurezas por medio de solventes selectivos 
(Dietanolamina); y el segundo rara vez se tiene que mandar a tratamiento (Figura 
No. 1.1) 
NOTA: Como gas libre se tiene, el gas liberado después de haber estado disuelto 
en el aceite crudo, que puede formar un casquete de gas, encima y en contacto 
con el aceite crudo. 
CLASIFICACIÓN DEL GAS NATURAL 
GAS HUMEDO 
Este tiene algún contenido de hidrocarburos menos volátiles (propano, butano, 
etc.), los cuales pueden fácilmente recuperarse como productos líquidos (gasolina, 
G.L.P., entre otros.) 
 
GAS SECO 
Esta formado prácticamente por metano en 85%-90% se utiliza directamente como 
combustible o en proyectos de mantenimiento de presión de yacimientos y 
también en la producción de hidrogeno. 
 
GAS AMARGO 
Es aquel que contiene más de 1 gramo de H2S y CO2/ 100 pies cúbicos de gas, 
además de ser altamente corrosivo 
 
GAS DULCE 
Es aquel que contiene menos de 1 gramo de H2S y CO2/100 pies cúbicos de gas. 
La baja densidad de los gases hace impráctico determinar la cantidad de cada uno 
de ellos en un recipiente midiendo su peso---, en general es más preciso y sencillo 
medir el volumen y obtener su peso. 
Asimismo el gas natural posee ciertas cualidades específicas que, en mayor o 
menor grado, pueden conferirle una ventaja sobre el resto de los combustibles 
alternos con los que entra en competencia. Tales ventajas son debidas en lo 
general a los cuatro hechos siguientes: 
 
 
 
11 
1. La combustión del gas natural en comparación de otros combustibles es 
mucho mejor debido a que no emite emisiones evaporarías ni partículas 
suspendidas y es baja la proporción de emisiones contaminantes (CO, HC, 
NOX), esto se debe a que el gas tiene mejores características de combustión 
en comparación con el combustóleo, y por lo tanto colabora en menor 
proporción para la formación de ozono. 
2. Se consigue una mejor regulación de calor, siendo posible tener temperatura y 
atmosferas controladas. 
3. Su comodidad de utilización es comparable con la electricidad, lo que le hace 
particularmente apreciado en los sectores comerciales y domésticos. 
 
PROCESOS Y USOS DE LA CLASIFICACIÓN DEL GAS NATURAL 
Una vez que el gas ha sido extraído de los pozos y antes de iniciarse su transporte 
hacia los puntos de consumo, suele ser necesario llevar a cabo una serie de 
operaciones de tratamiento, con el objeto de reducir el contenido de agua e 
hidrocarburos pesados a un nivel que evite el peligro de formación de hidratos y 
condensados en las tuberías. Con el objeto de ajustar las características de 
combustión de gas, la eliminación de dióxido de carbono y nitrógeno puede ser en 
ocasiones también necesaria y por supuesto, la exclusión del sulfuro de hidrogeno 
que puede formar ácidos corrosivos, es por siempre forzosa cuando su 
concentración es poco alta. 
El gas natural se clasifica principalmente en tres categorías: Gas Húmedo 
Amargo, Gas Húmedo Dulce y Gas Seco, el cual se distribuye o se consume como 
combustible en los diferentes sectores, o como materia prima en la industria 
Petroquímica Básica y Secundaria. 
El gas húmedo amargo contiene porcentajes importantes de acido sulfhídrico, por 
lo que es altamente corrosivo, motivo por el cual se le conduce a los complejos 
petroquímicos, donde en plantas de endulzamiento, se le separan impurezas, con 
la finalidad de obtener gas endulzado y como subproducto azufre, del que se 
producen principalmente fertilizantes. 
El gas húmedo dulce proviene de campos junto con el endulzamiento, pasan a las 
plantas de extracción de licuables, denominados criogénicos, en las cuales a 
través de un proceso de separación a bajas temperaturas, se dividen de la 
corriente de gas dulce cuatro fracciones: metano, etano propano y butano (gas 
licuado) e hidrocarburos mas pesados (gasolinas), las que finalmente son 
utilizadas en los grandes centro de consumo. 
 
 
12 
El gas seco en mezcla con los gases húmedos y dulces, ya tratados, pueden 
utilizarse principalmente tanto combustible como en forma de materia prima para 
la industria Petroquímica. 
Como combustible, en las diferentes instalaciones con que cuenta la industria 
petrolera nacional (refinerías, complejos petroquímicos, gasoductos etc.), para la 
generación de electricidad, en una gran variedad de industrias productivas del 
país, dentro de las que destacan la cementera, vidriera, cervecera, papelera, 
azucarera, etc. y el sector domestico. 
En comparación con los combustibles sólidos y líquidos el empleo del gas natural 
como combustible suministra mejores productos y menos perdidas en industrias 
en precisión y artesanías, en industrias de metales, en industrias de mosaico, 
cerámicas y en las industrias de alimentación, cemento, papel y textiles. 
En la industria Petroquímica como materia prima, donde el gas natural tiene su 
uso mas rentable, debido a la diversidad de productos petroquímicos como: 
amoniaco, metanol y anhídrido carbónico de los que se producen un sin numero 
de productos de uso cotidiano, de estos se puede destacar tuberías, bebidas 
embotellas, juguetes, lacas, tintas, pinturas, mangueras para agua y vapor, 
barnices, resinas, platicos hules sintéticos, llantas para automóviles y camiones, 
entre otros. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13 
El siguiente diagrama muestra el proceso de obtención del Gas Natural. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1.2 Diagrama de Proceso de Obtención de Gas Natural 
 
 
14 
VENTAJAS Y DESVENTAJAS DEL USO DEL GAS NATURAL 
VENTAJAS 
a) El gas natural al emplearse como combustible en los sectores petroleros, 
industrial, eléctrico y de transportes emite menor cantidad de contaminantes al 
medio ambiente. 
b) Al diversificarse las fuentes de energéticas como es el caso de gas natural 
hacia el sector de transporte como combustible carburante, se ahorra en costo 
de mantenimiento del motor, economía en la adquisición de combustible, bajos 
niveles de contaminantes. 
c) El gas natural se puede emplear en un ciclo combinado para generar 
electricidad y así se ahorre energía y se minimizaría el consumo de 
combustóleo en termoeléctricas. 
d) En virtud que el gas natural es mas ligero que el aire, al existir alguna fuga se 
dispersaría rápidamente en la atmosfera, esto es cuestión de seguridad. 
e) Al emplearse gas natural en el parque vehicular de la Zona Metropolitana de la 
Ciudad de México y en las grandes ciudades de la republica donde ya se 
presentan problemas de contaminación. 
f) El gas natural tiene mayor poder calorífico neto que cualquier otro 
combustible. 
g) El gas natural tiene mayor octanaje (130) que las gasolinas Pemex Magna y 
Pemex Premium. 
DESVENTAJAS 
El alto costo de transporte es considerado un serio problema, que afecta el 
desarrollo del gas natural, ya que las redes de gasoductos requieren de grandes 
inversiones, sobre todo a largas distancias, es necesario tomar en cuenta las 
diferencias climáticas, las dificultadas topográficas, el rendimiento por pozo, esto 
debido principalmente, a la baja densidad de este energético, por lo que la 
utilización de este, se realiza casi exclusivamente en mercados que cuentan con 
una red de gasoductos, la cual esta conectada directamente a los cuatro 
productores de gas. 
 
Esto a pesar de los considerables avances experimentados por la tecnología de 
construcciónde gasoductos y aunque todavía hoy este medio de transporte se 
emplea para el 97% de gas natural consumido en el mundo, el superar la barrera 
de los océanos y, por lo tanto, la posibilidad física de realizar intercambios a nivel 
internacional solo se ha conseguido con el desarrollo de técnicas especiales que 
han hecho posible el transporte por vía marina. 
 
 
15 
Los gasoductos resultan ser más caros que los oleoductos y más aun en su 
transporte marino, ya que en primer término se necesita convertir el gas líquido, 
enfriarlo a (-160°C) a presión atmosférica, lo que contrae 600 veces su volumen 
original. Una vez que el gas se encuentra en estado liquido, es necesario 
transportarlo hasta los centro de consumo para su posterior gasificación y 
distribución y para ello se construyen buques-tanques, los cuales cuestan mas del 
doble que los buques para transportar Petróleo de idénticas dimensiones. Además 
se requieres de instalaciones portuarias especiales y sofisticados medios para su 
licuefacción y regasificación. 
Esta tecnología presenta sus propios problemas, ya que aproximadamente el 25% 
de la energía primaria se pierde en el procedimiento de licuefacción, existe grave 
riesgo de una explosión de un buque-tanque en algún puerto que puede ocasionar 
graves daños en vidas y propiedades. 
Otro problema considerable que representa el gas natural, es el hecho de que 
gran parte de este es asociado, y se considera subproducto o derivado de la 
producción de crudo. 
Esta situación ha provocado que algunos países del mundo, en su afán por extraer 
Petróleo Crudo y no contar con la infraestructura necesaria para aprovechar el 
gas, lo hayan quemado. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16 
LOCALIZACIÓN Y CARACTERISTICAS DE GAS NATURAL EN MÉ XICO 
Los yacimientos de crudo y gas en México se encuentran a profundidades que 
varían de los 3000 a 6000 metros. La relación crudo/gas en nuestros yacimientos 
de crudo y gas varían de 800 a 1400 pies cúbicos de gas por barril de crudo 
extraído, dependiendo del campo productor. 
El gas natural se considera como un combustible limpio, y que solo contiene 
trazas de azufre, y otras impurezas como agua, nitrógeno y anhídrido carbónico 
que solo disminuye el poder calorífico del gas. Otras impurezas son el agua 
utilizada para las pruebas hidrostáticas y el polvo que se deposita en las tuberías 
durante la construcción de las líneas de los gasoductos, entronques y redes 
industriales y domésticos, eliminándose con trampa de limpieza localizadas en las 
entradas de las estaciones centrales de control y de redes industriales así como 
con separadores de polvo y condensables a la entrada del gas en las estaciones 
de medición y regulación. 
CLASIFICACIÓN DEL GAS 
El gas natural se clasifica como húmedo y seco. El gas húmedo tiene una 
concentración de productos mas volátiles (propano, butano y mas pesados) 
recuperables en forma de gasolina, kerosina y gas L.P., en cantidades de 300 o 
más galones de hidrocarburos licuables por cada millón de pies cúbicos de gas; el 
gas seco es aquel al que se le puede extraer menos de 100 galones de 
hidrocarburos licuables por cada millón de pies cúbicos de gas, en condiciones de 
presión y temperatura de 1 Kg/cm2 y 20° C respectivamente. El gas puede ser 
amargo si contiene productos sulfurosos y el carente de este, se denomina dulce. 
La composición promedio del gas natural en diversas zonas del país donde se 
extrae se presenta a continuación: 
 
 
 
 
 
 
 
 
 
17 
En la tabla 1.3 se describen la composición del Gas Natural que se encuentra en 
México y las zonas en que se divide. 
 
z 
 
 
 
 
 
 
 
 
 
 
 
 
TABLA 1.3 Composición de Gas Natural en México 
PESO MOLECUALR 
El peso molecular del gas natural varia de acuerdo a la composición. Se calcula de 
acuerdo con la siguiente formula: 
 
Donde: 
Mg = Peso molecular promedio del gas 
M = Peso molecular de cada componente. 
X = Fracción mol de cada componente 
1,2...n= componentes de la mezcla de gas. 
NORTE (2) SUR (3) SURESTE (4) MARINA(5)
COMPUESTO PESO MOLECULAR FRACCION MOL % MOL 
PESO MOLECUALR 
DEL COMPUESTO 
% MOL % MOL % MOL % MOL 
METANO (CH4) 16 0.874 87.4 13.98 96.1 92.3 89.6 94
ETANO (C2H5) 30 0.093 9.3 2.79 3.4 6.3 7.1 3.9
PROPANO (C3H8) 42 0.028 2.8 1.17 0.4 1.4 1.5 1.8
N-BUTANO (n-
C4H10)
58 0.002 0.2 0.116 - - 0.2 0.2
ISOBUTANO 
(I C4H10)
72 0.001 0.1 0.058 - . 0.1 0.1
ISOPENTANO (I 
C5H14)
84 0.001 0.1 0.072 - - - -
HEXANO ++ 
PESADOS 
(C6H14)++ 
PESADOS 
44 0.084 - - - -
DIOXIDO DE 
CARBONO (CO2)
0.1 - - -
ACIDO 
SULFURICO(H2S)
TRAZAS - TRAZAS -
18.27 16.61 17.24 17.27 17.14
ZONA CENTRO (1)
PESO MOLECULAR (g/gmol)
COMPOSICION DEL GAS NATURAL EN MEXICO
 
 
18 
Densidad 
La densidad de un gas es la masa por unidad de volumen. La densidad del gas 
natural se determina sumando cada una de las densidades de sus componentes 
con respectivas presiones parciales, fracciones molares o porcentajes de la 
mezcla, empleando la siguiente formula: 
 
Donde: 
Dg = Densidad del gas natural. 
X = fracción mol de cada componente. 
D = Densidad de cada componente 
1,2,…,n = Numero de componentes en el gas natural. 
Densidad Relativa o Gravedad Específica. 
La densidad relativa expresa la característica del gas, ya sea mas pesado o mas 
ligero con referencia al aire o cualquier otro gas en un numero abstracto. Es la 
relación del peso molecular de un gas con relación al peso molecular del aire bajo 
las mismas condiciones de presión y temperatura. 
SG (g) = 1.0 
SG (g) = Densidad r 
 
 
Donde: 
SG (a) = Densidad relativa del gas. 
Mg = peso molecular promedio del gas. 
Ma = peso molecular del aire. 
 
 
 
 
 
19 
VISCOSIDAD DEL GAS 
Es un valor que determina la resistencia del gas al esfuerzo cortante, es decir, la 
resistencia interna que el gas ofrece al movimiento. La viscosidad es uno de los 
factores que afectan el flujo del gas natural a través de los gasoductos, tuberías, 
siendo de gran importancia para determinar el número de Reynolds y el 
coeficiente de fricción en la transmisión del gas en condiciones de altas presiones. 
La viscosidad esta en función de la temperatura, presión y composición molecular 
del gas. 
CAPACIDAD CALORIFICA 
Se define as a la cantidad de calor necesaria para elevar la temperatura por 
unidad de masa de una sustancia un grado. Por lo que el calor específico es el 
número de calorías requeridas para elevar un grado centígrado la temperatura de 
un gramo de sustancia. 
PODER CALORIFICO. 
El poder calorífico del gas natural es la cantidad de energía calorífica que se 
libera cuando se quema con oxigeno o aire, la unidad de calor empleada es la 
caloría (cal). En la practica la unidad de volumen para medir y facturar el gas 
natural es el metro cúbico, por ello la unidad de poder calorífico esta dada en 
kilocalorías por metro cúbico (Kcal/ m3) de gas. 
El gas natural se mide en condiciones normales de Petróleos Mexicanos, o sea a 
1 Kg/ m3 de presión absoluta y 20° C de temperatura. Un metro cubico de gas 
natural contiene 8486 Kilocalorías de poder calorífico total, que se puede definir 
como la suma de los calores de combustión de todos los componentes contenidos 
en el gas natural, considerando que los productos de la combustión son llevados a 
la temperatura base de 18° C. en estas condiciones, el agua producto d la 
combustión cede su calor latente de vaporización, el cual se considera dentro del 
poder calorífico total. 
La diferencia entre el poder calorífico total y el calor de vaporización del agua 
formada por la combustión de ese gas se denomina poder calorífico neto, que es 
el calor realmente aprovechable por los equipos de combustión. 
Como ejemplo, se muestra la reacción química para la combustión del metano y 
que representa la combustión del gas natural. 
 
 
 
 
20 
CALOR NETO =PODER CALORIFICO TOTAL – CALOR DE VAPORIZACIÓN 
 
El calor latente del agua a 15.5° C y 1atmosfera es de 267.1 Kcal. / Kg. o bien: 
 
 
Sumando las ecuaciones (1) y (2) se tiene el calor neto de combustión cuando el 
agua se encuentra como vapor. 
 
 
LIMITES DE FLAMABILIDAD 
Cualquier relación que se tenga con la industria del gas natural, requiere del 
conocimiento de los límites de flamabilidad. Son dos, el mas bajo corresponde a la 
concentración mínima del gas combustible para comenzar la combustión y el limite 
mas alto es la máxima concentración del gas que soporta la combustión, antes de 
provocar una explosión a condición de presión y temperatura especifica en función 
de la cantidad de oxigeno requerida. 
Los límites de flamabilidad para mezclas gaseosas pueden obtenerse en base a 
los límites de los componentes puros que lo integran. 
LEY DE LOS GASES IDEALES 
 
V = Volumen total ocupado por el gas real. 
Z = factor de compresibilidad del gas, s/u 
N = Número de moles del gas (peso molecular promedio), lb/lb mol. 
R = Constante de los gases ideales en las unidades apropiadas. 
T = Temperatura absoluta del gas, °R 
P = Presión absoluta del gas, psia. 
 
 
21 
El factor de compresibilidad es un número abstracto, independiente del peso del 
gas y dependiente de su composición, presión y temperatura especifica. En 
mezclas gaseosas el factor de compresibilidad esta en función de las presiones y 
temperaturas pseudo criticas de la mezcla de los gases puros (Ppc Y Tpc). 
FACTOR DE COMPRESIBILIDAD (Z) 
El factor de compresibilidad o desviación es un factor de corrección, que ajusta el 
volumen calculando con la ecuación de los gases ideales, convirtiéndose en el 
volumen real a determinada presión y temperatura del volumen que ocuparía si 
fuese perfectamente ideal. 
 Para un gas ideal el factor de compresibilidad “Z” es igual a uno, para todas las 
temperaturas y presiones. Para el caso de los gases reales el factor de 
compresibilidad suele variar con ambas variables, y su desviación de la unidad es 
un índice del comportamiento ideal. 
 
Forma típica del factor de compresibilidad “Z” en función de la presión a 
temperatura Constante. 
 
El factor de compresibilidad no es constante; éste varía con cambios en la 
composición, presión y temperatura. A bajas presiones la distancia entre las 
moléculas es considerable, y el factor de compresibilidad tiende a uno 
comportándose como un gas ideal, a presiones intermedias existe atracción 
molecular lo cual hace que el volumen real sea menor que el ideal y el factor de 
compresibilidad sería menor a uno, y a presiones altas las fuerzas repulsivas 
actúan, es decir, el volumen real es mayor que el volumen ideal y el factor de 
compresibilidad es mayor a uno. 
En varios estudios experimentales de gases reales o puros como el metano, etano 
y propano, éstos mostraron una relación entre sus factores de compresibilidad, 
“Z”, y la presión y la temperatura; se puede ver que las isotermas del factor de 
compresibilidad son muy semejantes, esto debido a la ley de estados 
correspondientes que establece: 
 
“Todos los gases reales se comportan similarmente (por ejemplo el factor Z) 
cuando son analizados en función de la presión reducida, volumen reducido y 
temperatura reducida”. 
Esta ley es más exacta si los gases presentan similares características 
moleculares, dentro de la ingeniería petrolera los gases que se manejan presentan 
características moleculares semejantes; es decir, están primariamente 
 
 
22 
compuestos de moléculas de la misma clase de compuestos orgánicos conocidos 
como hidrocarburos parafínicos. 
 
Para poder entender más claramente las características de un fluido y el 
comportamiento de este bajo condiciones PVT es necesario ilustrarlo con un 
diagrama de fases que se presenta acontiniuación, para su clasificación en 
condiciones originales del yacimiento, definiendo primeramente algunos conceptos 
básicos como siguen: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 1.3 Diagrama de Fases 
 
 
Punto crítico: Es el estado en condiciones de presión y temperatura para el cual 
las propiedades que no dependen de la cantidad de materia, de la fase liquida y 
gaseosa son idénticas. 
Presión crítica: Es la presión correspondiente al punto crítico. 
Temperatura crítica : Es la temperatura correspondiente al punto crítico. 
Curva de burbuja : Es el lugar geométrico de los puntos de presión-temperatura, 
en los cuales se forma la primer burbuja de gas, al pasar de la región liquida a la 
región de dos fases. 
Curva de rocío: Es el lugar geométrico de los puntos de presión-temperatura, en 
los cuales se forma la primer gota de líquido, al pasar de la región de vapor a la 
región de dos fases. 
 
 
23 
Región de dos fases: Es la región comprendida entre las curvas de rocío y 
burbujeo. 
Cricondenbara : Es la máxima presión a la cual pueden coexistir en equilibrio un 
líquido y su vapor. 
Cricondenterma : Es la máxima temperatura a la cual pueden coexistir en 
equilibrio un líquido y su vapor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 1.3.1 Diagrama de Fases 
 
 
 
 
 
 
 
 
24 
VENTAJAS DEL USO DEL GAS NATURAL EN LA INDUSTRIA 
El empleo del gas natural en la industria trae consigo numerosas ventajas, que a 
continuación se mencionan: 
Abastecimiento ilimitado y constante sin problemas de transporte y 
almacenamiento. 
Permite el suministro directo de combustible al consumidor aminorando los costos 
de transporte mediante auto tanques y/o carro-taques. 
Facilidad absoluta de operación, no requiere de equipo de bombeo al 
suministrarse a la industria. 
Mejor control de la combustión, con el siguiente ahorro de combustible. 
Ausencia de azufre, aumentándose sustancialmente la vida útil del equipo 
disminuyendo los costos por mantenimiento. 
Pureza del gas natural, cualidad que en muchas ocasiones es indispensable para 
la producción de artículos de calidad (industria de vidrio, acero, hornos de cal 
alimentos etc.) 
No necesita calentamiento previo, por lo tanto esta exento de erogaciones 
significativas por concepto de consumo de vapor. 
Se puede adaptar fácilmente a los equipos automáticos de control empleados en 
la industria. 
No contiene tóxicos, ni producen humo durante su combustión. 
Se tiene un alto aprovechamiento de su poder calorífico neto. 
Ahorra la inversión en tanques de almacenamiento. 
 
 
 
 
 
 
 
 
 
25 
DUCTOS 
CONCEPTOS GENERALES 
Tubo.- pieza, hueca, generalmente cilíndrica, mas larga que gruesa, destinada 
para varios usos, para este caso se usará para la conducción de productos 
derivados del petróleo (gas natural) generalmente de materia resistente como es 
el acero. 
Ducto.- Selecciones de tubo generalmente metálico cuya unión es hecha por 
soldaduras metálicas a fin de al metal base, con la unión de las secciones de tubo, 
por lo que para este caso se llamara como ducto de conducción. Incluye diversas 
partes y componentes necesarios que intervienen dentro de su construcción y, 
posteriormente, en su operación tendrá estos equipos: instrumentación, válvulas, 
bridas, accesorios, dispositivos de seguridad y alivio. 
La construcción de ductos para el transporte de derivados del petróleo pueden ser 
hechos en diferentes circunstancias geográficas como: 
A nivel de piso, enterrada, con diferencia de nivel, cruce de ríos, lagos o mar 
adentro. 
Para poder mover el producto o transferir este a través del ducto, es necesario 
contar con estaciones de bombeo intercaladas entre los dos puntos a donde se 
pretende mover el fluido, para el caso de movimientos de productos en estado 
gaseoso se utilizarán turbinas. 
El número de estaciones de recompresión, dependerá de la distancia total a donde 
se enviará el producto así como de la potencia de cada uno de los compresores 
que esta en función de las siguientes características: propiedades físicas y 
químicas del producto principalmente de su viscosidad, del diámetro de la tubería 
y su resistencia mecánica y principalmentede los obstáculos geográficos que se 
presenten en la trayectoria desde el punto de envío hasta el punto de recibo. 
Las tuberías que conducen el petróleo y sus derivados constituyen uno de los 
recursos más importantes con los que cuenta la industria petrolera, debido a que 
estos se conducen de manera confiable, con seguridad por los diversos lugares 
geográficos por donde pasa el ducto, y su operación es en forma seguro con base 
en los programas de movimientos de productos. 
Los ductos reducen en gran manera las pérdidas que por el manejo de productos 
se hace durante la transferencia del mismo, consecuentemente se minimizan los 
contaminantes emitidos a la atmosfera en relación de uno u otro tipo de transporte, 
estos pueden trabajar en cualquiera que sean las condiciones atmosféricas en la 
 
 
26 
trayectoria del ducto, este medio de conducción resulta más eficaz y eficiente que 
los medios de transporte marítimos, terrestre (carreteras y vías férreas). 
Antes de la expropiación, los expertos mexicanos debatieron sobre la necesidad 
de que hubiera oleoductos petroleros y gasoductos para uso público, como una 
manera de fomentar la participación de capitales independientes en la industria. 
Las empresas exportadoras de petróleo antes del 18 de marzo de 1938, tenían 
oleoductos y gasoductos para el manejo de crudo y el gas natural, siendo tan poco 
el volumen a trasportar que los ductos que conducían productos terminados, en 
los informes no aparecían identificados como tales. 
La mayor parte de los ductos construidos conducían el petróleo hacia las costas 
más cercanas para poder enviar los productos a otros países. 
Era tanta la demanda que en la parte sur que separa la Laguna de Tamiahua del 
Golfo de México que no se contaba ni siquiera con una modesta instalación 
portuaria, en algunas ocasiones se instalaron boyas de carga mar adentro. 
Aparte de la expropiación la empresa nacional se ve en la imperiosa necesidad de 
construir e incrementar el número de ductos para poder enviar los diversos 
productos en forma confiable a los centros de consumo y procesamiento cuya 
demanda crecía en forma acelerada. 
Los ductos se clasifican generalmente de acuerdo a los productos que 
transportan: 
� Oleoductos: Tuberías para el transporte de petróleo crudo. 
� Gasoductos: Para el transporte de hidrocarburos en estado gaseoso. 
� Poliductos: Transportan gasolinas, queroseno, diesel y/o productos con 
propiedades físicas muy similares. 
� Combustóleoductos: Combustóleos ligeros. 
� Ductos petroquímicos: Aquellos que conducen productos derivados del 
petróleo y que son elaborados en las plantas petroquímicas y que suelen 
asumir el nombre del producto como por ejemplo: amonio ducto, etileno 
ducto entre otros. 
 
 
 
 
 
27 
CARACTERISTICAS GENERALES DE LA TRANSPORTACION POR DUCTOS. 
Los ductos son económicos en su manejo y operación, pero su inversión inicial es 
muy fuerte. 
Con el uso de estos se evitan pérdidas del producto por el trasvase, se tiene alta 
seguridad en el manejo de los productos así como con el cumplimiento de la 
entrega de los mismos de acuerdo a los programas de movimiento de producto. 
Construcción: 
Los ductos pueden ser construidos sobre tierra firme (en forma superficial u 
oculta), en el lecho de ríos o en el mar depositándolos en el fondo. 
Su construcción puede ser de diversos diámetros comerciales y la longitud de 
cada tramo de tubería varia entre los 10 y 15 metros de longitud, la tubería puede 
ser con o sin costura dependiendo de la especificación que se indique en la 
construcción y el trazo del ducto, sin embargo la normatividad, exige que para 
transporte de gas se utilice tubería sin costura. 
Los tramos de tubería puede ser biselada o roladas en los extremos, crecerán en 
trayectoria deseada aplicando soldaduras. 
Prueba hidrostática: Esta se lleva a cabo usando agua dulce, neutra y libre de 
partículas en suspensión, que no pasen por una malla de 100 hilos por pulgada, si 
se efectúan esta prueba con un destilado, se debe considerar lo siguiente. 
Que la temperatura de inflamación del líquido sea superior de 41°C, que todo el 
sistema este localizado fuera de cualquier población, la presión de prueba debe 
ser aquella que produzca un esfuerzo tangencial de 90% de la resistencia mínima 
especificada en la cedencia correspondiente. 
Generalmente se usan las siguientes formulas: 
 
P=Presión de prueba en (lb/in2) 
Sc= Resistencia mínima especificada la cedencia (lb/in2) 
0.9=Eficiencia de la junta adicional 
t= 0.6 para diámetros menor o igual a 10.16 cm 
 0.8 para diámetros mayores. 
 
 
28 
D= Diámetro nominal exterior (in) 
Nota: Para la prueba en tubería se realiza en dos fases: 
La prueba hidrostática de la tubería, a una presión de no mayor de 7.03 Kg/cm2 
(100 lb/in) y se aceptan como satisfactoria si los cambios de presión son 
únicamente los atribuidos a los estabilización de la misma presión o a cambios de 
la temperatura ambiental. 
PROTECCION DE TUBERÍAS. 
Todas las tuberías, principalmente las de conducción y las troncales, deben 
protegerse contra deslaves, inundaciones, suelos inestables, deslizamientos y de 
cualquier otro riesgo que pueda desplazarlas o someterlas a cargas extremas 
anormales. 
Todas las tuberías que se construyen sobre la superficie de terreno, deben 
protegerse contra los daños que puedan causarle en un año el transito de 
vehículos o cualquier otro agente externo, ya sean colocando a una distancia 
segura de las vías de comunicación o resguardándolas con barreras (derecho de 
vía). Si la tubería es diseñada para operar con esfuerzos tangenciales del 50% o 
más de la resistencia mínima especificada a la cedencia del material, no se debe 
soldar directamente al tubo, soportes o refuerzos de apoyo. Generalmente para 
soportar las tuberías, se usan anclas en curva. 
OPERACIÓN 
Su operación es fácil, para su control se cuenta con la instrumentación que 
permite verificar en forma constante la presión, temperatura, flujo, y gravedad 
especifica del producto que fluye por el ducto, dentro de las verificaciones se 
deben efectuar también los niveles de almacenamiento que tienen los tanques 
adonde se envía el producto que se maneja dentro del ducto. 
INSTRUMENTACION LOCAL Y SU LOCALIZACIÓN 
Transmisores de presión en la succión de los compresores, indicador de presión 
antes de los filtros, indicadores de presión diferenciales antes y después de los 
filtros, indicador de temperatura; también cuenta con indicador de presión en la 
descarga de los compresores así como transmisores de presión diferencial, 
gravitómetro con transmisor indicador de densidad para notificar los cambios de 
producto. 
El tablero principal de operación se localiza en la estación de compresión así 
como su oficina de control, este tablero presenta los siguientes indicadores que 
 
 
29 
controlan la operación del ducto, registradora de presión con indicación de presión 
en succión y descarga de los compresores, registradora de flujo, registradora de 
densidad con toma en el porta orificio y que recibe señales de gravitómetro. 
También se cuenta con un cuarto eléctrico donde se localizan los arrancadores y 
transformadores que suministran la energía eléctrica a la estación de 
recompresión. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30 
MANTENIMIENTO EN LOS DUCTOS. 
Este mantenimiento se lleva bajo un programa en todos los equipos, tuberías e 
instrumentos ubicados a lo largo de todo el ducto, este mantenimiento se realiza 
en los compresores, turbinas y motores eléctricos o en este caso con turbinas, así 
como en los equipos de radiocomunicación, teléfonos y de audio que se tienen en 
las estaciones. 
Atendiendo al control mecánico del gasoducto, los instrumentos se catalogan en 
tres grupos: 
a) Los que no actúan con ningún mecanismo como las alarmas siendo estos 
los manómetros, indicadores de flujo. 
b) Instrumentos de seguridad o accesorios comoválvulas controladoras de 
presión, válvula de seguridad. 
c) Instrumentos de control, medidores de flujo y presión. 
Inspección Directa. 
Con la finalidad de localizar y dimensionar los defectos en un ducto para evaluar el 
riesgo de falla y poder determinar el tipo de reparación, se requiere de 
inspecciones no destructivas, siendo las recomendadas: 
Inspección Visual 
Se recomienda la aplicación de este método para detectar y dimensionar defectos 
en la superficie exterior de la pared del ducto, siempre que ésta se encuentre al 
descubierto, ya sea por ser instalación aérea o por la práctica de excavación o 
inspección submarina, previa remoción del recubrimiento si este es de un grosor 
tal que impida la observación de la superficie. 
Los defectos detectables por Inspección Visual incluyen: picaduras, abolladuras, 
entallas, fugas, defectos externos de uniones soldadas, anomalías en soportería, 
deformaciónes, pliegues, defectos de recubrimiento, vibración y contacto físico con 
cuerpos y estructuras ajenas al ducto. 
Líquidos Penetrantes 
Este método permite detectar ubicar y dimensionar discontinuidades superficiales 
en conexiones de accesorios y juntas soldadas de tuberías, como poros, 
picaduras y entallas agudas. 
 
 
31 
La superficie a inspeccionar y las áreas adyacentes, deben limpiarse a metal 
blanco con chorro de arena y/o herramienta mecánica y posteriormente lavarse 
con agua para eliminar contaminantes como, aceite, grasas, polvo, oxidación, 
pintura, entre otras, ya que estos contaminantes obstruyen o bloquean las grietas; 
cuando la superficie del área a inspeccionar se encuentra seca se aplica en forma 
homogénea el líquido penetrante quedando expuesto durante 5 minutos evitando 
el secado de este sobre la superficie. La aplicación se efectúa con aerosol de 
acuerdo a los requerimientos del código ASME. 
Una vez transcurrido el tiempo de penetración indicado se limpian con solvente y/o 
agua los excedentes para proceder a la aplicación del liquido revelador; el liquido 
revelador es un polvo en suspensión que se aplica con aerosol en forma de roció 
formando una capa delgada y uniforme que permite un contraste de fondo o 
sangrado con el liquido penetrante. 
Inspección Indirecta. 
Para ductos donde no es posible inspeccionar directamente ya sea por las 
condiciones ambientales, tiempo o cantidad de ductos a inspeccionar, se opta por 
equipos especiales como lo son el equipo instrumentado de inspección interna y el 
vehículo operado a control remoto. 
Vehículo Inteligente de Inspección Interna 
El uso de vehículos inteligentes (diablo instrumentado), se inició a finales de los 
70´s aumentando su utilización en los últimos años; La capacidad de inspección 
de contratistas de equipos de inspección interna ha mejorado debido a los 
progresos en tecnología de sensores y en la informática. 
A pesar de todos los progresos en el diseño mecánico de los equipos, la 
tecnología de inspección con vehículo inteligente no debe verse como infalible ya 
que cada herramienta tiene limitaciones en su capacidad de inspección que 
deben ser consideradas. 
Respecto a la frecuencia de inspección con vehículo inteligente, ésta dependera 
de la filosofía de inspección, de las condiciones de operación y de la geometría del 
ducto; ya que en su mayoría los ductos marinos no fueron diseñados para ser 
inspeccionadas interiormente con vehículos inteligentes. 
Existen varias técnicas disponibles para inspeccionar el interior de los ductos; sin 
embargo cada técnica o herramienta tiene limitaciones en su capacidad de 
inspección que deben ser atendidas. El tipo de vehículo inteligente elegido 
dependerá del propósito de la inspección así como de los datos esperados de la 
misma. Aunque ocasionalmente los objetivos de la inspección de tuberías con 
 
 
32 
vehículo inteligente pueden variar; en general, el propósito principal del operativo 
es detectar la pérdida de metal. 
Las técnicas aplicadas para detectar las pérdidas de metal en tuberías son: 
• Fuga de Flujo Magnético (MFL). 
• Ultrasonido 
• Corriente de alta frecuencia 
• Corriente campo remoto. 
Aunque ocasionalmente los objetivos de la inspección con vehículo inteligente 
pueden variar, en general, la perdida de metal es lo que mas le preocupa a los 
operadores de sistemas de tuberías. 
Protección Interior 
En los ductos de acero utilizados para el transporte de hidrocarburos, es necesario 
establecer un programa de evaluación y control para minimizar los daños 
originados por la corrosión en el interior de las tuberías. 
Del fluido que se transporta se debe conocer su calidad, conociendo entre otros 
contaminantes, los siguientes: 
 Bacterias, Dióxido de carbono, Cloruros, Ácidos orgánicos, Oxígeno, Sólidos ó 
precipitados, Parafinas, Agua, Sales o incrustantes, Ácido sulfhídrico y derivados 
del azufre. 
La protección interior de un ducto es considerada desde la ingeniería de diseño, la 
cual en algunos casos incluye el tratamiento con inhibidores de corrosión, 
incluyendo el suministro, instalación y operación del equipo y accesorios 
necesarios, el tratamiento de fluidos antes de entrar al ducto, incrementar la 
frecuencia de la limpieza interior mediante corrida de “diablos”, recubrimiento 
interior del ducto o la combinación de estos métodos. 
El ducto debe diseñarse de tal forma que el intervalo de velocidad del fluido varíe 
entre los límites que causen el menor daño por abrasión. El limite inferior más 
conveniente es el que mantenga en suspensión las impurezas evitando así la 
acumulación de materiales abrasivos dentro del ducto y el límite superior de la 
velocidad es aquel en el cual sean mínimos los fenómenos de corrosión-erosión y 
cavitación. 
 
 
33 
El flujo intermitente debe evitarse, sin embargo si no es posible, debe considerarse 
una velocidad de operación tal que el fluido arrastre el agua y sedimentos 
acumulados en las partes bajas del ducto durante el tiempo que permaneció 
empacado. 
Si desde esta etapa se sabe, por la naturaleza del fluido a trasportar, de la 
posibilidad de la acumulación de sedimento, agua o materiales corrosivos, además 
de las trampas de “diablos”, se deben implementar equipos y dispositivos 
necesarios para la limpieza del ducto como filtros, separadores, desfogues, entre 
otros. 
También se evita desde el diseño, sitios confinados, asociados con bridas ciegas, 
codos, uniones laterales, por enumerar algunos. 
Es conveniente incluir trampas, venteos y drenajes en donde se acumulen los 
contaminantes corrosivos y estar así en posibilidades de eliminarlos 
periódicamente. 
Cuando se tenga la presencia de agua en el hidrocarburo se debe considerar la 
deshidratación del fluido, de tal forma que el contenido de agua sea aceptable. 
Cuando el oxígeno sea el causante de la corrosión interior. Se debe considerar la 
eliminación de aire del fluido y el sistema del ducto se diseñará de tal forma que 
no haya entrada de aire. Si desde el diseño se prevé la necesidad de dosificar 
inhibidores de corrosión, secuestrantes de oxígeno o bactericidas, deben incluirse 
los dispositivos de dosificación necesarios. 
Otra consideración que debe hacerse desde la ingeniería conceptual de diseño 
como solución al manejo de fluidos que contienen contaminantes corrosivos, es la 
del empleo de recubrimientos interiores, complementado con inhibidores que 
actuarán en áreas en donde el recubrimiento pudiese tener poros o en zonas 
próximas a la soldadura de campo. 
La dependencia operativa que entregue el producto a transportar por el ducto, 
será responsable de que éste contenga el mínimo de elementos corrosivos de 
acuerdo a las especificaciones fijadas en el diseño; existen tablas que muestran 
los límites máximos permisibles para algunos productos. 
Recubrimiento Interior de Ductos. 
 El recubrimiento interior de ductos debe considerarse como otro recurso para el 
control de corrosión interior, ya que proporcionará una barrerafísica entre el acero 
y el fluido transportado. También se considera una solución en áreas especiales 
como en cabezales de estaciones o líneas de descarga de pozos de diámetro tal 
que no sea factible o económico usar alguna otra técnica de control de corrosión. 
 
 
34 
El recubrimiento seleccionado deberá ser resistente al ataque del fluido y de sus 
contaminantes corrosivos o inhibidores, además deberá ser compatible con el 
fluido. 
Mantenimiento Correctivo 
Con las actividades correctivas se logra restablecer la integridad de los ductos y 
ampliar su vida útil. La decisión de reparar un ducto está en función de la 
severidad del defecto presente por lo que es necesario conocer las formas de 
daño en las tuberías 
Principales formas de daños en tuberías submarinas 
A continuación se presentan las categorías de clasificación de defectos típicos de 
las tuberías de recolección y transporte de hidrocarburos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TABLA1.4 Clasificación de Defectos en Tuberías. 
 
 
35 
 
 
 
 
 
 
CAPITULO II 
 
DISEÑO DE DUCTO 
 
 
 
 
 
 
 
 
 
 
 
36 
Para entender de una mejor manera lo que se quiere explicar en este trabajo de 
tesis, se realiza una ejemplo del diseño de un ducto que transporta gas natural en 
el estado de Chiapas que parte de Cactus su destino es la terminal de 
almacenamiento y distribución de Tapachula; para realizar este diseño se 
necesita definir las variables a trabajar que a continuación se enumeran: 
� Perfil topográfico. 
� Material con el que trabajara. 
� Flujo volumétrico. 
� Diámetro y espesor del ducto, optimo y económico. 
� Reynolds. 
� Factor de fricción. 
� Panhandle B (Ø mayores de 24”). 
� Presión de operación (Ec. Barlow). 
� Factor de diseño. 
� Presión máxima de operación. 
� Caídas de presión. 
� Número de estaciones de compresión. 
� Número de accesorios. 
� Obras especiales. 
Planteamiento del Problema. 
Se necesita transportar 300, 000,000 ft3/día de gas natural de Cactus Chiapas 
como destino se tiene la terminal de distribución de Tapachula en el mismo estado 
de Chiapas. 
Trazando la ruta mas conveniente de esta manera se conoce la longitud total, se 
trabajará con acero comercial sin costura especificaciones API std L-X52 para el 
ducto en la siguiente tabla se explica las características de este, el diámetro que 
se usa es supuesto ya que se iterará para conocer el real el que se utiliza es de 
32 pulgadas. 
 
 
37 
En la tabla 2.0 y 2.1 se muestran las composiciones y características físicas del 
tubo como lo marca el estándar API. 
 
 
 
 
Tabla 2.0 Composiciones del material. 
 
 
 
 
 
Tabla 2.1 Características físicas del material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38 
Perfil Topográfico 
En el siguiente esquema (figura 4) se muestra el perfil topográfico y el mejor 
recorrido para el ducto. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4 Perfil Topográfico 
 
 
 
39 
DATOS 
Q = 3471.483 
Øsup = 32 in (2.66 ft) 
µDin = 0.00479 
= 0.62 
CALCULO DE REYNOLDS 
 
 
Se obtiene el valor de la densidad. 
0.62 
Conociendo el diámetro de la tubería se puede conocer el área. 
 
Se obtiene la velocidad 
 
Se tiene como dato la viscosidad dinámica pero para efectos de este cálculo se 
necesita la viscosidad cinemática, realizando la conversión de esta manera: 
 
 
 
 
 
 
 
40 
Teniendo las variables completas se calcula el Reynolds 
 
Con este cálculo y se sabe como se comporta el flujo, en este caso es turbulento. 
Se calcula la rugosidad y el factor de fricción así se conocen hipotéticamente estos 
valores después se comparan con los de la grafica de Moody. 
Tabla 2.2 valores de la rugosidad del acero comercial 
Material Rugosidad, ε (m) Rugosidad, ε 
(ft) 
Cobre, latón, plomo (tubería) 1.5 x 10-6 5 x 10-6 
Hierro fundido: sin revestir 2.4 x 10-4 8 x 10-4 
Hierro fundido: revestido de asfalto 1.2 x 10-4 4 x 10-4 
 
Acero comercial o acero soldado 
 
4.6 x 10-5 
 
1.5 x 10-4 
Hierro forjado 4.6 x 10-5 1.5 x 10-4 
Acero remachado 1.8 x 10-3 6 x 10-3 
Concreto 1.2 x 10-3 4 x 10-3 
 
Con este valor se obtiene la rugosidad relativa del acero. 
 
 
 
 
41 
Ahora se obtiene el factor de fricción 
 
 
 
 
 
 
Teniendo los valores se corroboran con el diagrama de Moody 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42 
DIAGRAMA DE MOODY 
Permite determinar el valor del factor de fricción f a partir de Re y ε/D de forma 
directa. Es una representación log - log del factor de fricción f frente al Re, 
tomando como parámetro ε/D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 5 Con este diagrama se observa el comportamiento de un fluido. 
 
 
43 
 
Se calcula el espesor del tubo con la ecuación de Barlow 
 
Donde: 
PMO = Presión máxima de operación (lb/in2) 
Ø = Diámetro exterior nominal de la tubería (in) 
SMYS = Esfuerzo de cedencia mínimo especificado (lb/in2) 
Fcp = Factor de capacidad permisible por presión interna de diseño 
El factor de capacidad permisible se determina de la siguiente manera: 
 
Donde: 
 Factor de diseño por clase de localización que depende del tipo de 
fluido transportado, ver tabla para gas. 
 
De acuerdo con la NRF-030-PEMEX-2009 el área unitaria debe de ser la base 
para determinar la clasificación por clase de localización en ductos que 
transportan gas. La clasificación se debe determinar de acuerdo con el número de 
construcciones localizadas en esta área unitaria. Para propósito de esta norma, 
cada vivienda o sección de una construcción destinada para fines de ocupación 
humana o habitacional se considera como una construcción por separado. 
Por causas de este proyecto se tomara la clase de localización 2. 
Clasificación por clase de 
localización 
Factores de diseño 
( ) 
Clase 1 0.72 
Clase 2 0.60 
Clase 3 0.50 
Clase 4 0.40 
 
 
44 
Clase de localización 2: Corresponde a aquella tubería que en su área unitaria 
se tienen mas de 10, pero menos de 46 construcciones destinadas a ocupación 
humana. 
 Factor de diseño por temperatura ver tabla. 
 
Temperatura 
Factor de Diseño 
( ) 
°C °F 
121 o menos 250 o menos 1.000 
149 300 0.967 
177 350 0.933 
204 400 0..900 
232 450 0.867 
 
 Factor de junta longitudinal ver tabla. 
 
Tipo de Tubería 
 
Factor de junta longitudinal( ) 
Soldadura longitudinal sin costura 
(SAL) 
1.0 
Soldadura por resistencia eléctrica 
(ERW) 
1.0 
Soldadura helicoidal por arco 
sumergido(SAWH) 
1.0 
 
Estos valores son predeterminados por las empresas dedicadas a la fabricación 
de tubos. 
Al Conocer los datos calculamos el factor de capacidad permisible por presión 
interna de diseño. 
 
A continuación se calcula el espesor del tubo el cual debe tener un espesor 
mínimo de pared requerido para soportar los esfuerzos producidos por las fuerzas 
ejercidas por la presión interna. 
 
 
45 
 
El significado de este valor es neto pero el ducto se va a calcular para 20 años así 
que se debe incluir el factor que es 0.625 milésimas de pulgada , ya teniendo el 
resultado se podrá calcular la presión de diseño máxima interna. 
 
Al resultado obtenido del espesor neto se le agrega el 5% ya que es el factor de 
seguridad. 
 
Este valor es el espesor real del ducto. Conociéndolo se puede calcular el valor de 
la presión de diseño. 
 
Con los datos obtenidos hasta el momento se puede calcular la presión final de 
operación del ducto (P2) con la ecuación de Panhandle B que es para diámetros 
mayores de 24 pulgadas teniendo ambas presiones se podrá conocer el valor real 
del diámetro. 
 
Donde: 
Q = Volumen de gas (ft³/día); en condiciones base Po y To 
To = Temperatura base, este caso 20° C 
Po = Presión base, en este caso 14,2234 lb/pg² 
Ø = Diámetro interior de la tubería enplg 
P1 = Presión al inicio del ducto en lb/in²abs (descarga de estación) 
P2 = Presión al final del ducto en lb/in²abs, llegada al siguiente punto (succión) 
 
 
46 
G = Gravedad relativa del gas (aire =1) sin unidades 
Tf = Temperatura media de flujo en ° R 
L = Longitud de la tubería en millas 
E = Eficiencia, expresada en porciento, para tuberías nuevas se asigna 0.92 
 
 
 
 
 
 
Este valor se sustituye en la ecuación de Panhandle B para conocer el valor real 
del diámetro ya que con el que se había trabajado es supuesto. 
 
 
 
 
 
El valor se seguira ocupando para este ducto será de 32 pulgadas ya que no 
afecta el calculo. 
Conociendo las dos presiones se calculan las caídas de presión en la longitud total 
del ducto. 
 
Donde: 
Psuc = Presión de succión del ducto lb/in
2 
Pfin = Presión final del ducto lb/in
2 
 
 
 
47 
Nota: El valor de es el que se usa normalmente en la succión de un 
compresor. 
En la trayectoria del ducto se necesitan estaciones de compresión para manejar el 
gasto con ese diámetro. 
 
Sustituimos 
 
No se tiene ningún problema en tener solo una estación de bombeo ya que en el 
perfil topográfico no se tienen alturas. 
VALVULAS DE SECCIONAMIENTO 
La NOM-002-SECRE 2003 dice que cada 35 Km debe de haber accesorios en 
nuestro caso válvulas por lo tanto se conoce la longitud total de este ducto, se 
puede realizar el calculo. 
 
Se debe de tomar en cuenta que en la trayectoria existen ríos, vías de ferrocarril, 
viales, ciudades pequeñas y grandes. De acuerdo a la norma ya mencionada se 
deben colocar 2 válvulas por cada lugar ya mencionado (entrada y salida). En 
ciudades grandes se coloca una cada 5km, como es el caso de Tuxtla Gutiérrez, 
Reforma Chiapas, Tonalá, Pijijiapa a Tapachula. 
En la siguiente tabla 2.3 se observa la relación entre los lugares y las válvulas a 
utilizar. 
 
 
 
 
 
 
48 
Lugar N° de Lugares Total de Válvulas 
Ríos 
 
35 72 
Carreteras 
 
5 22 
Vías Férreas 
 
3 14 
Ciudades grandes 
 
5 10 
Ciudades pequeñas 
 
13 28 
TABLA 2.3 Número de válvulas a utilizar. 
 
El total de válvulas que se requieren será 146 ya que por seguridad a la población 
no se debe escatimar precios. 
Respecto a las trampas de diablo se necesita una en cada estación de 
compresión; en este caso se tiene una, se debe seccionar el ducto cada 150 Km 
de acuerdo con las empresas que prestan el servicio de diablos, para 
reparaciones, ya sea de diablos o válvulas. Se necesitarían 3 ya que la longitud 
total es 400km. Sin embargo se debe estar seguros que no haya puntos 
intermedios que nos puedan generar una acumulación de detritos o líquidos 
acumulados que puedan afectar el paso del diablo, en tales casos se coloca una 
más. 
 
 
 
 
 
 
 
 
 
49 
 
 
 
 
CAPITULO III 
CORROSIÓN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50 
En las instalaciones al igual que en la mayoría de las industrias cuyas estructuras 
están principalmente constituidas por partes metálicas, se presenta el fenómeno 
de la corrosión; Esto se describe como el ataque destructivo de un metal por 
reacción química o electroquímica con su medio ambiente. Este problema causa 
importantes pérdidas de materiales derivados de la reposición total de estructuras 
o de retrasos en la producción por reparaciones, y con esto, pérdidas económicas 
Las medidas preventivas tomadas para controlar la corrosión consisten, 
fundamentalmente en: 
1) Sistemas a base de protección catódica: Son sin duda el método más 
eficiente para controlar la corrosión en estructuras enterradas o inmersas 
en un electrolito. Estos sistemas de acuerdo a su forma de operar, se 
clasifica como de corriente impresa y por ánodos de sacrificio. 
2) Sistemas protectores con recubrimientos anticorrosivos: Se utilizan 
principalmente para formar una barrera física entre el ambiente corrosivo y 
la estructura a proteger. Su uso más extendido es en elementos metálicos 
expuestos a la atmosfera. 
3) Inhibidores de corrosión: Son sustancias que, adicionadas en pequeños 
concentraciones al medio corrosivo, disminuyen eficazmente la velocidad 
de corrosión. Este método reconoce su principal campo de aplicación en el 
interior de tuberías, tanques y equipos de proceso. 
TECNICAS PARA CONTROLAR LA CORROSIÓN 
PROTECCIÓN CATODICA 
La protección catódica consiste en obligar a la estructura a funcionar como cátodo 
en una celda de corrosión, mediante la manipulación y/o modificación de factores 
electroquímicos. 
Los recubrimientos anticorrosivos que eliminan metal-medio, han tenido un gran 
desarrollo, ya que permiten, por lo sencillo de su aplicación, lograr fácilmente el 
recubrimiento idóneo para cada uso o agente agresivo; sin embargo ningún 
recubrimiento es capaz de garantizar una película totalmente libre de poros o 
discontinuidades, sobre todo, por los daños mecánicos que se ocasionan durante 
el manejo de la estructura. Las fallas o discontinuidades del recubrimiento no son 
significativas cuando la estructura esta expuesta a un ambiente poco corrosivo 
pero, en un medio electrolítico como suelos húmedos o agua, generan una 
corrosión localizada que provoca daños en la estructura conocida como “pitting” o 
picadura. La protección de estas áreas, se realiza mediante un sistema de 
protección catódica, método electroquímico, es decir, se caracteriza por la 
 
 
51 
aplicación de una corriente eléctrica dentro del medio corrosivo o bien, a la 
estructura con respecto al medio. 
La protección catódica y el fenómeno de corrosión electroquímica se desarrollan 
según los mismos fundamentos teóricos de una pila seca, como la que se muestra 
en la figura 3.0, cuando el interruptor del circuito este abierto no existe flujo de 
corriente y las paredes de zinc se mantienen intactas; cuando el interruptor se 
cierra, se produce un flujo de corriente desde la terminal positiva hacia la negativa 
y un flujo de electrones en sentido contrario; los electrones al llegar a la superficie 
de la barra de carbón se unen con los iones positivos presentes en el electrolito, 
completándose así el circuito eléctrico. Al ceder electrones se genera corriente 
desde las paredes de zinc, produciéndose pérdida de metal u oxidación, mientras 
que la barra de carbón se mantiene íntegra y ocurre el fenómeno conocido como 
reducción. 
A la pila seca también se le denomina celda galvánica, en la cual la barra de 
carbón es el cátodo y el zinc es el ánodo. 
 
 
 
52 
Para considerar protegida catódicamente una estructura de acero, existen 
diversos criterios de potencial en la estructura- electrolito, entre los que destacan 
respecto a la tabla 3.1: 
� -0.85 volts referidos a una media celda de cobre/sulfato de cobre 
� Modificar de 0.25 a 0.30 volts, en dirección negativa, el potencial natural 
con el método de corrientes mínimas. 
� Modificar 0.10 volts, en dirección negativa, el potencial determinado con el 
método de corrientes mínimas. 
Estos potenciales pueden referirse a distintos electrodos de referencia, en cuyo 
caso se deben considerar los siguientes valores. 
Potencial Equivalente 
 
ELECTRODO O MEDIA CELDA 
 
POTENCIAL EQUIVA LENTE 
ESTRUCTURA/ELECTROLITO 
 
Cobre/Sulfato de cobre 
-0.85 
 
Plata/Cloruro de plata (1) 
-0.84 
 
Plata/Cloruro de plata (2) 
-0.80 
 
Calomel saturado 
-0.778 
 
Calomel 1.0 normal 
-.0818 
 
Calomel 0.1 normal 
-0.871 
 
Zinc puro 
+0.25 
(1) En solución 0.1 de Cloruro de potasio (Kcl). 
(2) En agua de mar con resistividad de 20 (ohm-cm) 
(3) El potencial de -0.85 volts, referidos a cobre/sulfato de cobre, es el criterio 
que se debe emplear en los diseños usuales, otros criterios se usarán en 
casos específicos como estructuras, pobremente recubiertas o en sitios de 
muy alta resistividad. 
Respecto a potenciales máximos de protección. Se acepta, para líneas enterradas 
recubrimientos con esmaltes de alquitrán de hulla, el valor de -2.5 volts, esta 
referido a cobre/sulfatode cobre. Este valor es función, básicamente, del 
recubrimiento y el electrolito en que está inmerso. 
 
 
53 
CORRIENTE IMPRESA 
Uno de los métodos para aplicar protección catódica es el denominado como 
corriente impresa, en el cual se imprime corriente al circuito formado por la 
estructura a proteger, el lecho anódico y el cableado, mediante fuentes externas 
de corriente directa. 
El arreglo general de un dispositivo de protección catódica se muestra en la figura 
3.1. 
� Estructura a proteger.- En la figura se representa un ducto, aunque puede 
ser un tanque de almacenamiento, pilotes, cualquier estructura metálica; es 
condición que se encuentre alojada en el seno del electrolito en que se 
instala el lecho anódico. El electrolito puede ser suelo, agua de mar, 
marisma, pantano entre otros. 
La estructura a proteger se conecta al polo negativo de la fuente de la 
corriente directa. 
� Fuente de corriente directa.- Este dispositivo suministra la potencia 
necesaria para hacer circular la corriente de protección requerida por la 
estructura, venciendo la resistencia total del circuito. 
Estos dispositivos, dependiendo de los recursos disponibles en su lugar de 
instalación, pueden ser accionados por corriente alterna, motores de 
combustión interna, celdas solares, generadores eólicos o por medios 
térmicos. 
� Lecho anódico.- Es un agrupamiento de elementos llamados ánodos, que 
pueden estar formados de grafito, hierro-silicio, plomo-plata, platino o algún 
otro material inerte, cuya función es drenar corriente al electrolito para que 
por medio de este se cierre el circuito. Este dispositivo se conecta al polo 
positivo de la fuente de la corriente directa, con lo que actúa como ánodo 
del sistema. 
Su dimensionamiento se efectúa con base en la cantidad de corriente a 
drenar y a la resistividad del electrolito, el material se define de acuerdo al 
medio en que se aloja. 
� Cableado.- La estructura, la fuente de corriente directa y el lecho anódico 
requieren interconectarse eléctricamente, ya que es una condición básica 
para un proceso catódico, misma que se consigue con el cable de cobre, 
cuyo calibre dependerá de la cantidad de corriente a manejar. Se prefiere 
cable doble forro polietileno-polivinilo ya que se aloja directamente en el 
terreno. 
 
 
 
54 
Arreglo básico de dispositivo de protección catódica por corriente impresa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 3.1 Protección Catódica por Corriente Impresa. 
Las uniones cable-cable y cable- estructura se realizan con soldadura por 
aluminotermias, aislándolas posteriormente con resinas epóxicas o cintas 
plásticas. 
La principal ventaja de la corriente impresa es que, a partir de un punto de 
inyección de corriente llamado punto de drenaje, es posible proteger una cantidad 
significativa de estructura. En barcos, muelles y tanques permite manejar grandes 
volúmenes de corriente, necesarias para este tipo de estructura. 
La principal desventaja de estos sistemas es que requieren mantenimiento y 
ajustes de operación frecuente; por lo que su instalación en lugares remotos o 
inaccesibles no es recomendable. 
 
 
 
55 
ÁNODO DE SACRIFICIO. 
Este tipo de protección catódica aprovecha las características electroquímicas de 
los materiales metálicos, que provocan un par galvánico al ponerse en contacto 
dos o más metales con diferente electronegatividad, corroyéndose el más 
electronegativo o anódico. 
Con base en su actividad electroquímica, los metales se ordenan en una 
clasificación que recibe el nombre de serie galvánica, pudiéndose referir su 
electronegatividad a distintos medios; la relación de potenciales de aleaciones 
comúnmente, utilizados, se muestran en la siguiente tabla 
SERIE GALVANICA 
MATERIAL POTENCIAL (VOLTS) 
MAGNESIO PURO (COMERCIAL) -1.75 
MAGNESIO ALEADO (6% Al, 3% Zn, 0.15% Mn) -1.6 
ZINC -1.1 
ALUMINIO ALEADO -1.05 
ALUMINIO PUR (COMERCIAL) -0.8 
ACERO AL CARBON (LIMPIO Y BRILLANTE) -0.8 
ACERO AL CARBON (OXIDADO) -0.5 
HIERRO FUNDIDO (GRIS) -0.5 
PLOMO -0.5 
ACERO AL CARBON EN CONCRETO -0.2 
COBRE, LATON, BRONCE -0.02 
HIERRO FUNDIDO ALTO SILICIO -0.02 
COSTRA DE LAMINACION EN ACERO -0.02 
CARBON, GRAFITO, COKE 0.3 
Tabla 3.2 Series Galvánicas. 
Potenciales típicos, en suelos neutros y agua, medidos con respecto a un 
electrodo de referencia de cobre/sulfato de cobre. 
El arreglo general de un dispositivo de protección catódica por ánodos de sacrificio 
comprende como se muestra en la figura 3.2. 
 
 
56 
1. Estructura por proteger: Al igual que por corriente impresa, puede ser un 
ducto, un tanque de almacenamiento, pilotes para muelles, etc. También es 
condición que se encuentre alojado en el seno del electrolito en el que se 
instala el lecho anódico. 
2. Lecho anódico: En este caso el agrupamiento de ánodos al estar 
conectados directamente a la estructura a proteger, aprovecha las 
características electroquímicas de los materiales metálicos. 
Comercialmente se emplean distintas aleaciones de zinc, magnesio y 
aluminio como material anódico para estructuras de acero. 
3. Cableado: El cableado es necesario para llevar a cabo la protección 
catódica por creación de un par galvánico. 
La principal ventaja de este sistema es que, adecuadamente instalado, no 
requiere mantenimiento ni ajustes de operación considerando además no 
necesita instalaciones. 
La influencia de estos sistemas es local, excediendo raramente el orden de 
las decenas de metros, por lo que es necesario un mayor número de 
drenajes y masas anódicas. 
DISEÑO PARA LINEAS ENTERRADAS. 
Como se ha mencionado antes se entiende por línea o ducto a una tubería que 
conduce productos, principalmente líquidos y gaseosos, mediante la aplicación de 
un gradiente de presión entre sus extremos. 
En la fabricación de líneas para conducir hidrocarburos se emplea el acero y en su 
desarrollo se protegen del ambiente alojándolas en cepas que posteriormente son 
cubiertas; dando origen a la denominación de líneas enterradas. 
El terreno es un electrolito que permite y en ocasiones favorece el proceso de 
corrosión, por lo que las líneas enterradas tienen siempre un recubrimiento 
protector; sin embargo, generalmente, éste no garantiza un aislamiento perfecto 
del medio electrolítico y se hace necesario recurrir a un sistema complementario 
basado en los principios de protección catódica. 
 
 
 
 
 
 
 
57 
Arreglo básico de un dispositivo de protección catódica por ánodos de sacrificio 
 
 
 
 
 
 
 
 
 
 
 
Figura 3.2Protección Catódica por Ánodos de Sacrificio. 
Para proteger catódicamente una línea enterrada, se deben considerar los 
sistemas de: 
a. Corriente impresa. 
b. Ánodos de sacrificio. 
c. Combinación de los anteriores. 
En primer lugar se analiza la posibilidad de utilizar un sistema de protección por 
corriente impresa, básicamente por los alcances que se obtiene a partir de un 
punto de drenaje; sin embargo, hay condiciones que limitan el empleo de este 
sistema, como son: 
• No disponibilidad de corriente eléctrica 
• Tubo desnudo o pobremente recubierto. 
• Longitud limitada a proteger. 
• Difícil acceso a los dispositivos de protección para mantenimiento o ajustes 
de operación. 
Estos factores orientan el diseño a un sistema de ánodos de sacrificio o una 
combinación de ambos. 
 
 
58 
Ocasionalmente se presentan situaciones de la estructura que obligan a 
condiciones especiales como son: 
� Cuando el espacio disponible es insuficiente para instalar un lecho anódico 
convencional o cuando existen estratos superficiales con alta resistividad. 
Es necesario para asegurar un drenado de corriente efectivo, diseñar un lecho 
profundo que consiste en instalar los ánodos verticalmente en pozos o 
perforaciones cuya profundidad depende de la localización de estratos con 
resistividad adecuada para el drenado. 
El método Barness determina la resistividad a profundidad; el análisis y criterios 
generales para el dimensionamiento del

Continuar navegando