Logo Studenta

Manual lab Analitica

¡Este material tiene más páginas!

Vista previa del material en texto

Manual de 
Laboratorio 
de 
 Química Analítica 
 
 
 
 
 
 
 
 
 
Ángela M. González 
Universidad Interamericana de Puerto Rico 
Recinto de San Germán 
Departamento de Biología, Química y Ciencias del Ambiente 
Enero 2010 
 
 
 
 2 
 3 
 
INDICE 
 
 
 
 
 
Reglas de Seguridad en los Laboratorios de Química .......................................................................... 4 
Reglas de Trabajo de los Laboratorios de Química Analítica .............................................................. 6 
Libreta de laboratorio ........................................................................................................................... 8 
Informe o Reporte de Laboratorio ...................................................................................................... 10 
Parámetros de Evaluación de un Informe de Laboratorio ................................................................. 12 
Términos Utilizados en Química Analítica. ....................................................................................... 15 
Experimento 1: Calibración de Material Volumétrico ....................................................................... 16 
Experimento 2: Titulaciones de Neutralización ................................................................................. 20 
Experimento 3: Determinación de la Capacidad Neutralizante de un Antiácido Comercial ............. 26 
Experimento 4: Determinación de la Alcalinidad de Soda Ash ......................................................... 29 
Experimento 5: Titulación de Neutralización Utilizando un Medidor de pH. Comparación de 
Métodos .............................................................................................................................................. 31 
Experimento 6: Titulación de Neutralización Utilizando un Medidor de pH conectado a una 
Computadora. ..................................................................................................................................... 36 
Experimento 7: Determinación de la Dureza del Agua ...................................................................... 42 
Experimento 8: Determinación de Azufre en un Sulfato Soluble. ..................................................... 48 
Experimento 9: Análisis Espectrofotométrico de Aspirina Comercial .............................................. 52 
Apéndice I: Uso de la Balanza Analítica............................................................................................ 58 
Apéndice II: Cifras Significativas ...................................................................................................... 61 
Apéndice III: Conociendo Microsoft – Excel 2003 ........................................................................... 64 
Apéndice IV: Instrucciones para Utilizar el Spectronic 20 ............................................................... 68 
 
 
 4 
REGLAS DE SEGURIDAD EN LOS LABORATORIOS DE QUÍMICA 
A continuación hay una lista de prácticas básicas de seguridad que debe cumplir en el laboratorio: 
1. Identifique donde están: 
a. Fuente para lavar ojos, 
b. Extintor de incendios, 
c. Equipo de primeros auxilios que existan en el laboratorio, 
d. Teléfonos y números de emergencias, 
e. Salidas del laboratorio, 
f. Alarmas de incendios. 
2. Utilice gafas de seguridad SIEMPRE que se esté en el laboratorio. No utilice lentes de 
contacto en ningún laboratorio de química, pues los vapores de ciertos químicos pueden causar 
daños irreparables a los ojos y los lentes. 
3. Utilice ropa cómoda que cubra las piernas, brazos y torso (No se permitirá trabajar en el 
laboratorio con que pantalones cortos, camisillas, “tank tops”, etc.). Los zapatos deben cubrir 
completamente los pies (NO utilice sandalias). Aquellos estudiantes que no estén vestidos 
apropiadamente NO podrán trabajar en el laboratorio. 
4. Como medida adicional de protección, se exige el uso de una bata de laboratorio o un delantal. 
5. Mantenga el cabello recogido mientras esté en el laboratorio. 
6. No trabaje solo en el laboratorio. Nunca trabaje en el laboratorio sin la apropiada 
supervisión. 
7. No lleve a cabo experimentos ni cambios a los experimentos sin autorización. 
8. Llegue al laboratorio conociendo que se va a hacer. Si tiene dudas sobre el experimento que 
hará, pregunte al profesor antes de la sesión de laboratorio. 
9. NO comer, beber o fumar en el laboratorio. Nunca se lleve un compuesto químico a la boca o 
cerca de la nariz. Lávese las manos inmediatamente antes de salir del laboratorio. 
10. En caso de heridas (quemadas, cortadas, fuego, etc.) notifique al profesor inmediatamente. 
11. En caso de incendio, cierre las llaves de gas y desconecte cualquier equipo eléctrico que se 
esté usando, si se puede hacer sin riesgo. Notifique a aquellos que puedan ser afectados 
inmediatamente, incluyendo al profesor y/o encargado del laboratorio. 
12. En caso de que algún químico le caiga en los ojos, a usted o algún compañero, vaya (si puede 
ver) o llévelo a la fuente de agua para lavar los ojos. NO espere por el profesor para hacer 
esto. Pida que alguien avise al profesor. 
13. En caso de una cortada seria, aplique presión directa sobre la herida con una toalla limpia, 
esto ayudará a detener el flujo de sangre. Notifique inmediatamente al profesor. 
14. En caso que derrame o salpique algún químico sobre el mesón de trabajo o piso del 
laboratorio, límpielo INMEDIATAMENTE. Si se salpica brazos o manos con cualquier 
 5 
químico lávese inmediatamente con gran cantidad de agua, y pida a algún compañero que avise al 
profesor. Si el líquido se derrama sobre su ropa, ésta debe removerse y lavar la piel con mucha 
agua. 
15. Informe todo accidente que resulte en heridas o lesiones, por leves que sean, al profesor. 
16. Lea cuidadosamente las etiquetas de los reactivos. 
17. Nunca devuelva los sobrantes a los envases originales: recuerde que al sacar el reactivo del 
envase se ha contaminado, y al añadir el sobrante de nuevo al envase se corre el riesgo de 
contaminar TODO lo que quedaba en el envase. 
18. No inserte pipetas o goteros directamente en los envases de reactivos. 
19. Antes de encender un mechero o un fósforo asegúrese que nadie este trabajando con solventes 
inflamables cerca. 
20. Nunca evapore solventes inflamables como acetona, éter o metano directamente en una plancha 
de calentamiento o un mechero. Utilice baños de agua (baño de María) 
21. Nunca pipetee succionando con la boca. 
22. Nunca fuerce un tubo de vidrio a través del orificio de un tapón de goma. Asegúrese de 
lubricar tanto el tapón como el tubo ya sea con glicerina o agua jabonosa. Protéjase las manos, 
envolviendo el tubo de vidrio en una toalla de papel. 
23. Recuerde: vidrio CALIENTE luce exactamente igual que el vidrio FRIO. Tenga cuidado con 
lo que toca! 
24. Notifique al instructor de cualquier material que rompa o dañe. 
25. NO DESECHE NADA EN EL DRENAJE. Los desperdicios químicos producidos en el 
laboratorio serán descartados dependiendo de sus características: 
a. Vidrio: en la caja para vidrio roto ubicada en el laboratorio. 
b. Desperdicios sólidos insolubles: papel toalla usado, fósforos (apagados por favor), papel 
de filtro usado, etc. en el basurero (zafacón) ubicado en el laboratorio. 
c. Desperdicios químicos sólidos o líquidos: NO LO DESECHE EN LOS LAVADEROS 
O DRENAJES. Utilice las botellas debidamente identificadas para ello. 
Esta es una pequeña lista de medidas de seguridad, sin embargo, esta 
funciona también en combinación con su sentido común: 
Si cree que algo puede ser peligroso, posiblemente lo es, 
pregunte antes de continuar. 
 6 
REGLAS DE TRABAJO DE LOS LABORATORIOS DE QUÍMICA ANALÍTICA 
 
El laboratorio juega uno de los roles más importantes en la preparación de un científico. Es una 
excelente oportunidad para verificar principios químicos, aprender técnicas y disciplinasimportantes que le ayudarán a tener éxito en su carrera. 
 
Para obtener el máximo de este laboratorio se sugiere que: 
 
1. Lea el experimento de laboratorio y cualquier material que se sugiera, ANTES de ir al 
laboratorio 
2. Identifique las dudas que tenga, haga una lista y busque ayuda del profesor ANTES de ir 
al laboratorio 
3. Anote todos los datos y/o resultados en una libreta de laboratorio. No utilice hojas 
sueltas o carpetas de anillos. 
4. Haga un breve esquema del experimento que va a llevar a cabo, en su libreta, incluyendo 
los cálculos para los reactivos y soluciones necesarias. 
5. Algunas veces es necesario modificar los procedimientos de laboratorio el mismo día que 
éste se lleva a cabo, para obtener mejores resultados. 
6. Cuando sea posible, prepare tablas de datos antes de venir al laboratorio. Esto no solo 
acelera la adquisición de datos sino que también lo ayudará escribiendo el informe. 
7. Anote todo lo que pueda observar durante el experimento: cambios de color, temperatura, 
estado físico, puntos de ebullición, fusión, etc., aunque no se le pida. 
8. ¡Limpie todo el material que utilice! Por cada pieza de material que quede sucio o 
abandonado sobre el mesón, cada miembro del grupo o mesón perderá 5 puntos de la 
calificación de trabajo diario. 
9. Organice su tiempo. Por ejemplo, mientras se seca la muestra en el horno, se puede 
preparar otras partes de laboratorio y de esa manera ahorrar tiempo 
10. Limpie el material de una manera consciente: no es necesario que seque una volumétrica 
si le va a añadir agua!, solo lo tiene que enjuagar con agua destilada o con la solución 
solvente a utilizar. Piense para que no pierda tiempo. 
11. No utilice tiempo utilizando una balanza analítica cuando puede pesar con una balanza de 
platillos, o utilizando una bureta cuando puede utilizar un cilindro graduado. Tampoco 
deben ser descuidados y utilizar la balanza de platillos cuando se debe utilizar la analítica 
o un beaker cuando se debe utilizar una volumétrica o matraz aforado. No sustituya 
equipo que no tenga la precisión necesaria sin consultar con la profesora. 
12. Una vez terminado el experimento evalúe los resultados: ¿tienen sentido?, ¿están dentro 
de la precisión aceptada? Si tiene duda, repita las medidas o el experimento (si es 
posible), no hay mejor manera de aprender que identificando sus propios errores. Si 
todavía tiene dudas pregunte a la profesora. 
 7 
13. Todos los análisis se realizarán por triplicado, lo cual permite hacer una estadística 
confiable. Es una buena práctica trabajar con cuatro muestras cuando el tiempo y los 
materiales lo permiten. 
14. Por último, siga las reglas de seguridad del laboratorio y reporte con el (la) profesor(a) 
cualquier práctica errónea que observe. 
 
 
 
EEXXAACCTTIITTUUDD YY PPRREESSIICCIIÓÓNN 
 
La evaluación de cada práctica incluirá la exactitud de los resultados. Este punto es de 
extrema importancia dado que en un trabajo analítico es necesario, no-solo tener precisión sino 
también exactitud. 
Cada experimento se evaluará de acuerdo a la exactitud y precisión que en promedio se ha 
obtenido previamente. Aquellos trabajos cuyos resultados están lejos del valor certificado o valor 
real de la muestra problema deberán explicar en el informe las posibles razones por las que sus 
resultados no son los esperados. En este punto la profesora está disponible para ayudarle a 
identificar las posibles causas de error. Tenga en cuenta que muchos de los errores pueden ser 
causados por cálculos erróneos, uso incorrecto de formulas, pesos moleculares, puntos decimales 
mal ubicados y uso incorrecto de cifras significativas. También se ha demostrado que la calidad 
de los resultados es directamente proporcional a la organización al anotar los datos en la libreta 
de laboratorio. Recuerde sea organizado en la libreta y anote cada detalle del experimento. 
Resultados pobres en varios de los experimentos, sin justificación alguna, son clara 
indicación que el trabajo experimental se lleva a cabo sin entender lo que se esta haciendo o sin 
el debido cuidado. Preste atención a todo lo que haga y evalúe el porqué de cada paso para 
reducir este problema. 
 
ÉÉTTIICCAA EENN EELL LLAABBOORRAATTOORRIIOO 
 
En este laboratorio cada grupo tiene soluciones y/o muestras diferentes, por lo que es normal 
que sus resultados difieran de los de sus compañeros. Reporte SUS resultados aunque considere 
que no son los esperados. Si usted considera que no son los esperados, revise sus cálculos y 
utilice la discusión del informe para justificarlos. 
En caso que se identifiquen informes o libretas de laboratorio con datos alterados y/o 
copiados de otros grupos o semestres se les asignará una calificación de cero (0 puntos) en ese 
informe de laboratorio y en ese experimento. En caso que la situación se repita, la profesora 
entenderá que cometió esa falta en todos los demás informes, por lo que se calificarán todos los 
informes con “0 puntos”. 
 8 
LIBRETA DE LABORATORIO 
 
El registro adecuado de los resultados experimentales es esencial cuando se trabaja en un 
laboratorio. La libreta de laboratorio se utiliza para a) preparar y planificar el trabajo que se 
llevará a cabo, b) tomar nota durante un experimento y en ocasiones c) evaluar los resultados y 
hacer cálculos. La función fundamental de la libreta es la de tener un archivo permanente de sus 
observaciones, datos y trabajo en el laboratorio para con cada experimento. Esta debe permitir 
que otras personas repitan con éxito el experimento, así como supervisar o auditar su trabajo. 
En la libreta de laboratorio es necesario anotar todos y cada uno de los pasos llevados a cabo en 
el laboratorio, así como los resultados obtenidos en cada paso. En la industria, el saber llevar una 
libreta de laboratorio es fundamental y es una de las buenas prácticas de laboratorio (GLP: Good 
Laboratory Practices). 
Aunque la legibilidad y nitidez son importantes, la utilidad de su libreta es 
determinada mayormente por cuan original, completa, organizada y sistemática se encuentra la 
información. No tiene que ser una obra de arte; además no tiene que estar libre de manchas ya 
que es un instrumento de trabajo y por lo general así lo demuestra. ¡NO debe transcribirlo a una 
libreta nueva para entregarlo al instructor! 
La libreta de laboratorio debe: 
1. Ser de tapa dura y de páginas enumeradas. Debe tener copia de cada página, la cual 
entregará al profesor al final del día. NO utilice páginas sueltas, ya que corre el riesgo de que 
se pierdan. 
2. Utilice solamente las páginas del lado derecho de la libreta para preparar el experimento de 
esa semana. 
3. Lleve la libreta con lapicero o bolígrafo, no utilice lápiz. 
4. Enumere las páginas originales, comenzando por la primera 
5. Tan pronto obtenga alguna información anótela en la libreta. 
6. Si comete algún error o quiere rechazar alguna información pásele una línea sencilla por 
encima, Ej.: 3.8973 gr. 3.9873 gr. Evite borrones o tachones en la libreta. En la industria se 
puede exigir que escriban sus iniciales al lado del dato tachado, incluir la fecha y explicar 
cuál fue el error, en una nota al pie de la página. 
7. NUNCA arranque las páginas de la libreta. 
8. La libreta de laboratorio debe constar de las siguientes partes: 
A. Primera pagina: Identificación 
1.- Nombre completo 
2.- Nombre de laboratorio 
3.- Sección 
4.- Número de laboratorio 
5.- Nombre del profesor del laboratorio 
6.- Dirección: UIA, Dep. Biología, Química y Cs. Amb., San Germán PR. 
 9 
 
B. Segunda página 
1.- Índice 
Título del experimento # pagina 
C. Tercera página (y resto de la libreta) 
En ésta comienza el formato para cada experimento, y debe incluir las siguientes partes: 
1.- Fecha 
2.- Título del experimento 
3.- Objetivos 
4.- Reacción (en caso que se base en una reacción química) 
5.- Instrumentos a utilizar 
6.- Tablacon lista de reactivos. Debe incluir propiedades físicas y químicas, así como 
toxicidad e inflamabilidad del mismo. Esta información la puede encontrar en la 
biblioteca, en la sala de referencia de la biblioteca (en libros tales como Handbook 
of Chemistry and Physics, y catálogos como Aldrich, Sigma, Merck Index, etc.) 
7.- Procedimiento (resumido). Se recomienda hacer esquemas o diagramas que lo 
ayuden a hacer más efectiva la práctica de laboratorio. Evite copiar textualmente el 
procedimiento dado en este manual o en el curso. 
8.- Data cruda y 
9.- Observaciones 
10.- Data tabulada (en caso que no organizara la data cruda en una tabla, aquí puede 
hacerlo) 
11.- Firma de la profesora 
12.- Ejemplo de cómputos 
13.- Conclusión (Opcional). Esta puede ser el borrador de la conclusión del informe de 
laboratorio. 
Los 7 primeros aspectos de cada experimento deben ser preparados ANTES de llevar a cabo el 
experimento. Los datos, observaciones y cómputos se adquirirán en el laboratorio. Las 
conclusiones se pueden realizar fuera del laboratorio. 
Por cada infracción que se identifique en la libreta se restarán 5 puntos de la 
calificación de la libreta. 
La libreta debe ser firmada por la profesora o la persona encargada del laboratorio 
ANTES que abandonen cada laboratorio. 
Es responsabilidad del estudiante solicitar que la libreta sea firmada y entregar las copias amarillas. 
Libreta que no sea firmada, no será calificada. 
 10 
INFORME O REPORTE DE LABORATORIO 
 
Al finalizar cada experimento debe entregar al instructor un informe de laboratorio. Los informes de 
laboratorio le permiten comunicar el trabajo que usted llevó a cabo a su supervisor, al gerente o 
encargado (o instructora en este caso). Los informes también se necesitan para archivar el trabajo de 
laboratorio ya realizado, de tal manera que se pueda repetir en el futuro o evalúe en caso de una 
investigación. 
Un informe de laboratorio debe ser claro y conciso. A continuación se desglosa la organización 
sugerida para los experimentos en este laboratorio. Deben incluir: 
1. Título del experimento 
Aunque se explica por sí solo, el título ayuda a definir lo que se espera de cada experimento. 
2. Introducción 
Esta debe incluir: 
• breve descripción (en sus propias palabras) del principio científico que se va a estudiar 
• Los objetivos de este trabajo. Establecer los objetivos de un experimento es importante 
porque prepara para analizar si el experimento fue exitoso o no. No copie los objetivos 
del manual 
• la reacción química en la que se basa (sí alguna). 
• Breve marco teórico sobre el trabajo a realizarse: importancia, referencias, aplicaciones, 
etc. 
• En caso de utilizar un instrumento incluya las características generales del mismo. 
Presente las características, nombre las partes esenciales del equipo, ventaja y 
desventajas del mismo. EVITE COPIAR O TRADUCIR DIRECTAMENTE DEL 
INTERNET, YA QUE PERDERA 40 PUNTOS en la nota del informe, EN CASO DE 
SER IDENTIFICADO. 
• Incluya también las teorías que tenga sobre los resultados. 
3. Procedimiento 
Describa brevemente su trabajo en el laboratorio: 
• Incluya los pasos que realizó. Recuerde incluir cualquier modificación realizada al 
experimento. 
• Incluya las cantidades que usted pesó o utilizó durante el experimento. Por ejemplo el 
manual dice pese 4.50 grs, pero ustedes pesaron 4.68 grs. éste último valor es el que 
debe ser reflejado en el procedimiento: Se pesaron 4.68 grs. de… 
• Evite copiar el procedimiento del manual 
• El lenguaje debe ser formal, en tercera persona y en pasado. Ejemplo: se utilizó, se 
añadió…, se agitó durante --- minutos, se agregó…, se pesó…. Evite utilizar: eché, puse, 
meneé, etc. 
 
 11 
5. Resultados experimentales 
Presente los datos y resultados en tablas, lo cual le ayudará para el manejo de los mismos 
durante los cálculos. 
• Las tablas deben ser numeradas y tituladas de tal manera que representen su contenido. 
• Incluya una tabla con los datos y otra con todos los resultados! 
• Parte de los datos pueden ser observaciones tales como cambios de color, cambios de 
temperatura, apariencia física, etc. Estas observaciones extra pueden proveer claves para 
la interpretación de los resultados. Note que las observaciones solicitadas en la guía de 
experimentos son las mínimas para llevar a cabo los experimentos, siéntase en libertad 
de ampliar tales observaciones. 
• Incluya una tabla con los datos estadísticos de los resultados. Incluir al menos: 
▪ Promedio aritmético ▪ Desviación estándar 
▪ Desviación relativa estándar ▪ Mediana 
▪ Rango ▪ Intervalos de confianza 
▪ Prueba Q (si fue utilizada) 
• Gráficas deben estar enumeradas y tituladas. Recuerde también incluir las leyendas y 
titular los ejes de coordenadas. 
6. Cálculos 
Incluya un ejemplo de cada cálculo. Esto permitirá identificar errores, en caso que existan. NO 
incluya páginas llenas de todos los cálculos realizados en el informe! No incluya cálculos de 
datos estadísticos, pues esos datos puede obtenerlos de su calculadora y/o programas de 
computadora. 
7. Análisis de los Resultados y Conclusiones 
En la discusión de los resultados evalúe: el título del experimento, los objetivos, el 
procedimiento, los datos y los cálculos. Explique con sus propias palabras las razones de cada 
paso experimental, así como la calidad de los resultados, por ejemplo: 
▪ ¿Por qué el pH aumentó bruscamente en tal punto?, ¿Es eso lo que se esperaba? 
▪ ¿Porqué se pesa el mismo crisol tantas veces?, 
▪ Cuando sea apropiado compare sus resultados con los datos dados en la literatura. (son 
similares o diferentes y porqué). Si conoce el valor aceptado como “verdadero”, explique 
cómo son sus resultados comparados con el “verdadero”. 
▪ ¿Cómo identificó el compuesto desconocido? 
▪ ¿Por qué utilizó ese método de estandarización y cómo se compara con el tradicional? 
▪ ¿Cómo son los errores, mayores, menores o iguales al esperado? Si la precisión o la exactitud 
(o ambas) son muy diferentes a lo esperado explique cuáles son las posibles causas de tales 
resultados. 
Si bien estos son ejemplos, la discusión de los resultados es personal y tiene un rango muy amplio. 
Demuestre en esta sección que entendió los objetivos del experimento que describe. 
 12 
PARÁMETROS DE EVALUACIÓN DE UN INFORME DE LABORATORIO 
 
A continuación se presentan los aspectos que serán evaluados en este curso: 
Evaluación general: 
 
Presentación: (5 ptos) 
• Incluye nombres de los autores, número de muestra, identificación de la Universidad 
y título del experimento correctamente 
 
Organización: (5 ptos) 
• Cada sección debidamente identificada y organizada 
 
Uso adecuado del lenguaje: (15 ptos) 
• Utiliza un lenguaje profesional y tiempo verbal adecuado 
• Redacción clara y concisa 
 
Uso adecuado de los números: (15 ptos) 
• Cifras significativas, figuras de mérito, unidades, etc. 
 
Uso adecuado de referencias: (5 ptos) 
• Incluye referencias utilizadas 
• Utiliza formato adecuado para las referencias 
 
Introducción: (10 ptos) 
 
• Expresa adecuadamente los objetivos a llevarse a cabo 
• Presenta la importancia del experimento 
• ¿Para qué se utiliza este experimento fuera de la universidad? 
• ¿Qué pueden indicar los resultados obtenidos? 
o Ej.: si la dureza del agua es mayor a 100 ppm, ¿se considera dura?; si el % del 
ingrediente activo del medicamento estudiado es mayor a 125%, ¿Qué 
significa? 
• Descripción breve del instrumento a utilizarse 
• Incluye utilidad del equipo, componentes del mismo, y la función de cada 
componente 
• Breve descripción del procedimiento a llevarse a cabo (Una o dos oraciones) 
• Reacción(es) química(s) a llevarse a cabo 
 
 
Procedimiento (10 ptos) 
 
• ¿Describió brevemente el procedimiento? 
• Incluye datos experimentales, como gramos pesados o volumen utilizado, en lugar de 
lo escrito en el manual de laboratorio. 
• Estáescrito en tiempo pasado: se pesó, se colocó, se añadió, etc. 
 13 
Resultados (15 ptos) 
 
• Tablas con datos y resultados experimentales incluyen: 
o Título de tabla 
o Unidades 
o Tabla con datos estadísticos, completa 
 
• Gráficas 
o Graficación adecuada 
o Títulos de gráfica y ejes, incluyendo unidades 
 
Análisis de resultados (20 ptos) 
• Justificación de cada paso experimental 
• Evaluación de los datos experimentales 
• Justificación de la exactitud 
• Justificación de precisión 
 
 
 
Parámetro a evaluarse Puntaje máximo Puntaje obtenido 
Presentación 5 
Organización 5 
Uso adecuado de lenguaje* 15 
Uso adecuado de números 15 
Referencias 5 
Introducción 10 
Procedimiento 10 
Resultados 15 
Análisis de resultados* 20 
 TOTAL OBTENIDO 
 
 
 
 
 
 
 
 
 
 
 
 14 
* La redacción en el texto se evaluará utilizando los siguientes criterios: 
 
 
Calificación Apreciación Criterios 
100 – 90 % 
(20-18 
puntos) 
Redacción excelente El trabajo presenta una visión completa con explicaciones claras y 
concretas sobre el tópico o concepto principal. Identifica claramente el 
problema y todos los elementos fundamentales o importantes que 
justifican el mismo. Provee ejemplos adecuados y/o ejemplos 
complementarios; ofrece información más allá de lo mínimo necesario. 
El texto es fluido, fácil de leer y con una secuencia que tiene sentido. 
Utiliza adecuadamente el lenguaje. Cumple completamente con el 
formato solicitado. 
 
80 – 89 % 
(16-1 7.9 
puntos) 
Redacción competente El trabajo presenta una visión casi completa del tópico estudiado. 
Muestra comprensión de los conceptos o principios involucrados. 
Presenta el problema con un argumento sólido sobre el mismo. 
Provee e identifica la mayoría de los elementos importantes o 
fundamentales para sustentar el tópico estudiado. 
El texto es parcialmente fluido, utiliza algunas oraciones cortas sin 
conexión entre ellas. No es fácil de leer y pero tiene una secuencia 
que tiene sentido. Cumple completamente con el formato solicitado. 
 
70 – 79 % 
(14 – 15.9 
puntos) 
Redacción satisfactoria 
con defectos menores. 
 
El trabajo presenta el tópico seleccionado con ligeras confusiones. 
Presenta un argumento incompleto. Le falta un plan general con 
principio, medio y final. Provee e identifica algunos elementos 
fundamentales. El lenguaje es ligeramente impreciso o inadecuado. 
El texto es poco fluido, utiliza muchas oraciones cortas sin conexión 
entre ellas. No es fácil de leer y no tiene una secuencia que tiene 
sentido. Cumple parcialmente con el formato solicitado. 
60 – 70 % 
(12 – 13.9 
puntos) 
Redacción poco 
satisfactoria, con 
defectos graves. 
 
 
El trabajo falla en demostrar comprensión total del problema o 
concepto estudiado. No provee una respuesta completa, omite partes 
o elementos importantes del concepto o principio. Tiene poco o 
ningún desarrollo de ideas. No utiliza la terminología apropiada. Utiliza 
una estrategia inadecuada en la presentación del problema o la 
explicación del concepto. 
El texto es no fluido, utiliza muchas oraciones cortas sin conexión 
entre ellas. No es fácil de leer y no tiene una secuencia lógica. 
Cumple parcialmente con el formato solicitado. 
50 – 60 % 
(10 – 11.9 
puntos) 
Trabajo inadecuado. 
 
 
El trabajo no presenta el tópico seleccionado de una manera 
coherente. Hace intentos vagos de presentar el problema y los 
aspectos más relevantes del mismo. No sigue el formato requerido. 
El texto es no fluido, utiliza muchas oraciones cortas sin conexión 
entre ellas. No es fácil de leer. No presenta una secuencia lógica del 
tema. El texto se observa muy desordenado. No cumple con el 
formato solicitado. 
 
 
 15 
TÉRMINOS UTILIZADOS EN QUÍMICA ANALÍTICA. 
 
• Aforar: Llenar el material volumétrico para completar la capacidad de este. Se 
puede hacer con agua destilada, con reactivo o con otros solventes. 
 
• Enrasar: Llevar al mismo nivel. Llenar el material volumétrico para completar la 
capacidad de este. Se puede hacer con agua destilada, con reactivo o con otros 
solventes. 
 
• Curar: enjuagar el material de vidrio con la solución con la que se va a llenar. 
Evita la contaminación de la solución que se va a medir o el cambio de 
concentración de la misma. 
 
• Tarar: Pesar el envase vacío antes de añadirle algo. Equilibrar en la balanza el 
peso del envase. 
 
• Alícuota: Porción de muestra a ser analizada. Se utiliza cuando no es práctico 
analizar toda la muestra disponible. 
 
• Calibrar o Calibración: Graduar exactamente un instrumento de medida, 
basándose en una unidad conocida. Establecer con la mayor exactitud posible, la 
correspondencia entre las indicaciones de un instrumento de medida y los valores 
de la magnitud que se mide con él. 
 
• Réplicas: muestras tomadas y tratadas con condiciones comparables. Se utilizan 
para evaluar la variabilidad de la muestra. (http://goldbook.iupac.org/index.html) 
 
 
 16 
EXPERIMENTO 1: CALIBRACIÓN DE MATERIAL VOLUMÉTRICO 
 
OBJETIVOS: 
• Familiarizar al estudiante con el uso de la balanza analítica y de material volumétrico 
utilizado frecuentemente en el laboratorio. 
• Aprender técnicas de laboratorio clave cuando se hace análisis cuantitativo. 
 
INTRODUCCIÓN 
 
 El material volumétrico utilizado para química analítica permite la medición confiable 
de volúmenes. El fabricante marca el equipo volumétrico para indicar no solo la forma de 
calibración (TD para transferir, TC para contener), sino también la temperatura a la cual se 
realizó la calibración. Sin embargo debido a su uso (o abuso), es una buena práctica de 
laboratorio calibrar el material de vidrio que se utilice. 
 Para calibrar el material de vidrio, se determina la masa de agua que el instrumento: 
bureta, pipeta, cilindro graduado, etc., contiene o transfiere. Utilizando la densidad del agua, 
corregida a la temperatura del laboratorio, es posible calcular el volumen que realmente el 
instrumento contiene o transfiere. 
 NOTA: Antes de ir al laboratorio lea en el libro la manera correcta de manejar el 
material de vidrio que utilizará en este experimento y el uso apropiado de la balanza analítica 
en el apéndice de este manual. 
 
 
Tabla 1. Densidad corregida del agua a diferentes temperaturas 
Temperatura 
 ( C) 
10 12 14 16 18 20 22 24 26 28 30 
Densidad (g/ml) 0.998702 0.998502 0.998203 0.997904 0.997606 0.997208 0.996711 0.996314 0.995718 0.995223 0.994629 
 
PROCEDIMIENTO 
 
A. Utilizando la balanza analítica 
 
1. Inspeccione la balanza analítica identificando sus partes 
2. Prepare una correíta de papel para manejar el matraz a ser pesado. Recuerde que sus 
dedos tienen grasa que alterarían el peso final del envase! 
3. Determine el peso del matraz de pesada sin tapa hasta  0.1 mg 
4. Determine el peso de la tapa por separado de igual manera. 
5. Determine el peso del matraz con la tapa 
6. Sume los resultados del paso 3 y 4 
7. Compare resultado del paso 6 con el resultado del paso 5. La diferencia entre estos no 
debe exceder  0.0005 gr. 
8. Pese de nuevo el matraz con la tapa para ver cuán reproducible es el dato de la pesada 
9. Todos estos datos deben aparecer en su libreta de laboratorio 
 
El paso de pesar el envase vacío es llamado tarar el envase 
No toque con los dedos el envase que acaba de tarar. 
 
 17 
B. Calibración de una bureta 
 
1. Prepare una bureta de 50 ml: lávela y enjuáguela con agua destilada 
2. Llene la bureta con agua a temperatura ambiente. Anote la temperatura del agua 
3. Drene líquido en un beaker, para llenar la punta de la bureta, asegúrese que no quedan 
burbujas, en cuyo caso debe eliminarlas. Acerque la punta de la bureta a la pared de un 
beaker para eliminar cualquier gota adherida. Asegúrese que no hay escape de líquido 
por la llave o la punta de la bureta cuando está cerrada 
4. Pese un matraz de 50 mL, limpio y tapado apropiadamente. RecuerdeNO tocar el 
matraz con las manos. (No utilice el peso obtenido en la parte A del experimento). 
5. Transfiera de la bureta, lentamente, alrededor de 10 mL de agua al matraz pesado. 
Acerque la punta de la bureta a la pared del matraz para asegurarse que no quedan 
gotas en la punta de la bureta. 
6. Espere 30 segundos y anote el volumen de la bureta que aparentemente se transfirió. 
Este será el volumen leído. 
7. Pese el matraz tapado y su contenido. Esta será la masa de agua realmente transferido 
por la bureta + matraz + tapa. 
8. Retire la tapa del matraz y añada 10 mL más de agua de la bureta (debe leer aprox. 20 
ml en la bureta). Anote este volumen leído. Pese el matraz tapado y su contenido. 
9. Repita el paso 8 para 30, 40 y 45 ml, añadiendo porciones de 10 ml. 
10. Repita el procedimiento, de 10 a 45 mL, por lo menos una vez más. 
11. Calcule la masa (gr.) de agua realmente transferidos (peso paso 7 (o 8) – peso vacío) 
12. Utilizando la tabla 1 convierta la masa obtenida en el paso 11 a volumen. Este será el 
volumen que realmente se transfirió de la bureta. 
 
C. Calibración de una pipeta 
 
1. Agregue alrededor de 100 ml a un beaker de250 ml. Deje en reposo en el laboratorio 
para que el agua llegue a temperatura ambiente. Anote la temperatura. 
2. Pese un matraz de 50 ml, tapado y vacío. 
3. Llene la pipeta calibrada de 10 ml con agua. Transfiera 5 ml al envase previamente 
pesado. 
4. Tape el matraz y su contenido. Péselo. 
5. Calcule la masa real de agua transferida. (Peso paso 4 – peso envase vacío) 
6. Utilizando la tabla 1. Calcule el volumen transferido. Este es el volumen real que 
dispensa la pipeta cuando lee 5 ml. 
7. Retire el tapón del matraz y añada otros 5 ml leídos con la pipeta. Tape y vuelva a 
pesar. Después de cada uno de estos procedimientos hay que determinar la masa de 
agua añadida al matraz. 
8. Repita pasos 5 y 6. Recuerde que el peso inicial del matraz incluye un volumen de 
agua. 
9. Repita este procedimiento hasta obtener un total de tres masas consecutivas de agua 
que coincidan dentro de un intervalo de 0.02 g. 
10. Determine el volumen de agua que transfiere la pipeta, utilizando la densidad del agua 
apropiada. 
11. Repita este procedimiento transfiriendo 7 ml de la pipeta calibrada (pasos 2-9). 
12. Repita este procedimiento con una pipeta volumétrica de 5 ml. 
 
 18 
 
EXPERIMENTO 1 
CALIBRACIÓN DE MATERIAL VOLUMÉTRICO 
 
(Esto es un ejemplo de las tablas que se sugiere hagan en la libreta y el reporte de laboratorio) 
A. Utilizando la balanza analítica 
 
Peso del envase vacío g 
Peso de la tapa g 
Peso del envase + tapa g 
Peso del envase por segunda vez g 
 
B. Calibración de una bureta 
 
Temperatura del agua: C densidad del agua a esta T: g/ml 
 
Recuerde que D = masa (g) / volumen (ml) 
 
Primera calibración: 
 Volumen leído en 
la bureta (ml) 
Peso agua + matraz 
(gr.) 
Peso agua añadida 
(gr.) 
Volumen real o 
corregido (ml) 
Envase vacío + tapa 0 
Matraz + tapa + 10 ml 
Matraz + tapa + 20 ml 
Matraz + tapa + 30 ml 
Matraz + tapa + 40 ml 
Matraz + tapa + 45 ml 
 
Esta tabla corresponde sólo a la primera calibración, recuerde que llevará a cabo dos o tres 
(pregunte al instructor cuantas veces debe repetir) calibraciones de la bureta. 
 
C. Calibración de una pipeta calibrada de 10 ml, cuando lee 5 ml 
 
 Volumen 
dispensado (ml) 
Peso matraz + 
agua + tapa (gr.) 
Peso agua 
añadida (g) 
Volumen real o 
corregido (ml) 
Envase vacío + tapa 0 0 ------------- 
Matraz + tapa + 5 ml 
Matraz + tapa + 5 ml + 5 ml 
Matraz + tapa + 5 ml + 5 ml + 5 ml 
 
 
 19 
D. Calibración de una pipeta calibrada de 10 ml, cuando lee 7 ml 
 
 Volumen 
dispensado (ml) 
Peso matraz + 
agua + tapa (gr.) 
Peso agua 
añadida (g) 
Volumen 
corregido (ml) 
Envase vacío + tapa 0 0 ------------- 
Matraz + tapa + 7 ml 
Matraz + tapa + 7 ml + 7 ml 
Matraz + tapa + 7 ml + 7 ml + 7 ml 
 
E. Calibración de una pipeta volumétrica de 5 ml 
 
 Volumen 
dispensado (ml) 
Peso matraz + agua 
+ tapa (gr.) 
Peso agua 
añadida (g) 
Volumen corregido 
(ml) 
Envase vacío + tapa 0 0 ------------- 
Matraz + tapa + 5 ml 
Matraz + tapa + 5 ml + 5 ml 
Matraz + tapa + 5 ml + 5 ml + 5 ml 
 
RESULTADOS Y DISCUSIÓN 
 
1. Grafique la corrección que debe aplicarse a la bureta como una función del volumen 
leído. (Volumen corregido eje y vs. leído eje x). ¿Cuál es el volumen corregido (o real) 
que transfiere la bureta, si la lectura es: 
a. 26 mL? 
b. 32 ml? 
c. 41 ml? 
 
2. ¿Tiene sentido obtener un promedio de los volúmenes obtenidos en la bureta? Explique 
porqué se obtiene un volumen promedio al utilizar la pipeta, pero no así para la bureta. 
 
3. Para cada medida de la pipeta determine el volumen corregido del líquido y con estos 
datos determine: Promedio, desviación estándar, desviación estándar relativa, mediana, 
rango, intervalo de confianza (90, 95 y 99%). Si fue necesario utilizarla, explique donde y 
como utilizó la prueba Q. Presente los resultados en tablas. 
 
4. ¿Cómo sería el volumen dispensado por la bureta si dentro de esta había una hormiga 
muerta (mayor, menor o igual al leído)? 
 
5. Describa al menos tres diferencias entre una pipeta calibrada y una volumétrica. ¿Para 
qué se utilizan? 
 
6. ¿Qué diferencias identificó entre la pipeta volumétrica y la pipeta calibrada? ¿Cuál de las 
pipetas fue más precisa? ¿Cuál más exacta, asumiendo que el valor verdadero es 5 o 7 
ml? 
 
 
 20 
EXPERIMENTO 2: TITULACIONES DE NEUTRALIZACIÓN 
 
OBJETIVOS 
• Diferenciar diferentes tipos de titulaciones y los componentes de cada una 
• Utilizar apropiadamente material de laboratorio para llevar a cabo un análisis 
volumétrico 
• Preparar soluciones de concentraciones dadas a partir de sólidos y líquidos 
• Utilizar indicadores visuales que permitan identificar el punto final de una titulación. 
• Utilizar apropiadamente estándares primarios. 
• Desarrollar destrezas básicas para titular. 
 
INTRODUCCIÓN 
Las titulaciones o valoraciones son una de las técnicas más comúnmente utilizadas en el 
laboratorio de química. Se utilizan para determinar la concentración de una sustancia en 
solución. La técnica se basa en añadir uno de los reactivos de la reacción química, hasta 
alcanzar el momento en que ambos compuestos se encuentren en concentraciones 
equivalentes y así se complete la reacción. 
Términos importantes en volumetría: 
• Titulación o Valoración: procedimiento mediante el cual se determina la concentración de 
un compuesto desconocido a partir de su reacción con uno de concentración conocida. Se 
mezclan cuidadosamente los reactivos hasta que la reacción entre ambos se complete. 
• Solución patrón, valorada o titulante: reactivo de concentración conocida con el que 
reacciona completamente el analito. Debe ser estable, reaccionar completa, rápida y 
selectivamente con el analito 
• Punto de equivalencia: momento durante la titulación donde la cantidad de titulante 
añadido es químicamente equivalente a la cantidad de analito en la muestra. No se puede 
determinar experimentalmente, pero se puede estimar observando algún cambio físico 
asociado con las características de la equivalencia. 
• Punto final: Cambio físico observado que se puede asociar con la condición de 
equivalencia química. 
• Error de titulación: la diferencia de volumen o masa entre el punto de equivalencia y el 
punto final de la titulación. 
• Retro-titulación: titulación donde se añade un exceso de solución patrón y después se 
valora el exceso de este, con un segundo reactivo patrón. En este caso, el punto de 
equivalencia corresponde alpunto en el que la cantidad de titulante inicial es 
químicamente equivalente a la cantidad de analito más la cantidad del titulante añadido en 
la retrotitulación. Es utilizada cuando la reacción entre el analito y el titulante es lenta o 
cuando la solución patrón es inestable. 
 
 21 
• Patrón “o estándar” primario: compuesto de alta pureza que sirve de referencia para una 
titulación. Soluciones de este patrón se preparan por pesada directa y disolución en el 
solvente adecuado. Son preferidos ya que involucran menos errores. Deben: 
✓ Estar disponible en forma pura o en un estado de pureza conocida 
✓ Ser fácil de secar 
✓ No debe ser higroscópico (no absorbe agua) 
✓ No debe perder peso o reaccionar al exponerse al aire 
✓ Ser soluble en el solvente de la titulación 
✓ Barato 
✓ Tener un peso molecular razonablemente alto para minimizar el error relativo 
asociado con la pesada. 
• Patrón secundario: dado que es difícil conseguir patrones primarios, estos son 
compuestos cuya pureza se ha determinado por medio de un análisis químico. Soluciones 
de estos patrones se preparan y necesitan ser analizadas para determinar su concentración 
real. 
• Indicador: permite identificar el punto final. Pueden ser aparición o desaparición de un 
color, cambio de color o turbidez, así como cambios en respuestas instrumentales tales 
como voltaje, corriente, etc. 
 
Volumetría puede basarse en varios tipos de reacciones: 
• Ácido- base (neutralización): envuelven la titulación de iones H+ y OH- producidos 
directa o indirectamente por el analito 
• Oxidación-Reducción (Redox): reacciones que involucran transferencia de electrones. 
• Precipitación: basadas en la precipitación del analito o algún reactivo que reaccione con 
el analito. Se determina el volumen necesario para ocasionar la precipitación. 
• Formación de complejos (complejimetría): se basan en la reacción entre ligandos y 
analitos formando complejos. Los ligandos reaccionan específicamente con la especie del 
analito, en reacciones de un solo paso y rápidas 
En este experimento se llevarán a cabo reacciones ácido-base, para valorar las soluciones 
preparadas y que se utilizarán posteriormente. 
Se determinará el punto final utilizando un indicador visual que es seleccionado para producir 
un cambio de color determinado al acercarse al punto de equivalencia. 
En el caso de reacciones de neutralización el ión H+ (procedente del ácido) reacciona con el 
ión hidroxilo (OH-) (procedente de la base), para producir agua y sal. Para una reacción de 
neutralización: 
aA + bB  sS + H2O 
 
 22 
en el punto de equivalencia, los moles de la base (B) son equivalentes a los moles del ácido 
(A) 
b
a
molesB
molesA
 
 
b moles A = a moles B 
y dado que Molaridad = mol / volumen, queda: 
b Ma Va = a Mb Vb 
 
a = moles estequiométricos del ácido b = moles estequiométricos de la base 
Ma = Molaridad del ácido Va = Volumen del ácido 
Mb = Molaridad de la base Vb = Volumen de la base 
 
Si se conoce la concentración de un ácido, mediante una titulación se puede determinar la 
concentración o molaridad de la base, utilizando la estequiometría de la reacción y viceversa. 
 
 
ANTES DE IR AL LABORATORIO 
• Averigüe las reacciones en la que se basan las titulaciones de este experimento. 
• Averigüe el cambio de color, y el pH al que ocurre, de los indicadores utilizados. 
• Prepare las ecuaciones que utilizará para llevar a cabo los cálculos durante la práctica. 
• Averigüe como preparar soluciones a partir de sólidos y de líquidos 
• Determine la cantidad de NaOH sólido que necesita para preparar 1 litro de la solución 
0.10 M de NaOH 
• Conociendo que el ácido concentrado tiene una concentración aproximada de 12 M, 
calcule el volumen de este que necesita para preparar 500 ml de una solución 0.1 M de 
HCl 
 
 
 
 
 
PROCEDIMIENTO 
 
Este experimento consta de dos secciones. En la primera parte se preparará y se analizará una 
solución de NaOH. La segunda parte se hará algo similar para la solución de HCl. Ambas 
soluciones serán utilizadas en futuros experimentos 
 
 
 23 
Materiales 
 
• Bureta • Matraces de 250 ml 
• Beakers • Matraz volumétricos de 1L y 500 ml 
• Pipetas y cilindro graduado (probeta) • Agua destilada 
• Espátula • Botellas de polietileno 
• Ftalato ácido de potasio, estándar primario • NaOH sólido 
• HCl 12N • Carbonato de sodio patrón 
• Fenolftaleina y anaranjado de metilo o verde de bromocresol, o azul de bromotimol 
 
 
A. Valoración de una solución de NaOH con ácido ftálico 
 
1. Preparación de una solución de hidróxido de sodio 
 
a) Pese la cantidad de NaOH sólido que calculó, en un beaker utilizando una balanza de 
platillos, agregue agua destilada para disolver este sólido. 
b) Transfiera esta solución a un matraz volumétrico de 1L y complete hasta la marca con 
agua destilada (Enrasar) (Utilice agua que ha sido destilada recientemente, para disminuir 
la presencia de carbonatos). (Si el agua no llena este requisito, hiérvala por 5 min., y 
déjela enfriar tapada). 
c) Mezcle el contenido del matraz volumétrico y transfiera a una botella de polietileno. 
Escriba en la botella su nombre, el contenido y deje espacio para escribir la concentración 
final. 
2. Preparación de la muestra de ftalato ácido de potasio KHp (KHC8H4O4) 
a) Prepare 3 matraces de 250 ml. 
b) Pese tres muestras por separado entre 0.2000 y 0.3000 g de ftalato ácido de potasio (PM: 
204.224 g/mol) estándar primario y transfiéralos a los tres matraces de 250 ml preparados 
c) Disuelva la muestra añadiéndole entre 15 y 25 ml de agua destilada y añada tres gotas de 
fenolftaleina como indicador. 
 
3. Valoración de la solución de NaOH 
 
a) Obtenga una bureta, lávela con jabón y agua y enjuáguela con agua destilada. 
b) Enjuague la bureta con una porción de 2-3 mL de hidróxido de sodio 0.1M previamente 
preparado en el paso 1 (Curar). Repita este paso 3 veces. Asegúrese de enjuagar la punta 
de la bureta también. 
 
 24 
c) Cierre la llave de la bureta y llénela con la solución de NaOH. Drene algo de la solución, 
para llenar la punta de la bureta. Asegúrese que no hay burbujas ni en la bureta ni en la 
punta de la bureta. Enrase a 0 ml. 
d) Coloque uno de los matraces, conteniendo el ftalato ácido de potasio que pesó y disolvió 
en el paso anterior, debajo de la bureta. Baje la punta de la bureta hasta la boca del 
matraz. 
e) Mueva el matraz con la mano derecha y controle la llave de la bureta con la mano 
izquierda. 
f) Continúe añadiendo el titulante lentamente hasta que aparezca un color rosado claro que 
persista por 30 segundos 
g) Anote el volumen utilizado y repita el procedimiento con las restantes dos muestras. 
h) Para cada titulación calcule la molaridad del hidróxido de sodio y anótelo en la libreta. 
i) Calcule la molaridad promedio y escríbala en la botella de polietileno y en su libreta. 
Determine los datos estadísticos de la Molaridad de la base 
 
 
B. Valoración de una solución de ácido clorhídrico 
 
 
1. Preparación de 0.1 M HCl 
 
a) Añada alrededor de 250 mL de agua destilada a un balón aforado (volumétrica) de 500 
ml 
b) Mida el volumen de HCl que calculó, utilice un cilindro graduado (probeta), y añádalo a 
la volumétrica que preparó en el paso 1. 
c) Tape, mezcle cuidadosamente y deje reposar un minuto 
d) Afore y vuelva a agitar. Deje la solución reposar hasta que llegue a temperatura ambiente. 
Cuando esté frío, transfiera a una botella de polietileno, lavada, curada e identificada 
 
2. Preparación del carbonato de sodio patrón (Na2CO3) 
 
a) Pese alrededor de 0.1000 g de carbonato de sodio (patrón primario) en un platito plástico. 
b) Transfiéralo cuantitativamente a un matraz limpio y curado con agua destilada. Anote la 
masa añadida. Repita este paso 3 veces. 
c) Añada aproximadamente 25 ml de agua a cada matraz para disolver el sólido 
d) Añada 2 gotas del indicador que se le asigne,a cada matraz 
 
 
 
 
 
 
 
 25 
 
3. Valoración del HCl 0.1 M 
 
a) Lave una bureta con agua y jabón, enjuáguela con agua destilada. 
b) Cure la bureta con 2-3 ml de la solución de HCl que va a valorar, recuerde la punta de la 
bureta. Repita 3 veces 
c) Llene la bureta con HCl a valorar. Verifique que la punta de la bureta este llena y libre de 
burbujas 
d) Coloque uno de los matraces conteniendo el carbonato de sodio patrón primario bajo la 
bureta y baje la punta de la bureta hasta colocarla dentro de la boca del matraz. 
e) Mueva suavemente el matraz que contiene el carbonato de sodio y añada titulante 
lentamente hasta alcanzar el punto final. 
f) Para cada titulación, calcule la molaridad del HCl. 
g) Calcule la molaridad promedio y escríbala en la botella de polietileno y en su libreta. 
Determine los datos estadísticos de la Molaridad del ácido. 
 
RESPONDA EN EL REPORTE 
1. Reporte las concentraciones de HCl y de NaOH obtenidas en este experimento. 
2. Explique porqué esas concentraciones no son exactamente 0.1000 M. 
3. ¿Por qué se puede utilizar una balanza de plato en lugar de la analítica, al preparar el 
NaOH, sin afectar la precisión o exactitud de sus resultados? 
4. ¿Por qué es necesario utilizar agua hervida o recientemente destilada para preparar el 
NaOH? ¿Qué reacción química esta involucrada? 
5. ¿Por qué es necesario valorar la solución de NaOH? 
6. ¿Por qué no se utiliza ftalato ácido de potasio en la valoración de HCl? 
7. ¿Cuál es la función de los indicadores utilizados? 
8. ¿Por qué se utilizan diferentes indicadores en las partes A y B del experimento? 
9. ¿Por qué no se afecta los resultados de la titulación al agregar agua para enjuagar la 
punta de la bureta o las paredes del matraz, durante la titulación? 
10. ¿Qué es una transferencia cuantitativa y cuál es su propósito? 
11. Un grupo de estudiantes obtuvo una concentración promedio de HCl de 0.0985 M. Si 
desean verificar la titulación, ¿cuántos gramos de Na2CO3 deben pesar, si desean 
utilizar 25 ml del ácido? 
 
 26 
EXPERIMENTO 3: DETERMINACIÓN DE LA CAPACIDAD NEUTRALIZANTE DE UN 
ANTIÁCIDO COMERCIAL 
 
OBJETIVOS 
• Diferenciar entre titulación directa y retro-titulación 
• Describir técnicas de tratamiento de la muestra previo al análisis 
• Determinar cuantitativamente la capacidad de neutralización de antiácidos 
comerciales. 
• Analizar la efectividad de los antiácidos en función de la capacidad neutralizante 
determinada 
• Desarrollar destrezas básicas para titular 
 
INTRODUCCIÓN 
Los antiácidos comerciales son uno de los productos más vendidos en la industria 
farmacéutica. Se utilizan para contrarrestar la acidez estomacal o ácidos gástricos, ya que 
reaccionan con el ácido estomacal. Estos contienen bases tales como carbonato de calcio, 
carbonato de magnesio e hidróxido de magnesio como ingrediente activo. En muchos de ellos 
también se les añaden sabores artificiales, sustancias que pueden ayudar a calmar las paredes 
del estomago, agentes que evitan que la pastilla se disuelva con facilidad, etc. A pesar de esto 
la función principal del ingrediente activo es neutralizar o amortiguar el ácido presente en el 
estomago. 
Muchos de los ingredientes activos de los antiácidos no se disuelven en agua fácilmente, e 
incluso algunos reaccionan muy lentamente con ácidos, lo cual no es conveniente en una 
titulación. Por lo que se utilizará una valoración por retroceso (retro-titulación). 
En la retro-titulación que se llevará a cabo en el laboratorio, se añade un exceso de ácido 
(HCl) para que reaccione con el antiácido y la solución es calentada para acelerar la reacción 
y garantizar que se ha llevado a cabo completamente (estas condiciones simularán lo que 
ocurre en el estómago). Algo del ácido reaccionará con la tableta y otra porción del mismo 
sobrará. Para determinar la cantidad sobrante de HCl, se titulará el exceso de HCl con NaOH. 
Al restar la cantidad de HCl que sobró de la añadida inicialmente, se obtiene la cantidad de 
HCl que reaccionó completamente con el antiácido. De esta manera se puede obtener una 
medida exacta de la capacidad neutralizante del antiácido, que generalmente se define como: 
milimoles de HCl que reaccionan por gramo de antiácido presente. 
 
Antes de ir al laboratorio 
• Averigüe la ecuación de reacción en la que se basan las titulaciones de hoy, asumiendo 
que el antiácido contiene solo HCO3
- como ingrediente activo. 
• Averigüe el cambio de color, y el pH al que ocurre, del indicador utilizado 
• Haga la lista de los materiales que utilizará. 
 
 27 
 
PROCEDIMIENTO 
1. Obtenga una tableta de antiácido, anote su identificación: # o Nombre (incluya # de lote), 
pártala por la mitad y pese cada mitad en una balanza analítica. Necesitará 2 tabletas ya 
que debe llevar a cabo el experimento por triplicado. 
2. Transfiera la muestra a un matraz de 250 ml 
3. Añada 75 ml del HCl 0.1 M valorado en el experimento 2, utilizando un cilindro 
graduado, pero midiendo con sumo cuidado, ya que necesitamos conocer exactamente la 
cantidad de ácido añadida. Anote la cantidad que añadió en la libreta 
4. Caliente la solución hasta hervir, y mantenerla hirviendo por 5 min. (Probablemente 
queden pequeñas cantidades de sólido blanco, el cual no disolverá aún después de 
calentar). 
5. Enfríe la solución hasta que llegue a temperatura ambiente, añada 4 gotas de fenolftaleina 
y titule con la base estandarizada, hasta el primer color rosado permanente. 
6. Calcule la capacidad neutralizante del antiácido para cada una de las pruebas, y de este 
valor obtenga los datos estadísticos. 
 
REPORTE 
 
# de muestra Nombre del antiácido 
 
 Prueba 
 1 2 3 
Peso pastilla de antiácido 
Volumen añadido de ácido 
Lectura inicial de la bureta 
Lectura final de la bureta 
Volumen de NaOH usado 
¿Cuántos moles de HCl se 
añadieron al inicio del 
experimento en la muestra? 
 
¿Cuántos moles de NaOH 
reaccionaron con el sobrante de 
HCl? 
 
¿Cuántos moles de HCl 
reaccionaron con el antiácido? 
 
 
 28 
¿Cuántos milimoles de HCl 
reaccionaron con el antiácido? 
 
Calcule la capacidad 
neutralizante del antiácido 
 
Determine la capacidad neutralizante de un antiácido utilizando: 
antiacido degr 
onreaccionar que H de mmoles
..

NC 
Determine la estadística de la capacidad neutralizante del antiácido. 
En el informe incluya: 
1. ¿Qué es una titulación o valoración por retroceso? ¿Por qué se utilizan? 
2. ¿Qué volumen del HCl que usted añadió reaccionaron con el antiácido? 
Utilizando la Capacidad Neutralizante promedio que usted obtuvo, responda las preguntas 3 y 
4: 
3. ¿Cuántos ml de HCl serán necesarios para neutralizar 1 g de antiácido? 
4. Si el fabricante de la pastilla que ustedes utilizaron en el experimento recomienda 
utilizar 2 pastillas cada vez que se tienen los síntomas, asumiendo que cada pastilla 
pesa 1.4 gr. en total. 
a. ¿Cuántos milimoles de HCl se neutralizaran?, 
b. ¿Cuántos ml del HCl utilizado en el lab se neutralizarían? 
5. ¿Por qué se debe hervir la solución antes de la titulación? 
6. ¿Cómo serian los moles de HCl que reaccionan (mayores, menores o iguales) si la 
solución no se hierve? 
7. Un antiácido tiene una capacidad neutralizante de 3 milimoles H+/ gr. Comparando 
este antiácido con el que usted analizó. ¿Cuál de los dos es más efectivo para controlar 
la acidez? ¿Por qué? 
8. Si el antiácido esta expirado: 
a. ¿Afectará la precisión de sus resultados? 
b. ¿Afectará la exactitud de sus resultados al compararlos con los reportados de la 
fábrica? 
c. ¿Afectará la exactitud de sus resultados al compararlos con los que la profesora 
reportó al analizar el mismo lote de muestras ya expiradas? 
 
 29 
EXPERIMENTO 4: DETERMINACIÓN DE LA ALCALINIDAD DE SODA ASH 
 
OBJETIVOS: 
• Familiarizar al estudiante con el usode diferentes indicadores ácido-base, así como en el 
uso de alícuotas 
• Presentar una variación de una retro-titulación 
• Utilizar volumetría para determinar el porcentaje de pureza de una muestra sólida. 
 
INTRODUCCION. 
 
El carbonato de sodio, Na2CO3, fue utilizado en previos experimentos como patrón o estándar 
primario, ya que estaba disponible en elevada pureza. Sin embargo, no siempre es así, el 
carbonato de sodio crudo, mejor conocido como “soda ash”, es ampliamente utilizado en la 
preparación de vidrio, y como agente neutralizante para piscinas o durante procesos industriales. 
Se le denomina crudo ya que no se conoce su pureza exactamente, por lo que es necesario 
analizarlo. En este experimento se llevará a cabo la titulación de muestras de soda ash con el 
ácido clorhídrico previamente preparado y valorado. Se utilizará anaranjado de metilo (o rojo de 
metilo) como indicador para determinar la alcalinidad total de la muestra desconocida, la cual 
mayormente es dada por el carbonato de sodio. Pequeñas cantidades de hidróxido de sodio y 
bicarbonato de sodio también pueden estar presentes. Los resultados son regularmente 
expresados en términos de % de carbonato de sodio u óxido de sodio. 
 
PROCEDIMIENTO 
 
A. Preparación de la muestra 
 
1. Pese alrededor de 0.400 g de la muestra de soda ash previamente seca por 2 horas y 
colóquela dentro de un beaker de 250 ml 
2. Disuelva la muestra en 25 ml de agua destilada 
3. Transfiera la solución a un matraz volumétrico de 100 ml, enjuague el matraz varias veces 
con pequeñas porciones de agua destilada y añada estos enjuagues al matraz volumétrico. 
Esto se conoce como transferencia cuantitativa. 
4. Diluya hasta la marca y cuidadosamente mezcle el contenido 
 
B. Titulación utilizando rojo de metilo como indicador 
 
1. Pipetée una alícuota de 25 ml de la solución preparada en el paso A, a un matraz de 250 ml 
limpio y añádale 2 gotas del indicador rojo de metilo. Repita con dos alícuotas adicionales de 
la muestra. 
2. Titule cada muestra con HCl 0.1000 M previamente valorado 
3. Tan pronto la solución se vuelva rojiza añádale 1 ml de HCl en exceso. (Rojo de metilo es 
amarillo en medio básico y rojo en medio ácido). Anote el volumen de HCl que añadió 
 
 30 
4. Caliente la solución resultante y déjela hervir suavemente por 5 min. Tenga cuidado que no 
se seque. 
5. Enfríe a temperatura ambiente (NOTA: si no hay suficiente ácido presente para transformar 
el carbonato a ácido carbónico, el indicador volverá a su color original en medio básico 
(amarillo)) 
6. Si no hay suficiente ácido presente y su solución volvió a su color amarillo, continúe 
titulando con la solución ácida de HCl, pero si la solución tiene exceso de ácido, se tornará 
rojiza y se mantendrá de este color, por lo que continúe titulando con la solución de NaOH 
0.1000 M previamente estandarizada. 
7. Calcule el % de Na2CO3 en la muestra. Reporte el % de Na2CO3 promedio y todos los 
cálculos estadísticos de este dato. 
 
REPORTE 
Nombre de la muestra y #: 
 
 Prueba # 
 1 2 3 
Volumen de la alícuota 
A. Titulación con ácido Valorado 
Lectura inicial de la 
bureta 
 
Lectura final de la bureta 
Volumen de ácido usado 
B. Titulación con base valorada 
Lectura inicial de la 
bureta 
 
Lectura final de la bureta 
Volumen de base usado 
% Na2CO3 
 
1. ¿Por qué es necesario calentar la solución? 
2. ¿Por qué se utiliza rojo de metilo como indicador, en lugar de fenolftaleína como en 
experimentos anteriores? 
3. ¿Qué es una alícuota? ¿Cuál es la ventaja de utilizarla? 
4. ¿Que tipo de estándar es el ácido clorhídrico en esta titulación? 
5. ¿Cómo sería el % de Na2CO3 (mayor, menor o igual) si un estudiante olvidó curar la 
pipeta con la que tomó la alícuota? 
 
 31 
 
EXPERIMENTO 5: TITULACIÓN DE NEUTRALIZACIÓN UTILIZANDO UN MEDIDOR DE 
PH. COMPARACIÓN DE MÉTODOS 
 
OBJETIVOS 
• Utilizar medidores de pH para llevar a cabo titulaciones de neutralización 
• Valorar un ácido fuerte, utilizando las medidas de pH como indicadores 
• Comparar este tipo de titulación con aquellas donde se utiliza un indicador visual 
• Manejar apropiadamente electrodos de vidrio para medir el pH 
• Obtener información de una curva de titulación que permita determinar la concentración del 
analito 
• Calibrar un medidor de pH. 
• Utilizar pruebas estadísticas para comparar resultados 
 
INTRODUCCION 
Las titulaciones de neutralización están basadas en la reacción entre un ácido (HxA) y una base 
(B(OH)y) para obtener sal y agua: 
y HxA (aq) + x B(OH)y (aq)  x*yH2O (l) + BxAy(aq) 
En el punto de equivalencia de la titulación, los equivalentes de ácido son iguales a los de la 
base: 
EqHA = Eq BOH 
Transformando esto en moles: 
x
y
moles
Amoles

y
x
B(OH) 
H 
 
y por lo tanto, en el punto de equivalencia: yx B(OH) *H * molesyAmolesx  
En el caso de tener solo un equivalente, x y y son igual a 1, por lo que se cumple que:: 
Moles HA = moles BOH 
Ma * Va = Mb * Vb 
Para identificar el punto final de las titulaciones se pueden utilizar indicadores visuales, como los 
usados en previas experiencias (fenolftaleina, verde de bromocresol, etc.). Muchas reacciones 
pueden incluir reactivos ya coloreados, soluciones opacas o turbias, lo que limita el uso de 
indicadores visuales. En esos casos, se recomienda utilizar otros métodos como las titulaciones 
potenciométricas. En este experimento se utilizará un medidor de pH para detectar los cambios 
de pH a lo largo de la neutralización. Se utilizará una gráfica (curva de titulación) para identificar 
el punto de equivalencia 
 
 32 
A. Titulación de un ácido fuerte con base fuerte 
En el punto de equivalencia, los equivalentes de ácido son iguales a aquellos de la base, por lo 
que se entiende que no hay ninguno de los reactivos presentes. Dada esta situación el pH de la 
solución viene dado por los productos de la reacción: la sal y el agua. La sal proviene de un ácido 
y base fuerte por lo que no sufre hidrólisis, por lo tanto el pH en el punto de equivalencia viene 
dado solo por la disociación del agua: 
2H2O(l)  H3O
+(aq) + OH-(aq) 
La constante de equilibrio de esta reacción corresponde a la constante de disociación del agua: 
Kw = [H3O
+] [ OH-] = 1 x 10-14 
Dado que la concentración de iones OH- es igual a la de iones H3O
+, se puede aproximar que 
[H3O
+] = 1 x 10-7 M, por lo tanto el pH de esta solución en el punto de equivalencia es 7. 
Al graficar el pH vs. el volumen de base añadido, queda: 
 
Titulación potenciométrica 
Este tipo de titulaciones se basan en la medición del potencial de una celda electroquímica, 
compuesta de dos electrodos. Uno de los electrodos es selectivo a H3O
+ y el otro es un electrodo 
de referencia. La diferencia de potencial entre ambos electrodos, después de calibrarlo, es el pH. 
El electrodo más comúnmente utilizado para determinar pH es el electrodo de membrana de 
vidrio. En este un cambio en la concentración de hidrónio causa un cambio en la composición de 
la membrana de vidrio, y por lo tanto un cambio en el potencial, el cual es proporcional al pH. 
Dado que cada electrodo de vidrio es diferente, es necesario calibrar el mismo utilizando al 
menos dos soluciones de pH conocido. Durante una titulación potenciométrica se monitorea el 
cambio de potencial en la celda, a medida que se añade el titulante. 
 
Curva de titulación de un ácido fuerte con 
base fuerte 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 20 25 30 
Vol de base añadido (ml) 
p
H
 
Punto de equivalencia 
pH=7 
Figura 1. Curva de titulación de un ácido fuerte con una base 
fuerte 
 
 33 
Para realizar la titulación, los electrodos se colocan en la solución de la muestra, la cual se 
mantiene en continua agitación con un agitador magnético. La bureta se coloca de tal manera que 
el titulante se añada a la muestrasin salpicar. El pH se mide antes de agregar titulante, se añade 
este, y luego se anota el pH. El pH debe permanecer constante por 30 s antes de tomar una 
lectura. La titulación se continúa aun después de alcanzar el punto de equivalencia hasta que no 
se aprecie cambio significativo en el pH con la adición de titulante. 
El siguiente es un diagrama del equipo a utilizarse: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Determinación del punto de equivalencia en una curva de titulación. 
 
Un ejemplo de una curva de titulación se observa en la figura 1. El punto de equivalencia 
corresponde a la sección donde se aprecia un cambio mayor de pH. En el punto de equivalencia 
la pendiente de la curva no cambia, por lo que se conoce como punto de inflexión. Hay varios 
métodos para determinar el punto de equivalencia. 
• Método de estimación gráfica: se determina el punto medio de la sección donde se aprecia un 
cambio mayor de pH (el centro). 
• Método de la primera derivada: se calcula pH/ml para cada par de datos, y se grafica vs. 
el promedio de los dos volúmenes usados en el calculo anterior. Donde pH = pH2 –pH1 y 
ml=V2 –V1. El punto final ocurre en el volumen donde pH/ml tiene el valor máximo. 
• Método de la segunda derivada: se calcula 2pH/ml2 para cada par de datos, y se grafica vs. 
el promedio de los dos volúmenes usados en el calculo anterior. Donde 2pH = (pH/ml)2 –
(pH/ml)1 y ml
2=V2 –V1. El punto final ocurre en el volumen donde 
2pH/ml2 es 
igual a cero. 
 
 pH 
read cal ON/OFF 
Bureta 
Soporte 
Medidor de pH 
Electrodo 
Beaker 
Agitador 
Magnético 
AG 
Figura 2. Diagrama del sistema para llevar a cabo una 
titulación potenciométrica 
 
 34 
PROCEDIMIENTO 
A. Titulación de ácido fuerte con base fuerte 
 
1. Pipetear 10 ml de ácido clorhídrico 0.1000 M, preparado en el experimento #2, y añádalo a 
un beaker alto de 150 ml, (limpio y enjuagado con agua destilada). 
2. Anote la molaridad promedio del HCl y NaOH que obtuvo en el experimento #2. 
3. Lave una bureta y cúrela con pequeñas porciones del hidróxido de sodio 
4. Llene la bureta con el hidróxido de sodio y asegúrese que no hay burbujas en la punta 
5. Anote el volumen inicial de la bureta en su libreta. 
6. Coloque el beaker en una plancha para agitar. Coloque el electrodo del medidor de pH de tal 
manera que esté sumergido en la solución. Añada un agitador magnético, y asegúrese que 
este no golpea el electrodo cuando se mueve. 
7. Coloque la bureta conteniendo el NaOH, justamente dentro del beaker, con la punta cerca 
del nivel del líquido, pero que no toque el mismo. 
8. Comience a añadir lentamente porciones de 0.5 a 1 ml de titulante, agitando continuamente 
con el agitador magnético. Anote el volumen añadido y el pH para cada lectura. 
9. Cuando las lecturas sucesivas de pH comiencen a aumentar rápidamente, añada el titulante en 
porciones pequeñas (0.1 – 0.2 ml) hasta que las lecturas de pH vuelvan a parecerse entre sí en 
el área básica. 
10. Cuando esto suceda agregue de nuevo el titulante en intervalos de 1.0 ml, hasta alcanzar por 
lo menos 5 medidas después de alcanzado el punto de equivalencia. 
11. Repita este procedimiento con 2 muestras más de ácido clorhídrico. 
 
EJEMPLO DE TABLAS: 
A. Titulación de ácido fuerte con base fuerte 
 
Molaridad de la solución de NaOH obtenido en el exp. #2: 
Molaridad de la solución de HCl obtenido en el exp. #2: 
Primera Determinación 
Volumen 
de NaOH 
añadido 
pH 
 
 
 
NOTA: La tabla será más larga, prepárela mientras trabaja en el lab. 
 
 35 
CALCULOS y Análisis de Resultados 
A. Titulación de ácido fuerte con base fuerte 
1. Grafique la curva de titulación: pH vs. Volumen de base añadida para cada titulación 
2. Determine el punto final de la titulación gráficamente. A partir de allí determine el Volumen 
de NaOH que se necesita en el punto de equivalencia 
3. Calcule la concentración molar del HCl en cada una de las titulaciones, utilizando el gráfico 
de la curva de titulación. Determine los datos estadísticos de este análisis. 
4. Método de la primera derivada. Grafique pH/ml vs. V’ y determine el punto de 
equivalencia para cada titulación. (El libro explica muy bien cómo hacer estas gráficas) 
5. Calcule la concentración molar del HCL en cada una de las titulaciones utilizando el gráfico 
de la primera derivada. Determine los datos estadísticos de este análisis. 
6. Comparando método gráfico vs. método de la primera derivada. Compare el promedio y 
desviación estándar de la concentración del ácido, obtenido de la curva de la primera 
derivada (paso 5) con el promedio y desviación estándar obtenidos de la curva de titulación 
(paso 3). 
• ¿Son estos valores estadísticamente iguales dentro de un 95% de confianza? (Utilice 
la t de student para comparar estos datos) 
• Explique los resultados obtenidos: ¿son iguales o diferentes? ¿Por qué? 
• ¿Cuál método fue más preciso? 
7. Comparando método potenciométrico con uso de indicadores. Compare el promedio y 
desviación estándar obtenido de las gráficas de primera derivada con el promedio y 
desviación estándar obtenidos en el experimento #2 (En caso que utilizara el mismo ácido). 
• ¿Son estos valores estadísticamente iguales dentro de un 95% de confianza? (Utilice 
la t de student para comparar estos datos) 
• Explique los resultados obtenidos: ¿son iguales o diferentes? ¿Por qué? 
• ¿Cuál método fue más preciso? 
• ¿Cuál recomendaría para análisis rutinario? 
8. De los datos obtenidos para la primera vez que valoró el HCl utilizando este método y de la 
curva de titulación, calcule la [H+] y la [OH-] de los siguientes puntos: 
Volumen de NaOH (ml) Primera Determinación 
 pH [H+] [OH-] 
0.0 
1 ml antes del punto de equivalencia 
Punto de equivalencia 
1.0 ml después del punto de equivalencia 
Último volumen usado experimentalmente 
 
 36 
EXPERIMENTO 6: TITULACIÓN DE NEUTRALIZACIÓN UTILIZANDO UN MEDIDOR DE 
PH CONECTADO A UNA COMPUTADORA. 
 
OBJETIVOS 
• Utilizar medidores de pH para llevar a cabo titulaciones de neutralización 
• Valorar ácidos, utilizando las medidas de pH como indicadores 
• Comparar este tipo de titulación con aquellas donde se utiliza un indicador visual 
• Comparar las ventajas y desventajas del uso de la tecnología en este tipo de titulación. 
• Identificar las curvas de titulación, y las diferencias existentes en estas cuando se neutraliza 
un ácido fuerte o un ácido débil. 
 
INTRODUCCION 
Las titulaciones de neutralización están basadas en la reacción entre un ácido (HxA) y una base 
(B(OH)y) para obtener sal y agua: 
y HxA (aq) + x B(OH)y (aq)  x*yH2O (l) + BxAy(aq) (a) 
En el punto de equivalencia de la titulación, los equivalentes de ácido son iguales a los de la 
base: 
EqHA = Eq BOH (b) 
Transformando esto en moles 
x
y
moles
Amoles

y
x
B(OH) 
H 
 
 
(c) 
 
y por lo tanto, en el punto de equivalencia: 
yx B(OH) *H * molesyAmolesx  (d) 
En el caso de tener solo un equivalente, x y y son igual a 1, por lo que se cumple que: 
Moles HA = moles BOH (e) 
Ma * Va = Mb * Vb (f) 
Para identificar el punto final de las titulaciones se pueden utilizar indicadores visuales, como los 
usados en previas experiencias (fenolftaleina, verde de bromocresol, etc). Muchas reacciones 
pueden incluir reactivos ya coloreados, soluciones opacas o turbias, lo que limita el uso de 
indicadores visuales. En esos casos, se recomienda utilizar otros métodos como las titulaciones 
potenciométricas. En este experimento se utilizará un medidor de pH para detectar los cambios 
de pH a lo largo de la neutralización. Se utilizará una gráfica (curva de titulación) para identificar 
el punto de equivalencia 
 
Titulación de un Ácido Débil con Base fuerte 
Como ejemplo se estudiará el ácido acético, C2H3O2H, que es un ácido débil, Ka = 1.8 * 10
-5. 
 
 37En el punto de equivalencia ha desaparecido casi completamente el ácido: 
C2H3O2H + OH
-  C2H3O2
- + H2O (g) 
Por lo que el pH en el punto de equivalencia es establecido las reacciones que sufran los 
productos de la reacción. Cuando reacciona un ácido débil con una base fuerte, en el punto de 
equivalencia existirán la base conjugada del ácido (ión acetato) y agua. El agua reacciona 
disociándose: 
2H2O(l)  H3O
+(aq) + OH-(aq) (h) 
 mientras que la base conjugada del ácido también reacciona: se hidroliza 
C2H3O2
- + H2O  C2H3O2H + OH
- (i) 
Dado que la cantidad de OH- y el H3O
+ producido por la hidrólisis del agua es muy pequeña (10-
7 M), se puede aproximar que la hidrólisis del ión acetato es predominante, por lo que la solución 
en el punto de equivalencia tiene una mayor concentración de iones OH- como se presenta en la 
reacción (i), y por lo tanto el pH de esta solución es mayor que 7 en el punto de equivalencia. 
 
En el experimento pasado se discutió la teoría de titulaciones potenciométricas, las 
características del electrodo de membrana de vidrio utilizado para determinar el pH y los 
métodos para identificar el punto de equivalencia. Se recomienda revisar esa teoría. A diferencia 
del experimento anterior, aquí se utilizarán sensores de pH conectados a una computadora con un 
sistema de adquisición de datos. 
 
Curva de titulación de ácido débil con una 
base fuerte 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
10 15 20 25 30 35 
Vol. de base añadida (ml) 
pH 
Figura 3. Curva de titulación de un ácido fuerte con una base 
fuerte 
 
 38 
 
 
PROCEDIMIENTO 
A. Instalando el sistema de medición de pH con interfase a la computadora 
1. Se le proveerá un equipo de sensores e interfase. Identifique el sensor de pH (CI-6507A), 
la interfase (CI-6760) y el conector del sensor. 
2. Conecte la interfase a la computadora con el USB serial Converter (CI-6759). Enchufe la 
interfase. 
3. Encienda la interfase y luego la computadora 
4. Conecte el sensor de pH al amplificador. El sensor de pH tiene un enchufe tipo BCN, 
para conectarlo colóquelo en el receptáculo y gírelo en el sentido de las agujas del reloj, 
hasta que caiga en su posición. Tenga cuidado ya que el sensor de pH está sumergido en 
una solución amortiguadora. Trate que se mantenga así. 
5. Conecte el DIN del amplificador del sensor de pH al Canal Análogo A de la interfase. 
6. En la computadora, siga los siguientes pasos: 
a. Busque el fólder Lab. Analítica en el desktop 
b. Abra el fólder. Haga doble clic en el archivo “Titulación” 
c. Se abrirá una página en la cual verá un display de Dígitos, una tabla y un gráfico 
de pH vs. Volumen. En caso contrario, por favor notifique a la profesora. 
Bureta 
Soporte 
Conector al Sensor 
Electrodo 
Beaker 
Agitador 
Magnético 
AMG 
Interfase 
Figura 4. Diagrama del sistema para llevar a cabo una titulación potenciométrica utilizando sensores y 
computadoras 
 
 39 
 
B. Calibrando el sensor 
 
Igual que los otros medidores de pH, este sensor debe ser calibrado utilizando soluciones 
amortiguadoras de concentración conocida. 
 
1. Coloque el sensor en un beaker de 250 ml con agua destilada. Prepare una botellita con 
agua destilada para enjuagar el sensor. 
2. En el programa abra la ventada de “Experiment Setup” 
3. Haga doble clic en el icono sensor de pH. 
a. Abrirá una ventana con tres pestañas: General, Calibration y Measurements 
b. Abra la ventana de Calibration 
i. En esta ventana aparece una lectura de voltaje, y esa se correlacionará con 
el pH de la solución amortiguadora. 
4. Sumerja el medidor en la solución amortiguadora de mayor pH 
5. Vigile la lectura de voltaje que aparece en la ventana. Cuando este voltaje se estabilice, 
presione “Take Reading” bajo “HIGH POINT” 
6. Donde dice VALUE en HIGH POINT, incluya el valor de pH de la solución 
amortiguadora que usted utilizó. Ya calibró a pH alto. 
7. Enjuague el electrodo con agua destilada. 
8. Sumerja el medidor en la solución amortiguador de menor pH 
9. Vigile la lectura de voltaje que aparece en la ventana. Cuando este voltaje se estabilice, 
presione “Take Reading” bajo “LOW POINT” 
10. Donde dice VALUE debajo de LOW POINT, incluya el valor de pH de la solución 
amortiguadora que usted utilizó. Ya calibró a pH bajo 
11. Coloque el electrodo en el beaker con agua destilada. 
12. Presione OK para regresar a la pagina de Experiment Setup 
 
 
C. Titulación potenciométrica de un ácido orgánico 
1. Obtenga una muestra de un ácido orgánico (ácido débil). Anote el # de la muestra y 
pregunte el peso molecular del mismo. 
2. Pese entre 0.1000 y 0.2000 g de la muestra. Anote el peso 
3. Transfiera cuantitativamente el sólido a un beaker alto de 150 ml, limpio. Agregue agua 
hasta completar alrededor de 30 ml y asegúrese que el ácido se disolvió completamente. 
4. Coloque el beaker en una plancha para agitar. Coloque el electrodo del medidor de pH de 
tal manera que esté sumergido en la solución. Añada un agitador magnético, y asegúrese 
que este no golpea el electrodo cuando se mueve. 
5. Prepare una bureta con el NaOH preparado por su grupo. 
6. Titule con el hidróxido de sodio siguiendo las indicaciones del manejo de datos que se 
explica a continuación. 
7. Repita este análisis 2 veces más. 
 
 
 40 
D. Adquisición de datos – Titulación de Ácido-Base 
1. Acomode las ventanas de Data Studio para poder ver la Tabla y la lectura de pH. 
2. Cuando esté listo para comenzar, coloque el electrodo en la solución que va analizar. 
3. Cuando el valor del pH se estabilice, presione el botón KEEP. Escriba 0.00 ml en la 
ventana que aparecerá. 
4. Baje 0.5 ml de NaOH. 
5. En la pantalla que aparece anote el volumen de NaOH como 0.50 ml 
6. Cuando el valor del pH se estabilice, presione el botón KEEP. Anote el volumen leído en 
la bureta (1ml) 
7. Continúe bajando el NaOH, en incrementos de 0.5 ml aproximadamente. 
a. Recuerde anotar el volumen de NaOH después de guardar el pH. 
8. Cuando se llegue a un pH estable en área básica, presione el botón STOP. 
9. Apague el agitador magnético, remueva el electrodo de la solución, enjuague el sensor de 
pH y déjelo en el beaker con agua destilada. 
 
D. Analizando los datos 
1. Exporte los datos de la siguiente manera para procesarlos posteriormente por EXCEL. 
Guárdelos en un floppy, pen-drive o CD, no los guarde en la computadora, ya que los 
perderá. Para ello: 
a. En “FILE” busque “EXPORT” 
b. Ubique su floppy o pen drive, asígnele un nombre que pueda reconocer, y luego 
presione “SAVE” 
c. Puede copiar los datos de la tabla y la gráfica usando “copy” luego de seleccionarlos 
y llevándoselos a Excel. 
 
CALCULOS y ANALISIS DE RESULTADOS 
 
1. Obtenga la curva de titulación: grafique el pH vs. el volumen de base añadido, 
2. Determine el punto final de la titulación utilizando el método de la primera derivada. 
Determine el Volumen de NaOH necesario para alcanzar el punto de equivalencia. 
3. Determine los moles de NaOH necesarios para alcanzar el punto de equivalencia 
4. Calcule los moles del ácido 
5. Utilizando el PM del ácido, determine los gramos del mismo en la muestra. 
6. Calcule % p/p de ácido en el desconocido. 
7. Reporte todos los datos estadísticos del % p/p de ácido. 
 
 41 
INCLUYA EN EL REPORTE 
 
1. De los datos obtenidos, y solo para la primera titulación, calcule la [H+] y la [OH-] de 
los siguientes puntos de la curva de titulación: 
 
Volumen de NaOH (ml) Primera Determinación 
 pH [H+] [OH-] 
0.0 
1 ml antes del punto de 
equivalencia 
 
Punto de equivalencia 
1.0 ml después del punto de 
equivalencia 
 
Último volumen usado 
experimentalmente 
 
 
2. ¿Qué ventajas presenta el utilizar medidores de pH para determinar el punto de final 
de una titulación, cuando se compara con los indicadores visuales? 
3. ¿Qué desventajas presenta el método utilizado en el experimento? 
4.

Otros materiales