Logo Studenta

Teorema-de-Stokes-y-Divergencia

¡Este material tiene más páginas!

Vista previa del material en texto

Universidad Nacional Autónoma de México
Facultad de Estudios Superiores
Plantel Aragón
INGENIERIA INDUSTRIAL
CALCULO VECTORIAL
REPORTE DE PRACTICA 
GRUPO:8027
NOMBRE DEL PROFESOR: VELAZQUEZ VELAZQUEZ DAMASO
NOMBRE DEL ALUMNO: CORTES HERNANDEZ RICARDO 
FECHA DE ENTREGA: OCTUBRE DEL 2023
TEOREMA DE STOKES
El teorema de Stokes en geometría diferencial es una proposición sobre la integración de formas diferenciales que generaliza varios teoremas del cálculo vectorial. Se nombra así por George Gabriel Stokes (1819-1903), a pesar de que la primera formulación conocida del teorema fue realizada por William Thomson y aparece en una correspondencia que él mantuvo con Stokes.
Enunciado del Teorema de Stokes
A continuación enunciamos la versión tridimensional de la fórmula de Green, conocida como Teorema de Stokes, que nos permite calcular una integral de línea de un campo vectorial en el espacio mediante una integral de superficie del rotacional del campo.
TEOREMA
Sea S una superficie uniforme por segmentos y orientada que esta acotada por una curva C suave por segmentos, simple y cerrada con orientación positiva. Sea F un campo vectorial cuyas componentes tiene derivadas parciales continuas en una región abierta en R3 que contiene a S. Entonces,
Puesto que 
 y 
El teorema de Stokes establece que la integral de línea alrededor de una curva frontera de S de la componente tangencial de F es igual a la integral de superficie de la componente normal del rotacional de F.
La curva orientada en forma positiva de la superficie orientada S se escribe a menudo como , de modo que el teorema de Stokes se puede expresar como 1
Hay una analogía entre el teorema de Stokes, el teorema de Green y el teorema fundamental del calculo. Como antes, hay una integral con derivadas en el primer miembro de la ecuación 1 (recuerde que rot F es una clase de derivada de F) y el segundo miembro contiene los valores de F solo en la frontera de S.
En efecto, en el caso especial donde la superficie S es plana y queda en el plano xy con orientación hacia arriba, la normal unitaria es k, la integral de superficie se vuelve una integral doble, y el teorema de Stokes se transforma en 
Esto es precisamente la forma vectorial del teorema de Green. Por tanto , el teorema de Green es realmente un caso especial del teorema de Stokes.
Aunque es muy difícil demostrar totalmente el teorema de Stokes, puede dar una demostración cuando S es una grafica y F, S y C se comparten muy bien.
DEMOSTRACION DE UN CASO ESPECIAL DEL TEOREMA DE STOKES. Suponga que la ecuación de S es Z = g(x,y),(x,y) D, donde g tiene derivadas parciales continuas de segundo orden y D es una región simple del plano cuya curva frontera C1 corresponde a C. Si la orientación de S es hacia arriba, entonces la orientación positiva de C corresponde a la orientación positiva de C1. Sabe que F= Pi + Qj + Rk, donde las derivadas parciales de P,Q,R son continuas.
Puesto que S es una grafica de una función , en donde F esta remplazando por rot F. El resultado es 2
 = 
Donde las derivadas parciales de P,Q y R se evalúan en (x,y,g(x,y)). Si
x = x(t) y = y(t) a
es una representación paramétrica de C1, entonces una representación paramétrica de C es 
x = x(t) y = y(t) z = g(x(t),y(t)) a
Con la ayuda de la regla de la cadena , esto permite evaluar la integral de línea como sigue:
 = 
 = 
 = 
 = 
Donde se aplica el teorema de Green en el ultimo paso . Luego , al aplicar otra vez la regla de la cadena y al recordar que P,Q y R son funciones de x,y y z y de la misma z es una función de x y y, se obtiene
Cuatro de los términos de esta integral doble se cancelan y los restantes seis términos se pueden acomodar para que coincida el segundo miembro de la ecuación 2. Por tanto,
EJERCICIOS
EJERCICIO 1:
Usar el teorema de Stokes para calcular la integral de línea
Donde C es la curva intersección de la superficie del cubo a ≥x ≥ 0, a ≥ y ≥ 0, a ≥ z ≥ 0 y el plano x + y + z = 3a/2, recorrida en sentido positivo.
Solución:
La curva dada tiene la forma del hexágono de la figura adjunta.
Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial:
Si llamamos S a la superficie interior de dicho hexágono y D a la proyección de S sobre el plano XY, la superficie S viene parametrizada por la fórmula explicita z = 3a/2 − x − y, con (x, y) є D. De este modo, el vector normal exterior a la superficie es 
Al aplicar el teorema de Stokes, resulta:
EJERCICIO 2 : 
Llegamos al mismo valor que cuando lo hicimos con la integral de línea, verificando de esa manera el teorema de Stokes. 
TEOREMA DE LA DIVERGENCIA
El teorema de divergencia se llama también teorema de Gauss, en honor al famoso matemático Carl Friedrich Gauss, que este junto con Arquímedes y Newton, están considerados como los matemáticos más importantes de todos los tiempos. Entre sus contribuciones demostró a los 22 años y como parte de su trabajo de tesis doctoral, el teorema fundamental del algebra
	
Teorema de divergencia
Sea Q una región solida acotada por una superficie cerrada S. orientada por vectores normales unitarios dirigidos hacia el exterior Q. Si F es un capo vectorial cuyas funciones componentes tienen derivadas parciales continuas en Q, entonces: 
1
DEMOSTRACIÓN 
Sea F = P j + Qj + RK. Entonces
div F=
De modo que:
Si n es el normal unitario hacia afuera de S. por lo tanto la integral de superficie en el lado izquierdo o del teorema de la divergencia es
Por lo tanto, para demostrar el teorema de la divergencia, es superficie demostrar las tres ecuaciones siguientes:
2
3
4
Para demostrar la ecuación 4, recurra al hecho que E es una región tipo 1:
 E=
Donde D es la proyección de E en el plano xy. 
Y, en tal caso, según el teorema fundamental del cálculo.
5
La superficie frontera S1 consiste en tres partes: la superficie del fondo S2 la superficie de la tapa S3 y posiblemente una superficie vertical, la cual se ubica encima de la curva frontera de D . Podría ocurrir que S3 no aparezca, como en el caso de una esfera). Observe que en S tiene K. n= 0, porque k es vertical y n es horizontal, y así
Por esto, sin que importe si hay una superficie vertical, puede escribir
6
La ecuación de S2 es z =u2(x,y)(x,y)y la normal n hacia afuera señala hacia arriba, de modo que se tiene :
	
En S1 tiene z = u2(x,y), pero en este caso la normal hacia afuera señala hacia debajo de modo que multiplique por -1:
Por lo tanto, la ecuación 6 da como resultado
Al comparar con la ecuación 5 llega a que
Las ecuaciones 2 y 3 se demuestran en forma similar usando las expresiones para E como una región tipo 2 o tipo 3, respectivamente.
Flujo y el teorema de la divergencia
Para entender que significa la divergencia de F en un punto, consideremos el volumen de de una pequeña esfera de radio α centrada en, contenida en la región Q. 
Aplicando el teorema de la divergencia a resulta
Flujo de F a través de = 
donde denota el interior de . Por consiguiente, tenemos
≈ 
y tomando el limite para , obtenemos la divergencia de F en el punto 
 
div F = lim 
 
 = flujo por unidad de volumen en 
El punto se clasifica, en un campo vectorial, como fuente, sumidero o incomprensible, de acuerdo con las siguientes definiciones:
1. Fuente, si 
1. Sumidero, si 
1. Incompresible, si 
 Sumidero Fuente
 
IncomprensiblePROBLEMA 1:
 Determine el flujo del campo vectorial F(x,y,z) = zi+yj+xk sobre la esfera unitaria x2+y2+z2=1.
 Primero calcule la divergencia de F:
div F=
La esfera unitaria S es la frontera de la bola unitaria B definida por x2+y2+z2. En estos términos, el teorema de la divergencia da el flujo como
PROBLEMA 2:
Calcule el flujo del campo vectorial F(x,y,z)=(xz,-y2,xz) a través de la superficie cerrada que limita el cilindro
X2 + y2≤R2 con 0≤ z ≤ 3
a) Calculamos el flujo del campo utilizando el teorema de Divergencia.
Solución:
En primer lugar calculamos la divergencia de F
divF (x,y,z)=z-2y +x.
La forma más conveniente de realizar la integral en el conjunto V es hacer un cambio a coordenadas cilíndricas, ya que por ser V un cilindro el recinto de integración en estas variables es un rectángulo, es decir,
Entonces,
PROBLEMA 3:
 Calcule el flujo del campo vectorial F (x, y, z) = (x, y, 2z)
V: = {(x,y,z)/ 0}
Utilizando el teorema de Divergencia puede calcularse como la integral triple en V de la divergencia de F 
div F (x,y,z)= 1+1+2=4.
Entonces,
Para hacer esta integral doble en el círculo D pasamos a coordenadas polares 0,`[, 
Por tanto,
TEOREMA DE STOKES Y DIVERGENCIA9

Continuar navegando

Materiales relacionados

3 pag.
1 Teorema de Stokes Teoría

User badge image

01-IC-HU-MAO YOSHIRO CHAVEZ RUIZ

45 pag.
Campos Vectoriais em R2 e R3

UNM

User badge image

Materiales Muy Locos

339 pag.
Apunte_CAA_2009

SIN SIGLA

User badge image

cesar alberto wuer amaya