Logo Studenta

Informe Caída Libre

¡Estudia con miles de materiales!

Vista previa del material en texto

MOVIMIENTO UNIFORMEMENTE ACELERADO “CAÍDA LIBRE”
Angela Dayana Mejía Mejía
admejia@unicauca.edu.co
Angélica María Patiño Sarria
ampatino@unicauca.edu.co
Carlos David Vallejo Ruiz
cardav@unicauca.edu.co
Claudia Marcela Hurtado Franco
cmhurtado@unicauca.edu.co
Universidad del Cauca – Laboratorio de Movimiento Uniformemente Acelerado “Caída Libre”
.
	
1
	Abstract: On January 24, 2021, the practice scheduled by the laboratory worker Lissy Yohana Hurtado, called free fall, was carried out. This practice was carried out in the morning hours at the University of Cauca where only one of the formed groups could go as a representative; It began with the presentation of the instruments and a quick guide by the teacher where our representative had to be able to achieve a series of objectives. This practice led us to verify experimental values ​​with the theoretical ones already provided; We finish the practice by obtaining all the necessary data for the application of formulas that allow us to determine the best results and thus be able to better understand the free fall of an object.
PALABRAS CLAVE: caída, práctica, posición, tiempo.
1. INTRODUCCIÓN
En esta práctica guiada por la laboratorista Lissy Yohana Hurtado Meneses se pretendió colocar a prueba la caída libre de un objeto, donde para llevar a cabo esto se utilizaron varios instrumentos que nos permitieran la medición en tiempo y longitud; teniendo en cuenta los factores varios como lo es la afectación del viento, el error humano, la calibración de los instrumentos y la gravedad de la zona en que se realizó la práctica de laboratorio.
En esta práctica fueron indispensables instrumentos de medida básica como lo fueron el metro y otros de mayor precisión como lo son el contador experimental; se tomaron muchos datos que nos permitieran tener una mayor precisión. Se tuvo en cuenta el concepto de que mi objeto iba a estar expuesto a la resistencia del aire, dado en el caso hipotético de que no estuviera presente la resistencia del aire se pudo haber observado cómo dos objetos caen al mismo tiempo sin importar su peso.
Lo experimentado durante la práctica se evidencia dentro de gráficas en este informe, donde se puede apreciar la tendencia que toman nuestros datos. 
2. OBJETIVOS
OBJETIVO GENERAL
· Determinar la aceleración de la
gravedad del sitio de realización
de la práctica.
OBJETIVOS ESPECÍFICOS:
· Comparar analíticamente valores
experimentales con valores	
teóricos, mediante la aplicación de
teoría de errores.
· Establecer puntos estratégicos
para ubicación del sensor medidor
del tiempo.
· Medir el tiempo de caída de la
esfera, para diferentes distancias.
3. MARCO TEÓRICO
En ausencia de resistencia del aire, todos
los objetos que se dejan caer cerca de la
superficie de la Tierra caen hacia ella con
la misma aceleración constante bajo la
influencia de la gravedad de la Tierra.
En el caso idealizado, en el que la
resistencia del aire está ausente, a tal
movimiento se le refiere como
movimiento en caída libre, puesto que si
se sueltan en estas condiciones
simultáneamente y desde la misma altura,
una moneda y un trozo de papel arrugado,
ambos tendrán el mismo movimiento y
golpearan el suelo al mismo tiempo.
El valor de cerca de la superficie de la
Tierra disminuye conforme aumenta la
altitud. Además, ocurren ligeras
variaciones en con cambios en latitud.
En la superficie de la Tierra, el valor de 
es aproximadamente 
Si se ignora la resistencia del aire y se
supone que la aceleración de caída libre
no varía con la altitud en distancias
verticales cortos, el movimiento de un
objeto en caída libre que se mueve
verticalmente es equivalente al
movimiento de una partícula bajo
aceleración constante en una dimensión;
es importante resaltar que para los objetos
en caída libre el movimiento se realiza en
la dirección vertical, en consecuencia,
, donde el signo
negativo significa que la aceleración de
un objeto en caída libre es hacia abajo.
Para entender el movimiento
uniformemente acelerado, es importante
tener en cuenta los siguientes conceptos,
aclarando que para caída libre el
movimiento se realiza únicamente en la
dirección vertical, es decir en el eje Y, por
tanto hay que adaptar las ecuaciones
según corresponda.
Desplazamiento: Cuando una partícula se
mueve a lo largo del eje desde alguna
posición inicial hasta alguna posición
final 
 (1)
La velocidad promedio de una partícula
durante cierto intervalo de tiempo es el
desplazamiento dividido entre el
intervalo de tiempo durante el que
ocurre dicho desplazamiento:
 (2)
La aceleración promedio de una
partícula se define como la relación de
cambio en su velocidad dividida entre
el intervalo de tiempo durante el que
ocurre dicho cambio:
 (3)
Para determinar la velocidad de un objeto
en cualquier tiempo , si se conoce la
velocidad inicial del objeto y su
aceleración (constante), se emplea la
siguiente ecuación.
 (4)
En la figura 1, se muestra una gráfica
velocidad-tiempo para este movimiento
con aceleración constante, siendo una
línea recta, cuya pendiente es la
aceleración ; note que la pendiente es
positiva, lo que indica una aceleración
positiva. Si la aceleración fuese negativa,
la pendiente de la línea seria negativa.
Cuando la aceleración es constante, la
gráfica de aceleración en función del
tiempo es una línea recta que tiene una
pendiente cero.
La ecuación 5 permite encontrar la
posición final de la partícula.
 (5)
Otra expresión útil para la posición de
una partícula bajo aceleración constante
es:
 (6)
De igual forma, es posible obtener una
expresión para la velocidad final que no
contenga tiempo como variable, conforme
se evidencia en la ecuación 7.
 (7)
Teóricamente, es posible obtener a
partir de la fórmula Internacional de la
gravedad a nivel del mar, dada por la siguiente expresión:
 (8)
Donde es la latitud del lugar de
realización de la prueba. (Latitud de Popayán = 2.433)
4. LISTA DE MATERIALES
· Equipo de laboratorio para caída
· libre
· Esfera
· Plomada
· Metro
· Contador experimental
· Nivel de burbuja
· 2 hojas de Papel milimetrado
5. DESARROLLO PROCEDIMENTAL
Inicialmente se verifica el buen estado y funcionamiento de cada uno de los materiales que entrega el encargado del laboratorio, a continuación, se miden la longitud vertical del equipo de caída libre y se eligen 10 alturas diferentes, en este caso se trabajó de diez en diez, iniciando en diez y terminando en cien; para cada valor establecido se utiliza el nivel de la burbuja y la plomada para nivelar el equipo, a fin de que la esfera caiga en el sensor.
Para cada longitud se suspende la esfera electroimán, cuando está listo se interrumpe el paso de corriente y se toma el tiempo de caída de la esfera, realizando en cada caso 8 repeticiones: el tiempo tomado en las 8 repeticiones se promedió, obteniendo así la tabla 1.
Tabla 1. Datos posición vs tiempo
A partir de los datos anteriores se utiliza papel milimetrado y se gráfica Y vs en SÍ. 
Véase en anexos (Gráfica 1). Posición vs tiempo 
6. RESULTADOS 
Con la gráfica 1 anterior se obtiene un gráfico de dispersión y se logra encontrar la pendiente.
 (9)
De la ecuación anterior se conoce que 
 es un cambio en la posición, y de es cambio de tiempo. 
Por lo tanto es igual a la velocidad promedio que se va a calcular para cada par de alturas consecutivas. Por ejemplo, para el tramo , sería, usando (9):
Resultado correspondiente a la velocidad promedio, y de esta forma se obtienen los valores para cada tramo y se completa la tabla 2.
Tabla 2. Velocidad y tiempo promedio
	n
	Y(m)
	t(s)
	
	t
	1
	0.1 m
	0.056s
	1.78
	0.20
	2
	0.1 m
	0.04s
	2.5
	0.25
	3
	0.1 m
	0.037s
	2.7
	0.288
	4
	0.1 m
	0.034s
	2.94
	0.324
	5
	0.1 m
	0.035s
	2.85
	0.358
	6
	0.1 m
	0.026s
	3.84
	0.3897
	0.1 m
	0.024s
	4.16
	0.414
	8
	0.1 m
	0.019s
	5.26
	0.435
	9
	0.1 m
	0.028s
	3.5
	0.459
Con las velocidades medias encontradas anteriormente anexadas en la tabla 2 se grafica vs en papel milimetrado. A partir de la gráfica 2 se obtiene un gráfico de dispersión donde se observa que la tendencia es una línea recta, la cual se trabaja con el método de mínimos cuadrados para encontrar la pendiente que permite sacar información como:
Ecuacionalmente esto es igual a la aceleración y cómo se está trabajando en el eje Y, esta aceleración es la gravedad que estamos buscando.
Véase en anexos (Gráfica 2)
A continuación, se trabaja el método de mínimos cuadrados con los datos de la tabla 2.
Datos 
De los datos anteriores tenemos las siguientes ecuaciones:
 (10) 
 
 (11) 
Se reemplazan los datos en (10) y (11) y obtenemos:
 (12)
 (13)
Ahora, se solucionan con el sistema de ecuaciones 2x2, iniciamos multiplicando) en la ecuación (10) y al resultado le restamos la ecuación (11) :
 0.62 = 0.06 
Se despeja 
Reemplazamos en la ecuación (10) 
Despejamos 
Ahora con la ecuación para obtener la mejor recta:
 (14)
Reemplazamos y en (14) y tenemos:
Ahora calculamos la aceleración de la gravedad con la ecuación (8) y sabiendo que la latitud de Popayán es 2.433:
 
 
Teniendo la gravedad experimental () y la teórica () hallamos el error relativo porcentual con la siguiente fórmula:
(15)
Por lo tanto, en (15):
Así el error porcentual es:
Comparando los datos tenemos la Tabla 3:
Tabla 3. Gravedad y error relativo
	g(m/)
Teórica 
	g(m/)
Experimental
	%
Error
	9,78 m /
	10.3 m/
	5.31%
7. ANÁLISIS DE RESULTADOS
Después de la realización de lo que está enunciado en el inciso 5), de desarrollo procedimental, más lo dicho en el inciso 6), podemos encontrar la gravedad experimental en la ciudad de Popayán, que en este caso dio valor que, siendo analizado bajo la teoría de errores, hallamos un error del 
8. CONCLUSIONES
· Podemos notar que la gravedad experimental en la ciudad de Popayán, calculada a partir de este experimento, es distinta a la gravedad teórica enunciada en el marco teórico.
· Se logró establecer puntos estratégicos para ubicación del sensor medidor del tiempo, y se consiguió medir el tiempo de caída de la esfera, para diferentes distancias.
· La realización del trabajo grupal fue hecha de manera correcta, a pesar de que no todos los integrantes del grupo pudieron asistir a la clase práctica del laboratorio, nos fue posible realizar todo el trabajo de buena manera.
9. BIBLIOGRAFÍA 
a. Física Vol. I. R. Serway, GrawHill
b. LD Physics Leaflets, Mechanies Translational motions of a mass point Free fall.
ANEXOS
Gráfica 1. Posición vs tiempo
Grafica 2. Velocidad promedio vs tiempo
 
 Y (m) t (s) t(prom)s 
1 0.1 0,173 0.170 0,174 
0.165 0,171 
0,171 0,187 
0,187 0,174 
2 0.2 0,226 0,225 0,23 
0,230 0,231 
0,224 0,243 
0,231 0,230 
3 0.3 0,271 0,268 0,27 
0,267 0,266 
0,270 0,273 
0,272 0,273 
4 0.4 0,310 0,310 0,307 
0,311 0,308 
0,303 0,307 
0,305 0,309 
5 0.5 0,338 0,343 0,341 
0,342 0,344 
0,341 0,345 
0,345 0,337 
6 0.6 0,391 0,373 0,376 
0,364 0,377 
0,375 0,378 
0,380 0,371 
7 0.7 0,403 0,402 0,402 
0,402 0,401 
0,403 0,402 
0,406 0,403 
8 0.8 0,424 0,425 0,426 
0,428 0,428 
0,431 0,428 
0,422 0,427 
9 0.9 0,447 0,444 0,445 
0,446 0,445 
0,444 0,448 
0,442 0,450 
10 1 0,467 0,472 0,473 
0,472 0,476 
0,473 0,470 
0,478 0,477

Continuar navegando