Logo Studenta

FÍSICA MODERNA

¡Este material tiene más páginas!

Vista previa del material en texto

TEMA 5: INTRODUCCIÓN A LA FÍSICA MODERNA 
 
 
PARTE 1: El efecto fotoeléctrico y los espectros discontinuos: insuficiencia de la Física 
clásica para explicarlos. Hipótesis de De Broglie. Relaciones de indeterminación. 
Valoración del desarrollo científico y tecnológico que supuso la Física moderna. 
 
• Descripción fenomenológica y análisis de la insuficiencia de la física clásica para 
explicar el efecto fotoeléctrico y los espectros atómicos. 
• Hipótesis de Planck: cuantización de la energía. 
• Teoría de Einstein del efecto fotoeléctrico : concepto de fotón (aspecto corpuscular 
de la radiación). 
• Espectros discontinuos: niveles de energía en los átomos. 
• Hipótesis de De Broglie (aspecto ondulatorio de la materia) 
• Dualidad onda - corpúsculo (superación de la dicotomía partícula-onda 
característica de la física clásica). 
• Principio de incertidumbre de Heisenberg. 
• Determinismo y probabilidad 
• Dominio de validez de la física clásica. 
 
PARTE 2: Física nuclear. La energía de enlace. Radioactividad: tipos, repercusiones y 
aplicaciones. Reacciones nucleares de fisión y fusión, aplicaciones y riesgos. 
 
• Breve referencia al modelo atómico: núcleo y electrones. 
• Interacciones dominantes en los ámbitos atómico molecular y nuclear y órdenes de 
magnitud de las energías características en los fenómenos atómicos y nucleares. 
• Energía de enlace y defecto de masa. 
• Principio de equivalencia masa energía. 
• Estabilidad nuclear. 
• Radiactividad; descripción de los procesos alfa, beta y gamma y justificación de las 
leyes del desplazamiento. 
• Ley de desintegración radiactiva; magnitudes. 
• Balance energético (masa energía) en las reacciones nucleares. 
• Descripción de las reacciones de fusión y fisión nucleares; justificación cualitativa 
a partir de la curva de estabilidad nuclear. 
 
INSUFICIENCIA DE LA FÍSICA CLÁSICA 
 
La física clásica trata a las partículas y las ondas como cosas diferentes. El 
comportamiento de las partículas puede explicarse mediante las leyes de Newton y el de 
las ondas mediante la teoría de Huygens y las leyes de Maxwell para el 
electromagnetismo. 
 
Sin embargo, a final del siglo XIX y comienzos del XX aparecieron nuevos fenómenos 
que pusieron en duda la validez de las leyes clásicas: 
 
• Radiación del cuerpo negro 
• Efecto fotoeléctrico 
• Efecto Compton 
• Interpretación de los espectros atómicos 
 
 
INTERPRETACIÓN DE LA RADIACIÓN TÉRMICA. HIPÓTESIS D E PLANCK. 
 
Exposición del fenómeno: 
 
Sabemos que los cuerpos absorben y emiten energía. Un cuerpo frío absorbe más de la que 
emite, mientras que un cuerpo caliente emite más energía que absorbe. 
 
Supongamos que empezamos a calentar un trozo de hierro. Todos sabemos que al ir 
aumentando su temperatura comienza a tomar un tono rojizo, después rojo intenso hasta 
ponerse amarillo brillante. Sencillamente lo que ocurre es que los restos positivos del 
metal vibran cada vez con más rapidez en sus posiciones en la red, es decir, que se 
comportan como si fueran osciladores armónicos: 
 
 
 
Es evidente que al tratarse de cargas aceleradas radiarán energía en forma de ondas 
electromagnéticas. A medida que se calienta más, aumentan las frecuencias de vibración y 
por tanto la frecuencia de las OEM que radia y por eso va pasando a rojo y luego al 
amarillo. 
Si para una temperatura determinada, analizamos la energía que radia por unidad de área y 
tiempo (es decir, la potencia por unidad de área, un concepto similar a la intensidad) para 
cada frecuencia (o longitud de onda) se obtiene una curva como la de la figura: 
 
 
observaremos que : 
 
• Radia más energía cuanto mayor es la temperatura del hierro. 
• Si la temperatura del hierro es mayor, aumenta la frecuencia para la cual radia el 
máximo de energía, es decir se va desplazando desde el IR (donde solo notamos el 
calor) hacia al visible y por ese motivo lo empezamos a ver rojo 
 
 
 
De esta forma, si variamos la temperatura y medimos la energía radiada para cada 
frecuencia podemos obtener una familia de curvas. 
 
 
Cada material tiene una familia a de curvas distintas, por eso, y para facilitar su estudio, se 
ha pensado en un cuerpo ideal que absorba todas las radiaciones (sean de la frecuencia que 
sean) y que por tanto sea capaz de emitir todas las radiaciones. A este cuerpo ideal se le 
llama cuerpo negro. 
 
Un cuerpo negro puede ser una caja negra impregnada de negro de humo en la que se ha 
practicado un pequeño orificio. Así al entrar la luz en ella, a fuerza de reflejarse se 
absorberá completamente antes de salir: 
 
Si se calienta el cuerpo negro a gran temperatura, sus paredes comenzarán a emitir 
radiaciones, que en parte él mismo absorberá, pero el resto saldrán por el orificio. A esta 
se la llama radiación del cuerpo negro. 
 
Representando la energía radiada por unidad de tiempo y área en función de la frecuencia, 
a varias temperaturas, se obtienen una familia de curvas similares a las anteriores: 
 
Se observa que: 
 
• Al aumentar la temperatura del cuerpo negro, éste radia más energía. 
Experimentalmente se ha demostrado que la energía total radiada por unidad 
tiempo y de área (potencia por unidad de área) es proporcional a la cuarta potencia 
de la temperatura, lo que se conoce como ley de Stefan–Boltzman 
 
4T E σ=ν 
 
 σ = cte. de Stefan–Boltzman = 81067,5 −⋅ Wat/m2ºK4 
 
Para los cuerpos no negros la ley de Stefan–Boltzman se escribe igual, pero 
introduciendo una coeficiente de absorción característico de cada material: 
4T E σα=ν 
 
• La frecuencia para la cual la radiación es máxima sufre un corrimiento hacia el 
visible. Wien encontró la relación que existe entre la temperatura a la que está el 
cuerpo y la frecuencia para la cual emite la radiación máxima: 
 
sKº1065,9cte
T 12
max
⋅⋅==
ν
− 
 
Basándose en esto y estudiado la maxν o la maxλ de la luz emitida por las estrellas 
podemos calcular la temperatura a la que se encuentran. (Teniendo en cuenta que 
νλ= c , la ley de Wien también puede escribirse como 
mKº1089,2T 3max ⋅⋅=λ⋅
− ) 
 
Interpretaciones: 
 
A) Interpretación clásica de Rayleigh–Jeans: Estos dos físicos ingleses,basándose en la 
teoría electromagnética y en que los átomos al vibrar se comportan como pequeños 
osciladores armónicos que emiten continuamente OEM, llegaron a una expresión 
matemática, que más o menos concordaba con la curva experimental para bajas 
frecuencias (en el IR), pero que para altas frecuencias crecía exponencialmente, 
desviándose de la curva experimental, por lo que los físicos la llamaron “catástrofe 
ultravioleta”, porque de acuerdo con esto, la teoría electromagnética clásica no era capaz 
de explicar este fenómeno. 
 
 
 
B) Interpretación cuántica de Max Planck: Este físico alemán, en una conferencia el 14 de 
diciembre de 1900, que es una fecha histórica para la física, dijo que para poder explicar la 
radiación del cuerpo negro había que desechar la idea de que los cuerpos pueden absorber 
y emitir energía de forma continua. 
 
Hay que admitir que la energía se absorbe y emite en forma de pequeños paquetes de 
energía, que llamó “cuantos” (posteriormente Einstein los llamó fotones) y su energía es 
proporcional a su frecuencia: 
 
ν= hE 
 
h = cte. de Planck = sJ1062,6 34 ⋅⋅ − 
 
Según esto, un cuerpo puede absorber o emitir un fotón, o dos, o tres, es decir ν hn ⋅ 
donde n es un número entero, lo que quiere decir que “la energía está cuantizada”. 
 
• Planck supuso que la radiación electromagnética era emitida por pequeños osciladores 
submicroscópicos que solo podían vibrar con múltiplos enteros de cierta frecuencia ν, 
y no con cualquiera, así que radiaban energía en múltiplos de hν. 
 
• Como el número de osciladores es enorme y cada uno de ellos oscila con una 
frecuencia distinta, el cuerpo puede emitir todas las frecuencias y el espectro es 
continuo. 
 
• Planck partiendo de esta idea, absolutamente nueva, consiguió una fórmula 
empírica que reproducía exactamentela curva experimental de la radiación el 
cuerpo negro. 
 
Planck puso los cimientos de la física moderna, pero no recibió el premio Nóbel por su 
descubrimiento del cuanto hasta varios años después, cuando Einstein hizo uso de éste 
concepto para explicar el efecto fotoeléctrico, quedando la revolucionaria idea fuera de 
dudas. 
 
 
Ejemplo: 
 
Calcular la temperatura de la superficie del sol y la energía radiada por unidad de área y 
tiempo, sabiendo que la longitud de onda para la cual la energía radiada es máxima es 
m101,5 7max
−⋅=λ . 
Datos: Cte de Wien = 2,89.10–3 mºK; Cte de Stefan–Boltzman = 5,67.10–8 W/m2ºK4 
 
 
De acuerdo a las unidades en que nos dan la constante de Wien, escribiremos la ley de 
Wien como: 
mKº1089,2T 3max ⋅⋅=λ⋅
− 
de donde: 
Kº67,5666
m101,5
Kºm1089,2
T
7
3
=
⋅
⋅⋅= −
−
 
 
De acuerdo con la ley de Stefan–Boltzman, la energía por unidad de área y tiempo radiada 
por el sol (potencia por unidad de área) 
 
4T E σ=ν 
sustituyendo: 
2748 m/W1085,567,56661067,5E ⋅=⋅⋅= −ν 
 
 
EFECTO FOTOELÉCTRICO 
 
Exposición del fenómeno: 
 
El efecto fotoeléctrico consiste en la emisión de electrones por parte de los metales al ser 
iluminados. 
 
Un sencillo experimento puede ponerlo de manifiesto: Si adosamos una lámina de zinc al 
conductor de un electroscopio descargado, veremos que al iluminar la placa de zinc con 
luz UV se separan las láminas del electroscopio porque se carga positivamente como 
consecuencia de que emite electrones: 
 
 
Se puede estudiar el fenómeno introduciendo el zinc en una ampolla de vidrio como 
cátodo (al dispositivo se le llama célula fotoeléctrica) 
 
1. En primer lugar se puede observar que para cada metal hay una frecuencia mínima 
(frecuencia umbral νo) por debajo de la cual no hay ninguna emisión de electrones. 
Lógicamente los metales más electropositivos, al tener los electrones de valencia menos 
ligados, tienen frecuencias umbrales más pequeñas que los otros: 
 
Hz105,4 14Sodio,o ⋅=ν (rojo) 
Hz105,8 14Zinc,o ⋅=ν (UV) 
 
2. Si se aumenta la intensidad de la luz, aumenta el número de electrones que abandonan 
el metal, es decir, aumenta la intensidad de la corriente, como era de esperar de acuerdo 
con la teoría electromagnética clásica. 
 
 
Lo curioso del caso, y que ya no se puede explicar con la teoría electromagnética clásica, 
es que por muy intensa que sea la luz, si no tiene una frecuencia igual o mayor que la 
umbral no sale ni un solo electrón. (Según la física clásica la energía de una onda es 
proporcional al cuadrado de la amplitud, de manera que se puede tener ondas de gran 
energía aunque su frecuencia sea pequeña, como por ejemplo ocurre con las olas) 
 
3. Si se ilumina con una luz de frecuencia mayor a la umbral, los electrones salen 
disparados con una energía cinética que no depende de la intensidad de la luz, sino 
solamente de su frecuencia. La energía cinética de los fotoelectrones puede medirse 
conectando a la célula fotoeléctrica una pila variable al revés: 
 
Al potencial que anula la corriente fotoeléctrica se le llama potencial de detención, Vo. Por 
tanto, teniendo en cuenta que el trabajo eléctrico es W=qV, podemos poner que : 
 
2
o vm2
1
eV = 
 
donde e es la carga del electrón y m es su masa. 
 
4. Cuando la luz incide sobre el metal, los electrones son emitidos instantáneamente. Esto 
tampoco puede explicarse con la teoría electromagnética clásica, ya que si el electrón 
extrae energía de la onda, debería transcurrir un tiempo hasta que acumule la energía 
necesaria para escapar del metal. 
 
Explicación de Einstein al efecto fotoeléctrico: 
 
Planck creía que solo estaba cuantificado el intercambio de energía (absorción y emisión), 
pero que después la luz se comportaba como una onda. 
 
Einstein fue más atrevido, supuso que la energía electromagnética es sí misma era la que 
estaba cuantificada en pequeños paquetes de energía que llamó fotones. La energía de un 
fotón es: 
ν= hE 
 
Vamos a ver como con la suposición de Einstein pueden explicarse todas las 
observaciones anteriores: 
 
Si llamamos trabajo de extracción o función trabajo (Eo) a la energía mínima que debe 
tener el fotón para arrancar un electrón del metal. Es evidente que el fotón debe tener una 
frecuencia mínima νo (la umbral) para arrancar al electrón: 
 
oo hE ν= 
 
 
 
Si la frecuencia de la luz es menor que la 
umbral no hay emisión: 
 
Si oE h <ν ⇒ No sale 
 
 
Si la frecuencia de la luz es justamente la 
umbral, entonces arranca al electrón, pero 
éste queda sin energía porque toda ella se 
ha invertido en arrancarlo: 
 
Si oE h =ν ⇒ Sale el electrón, pero 
queda sin energía 
 
 
Si la frecuencia de la luz es mayor que la 
umbral: 
 
Si oE h >ν ⇒ Sale el electrón y la 
energía que sobra de arrancarlo se invierte 
en energía cinética 
 
De esta forma Einstein escribió que: 
 
2
o vm2
1
E h +=ν 
o lo que es igual: 
2
o vm2
1
 h h +ν=ν 
 
despejando la velocidad con que sale el electrón: 
 
m
)(h2
v o
ν−ν
= 
 
Como puede verse la velocidad de los fotoelectrones, y por tanto su energía cinética, no 
depende de la intensidad de la luz. Solamente depende de la frecuencia y lo demás son 
constantes. 
 
Al aumentar la intensidad de la luz, lo que aumenta es el número de fotones y por tanto es 
mayor el número de electrones que salen del metal. Ello explica que aumente la intensidad 
de la corriente: 
 
 
 
Al aumentar la intensidad de la luz (el nº 
de fotones) aumenta es el número de 
electrones que salen del metal, y por tanto 
la intensidad de la corriente. 
 
Por último queda explicar la instantaneidad con que son emitidos los fotoelectrones, pero 
es fácil, ya que como se dice en la hipótesis, los fotones son paquetes de energía 
concentrada y no ondas que tienen su energía distribuida por todo el frente de onda. 
 
Einstein recibió el premio Nóbel, no por su teoría de la relatividad como cree mucha 
gente, sino por la interpretación del efecto fotoeléctrico que acabamos de ver. 
 
 
 
Ejemplo E4A.S2005 
 
Al iluminar una superficie metálica con luz de frecuencia creciente empieza a emitir 
fotoelectrones cuando la frecuencia corresponde al color amarillo. 
a) Explique razonadamente qué se puede esperar cuando el mismo material se irradie con 
luz roja. ¿Y si se irradia con luz azul? 
b) Razone si cabría esperar un cambio en la intensidad de la corriente de fotoelectrones al 
variar la frecuencia de la luz, si se mantiene constante el número de fotones incidentes por 
unidad de tiempo y de superficie. 
 
a) Para que se produzca efecto fotoeléctrico los fotones de luz deben tener una frecuencia 
igual a la umbral o superior. Según se deduce del enunciado, para este material la 
frecuencia umbral corresponde al amarillo, por lo que al iluminar con luz roja, que tiene 
una frecuencia menor, no se producirá efecto fotoeléctrico, independientemente de la 
intensidad de la luz roja. 
 
Por el contrario, al iluminar con luz azul el metal emitirá electrones que saldrán con una 
energía cinética igual a la diferencia entre la energía del fotón de luz azul y la del fotón de 
luz amarilla (trabajo de extracción). 
 
b) Cada fotón arranca un electrón (siempre que tenga una frecuencia igual a la umbral o 
superior) por lo que si se mantiene el número de fotones la intensidad de la corriente será 
la misma. No obstante, si variamos la frecuencia lo que sí variará será la energía cinética 
de los electrones emitidos (siempre que la frecuencia sea igual a la umbral o superior). 
 
Ejemplo E5B.S2007: 
 
Un fotón incide sobre un metal cuyo trabajo de extracción es 2 eV. La energía cinética 
máxima de los electrones emitidos por ese metal es 0,47 eV. 
a) Explique las transformaciones energéticas que tienen lugar en el proceso de fotoemisión 
y calcule la energía del fotón incidente y la frecuencia umbral de efecto fotoeléctrico del 
metal. 
b) Razone cuál sería la velocidad de los electrones emitidos si la energía del fotón 
incidente fuera 2 eV. 
h = 6,6 ·10–34J s ; e = 1,6 ·10–19 C 
 
a) La energía del fotón incidente (hν) se invierte en extraer el electrón del metal y la 
restante en comunicarle energía cinética, por tanto: 
 
eV47,247,02vm
2
1
E h 2o =+=+=ν 
en julios: 
J1095,3106,147,2 h 1919 −− ⋅=⋅⋅=ν 
 
La frecuencia del fotón incidente, despejando será: 
 
Hz1098,5
s.J106,6
J1095,3 14
34
19
⋅=
⋅
⋅=ν −
−
 
 
La frecuencia umbral es la que corresponde a un fotón de energía igual al trabajo de 
extracción: 
Hz1086,4
s.J106,6
J106,1*2 14
34
19
o ⋅=⋅
⋅=ν −
−
 
 
b) Es evidente, según hemos dicho antes, que si la energía del fotón incidente es igual al 
trabajo de extracción la energía cinética sería cero, y por tanto la velocidad de los 
electrones nula. 
 
 
Ejemplo E3A.S2007: 
 
Sobre una superficie de sodio metálico inciden simultáneamente dos radiaciones 
monocromáticas de longitudes de onda λ1 = 500 nm y λ2 = 560 nm. El trabajo de 
extracción del sodio es 2,3 eV. 
a) Determine la frecuencia umbral de efecto fotoeléctrico y razone si habría emisión 
fotoeléctrica para las dos radiaciones indicadas. 
b) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la 
velocidad máxima de los electrones emitidos. 
c = 3 ·108 m s–1 ; h = 6,6 ·10–34 J s ; e = 1,6 ·10–19 C ; me = 9,1·10
–31 kg 
 
a) En primer lugar debemos calcular la energía de los dos fotones. Si su energía es mayor 
o igual al trabajo de extracción habrá emisión, y en caso contrario no porque no llegarían 
al umbral. (recuerda que 1nm=10–9m) 
 
J1096,3
10500
103
106,6
c
hhE 19
9
8
34
1
11
−
−
− ⋅=
⋅
⋅⋅=
λ
=ν= 
 
J1054,3
10560
103
106,6
c
hhE 19
9
8
34
2
22
−
−
− ⋅=
⋅
⋅⋅=
λ
=ν= 
 
El trabajo de extracción en julios es J1068,310 6,13,2eV3,2E 1919o
−⋅=⋅== 
 
Como podemos ver, solamente el primer fotón tiene energía suficiente para arrancar un 
electrón del metal, el segundo no producirá efecto fotoeléctrico independientemente de la 
intensidad que tenga la luz. 
 
La frecuencia umbral es la frecuencia mínima que debe tener un fotón para arrancar un 
electrón y por tanto es la energía de un fotón que coincide con el trabajo de extracción: 
 
oo hE ν= ⇒ Hz1058,5106,6
1068,3
h
E 14
34
19
o
o ⋅=⋅
⋅==ν −
−
 
 
A la misma conclusión habríamos llegado si calculamos la frecuencia de cada fotón 
( λ=ν /v ) y la comparamos con el valor de la umbral. 
 
b) La energía del fotón (3,96.10–19J) se transmite al electrón. Parte de ella se emplea en 
arrancarlo del metal (3,68.10–19J) y la restante se emplea en comunicarle energía cinética. 
2
o vm2
1
E h +=ν 
 
2311919 v101,9
2
1
1068,31096,3 −−− ⋅+⋅=⋅ 
 
s/m1048,2v 5⋅= 
 
EFECTO COMPTON 
 
Explicación del fenómeno: 
 
Compton hizo incidir un haz de rayos X duros, de frecuencia ν, sobre un bloque de grafito 
y observó que: 
 
• Los rayos X dispersados tenían una frecuencia ν´ menor (o lo que es igual que 
tenían una longitud de onda mayor que los rayos incidentes) 
• El incremento que sufre la longitud de onda del fotón es función del ángulo de 
rechazo: )(f φλ∆ = 
 
Este fenómeno es inexplicable mediante la física clásica, porque según ella, al incidir los 
rayos X de frecuencia ν sobre el grafito, sus átomos se verían obligados a vibrar con esa 
frecuencia y por tanto radiarían OEM también de la misma frecuencia ν. 
 
Explicación de Compton: 
 
Compton explicó este fenómeno haciendo uso de las ideas de Einstein sobre el fotón. 
Pensó que el fotón incidente chocaba con un electrón libre del grafito, de la misma manera 
que lo hacen dos bolas de billar, pero en este caso que no cede toda su energía al electrón 
(como sucede en el efecto fotoeléctrico) solamente cede una parte y por eso se convierte 
en otro fotón de menor frecuencia ν´<ν (o de mayor longitud de onda). El efecto Compton 
es el apoyo más evidente al comportamiento corpuscular de la luz. 
 
El tratamiento al problema es el mismo que el de un choque elástico entre dos bolas de 
billar, es decir que antes y después del choque se conserva la energía y, por supuesto, el 
momento lineal. A partir de estas consideraciones puede demostrarse que el incremento de 
la longitud de onda del fotón dispersado es: 
 
)cos1(
c m
h
e
φ−=λ∆ 
 
a la constante h/mec se le llama longitud de onda Compton = 2,4.10
–12 m pudiéndose 
escribir también como: 
)cos1(c φ−λ=λ∆ 
 
Como puede verse, el corrimiento Compton ( λ−λ=λ∆ ´ ) solo es función del ángulo de 
rechazo del fotón. Si φ=0 entonces 0=λ∆ , es decir que λ=λ´ y no hay efecto Compton. 
 
Es muy importante recalcar que mientras en el efecto fotoeléctrico desaparece el fotón, 
porque cede toda su energía al electrón, en el efecto Compton el fotón solo cede una parte 
de su energía al electrón, con lo que no desaparece, sino que se convierte en otro fotón de 
menor energía. 
 
Compton recibió el Nóbel por sus estudios e interpretación de éste fenómeno. 
 
 
Ejemplo: 
 
Cuando un fotón de rayos X duros, de longitud de onda 3.10–11 m incide sobre un electrón 
en reposo sale disparado formando un ángulo de 60º. Calcular: 
a) La longitud de onda del fotón dispersado 
b) La energía cinética del electrón sobre el que chocó el fotón. 
Datos: Long.de onda Compton = 2,4.10–12 m ; h = 6,62.10–34J.s ; e = 1,6–10–19 C 
 
 
 
 
)cos1 (
c m
h
 ´
e
φ−=λ−λ=λ∆ 
sustituyendo: 
m102,1)60cos1(104,2 1212 −− ⋅=−⋅=λ∆ 
de donde: 
m1012,3103102,1´ 111112 −−− ⋅=⋅−⋅=λ−λ∆=λ 
 
b) Puesto que se trata de un choque elástico y en consecuencia se conserva la energía, la 
energía del fotón incidente debe ser igual a la del fotón dispersado más la energía cinética 
que adquiere el electrón, por tanto: 
 
electrEc´hh +ν=ν 
por tanto: 
electrEc´
c
h
c
h +
λ
=
λ
 
 
eV 1591J1055,2
1012,3
1
103
1
1031062,6
´
11
 hcEc 16
1111
834
electr =⋅=





⋅
−
⋅
⋅⋅=





λ
−
λ
= −−
− 
 
ESPECTROS DISCONTINUOS. NIVELES DE ENERGÍA EN LOS ÁTOMOS 
 
Ya sabemos que cuando la luz blanca se hace pasar a través de un prisma se descompone 
dando lugar a un espectro que contiene la totalidad de los colores desde el rojo al violeta, 
por lo que se llama espectro continuo, mientras que si solo hay unos pocos se llama 
espectro discontinuo. 
 
Un espectro de emisión es el espectro de la luz que emite un cuerpo, mientras que si 
hacemos pasar la luz blanca a través del cuerpo y analizamos la luz que deja pasar, el 
espectro se llama de absorción. Ambos son complementarios, quiere decir que los colores 
que le faltan a uno son justamente los que tiene el otro. 
 
 
 
 
En un espectro atómico: 
 
• El conjunto de líneas espectrales que se obtiene para un elemento concreto es 
siempre el mismo, incluso si el elemento forma parte de un compuesto complejo, 
es decir que cada elemento produce su propio espectro diferente al de cualquier 
otro elemento, y por lo tanto el espectro de un elemento es como si fuera su huella 
digital, por eso inicialmente los químicos alemanes Kirchoff y Bunsen comenzaron 
a emplearlos como medio de análisis. 
• Los espectros contienen rayas agrupadas en series espectrales que van desde el IR 
hasta el UV 
• Cada serie está formada por infinitas rayas cada vez mas juntas hasta llegar al 
límite de la serie. 
 
Si se descompone al luz emitida por un tubo de descarga lleno de hidrógeno, se obtiene su 
correspondiente espectro, en el que se pueden distinguir sus series espectrales. Una de ellas, 
la serie Balmer, cae dentro del visible, otra en el UV y el resto están en el IR. 
 
 
 
 
El sueco Rydberg encontró empíricamente la relación que existía entre la longitud de onda 
de cada raya en cada una de las series: 






−=
λ 2f
2
i
H n
1
n
1
 R
1
 
• RH es la constante de Rydberg = 1,09.107 m–1 
• ni y nf son números enteros. 
• n1 determina la serie. Haciendo n1=1 se obtiene la serie Lyman, haciendo n1=2 se 
obtiene la serie Balmer, con n1=3 la serie Paschen, etc 
• Limitando el valor de n1 para una serie concreta, el conjunto de rayas espectrales se 
obtiene dándole a n2 valores enterosconsecutivos al valor de n1, es decir n2 = 
n1+1, n1+2, n1+3, .... 
 
 
Serie ni nj Región del esp. 
Lyman 1 2, 3, 4, ... UV 
Balmer 2 3, 4, 5, ... Visible 
Paschen 3 4, 5, 6, … IR 
Bracket 4 5, 6, 7, … IR 
Pfund 5 6, 7, 8, … IR 
 
 
El modelo atómico de Rutherford era incapaz de explicar los espectros discontinuos de los 
átomos porque según éste el electrón puede girar en cualquier órbita (cualquier valor del 
radio es bueno) y por tanto el espectro debería ser continuo, y además porque al tratarse de 
una carga acelerada debería radiar OEM de la misma frecuencia que la frecuencia de 
revolución con lo que terminaría cayendo sobre el núcleo. 
 
La deducción teórica de la ecuación de Rydberg vino de mano de Bhor, que propuso un 
modelo atómico basado en el de Rutherford, pero en el que el electrón solo puede girar en 
unas órbitas estacionarias, donde no emite energía, y que son aquellas en las que el 
momento angular del electrón es un múltiplo entero de h/2π. 
 
π
==
2
h
nvm rl 
 
donde n es un número entero que toma valores 1, 2, 3 ... e indica la órbita y se llama 
número cuántico principal. 
 
Las transiciones electrónicas se producen absorbiendo y luego emitiendo un fotón de 
energía igual a la diferencia de energía entre los niveles y dan lugar a los espectros 
discontinuos. 
 
En la figura se muestra como un fotón excita al electrón, que inicialmente se encuentra en 
el nivel mas bajo de energía, y lo manda hasta el nivel 4. Posteriormente vuelve a su 
estado fundamental emitiendo un fotón correspondiente a la serie Balmer y otro a la serie 
Lyman. 
 
La energía de los fotones es igual a la diferencia de energía entre los niveles entre los que 
salta: 






−=
λ
=ν=−=∆
2
f
2
i
H12 n
1
n
1
hcR
c
hhEEE 
J1016,2R c h´R 18H
−⋅== 
 
Por ejemplo, el salto que se muestra en la figura, correspondiente a la segunda raya de la 
serie Balmer, corresponde a un fotón de: 
 
eV54,2J1006,4
4
1
2
1
1016,2EEE 19
22
18
24 =⋅=




 −⋅=−=∆ −− 
ν= hE ⇒ Hz1013,6
1062,6
1006,4
h
E 14
34
19
⋅=
⋅
⋅==ν −
−
 (azul) 
Ejemplo práctico: 
 
Si observamos la luz emitida por un tubo de 
descarga de hidrógeno con la ayuda de un 
espectroscopio podremos ver varias rayas de colores 
(la serie Balmer). 
 
Leyendo sobre la escala del espectroscopio puedes 
ver que la raya de color rojo corresponde a una luz 
con una longitud de onda de aproximadamente 660 
nm y que la raya de color azul corresponde a una luz 
de longitud de onda aproximadamente 490 nm. 
 
 
 
 
 
Para cada una de esas dos rayas vamos a calcular la energía del fotón correspondiente, o lo que es 
igual, la diferencia de energía entre los dos niveles atómicos entre los que ha saltado el electrón. 
 
Los datos que vamos a necesitar son la constante de Planck, la carga del electrón (para pasar 
de Julios a eV) y la velocidad de la luz (para poder calcular la frecuencia, ya que ν⋅λ=c ) 
 
eV 88,1J 1001,3
10660
103
1062,6
c
hhE 19
9
8
34
Rojo
RojoRojo =⋅=⋅
⋅⋅=
λ
=ν⋅= −−
− 
 
eV 53,2J 1005,4
10490
103
1062,6
c
hhE 19
9
8
34
Azulo
AzulAzul =⋅=⋅
⋅⋅=
λ
=ν⋅= −−
− 
 
Lógicamente la raya azul al tener menor longitud de onda (o mayor frecuencia) corresponde 
a un fotón de mayor energía, o lo que es igual, a un salto más grande, es decir, desde un 
nivel más exterior. 
 
Como verás, los valores que hemos calculado 
experimentalmente coinciden bastante bien 
con los que pueden obtenerse a partir de la 
gráfica de energía del átomo de hidrógeno. 
Corresponden a los saltos desde el nivel 3 al 
nivel 2 (raya roja): 
eV 9,14,35,1EEE 23 =−−−=−=∆ 
y desde el nivel 4 al nivel 2 (raya azul) 
eV 5,24,39,0EEE 24 =−−−=−=∆ 
 
DEDUCCIÓN DE LA ECUACIÓN DE RYDBERG 
 
De acuerdo con la idea de Rutherford, el átomo de hidrógeno está formado por un protón 
en el núcleo y un electrón girando a su alrededor a una distancia r, de tal manera que la 
fuerza de atracción eléctrica se compense con la fuerza centrífuga (SR Inercial) 
 
 
centrifelectr FF = ⇒ r
v
m
r
e
K
2
2
2
= 
 
de donde se puede despejar el radio de la órbita o bien la velocidad con la que debe girar 
para mantenerse: 
mr
Ke
v
2
= 
 
2
2
vm
Ke
r = 
 
Como vemos, en el modelo de Rutherford cualquier radio es aceptable con tal que de gire 
con la velocidad adecuada (el resto de las magnitudes son constantes), con lo que los 
espectros atómicos deberían ser continuos. 
 
La energía del electrón en la órbita, que será la suma de la cinética más la potencial (la Ep 
es negativa porque las cargas del electrón y del protón tienen distinto signo: q=e y q´=–e) 
r
e
Kvm
2
1
EpEcE
2
2 −=+= 
sustituyendo v: 
r2
Ke
r
Ke
r2
Ke
r
e
K
mr
Ke
m
2
1
E
2222
2
2
−=−=−








= 
 
La energía del electrón es función del radio de la órbita y aumenta con la distancia hasta 
hacerse cero en el infinito (ten en cuanta que es negativa). 
 
Hasta aquí el razonamiento de Rutherford. Ahora Bhor en su modelo para explicar los 
saltos electrónicos introduce la idea de que cualquier órbita no es buena, solo aquellas en 
las que el momento angular del electrón es múltiplo entero de h/2π. 
 
π
==
2
h
nv m rl 
Por tanto las órbitas buenas son: 
vm 2
h
nr
π
= 
 
si elevamos al cuadrado y sustituimos la expresión encontrada para la velocidad: 
 
222
2
2
222
2
22
Kem 4
mrh
n
vm 4
h
nr
⋅π
⋅=
⋅π
= 
simplificando: 
22
2
2
mKe 4
h
nr
π
= 
 
Por tanto la energía del electrón en cualquiera de esas órbitas será: 
 
22
242
22
2222
hn
m 2eK
hn2
mKe 4Ke
r2
Ke
E
π⋅−=
⋅
π⋅−=−= 
 
Como vemos, salvo n el resto todo son constantes: K=9.109Nm2/C2 ; e=1,6.10–19C ; 
m=9,1.10–31Kg y h=6,62.10–34 J.s de manera que si operamos nos quedaría que: 
 
22
18
n
1
´R
n
1
1016,2E −=⋅−= − 
 
Teniendo en cuenta que la energía del fotón corresponde a la diferencia de energía entre 
dos niveles dados: 






−=−−−=−=∆
2
f
2
i
2
i
2
f
if n
1
n
1
´R
n
1
´R
n
1
´REEE 
 
Si tenemos en cuenta que esa energía es la que se emite en forma de OEM y es la energía 
del fotón de frecuencia ν y de longitud de onda λ 
 
λ
=ν=−=∆ chhEEE if ⇒ 





−=





−=∆=
λ 2f
2
i
H2
f
2
i n
1
n
1
R
n
1
n
1
hc
´R
hc
E1
 
 
que es la ecuación que Rydberg encontró de forma empírica. Como vemos la constante de 
Rydberg se obtiene como: 
ch
m 2eK
R
3
242
H
π⋅= 
 
 
HIPÓTESIS DE De BROGLIE 
 
Durante el primer cuarto del siglo XX la física tenía un dilema sobre la naturaleza de la luz 
entre ondulatoria y corpuscular. 
 
Por una lado la radiación del cuerpo negro, el efecto fotoeléctrico, el efecto Compton y la 
interpretación de los espectros atómicos apuntaban hacia la naturaleza “cuántica” de la luz, 
mientras que los fenómenos de interferencias, difracción y polarización evidenciaban su 
naturaleza ondulatoria. 
 
En 1924, Luis De Broglie en su tesis doctoral hizo el siguiente razonamiento: 
 
• Si la luz está formada por corpúsculos, éstos se podrán caracterizar por su 
momento lineal como cualquier partícula: p=mc con lo que la ecuación de 
Einstein se podrá escribir como: 
 
pcmcE 2 == 
 
• Si la luz es una onda se podrá caracterizar por su longitud de onda: 
 
λ
=ν= chhE 
 
• Igualando ambas expresiones se deduce la relación entre la longitud de onda y el 
momento lineal de los fotones asociados a ella: 
 
p
h=λ o bien que 
vm
h=λ 
 
De Broglie hizo extensiva su hipótesis a todas las partículas en general, y en particular a 
los electrones diciendo: “A todo corpúsculo en movimiento se le puede asociar una onda, 
cuya longitud de onda es inversamente proporcional a su momento lineal” 
 
La hipótesis de De Broglie no tenía ningún apoyo experimental y por tanto debía 
confirmarse, es decir habría que conseguir fenómenos de difracción con electrones, lo que 
probaría que las partículas llevan asociada una onda. 
 
Davisson y Germer, y poco después Thonson (hijo), consiguieronrealizar experimentos de 
difracción con electrones haciendo incidir un haz de electrones sobre una superficie muy 
fina de níquel, obteniendo una figura de difracción similar a la que se obtiene por 
difracción de rayos X y a partir de la que podía calcularse la longitud de onda asociada a 
los electrones y que coincidía con la prevista por De Broglie. 
 
Si dejamos caer un puñado de harina a través de una criba veremos como la mayoría de las 
partículas siguen una trayectoria recta y solo las que choquen con los alambres se desvían. 
El resultado sería un montón: 
 
 
 
sin embargo cuando hacemos lo mismo con una onda el resultado como sabemos es 
diferente, porque se obtiene una figura de difracción. Y eso mismo ocurre cuando se lanza 
un haz de electrones contra una criba apropiada como es un cristal (la distancia entre 
átomos es comparable a la longitud de onda), que hay lugares donde la intensidad es 
máxima y otros donde es nula, dependiendo de que las ondas interfieran constructivamente 
o no, es decir de que la diferencia de camino sea múltiplo entero de λ o de λ/2. 
 
 
 
Como es natural, en la curva de distribución de intensidad no hay electrones amontonados 
y la curva debe interpretarse como la probabilidad de la presencia de ellos. 
 
 
La difracción a través de un cristal, como hemos visto, es la difracción de Laue, pero 
también se puede obtener difracción por planos (difracción de Bragg) ya que los planos 
del cristal reflejan los electrones como un espejo refleja la luz: 
 
 
 
De Broglie, mediante su hipótesis pudo demostrar lo que hasta entonces nadie había 
podido: El porqué las órbitas del modelo atómico de Bhor estaban cuantificadas, es decir 
que solo eran posibles aquellas en las que el momento angular del electrón es un múltiplo 
entero de π2/h 
π
==
2
h
nv m rl n=1, 2, 3, .... 
 
De Broglie dijo que si el electrón lleva asociada una onda, solo podrá girar en aquellas 
órbitas para las cuales la onda sea estacionaria, lo que solamente puede ocurrir cuando la 
longitud de la circunferencia sea un múltiplo entero de λ, porque en caso contrario la onda 
se autodestruiría por sucesivas interferencias: 
 
 
 
λ=π nr 2 
 
Sustituyendo λ por el valor de De Broglie 
 
vm
h
nr 2 =π ⇒ 
π
=
2
h
nv m r 
 
Una aplicación práctica de la dualidad onda–corpúculo es el microscopio electrónico 
ideado por Müller. La limitación de un microscopio está en que no pueden resolverse 
imágenes mas pequeñas que la longitud de onda de la luz que emplea. Cuando empleamos 
luz del visible puede resolver hasta los 300 o 350 nm, así que no es posible ver algo que 
mida menos de eso. 
 
Los rayos X en principio podrían ser una solución, porque tienen longitudes de onda entre 
10 y 0,01nm, pero no valen porque son muy difíciles de enfocar y dan lugar a imágenes 
muy borrosas. 
 
Los electrones sin embargo cuando se aceleran mediante un campo eléctrico pueden llegar 
a tener longitud de onda muy pequeñas, de hasta 0,001nm, (recuerda que de acuerdo con 
la expresión de De Broglie la longitud de onda es inversamente proporcional a la 
velocidad de los electrones mv/h=λ ) y los electrones son fáciles de enfocar utilizando 
campos eléctricos y magnéticos, como se hace en los tubos de TV. 
 
 
 
Ejemplo E4B.S2007 / E4B.S2008: 
 
Razone si la longitud de onda de De Broglie de los protones es mayor o menor que la de 
los electrones en los siguientes casos: 
a) ambos tienen la misma velocidad. 
b) ambos tienen el mismo momento lineal? 
c) ambos tienen la misma energía cinética. 
 
 
a) Como sabemos la masa del protón es mucho mayor que la masa del electrón (algo más 
de 1800 veces mayor), por tanto si el protón y el electrón tienen la misma velocidad la 
longitud de onda del protón será menor: 
 
vm
h
p
p =λ 
 
vm/h
vm/h
e
p
e
p =
λ
λ
 ⇒ 
p
e
ep m
m
λ=λ ⇒ ep λ<λ 
vm
h
e
e =λ 
 
b) Si el protón y el electrón tienen el mismo momento lineal, ambos tendrán también la 
misma longitud de onda asociada, ya que p/h=λ . Evidentemente, en este caso, como 
eepp vmvmp == para que ambas partículas tengan el mismo momento lineal deben tener 
distinta velocidad, porque tienen distinta masa. 
 
c) Este ejercicio es básicamente como los anteriores 
 
2
2
1 mvEc = ⇒ 2)mv(mEc2 = ⇒ mEc2mv = 
pp
p vm
h=λ 
 
p
e
e
p
e
p
m
m
Ecm2/h
Ecm2/h
==
λ
λ
 ⇒ 
p
e
ep m
m
λ=λ ⇒ ep λ<λ 
pe
e vm
h=λ 
 
 
 
Ejemplo E2B.S2007: 
 
Un haz de electrones se acelera con una diferencia de potencial de 30 kV. 
a) Determine la longitud de onda asociada a los electrones. 
b) Se utiliza la misma diferencia de potencial para acelerar electrones y protones. Razone 
si la longitud de onda asociada a los electrones es mayor, menor o igual a la de los 
protones. ¿Y si los electrones y los protones tuvieran la misma velocidad? 
h = 6,6 ·10–34 J s ; e = 1,6 ·10–19 C ; me = 9,1·10
–31 kg 
 
a) El trabajo eléctrico que hace la fuente sobre el electrón es igual a la carga del electrón 
por la d.d.p. y teniendo en cuenta el teorema de las fuerzas vivas, será igual a la variación 
de energía cinética: 
 
EcVqWelectrico ∆=⋅= 
 
23119 v101,9
2
1
30000106,1 −− ⋅=⋅ ⇒ s/m1003,1v 8⋅= 
 
y de acuerdo con De Broglie: 
 
m1007,2
1003,1101,9
106,6
vm
h 11
831
34
−
−
−
⋅=
⋅⋅⋅
⋅==λ 
 
b) Puesto que los electrones y los protones tienen la misma carga en valor absoluto, ambas 
partículas tendrán la misma energía cinética cuando se aceleren mediante la misma ddp 
(aunque no la misma velocidad porque tienen distinta masa), y en tal caso, como hemos 
razonado en el ejercicio anterior la longitud de onda de los protones será menor. 
 
También hemos razonado que si ambas partículas tienen la misma velocidad los protones 
tendrán también menor longitud de onda. 
 
Un microscopio electrónico utiliza un haz de electrones acelerados por un campo eléctrico 
entre dos puntos entre los que existe con una diferencia de potencial de 10.000 V. 
a) Calcular la longitud de onda asociada a dichos electrones. 
b) Si el poder de resolución de un microscopio (capacidad para distinguir dos puntos 
separados por una determinada distancia) es inversamente proporcional a la longitud de 
onda empleada, calcular cuantas veces aumenta aumentará la resolución de un 
microscopio electrónico frente al ordinario, que utiliza luz de 555 nm. 
Datos: h = 6,67.10−34 J.s ; me = 9,1
.10−31 Kg; e = 1,6.10−19 C. 
 
a) Teniendo en cuenta que el campo eléctrico es un campo conservativo, y que por tanto se 
conserva la energía mecánica, podemos poner que 0EcEp =∆+∆ 
Por otro lado, teniendo en cuenta que por definición, el trabajo que hace el campo para llevar 
un cuerpo (en este caso una carga) de un punto a otro es igual a menos la variación de energía 
potencial entre esos puntos: Vq́EpW campo,BA ∆−=∆−=→ , finalmente nos queda que: 
0EcVq́ =∆+∆ sustituyendo: 00v101,9
2
1
10*106,1 2B
31419 =−⋅+⋅− −− 
 
de donde tenemos que la velocidad final de los electrones es vB = 5,93
.107 m/s 
La longitud de onda de De Broglie asociada a una partícula viene dada por: 
 
m1024,1
105,93*101,9
1067,6
vm
h 11
731
34
e
e
−
−
−
⋅=
⋅⋅
⋅==λ 
 
b) Si el poder de resolución (PR) es inversamente proporcional a la longitud de onda 
empleada podemos poner que PR=k/λ, donde k sería la constante de proporcionalidad, por 
tanto aplicando la ecuación al microscopio electrónico y el óptico y dividiendo miembro a 
miembro tenemos que: 
 
 44758
1024,1
10555
PR
PR
11
9
oelectronic.m
optico.m
optico.m
oelectronic.m =
⋅
⋅=
λ
λ
= −
−
 
 
Quiere decir que el microscopio electrónico tiene un poder de resolución casi de 45.000 
veces superior que el microscopio óptico ordinario. 
 
PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG 
 
Como es de suponer, es imposible realizar una medida sin interaccionar de alguna manera 
con el sistema a medir, por ejemplo si para medir la temperatura de un líquido 
introducimos un termómetroen él, éste intercambiará calor con el líquido que manera que 
cuando alcance el equilibrio no nos dará la temperatura a la que realmente estaba el 
líquido. Pero claro el termómetro es muy pequeño y el error que introduce en la medida es 
insignificante. 
 
En el mundo microscópico, sin embargo, los errores son más importantes. Supongamos 
que existiera un supermicroscopio con el que fuera posible ver el átomo de hidrógeno. 
Como el poder de resolución del microscopio depende de la longitud de onda empleada y 
es mas o menos igual a ella, resulta que tendríamos que iluminar al átomo con una luz de 
aproximadamente m10A1 10
o
−==λ . Pero claro, un fotón de 
o
A1 tiene una energía: 
 
eV 12375J1098,1
10
103
106,6
c
hhE 15
10
8
34 =⋅=⋅⋅=
λ
=ν= −−
− 
 
Si tenemos en cuenta que el potencial de ionización (energía necesaria para arrancarle un 
electrón a un átomo) del átomo de hidrógeno es solo de 13,6 eV comprenderemos que la 
interacción con el átomo sería tan grande que de ninguna manera podríamos verlo como es 
en estado normal. 
 
El principio de incertidumbre formulado por Wrener Heisenberg dice que “es imposible 
conocer con exactitud y a la vez la posición y el momento lineal de una partícula. Cuanto 
mayor sea la sea la precisión con que conocemos su posición, mayor será el error con que 
podemos conocer su momento lineal y viceversa, de forma que el producto de las 
incertidumbres siempre será mayor o igual que h/2π.” 
 
π
≥∆⋅∆
2
h
px 
 
Esta incertidumbre nada tiene que ver con los instrumentos de medida, sino que es 
intrínseca del hecho de medir. 
 
Einstein extendió el principio de incertidumbre de Heisenberg a todas las parejas de 
magnitudes conjugadas, es decir que tuvieran las mismas dimensiones que la posición por 
el momento, es decir: ML2T–1, como ocurre con la energía y el tiempo, así que también 
puede escribirse como: 
π
≥∆⋅∆
2
h
tE 
Ejemplo: 
 
a) Calcular la longitud de onda asociada a un electrón que se mueve de una placa a otra de 
un condensador entre las que existe una ddp de 100 V 
b) Calcular la longitud de onda asociada a una pelota de tenis de 100 g que se mueve con 
una velocidad de 100 m/s. Compara los resultados obtenidos. 
c) Si la velocidad del electrón y de la pelota estuvieran medidas con un error del 1% ¿Cuál 
es el error con que podría determinarse la posición del electrón y de la pelota?. Compara 
los resultados. 
 
 
a) La velocidad del electrón se calcula teniendo en cuenta que: 
 
EcVqWelectrico ∆=⋅= 
23119 v101,9
2
1
100106,1 −− ⋅=⋅ ⇒ s/m106v 6⋅= 
y la longitud de onda asociada: 
 
o
10
631
34
A22,1m1022,1
106101,9
1062,6
vm
h =⋅=
⋅⋅⋅
⋅==λ −−
−
 
 
b) En el caso de la pelota, la longitud de onda asociada sería: 
 
o
2535
34
A1062,6m1062,6
1001,0
1062,6
vm
h −−
−
⋅=⋅=
⋅
⋅==λ 
 
Como puede verse, la longitud de onda del electrón es comparable a la de los rayos X y es 
del orden de las distancias interatómicas de los átomos en un cristal y por tanto es 
apropiada para producir fenómenos de difracción y poner de manifiesto las propiedades 
ondulatorias de la onda asociada al electrón. 
 
Sin embargo, la longitud de onda asociada a la pelota de tenis es tan extremadamente 
pequeña que en la naturaleza no existe nada comparable y por tanto, en la práctica, resulta 
imposible poner de manifiesto la onda asociada a la pelota. 
 
c) Supongamos ahora que las velocidades anteriores se han obtenido con un error del 1%. 
En el caso del electrón el error cometido habría sido de: 
 
 s/m10601,0 106v 46 ⋅=⋅⋅=∆ 
 
Así que el error con que habríamos medido el momento lineal sería: 
 
 s/mKg1046,5106101,9vmp 26431 ⋅⋅=⋅⋅⋅=∆=∆ −− 
 
así que: 
 
π
≥∆⋅∆
2
h
px ⇒ m109,1
1046,52
1062,6
p2
h
x 9
26
34
−
−
−
⋅=
⋅⋅π
⋅=
∆⋅π
≥∆ 
En el caso de la pelota: 
 s/m101,0 100v =⋅=∆ 
 
 s/mKg1,011,0vmp ⋅=⋅=∆=∆ 
 
π
≥∆⋅∆
2
h
px ⇒ m10
1,02
1062,6
p2
h
x 33
34
−
−
=
⋅π
⋅=
∆⋅π
≥∆ 
 
Como vemos, en el caso del electrón la incertidumbre es del orden de las distancias 
interatómicas, y por lo tanto es importante, pero en el caso de la pelota es absolutamente 
despreciable porque no es ni siquiera del tamaño de un núcleo, es decir que a efectos 
prácticos podríamos decir que sí podríamos determinar con precisión la posición de la 
pelota. 
 
En otras palabras, podemos decir que dada la pequeñez de la constante de Planck, la 
incertidumbre en nuestro mundo macroscópico es despreciable, pero no ocurre así en el 
mundo microscópico. 
 
 
DETERMINISMO Y PROBABILIDAD 
 
Como consecuencia del principio de incertidumbre de Heisenberg no podemos situar al 
electrón en órbitas sencillas y bien definidas y además conocer su velocidad como puede 
hacerse en el modelo de Bhor, que nos permite calcular el radio (posición) y la velocidad 
(momento). 
 
Schrodinger elaboró su mecánica cuántica ondulatoria partiendo de las ideas de De 
Broglie y suponiendo que los estados estacionarios de los átomos corresponden a ondas de 
materia estacionarias, a las que llamó función de onda ψ, que es una función de la posición 
y del tiempo. 
 
El significado de la función de onda ψ es probabilístico y nos da la probabilidad de 
encontrar al electrón en un elemento de volumen dV: 
 
∫Ψ=
V
2dVP 
 
Los valores de probabilidad oscilan entre 0 y 1. Es importante recalcar que ψ2 nos da una 
medida de la probabilidad de encontrar al electrón en un volumen dado, es decir, no donde 
está, sino donde es probable que esté, y por tanto no contradice el principio de 
incertidumbre. 
 
Supongamos el caso sencillo de una cuerda que está vibrando entre dos puntos. Como es 
natural, esos dos puntos entre los que vibra serán nodos y además solo podrá vibrar con 
unos determinados valores de λ, es decir que la longitud de onda está cuantizada ya que 
solo puede tomar valores para los que la longitud de la cuerda sea siempre un múltiplo 
entero de λ/2 
2
nL
λ= 
Por ejemplo, dos modos posibles de vibración de la cuerda serían: 
 
 
En el caso de una partícula encerrada entre esas paredes, la ecuación de esas ondas es la 
que se representa por ψ, y la probabilidad de encontrar a la partícula entre esas paredes 
viene dada por ψ2: 
 
 
Como puedes ver, para n=1 es más probable que la partícula se encuentre en el centro, sin 
embargo una interpretación clásica daría la misma probabilidad en cualquier lugar. 
 
Aplicando estos mismo conceptos al átomo se obtienen unas regiones de máxima 
probabilidad de encontrar al electrón que se llaman orbitales. 
 
 
 
 
EL NÚCLEO ATÓMICO. CONCEPTOS PREVIOS 
 
1. El núcleo atómico está formado por protones y neutrones. A ambos se les llama 
indistintamente con el nombre de nucleones y tienen las siguientes características: 
 
 
Masa (uma) 
Masa 
referida al e− 
Carga (C) 
Carga 
referida a e− 
Símbolo 
protón 1,007597 1836 +1,6.10−19 +1 p11 
neutrón 1,008982 1838 0 0 n10 
 
Hoy día sabemos que de las tres partículas elementales que inicialmente se pensaba que 
formaban los átomos, solamente lo es el electrón. Los protones y neutrones a su vez están 
formados de otras partículas elementales llamadas quarks. 
 
La Unidad de Masa Atómica (uma) se define como la doceava parte de la masa del isótopo 
12 del carbono: 
 
Para hallar el equivalente de la uma y el Kg recordemos que 1 mol de carbono 12 tiene 
una masa de 12 gramos y contienen un número de Avogadro de átomos, es decir que: 
 
1 mol de át.de C12 −−− tiene una masa de 12 gr −−−− contiene 6,023.1023 át.de C12 
 
por tanto, la masa de 1 solo átomo de carbono será: 
 
Kg1099,1
10023,6
012,0
C 26
23
12 −⋅=
⋅
= 
 
y la uma, que es la doceava parte del C12 sería: 
 
Kg1066,1
12
C
uma 1 27
12
−⋅== 
 
Número atómico (Z): Es el número de protones de un núcleo y es el que nos define al 
elemento químico. (Un átomo en estado normal tiene igual número de protones y 
electrones. Si pierde o gana electrones se convierte en un ión positivo o negativo del 
mismo elemento, pero si perdierao ganada un protón se transformaría en otro elemento 
distinto, el anterior o posterior en la tabla periódica.) 
 
Número másico (A): Es el número de protones y neutrones, es decir el número de 
nucleones. 
 
De acuerdo con esto, es evidente que el número de neutrones de un núcleo será: 
 
AZN −= 
 
Lo núcleos se representan con el símbolo del elemento y un número en la parte inferior 
que indica el número atómico (que es informativo, porque realmente es redundante) y otro 
número en la parte superior que indica su masa: 
 
XAZ 
A
Z X 
A
ZX 
Isótopos: Son aquellos núcleos que tienen el mismo número de protones, y por tanto 
definen al mismo elemento, pero difieren en el número de neutrones y por tanto tienen 
distinta masa. Tienen igual Z y distinto A. El hidrógeno tiene tres isótopos: 
 
 
 
Es importante recordar que las propiedades químicas de los elementos vienen 
determinadas por la disposición de los electrones de la última capa, así pues todos los 
isótopos de un elemento se comportan químicamente igual y en este aspecto son 
indistinguibles. Sin embargo tienen distintas propiedades físicas, empezando porque tienen 
distinta masa y porque no todos tienen la misma estabilidad. 
 
2. Carga. En el núcleo se encuentra concentrada toda la carga positiva del átomo, debida a 
los protones. 
 
3. Masa. Es evidente que en el núcleo está concentrada casi la totalidad de la masa del 
átomo, puesto que la masa de los electrones es muy pequeña. El 99,9% de la masa del 
átomo corresponde al núcleo. 
 
4. Dimensiones. Se puede considerar al núcleo como una espera de radio del orden de 
10−15 metros. 
10−15 m = 1 Fermi (fm) 
 
Experimentalmente se ha deducido que el radio del núcleo de un átomo es proporcional a 
su masa A, de acuerdo con la siguiente expresión: 
 
3
o ARR = 
 
donde Ro es una constante cuyo valor es 1,2
.10−15 m. 
No confundas el volumen del núcleo (que crece proporcionalmente al número de masa), 
con el volumen del átomo, que no sigue esa proporción, porque influyen los electrones. 
 
5. Densidad. La densidad nuclear es muy elevada y es independiente del número másico. 
Si suponemos el núcleo como una esfera y teniendo en cuenta que: 
 
• La masa de un átomo cualquiera es m=A umas, en Kg sería: 
 
Kg1066,1Am 27−⋅⋅= 
• El volumen: 
A1024,7AR
3
4
R
3
4
V 453o
3 −⋅=⋅π=π= m3 
• La densidad sería: 
317
45
27
m/Kg1029,2
A1024,7
1066,1A
V
m ⋅=
⋅
⋅⋅==ρ −
−
 
 
Hay que fijarse en lo grande que es la densidad nuclear. Para que te hagas una idea, 
imagina que la cabeza de un alfiler de 1mm de diámetro estuviera formada de material 
nuclear, entonces: 
Kg102,11029,2)105,0(
3
4
Vm 81733 ⋅=⋅⋅⋅π=ρ= − 
 
Lo que quiere decir que la cabeza del alfiler tendría una masa de 120 millones de Kg. Una 
densidad tan elevada nos indica además que los nucleones se encuentran muy compactos y 
que, por el contrario, la materia macroscópica está prácticamente vacía. 
 
 
FUERZAS NUCLEARES 
 
Los protones del núcleo ejercen mutuamente entre sí fuerzas de repulsión electrostática, sin 
embargo, los núcleos atómicos son entidades muy estables. De ello se deduce que en la escala 
nuclear deben existir otro tipo de fuerzas que mantengan la cohesión del núcleo y que son de 
naturaleza diferente a las gravitatorias y a las electromagnéticas conocidas en el mundo 
macroscópico. 
 
Estas fuerzas, responsables de que se mantengan unidos los nucleones, se denominaron 
fuerzas nucleares fuertes o de corto alcance. Tienen las siguientes características: 
 
1. Son de muy corto alcance. Quiere decir que solo se manifiestan a distancias muy 
pequeñas, del orden de 1 fm (1Fermi=10−15m) 
 
• Al aumentar la distancia disminuyen muy rápidamente. A una distancia de 2fm ya 
se hacen 10 veces más pequeñas. 
• A distancias menores de 1fm de repente se vuelven repulsivas 
 
 
2. Son muy intensas. Las fuerzas nucleares en su radio de acción son 1000 veces mayores 
que las eléctricas y millones y millones de veces mayores que las gravitatorias. 
 
 
3. Las fuerzas nucleares son independientes de la carga, esto quiere decir que tienen lugar 
indistintamente entre p−p, n−n y p−n 
 
Explicación teórica: Se debe al físico japonés Hideki Yukawa, quién supuso que de la 
misma manera que dos jugadores de ping−pong se lanzan la pelota y es ella la que los 
mantiene unidos, las fuerzas que mantienen unidos a los nucleones son debidas al 
intercambio de una partícula que llamó mesón, porque según sus cálculos teóricos su masa 
estaría entre la del electrón y la del protón. 
 
Frank Powell en 1950 recibió el Nóbel por el descubrimiento de unas partículas de masa 
300 veces la del electrón. Eran los mesones π o piones predichos por Yukawa, quien 
también recibió el Nóbel por dicha predicción. 
 
Según el modelo de Yukawa un protón expulsa un pión+ y se transforma en neutrón y 
viceversa. 
np +π⇔ + 
 
También puede ocurrir que un neutrón expulse un pión– y se transforme en protón y 
viceversa: 
pn +π⇔ − 
 
Esquemáticamente se podría ilustrar de la siguiente forma: 
 
 
 
La actual teoría del Modelo Estándar, mediante la que se trata de unificar todas las leyes 
físicas, explica las fuerzas como el resultado del intercambio de partículas por parte de las 
partículas de materia, conocidas como partículas mediadoras de la fuerza. En el caso de las 
fuerzas electromagnéticas las partículas mediadoras serían los fotones y en el caso de la 
interacción fuerte los gluones. 
 
 
MODELOS NUCLEARES 
 
Existen varios modelos, aunque ninguno es definitivo, son complementarios: 
 
Modelo de la gota líquida: Este modelo fue propuesto por Bohr y considera el núcleo 
formado por protones y neutrones mezclados al azar como las moléculas en una gota de 
agua, de manera que cada partícula interacciona solo con las que tiene alrededor, y las de 
la superficie al no compensar todas las fuerza crearían una especie de tensión superficial 
que las mantendría unidas en forma de esfera: 
 
Su fundamento se basa en que: 
 
• La densidad casi uniforme de todos los núcleos de los elementos, que es el del 
orden de 1017 Kg/m3. De la misma manera que la densidad en cualquier punto de 
una gota es la misma. 
• La energía total de enlace es proporcional a su masa, de la misma manera que el 
calor de vaporización de un líquido es proporcional a su masa 
 
.Cte
A
E ≈∆ 
El modelo explica: 
 
• Que la densidad nuclear sea casi igual para todos los núcleos 
• La emisión de partículas α de una manera parecida a la evaporación, es decir, 
cuando los nucleones, mediante choques, adquieren energía suficiente para vencer 
la barrera nuclear. 
• Las reacciones de fisión, suponiendo que al entrar una partícula nueva en el núcleo, 
puede romper la armonía y dividirse en dos fragmentos. 
 
Modelos de capas concéntricas: Fue ideado en 1950 por Mayer y supone que los 
nucleones están situados en capas o niveles de energía dentro del núcleo, de forma 
parecida a como los electrones están colocados en la corteza en el modelo de Bohr. 
 
Se basa en el hecho de que los núcleos con un número de protones o neutrones igual a 2, 8, 
20, 28, 50, 82 o 126, presentan una gran estabilidad. Correspondería con capas que están 
completas de protones y/o neutrones, como pasa con los niveles de electrones de un 
átomo. A esos números se les llama números mágicos. 
 
Ambas teorías, actualmente se combinan en el modelo colectivo 
ENERGÍA DE ENLACE Y DEFECTO DE MASA. 
 
La masa de un núcleo puede determinarse experimentalmente con gran precisión mediante 
el espectrógrafo de masas y resulta que siempre es inferior a la masa teórica que resulta de 
sumar los protones y neutrones que lo constituyen. 
 
A la diferencia entre la masa teórica y la masa experimental se le llama defecto de masa: 
 
erimentalexpteórica mmm −=∆ 
 
[ ] erimentalexpnp mm)ZA(mZm −−+⋅=∆ 
 
A la energía que corresponde a esta pérdida de masa, de acuerdo con la relación de 
Einstein 2mcE = , se le llama energía de enlace o de cohesión y representa laenergía que 
se desprendería al formarse el núcleo a partir de sus componentes y por tanto sería la 
energía mínima que tendríamos que aportar para romperlo. 
 
Como consecuencia, la energía de enlace nos puede dar una idea de la estabilidad del 
núcleo. Sin embargo lo que pasa es que la energía de enlace es tanto mayor cuanto mayor 
es el número de nucleones de un núcleo y por lo tanto no se puede emplear a título 
comparativo, y es por eso que se define energía de enlace por nucleón, como la energía de 
enlace de un núcleo dividida por el número de nucleones que tiene: 
 
A
E∆
 
 
La energía de enlace por nucleón sí sirve para comparar relativamente la estabilidad de los 
diferentes núcleos. Si representamos la energía de enlace por nucleón en función del 
número de nucleones de los diferentes núcleos obtendremos una gráfica como la de la 
figura: 
 
En la gráfica puede observarse lo siguiente: 
 
• Cuanto mayor es la energía de enlace por nucleón mayor es la estabilidad del 
núcleo 
• Los núcleos más estables son los que tienen un número de masa (A) entre 40 y 80, 
y entre ellos el Fe56 es de los más estables. 
• Se explica que se libere energía cuando se unen dos núcleos ligeros para formar 
otro más pasado (Fusión) o cuando un núcleo pesado se divida en dos más ligeros 
(Fisión). De ambas reacciones trataremos más adelante. 
 
 
Ejemplo: 
 
La masa atómica del isótopo N147 es 14,000109 u. 
a) Indique los nucleones de este isótopo y calcule su defecto de masa. 
b) Calcule su energía de enlace y la energía de enlace por nucleón. 
c = 3,0·108 m s−1 ; 1 u = 1,67·10−27 kg ; mp = 1,007276 u ; mn = 1,008665 u 
 
 
a) Como el número atómico es 7, quiere decir que tiene 7 protones, y si el número de masa 
(p+n) es 14, quiere decir que tiene 7 neutrones, por tanto su masa teórica será: 
 
umas111587,14008665,17007276,17m7m7m npteórica =⋅+⋅=+= 
 
umas111478,0000109,14111587,14mmm erimentalexpteórica =−=−=∆ 
 
en Kg sería: 
Kg1086168,11067,111478,0m 2827 −− ⋅=⋅⋅=∆ 
 
b) La energía de enlace, de acuerdo con la expresión de Einstein será 
 
J1067551,1)100,3(1086168,1cmE 1128282 −− ⋅=⋅⋅=⋅∆=∆ 
 
dividiendo por la carga del electrón, la podemos expresar en unidades de eV 
 
MeV719,104eV1004719,1
106,1
1067551,1
E 8
19
11
=⋅=
⋅
⋅=∆ −
−
 
 
La energía de enlace por nucleón, que es el valor que sirve para comparar la estabilidad de 
unos núcleos con otros, sería: MeV48,7
14
719,104
A
E ==∆ que como vemos corresponde al 
valor que se representa en el gráfico. 
 
ESTABILIDAD NUCLEAR 
 
La estabilidad nuclear es el equilibrio entre las fuerzas de repulsión eléctrica de los 
protones y la fuerza atractiva nuclear de corto alcance que experimentan los protones y 
neutrones del núcleo. La relación entre el número de protones (Z) y neutrones (N) es por 
lo tanto clave para la estabilidad del núcleo. 
 
Supongamos, por ejemplo, el caso del circonio (número atómico Z=40) que tiene isótopos 
desde A=78 hasta A=110. Vamos a pintar en negro todos isótopos más o menos estables que 
tiene: Zr90 , Zr91 , Zr92 , Zr93 , Zr94 y Zr96 . El resto de isótopos son inestables y los que tienen 
mayor número de masa (desde el A=97 hasta el A=110) los vamos a pintar en azul, mientras 
que los que tienen menos neutrones (desde A=78 hasta el A=89) los pintaremos en rojo. 
 
Si hacemos lo mismo con todos los elementos podremos obtener una gráfica de todos los 
átomos donde representamos el número de neutrones en función del número de protones: 
 
 
 
• Los núcleos más estables son los que aparecen dibujados como puntos negros 
• Para los núcleos ligeros la estabilidad nuclear se consigue con un número de protones y 
neutrones similar. Como puede verse la curva se confunde con la recta N=Z 
• A medida que aumenta el número atómico hay una tendencia a aumentar el número 
de neutrones, precisamente para atenuar las fuerzas repulsivas entre protones, 
pudiendo llegar en los núcleos más pesados a que N/Z=1,5, es decir a que tengan 3 
neutrones por cada dos protones. 
• Llega un momento en que la acumulación de cargas positivas en un volumen tan 
pequeño hace que no pueda contrarrestarse por una simple adición de neutrones y 
así los elementos superiores al Bi20983 son inestables y ello se traduce en la emisión 
espontánea de partículas con objeto de acercarse a configuraciones más estables. A 
este proceso se le llama radioactividad. 
 
 
RADIACTIVIDAD NATURAL 
 
Como hemos dicho, los núcleos correspondientes a átomos con número atómico superior a 
83 son inestables y pueden fragmentarse de manera espontánea en otros núcleos más ligeros. 
Este proceso natural, que se llama radiactividad, no es más que una reacción nuclear en la 
que el núcleo padre trata de estabilizarse emitiendo partículas y emitiendo energía. 
 
La emisión de energía se debe a que la suma de las masas de los núcleos resultantes de la 
reacción (hijos) es menor que la de los núcleos originales (padres), de manera que la 
diferencia de masa detectada se convierte en energía, y esa energía se manifiesta en 
energía cinética de los núcleos hijos y en radiación electromagnética (fotones γ). 
 
Las radiaciones emitidas por un núcleo inestable natural son de tres tipos: 
 
• Partículas α, que son núcleos de helio (formados por 2 p y 2 n) 
• Partículas β, que son electrones. En el núcleo no hay electrones, pero se forman 
por transformación de un neutrón en un protón + electrón y más otra partícula 
llamada antineutrino, de la que ya hablaremos. 
ν++→ −+ epn o bien ν++→ − ep n
0 
1
1
1
1
o 
• Radiación γ que son fotones de energía ν= hE 
 
La carga de las tres clases de partículas puede ponerse de manifiesto con un campo eléctrico: 
 
 
Las transformaciones que tienen lugar en un núcleo inestable se recogen en las leyes de 
Soddy y Fajans: 
 
1. Cuando un núcleo emite partículas α se transforma en otro núcleo en el que suma es 4 
unidades más pequeña y su número atómico 2 unidades menor (dos lugares antes en la 
tabla periódica). Ejemplo: 
EnergíaThU 42
234
90
238
92 +α+→ 
La desintegración α es propia de los núcleos pesados y con ella tienen a convertirse en 
núcleos que se acerquen más a la curva de estabilidad. 
 
2. Cuando un núcleo emite una partícula β se transforma en otro que aunque tiene la 
misma masa (son isóbaros) tiene un número atómico 1 unidad mayor (es el siguiente en la 
tabla periódica). Ejemplo: 
 
EnergíaPaTh 01
234
91
234
90 +β+→ − 
 
Este tipo de emisiones tiene lugar en los núcleos con demasiados neutrones. Son los que 
están por encima de la curva de estabilidad, los dibujados en azul en la gráfica de 
estabilidad. Fíjate que en realidad lo que hace es cambiar un neutrón por un protón 
( ν++→ −+ epn ) 
 
3. La emisión de un rayo γ no altera ni la carga ni la masa del núcleo. Ocurre cuando un 
núcleo se encuentra en estado excitado y se estabiliza emitiendo un fotón de energía hν. El 
proceso es similar al que tiene lugar con los electrones de la corteza, solo que aquí los 
fotones emitidos son de mucha mayor energía, ya que como sabes los rayos γ son los de 
mayor frecuencia del espectro electromagnético. Generalmente la radiación γ acompaña a 
las emisiones de partículas α y β. 
 
Además de las anteriores emisiones radiactivas se han observado otras dos más: la emisión 
de positrones y la captura de electrones. 
 
La emisión β+ es propia de los núcleos con un exceso de protones en relación con el 
número de neutrones. En este caso lo que ocurre es que un protón del núcleo se transforma 
en un neutrón, un positrón y un neutrino: 
 
ν++→ ++ enp o bien ν++→ + enp
0 
1
1
0
1
1 
 
las partículas β+ por tanto son positrones, es decir, partículas en todo igual a los electrones 
pero que tienen carga positiva. 
 
En este caso el nuevo núcleo tiene la misma masa y su número atómico disminuye en una 
unidad (se ha cambiado un protón por un neutrón) y es el tipo de emisión que tienen lugar 
en los núcleos dibujados en rojo en la gráfica de estabilidadnuclear. 
 
Captura electrónica, llamada también captura K, es la que tiene lugar en algunos núcleos 
en los que, como en el caso de la emisión β+, tienen un exceso de protones y pueden 
capturar uno de sus electrones de la capa más interna y en tal caso reemplazan un protón 
por un neutrón, según: 
ν+→+ −+ nep 
 
En este caso, aunque el resultado sea el de un átomo con un protón menos, lo mismo que 
en la emisión β+, el proceso es diferente y además en este caso la energía que se emite es 
menor y corresponde solo a un rayo X en lugar de a un rayo γ. Esta energía es debida al 
salto de un electrón de la capa de valencia hasta la primera capa para ocupar el hueco que 
dejó el electrón capturado por el núcleo. 
 
Todos los procesos de desintegración anteriores, al igual que cualquier reacción nuclear, 
tienen lugar cumpliendo ciertas reglas: 
 
• El número de nucleones (A) se debe conservar 
• La carga eléctrica se debe conservar 
• La energía se debe conservar 
• El momento lineal se debe conservar 
• El movimiento angular (incluyendo el movimiento angular Spín) se debe 
conservar. 
 
 
Ejemplo: 
 
a) Describa la estructura de un núcleo atómico y explique en qué se diferencian los 
isótopos de un elemento. 
b) Razone cómo se transforman los núcleos al emitir radiación alfa, beta o gamma. 
c) Razone qué desviación sufren los distintos tipos de radiación al ser sometidos a un 
campo magnético. 
 
a) Teoría. Respecto a la estructura del núcleo debes explicar como las fuerzas de corto 
alcance son capaces de mantener unidos los nucleones. Hacer una breve referencia a los 
modelos nucleares y a la estabilidad nuclear en función de la relación de protones y 
neutrones. Al referirte a los isótopos debes justificar el tipo de emisión previsible según 
sea la relación de protones y neutrones. 
 
b) Explica las leyes de Soddy y Fajans 
 
c) Si en lugar de establecer un campo eléctrico sometemos los tipos de radiación que se 
producen en un proceso de desintegración a un campo magnético también podremos 
separarlos puesto que las partículas α y β tienen carga distinta: 
 
 
 
Como puede verse en la figura, aplicado la regla de la mano izquierda, la fuerza magnética 
que actuaría sobre las partículas α y las partículas β tiene sentido contrario porque, 
aunque se mueven en el seno del mismo campo B
r
 y con la misma velocidad v
r
, tienen 
distinta carga. 
 
Sin embargo el radio de sus trayectorias no es el mismo, ya que desde el punto de vista de 
un SRNI, teniendo en cuenta que la fuerza normal o centrípeta, en este caso es la fuerza 
magnética de Lorentz, el radio de la trayectoria será: 
 
Bvq
R
v
mF
2
== ⇒ 
qB
vm
R = 
 
Suponiendo que las partículas α y β salgan disparadas con la misma velocidad, tienen 
masa y carga distinta. Así que: 
 
• La carga de las partículas α (núcleos de helio) es positiva y doble que la de las 
partículas β (electrones) 
• La masa de las partículas α, al estar formada por 2 protones y dos neutrones, es 
aproximadamente 4*1800=7200 veces mayor que la de las partículas β 
• Por tanto, como puede entenderse el radio de la trayectoria de las partículas α será 
aproximadamente 3600 veces mayor, lo que quiere decir que aun en el caso de que 
ambas partículas tuviesen la misma carga, también podríamos separarlas mediante 
un campo magnético. Precisamente ese es el fundamento del espectrógrafo de 
masas. 
 
 
 
LEY DE LA DESINTEGRACIÓN RADIACTIVA 
 
Las leyes de la desintegración nuclear son de naturaleza estadística exponencial, eso 
quiere decir que no es posible saber cuando se va a desintegrar un núcleo, solamente la 
probabilidad de que ese proceso tenga lugar. 
 
Supongamos que inicialmente, en el instante t, tenemos un número N de átomos 
radiactivos, y supongamos que en el intervalo de tiempo dt se desintegran un número de 
núcleos dN. 
 
La velocidad de desintegración será –dN/dt donde el signo negativo indica que la 
desintegraciones dan lugar a una disminución del número de núcleos iniciales. Como 
cuanto mayor sea la muestra mayor será la probabilidad de que ocurra una desintegración, 
es decir, que como la velocidad de desintegración es proporcional al número de átomos 
existentes, se puede poner: 
 
N 
dt
dN λ=− 
 
 
donde λ es una constante característica de cada elemento radiactivo llamada constante de 
desintegración, y puede interpretarse como una medida de la rapidez con que se 
desintegran los núcleos o más exactamente como una medida de la probabilidad de que un 
núcleo se desintegre en la unidad de tiempo. 
 
Escribiendo la expresión anterior de otra forma: 
 
dt 
N
dN λ−= 
 
si integramos y tenemos en cuenta que en el instante t=0 había No núcleos: 
 
∫ ∫
=
λ−=
N
N
t
0to
dt 
N
dN
 
 
t
0
N
No t Nln λ−= 
 
t NlnNln o λ−=− 
 
t 
N
N
ln
o
λ−= 
 
t 
o
e
N
N λ−= 
 
 
t 
o e NN
λ−= 
 
 
• La ley de desintegración radiactiva de de decaimiento exponencial por el signo 
negativo del exponente. 
• Como puede verse los elementos que tengan una λ elevada se desintegrarán 
rápidamente y su vida media será pequeña ya que ambas magnitudes son recíprocas. 
• Nos da el número de núcleos (N) que “probablemente” quedan después de un tiempo (t) 
y viceversa. El resto de las magnitudes que aparecen (No y λ) son constantes. 
 
Si representamos gráficamente el número de núcleos que quedan en función del tiempo: 
 
 
Se llama periodo de semidesintegración 2/1T al tiempo necesario para que el número de 
núcleos iniciales se reduzca a la mitad. Es decir que: 
2/1Tt = ⇒ 2
N
N o= 
sustituyendo en la ecuación de la ley de desintegración radiactiva tenemos que: 
 
2/1T 
o
o e N
2
N λ−= ⇒ 2/1T e 
2
1 λ−= ⇒ 2/1T 2
1
ln λ−= ⇒ 2/1T 2ln1ln λ−=− 
 
λ
= 2lnT 2/1 
 
 
Se llama vida media (τ) al promedio de vida o tiempo de un núcleo, es decir, el promedio del 
tiempo que un núcleo tarda en desintegrarse . Es la inversa de la constante de desintegración: 
 
 
λ
=τ 1 
 
 
Al valor absoluto de la velocidad de desintegración se le llama Actividad de la sustancia (A). 
Como puede verse, la actividad de una muestra radiactiva es proporcional al número de 
núcleos que haya en ese momento, ya que λ es una constante. 
 
N 
T
2ln
N 
dt
dN
 A
2/1
=λ== 
 
 
t 
o e NN
λ−= ⇒ t o e N N 
λ−λ=λ ⇒ t o e AA
λ−= 
 
Unidades de actividad: 
 
• La actividad en el SI se mide en Rutherford (Rt), que es la actividad de una 
sustancia en la que se desintegran 106 núcleos por segundo 
• La actividad también suele medirse en Curios (Ci). El curio es la actividad de una 
sustancia en la que se desintegran 3,7.1010 núcleos por segundo. 
 
1 Rt = 106 núcleos/s 
 1 Ci = 3,7.1010 núcleos/s 
 
• En medicina se utiliza la magnitud Exposición y se define como la carga eléctrica 
producida por ionización del aire de 1 Kg de muestra radiactiva. Su unidad, obviamente, 
será el Culombio/Kg, aunque suele medirse en Roentgen. 1 R=2,57.10−9 C/Kg 
 
 
Ejemplo: 
En una muestra radiactiva hay 1020 átomos radiactivos. Si su periodo de semidesintegración 
es de 3 años. 
a) ¿cuántos átomos quedarán en la muestra después de 3 años? 
b) ¿cuántos átomos quedarán en la muestra después de 1,5 años? 
 
a) Obviamente, al cabo de un tiempo igual al periodo de semidesintegración, por 
definición deben quedar la mitad de los átomos iniciales, así que: 
 
2/1Tt = ⇒ átomos1052
10
2
N
N 19
20
o ⋅=== 
 
Lo que es fácil de comprobar aplicando la ley de la desintegración: 
 
átomos105e10e Ne NN 19
3
3
2ln
20
t 
T
2ln
o
t 
o ⋅====
−−λ− 
 
b) Para cualquier otro valor de tiempo que no sea T1/2 debemos calcular el número de 
átomos siempre aplicando la ley de la desintegración radiactiva, ya que como ves el 
número de átomos y el tiempo no guardan una relación lineal, sino exponencial, así que 
nada de reglas de tres. 
 
átomos1007,7e10e Ne NN 19
5,1
3
2ln
20
t 
T
2ln
o
t 
o ⋅====
−−λ− 
 
 
Ejemplo: 
Una muestra radiactivade 20gr tiene un periodo de semidesintegración de 170 días. ¿Qué 
cantidad quedará después de una semana? 
 
Como el número de átomos es proporcional a la masa (*) , podríamos escribir la ley de 
desintegración radiactiva como: 
t 
o e NN
λ−= ⇒ 
t 
T
2ln
o
t 
o e me mm
−λ− == 
sustituyendo: 
gr437,19e 20m
7
170
2ln
==
−
 
 
fíjate que no es necesario poner el tiempo en segundos, obviamente lo que sí debe estar es 
en las mismas unidades en que se mida el periodo de semidesintegración. 
 
(*) El número de átomos (N) es proporcional a la masa (m), siendo 
Pat
Nm
N Av
⋅
= 
 
1 mol de átomos −−− tiene una masa Pat gr −−−− contiene NAv át. 
 m gr −−−−−−−−−−− N át. 
 
 
Ejemplo: 
Una muestra de radio de 27,156 gr tiene una actividad de 1012 desintegraciones por 
segundo. Calcular el número de Avogadro, sabiendo que el tiempo de semidesintegración 
del radio es 1590 años y que el peso atómico del mismo es 226,1. 
 
De acuerdo con la definición de velocidad de desintegración o actividad: 
 
N
T
2ln
N 
dt
dN
A
2/1
=λ== 
 
Para calcular el número de átomos de radio que hay en la muestra de 27,15 gr. Tendremos 
en cuenta que en 1 mol de cualquier sustancia, en este caso de Ra, hay un número de 
Avogrado de átomos, por tanto: 
 
1 mol de át.de Ra −−− tiene una masa de 226,1 gr −−−− contiene NAv át.de Ra 
 27,15 gr −−−−−−−−−−−−−−−−−−− N át.de Ra 
 
AvNAtómico.P
gramosºn
N = 
sustituyendo: 
Av
2/1
N
At.P
grºn
T
2ln
A ⋅= 
 
Av
12 N
1,226
156,27
3600243651590
2ln
10 ⋅
⋅⋅⋅
= 
de donde: 
23
Av 10023,6N ⋅= át/mol 
 
(Fíjate que esta vez el tiempo lo hemos puesto en segundos, porque es la unidad en la que 
nos han expresado la actividad de la muestra) 
 
 
E4B.S2005 
4. El núcleo radiactivo U23292 se desintegra, emitiendo partículas alfa, con un período de 
semidesintegración de 72 años. 
a) Escriba la ecuación del proceso de desintegración y determine razonadamente el 
número másico y el número atómico del núcleo resultante. 
b) Calcule el tiempo que debe transcurrir para que su actividad se reduzca al 75 % de la inicial. 
 
a) De acuerdo con las leyes de Soddy y Fajans, cuando un núcleo radiactivo emite una 
partícula alfa (núcleo de helio) se transforma en otro de número atómico dos unidades 
menor y de número de masa 4 unidades menos, por tanto el elemento sería el Th22890 
 
α+→ 42
228
90
232
92 ThU 
 
Como en todas las reacciones nucleares se conserva el número de nucleones (232=228+4) 
y la carga (92=90+2). Además debe conservarse la energía relativista, el momento lineal, 
angular y el spin. 
 
b) La ley de desintegración nuclear es t o e NN
λ−= . Teniendo en cuenta que la actividad 
es en un momento determinado es proporcional al número de núcleos que quedan (A=λN) 
podemos escribir que t o e AA
λ−= . Sustituyendo, y teniendo en cuenta que: 
• si la actividad inicial es Ao, cuando se reduzca un 75% la actividad final será un 
25% de la actividad inicial, por tanto 0,25Ao 
• la relación entre el periodo de semidesintegración y la constante de desintegración: 
λ=ln2/T 
 
t 
o e NN
λ−= ⇒ t o e AA
λ−= ⇒ 
t 
72
2ln
oo e AA25,0
−
= ⇒ t
72
2ln
25,0ln −= ⇒ t=150 años 
 
FAMILIAS RADIACTIVAS NATURALES 
 
La radiactividad no es nada nuevo, en la naturaleza existen núcleos naturales que son 
inestables, es decir radiactivos, y que por tanto se descomponen dando lugar a su vez a 
otros, y estos a su vez a otros y así sucesivamente hasta que llegan finalmente a uno que es 
estable, el resultado es toda una cadena llamada serie o familia radiactiva. 
 
Existen 3 familias radiactivas naturales que se nombran con el nombre del elemento que 
las inicia o padre. Estas son; la del Uranio 238, la del Torio 232 y la del Actino 227. 
 
Como ejemplo, en la familia radiactiva del 238U que se representa mas abajo, podemos ver 
que el Uranio 238 emite una partícula α y se transforma en Torio. Este a su vez emite una 
partícula β y se transforma en Protactinio, y así sucesivamente se va desintegrando hasta 
finalmente llegar al Plomo 206 que es estable. 
 
α+→ ThU 23490
238
92 
 
β+→ PaTh 23491
234
90 
 
APLICACIONES DE LOS ISÓTOPOS RADIACTIVOS 
 
Aplicaciones en geología y arqueología: 
 
En este caso se utilizan para fechar muestras, ya que la ley de desintegración radiactiva 
permite relacionar la cantidad de núcleos radiactivos que tiene en la actualidad una 
muestra geológica o arqueológica con los que había inicialmente: 
 
t 
o e NN
λ−= 
 
Podemos despejar el tiempo: Tomando logaritmos neperianos: 
 
t 
N
N
ln
o
λ−= ⇒ 
N
N
ln
1
N
N
ln
1
t o
o λ
=
λ
−= 
 
y teniendo en cuenta la relación entre la constante de desintegración y el periodo de 
semidesintegración (T1/2=1/λ) nos quedaría que: 
 
N
N
 lnT 44,1
N
N
ln
2ln
T
t oo =⋅= 
 
Como vemos, conociendo el periodo de semidesintegración de la sustancia radiactiva, si 
medimos el número de átomo iniciales de la muestra y conocemos los en la actualidad 
tiene una muestra igual, podemos saber el tiempo transcurrido. 
 
En arqueología se utiliza como reloj el Carbono 14, porque su tiempo de vida es 
comparable al tiempo a medir. El Carbono 14, que es radiactivo, se forma por la acción de 
los rayos cósmicos a partir del Nitrógeno 14 existente en la naturaleza en la siguiente 
reacción: 
pCnN 11
14
6
1
0
14
7 +→+ 
 
• Cualquier ser vivo, al respirar, toma átomos de carbono 12 y de carbono 14, que 
incorpora a su estructura (recuerda que los isótopos son indistinguibles químicamente) 
• Naturalmente el 14C se va desintegrando por ser radiactivo, pero la proporción de 
14C y 12C se mantiene constante mientras está vivo debido al aporte ordinario de 
CO2, donde existen ambos isótopos en proporción estable. El C
14 se descompone 
dando de nuevo nitrógeno, una partícula β y un neutrino, según la reacción: 
 
ν+β+→ NC 147
14
6 
 
• Cuando el organismo se muere, el carbono 14 continúa desintegrándose como 
siempre, pero ahora no hay aporte que reemplace los átomos perdidos, así que la 
proporción de 14C y 12C se hace cada vez menor a medida que pasa el tiempo. 
 
En geología, donde los tiempos que se miden son mucho más grandes se utiliza como reloj 
el 235U ya que tiene una vida mucho mayor que el carbono 14. 
Ejemplo: 
 
Una muestra de madera recogida en la tumba de Ramsés II tiene una 
actividad de 470 partículas/hora, mientras que la madera actual tiene una 
actividad de 700 partículas/hora. Sabiendo que el periodo de 
semidesintegración del C14 es de 5700 años ¿cuál es la época en la que 
vivió este faraón? 
 
 
Habría que empezar por despejar el tiempo a partir de la ley de desintegración hasta llegar 
a la expresión: 
N
N
 lnT 44,1t o= 
 
Teniendo en cuenta que el número de átomos en la muestra es directamente proporcional a 
la actividad de la muestra, recuerda que A=λN, podemos poner que: 
 
años 269.3
470
700
ln570044,1
A
A
 lnT 44,1t o =⋅⋅== 
 
Ejemplo: 
 
Una roca de uranio contiene un 2,2% de 235U y el resto 238U. Si se estima que inicialmente 
los dos isótopos existían en la misma proporción, calcula la edad de la roca sabiendo que 
el periodo de semidesintegración del 235U es de 109 años. 
 
años 105,4
2,2
50
ln1044,1
N
N
 lnT 44,1t 99o ⋅=⋅⋅== 
 
4500 millones de años, que resulta un valor en consonancia con la edad de la tierra 
estimada por otros procedimientos. 
 
Aplicaciones en Biología y Química: 
 
Los isótopos radiactivos se utilizan como trazadores con el objeto de dilucidar los 
mecanismos de las reacciones y ello puede hacerse gracias al idéntico comportamiento 
químico de todos los isótopos de un elemento, ya que las propiedades químicas no residen 
en el núcleo del elemento sino en la disposición de los electrones de la última capa. 
 
Por ejemplo, en la reacción global del proceso de fotosíntesis que tiene lugar en las plantas 
tenemos que: 
6 CO2 + 6 H2O → C6H12O6 + 6 O2 
 
La pregunta es ¿de donde proviene el oxígeno que se desprende? ¿del

Continuar navegando