Logo Studenta

Nefrología Clínica -Avendaño

¡Este material tiene más páginas!

Vista previa del material en texto

I 
 
 
 
 
 
 
 
Nefrología clínica 
2da edición 
Editado por 
L. Hernando 
P. Aljama 
M. Arias 
C. Caramelo 
J. Egido 
S. Lamas 
Copyright © 2003 Editorial Médica Panamericana, S. A., Alberto Alcocer, 24 - 28036 Madrid, España. 
Todos los derechos reservados. Este libro o cualquiera de sus partes no podrán ser reproducidos ni 
archivados en sistemas recuperables, ni transmitidos en ninguna forma o por ningún medio, ya sean 
mecánicos o electrónicos, fotocopiadoras, grabaciones o cualquier otro, sin el permiso previo de 
Editorial Médica Panamericana, S.A. 
La medicina es una ciencia en constante cambio. La investigación y la práctica amplían 
continuamente nuestro conocimiento, en particular sobre el tratamiento y la dosificación de 
medicamentos. Los autores y el editor han agotado los esfuerzos para asegurar que las referencias a 
los medicamentos mencionados en este texto respondan a la práctica vigente en el momento de su 
publicación. No obstante, se insta al lector a que consulte cuidadosamente el prospecto que 
acompaña el envase de cada medicamento para que, bajo su responsabilidad, decida si las dosis y 
contraindicaciones recomendadas coinciden o no con las mencionadas en este libro. Esto reviste 
particular importancia cuando el fármaco recomendado es nuevo o de uso poco frecuente. 
Alguno de los nombres de productos, patentes y diseños mencionados en este texto son marcas 
registradas o nombres propios, aunque no en todos los casos se hace referencia específica en el 
texto. Por tanto, cuando aparece un nombre sin el símbolo de marca registrada se debe a que el 
editor lo considera de dominio público. 
 II 
http://www.medicapanamericana.com/
http://www.medicapanamericana.com/
Los Editores han hecho todos los esfuerzos para localizar a los titulares del copyright del material 
fuente utilizado por el autor. Si por error u omisión, no se ha citado algún titular, se subsanará con la 
próxima reimpresión. 
1ª edición, Octubre 1997. 
2ª edición, Enero 2003. 
 
A nuestros Maestros 
“Todo lo que yo sé me lo han enseñado mis discípulos” (El Corán) 
“Más debemos a quienes nos enseñaron que a quienes nos procrearon, porque de los segundos sólo 
hemos recibido el vivir y de los primeros el vivir bien, que es más importante” (Andrés Laguna) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 III 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 IV 
 
Capítulo 1.1. El riñón normal. Anatomía e 
histología 
M. Arévalo 
Tabla de contenidos 
Anatomía 
Estructura general del riñón 
Vascularización renal 
Vasos linfáticos e inervación renal 
Histología 
Corpúsculo renal 
Túbulo proximal 
Túbulo intermedio (porción delgada del asa de Henle) 
Túbulo distal 
Túbulos y conductos colectores 
Intersticio renal 
Aparato yuxtaglomerular 
Bibliografía 
 
Al contrario que el resto de las estructuras que forman el aparato urinario, cuya misión es almacenar 
y evacuar la orina, el riñón es una víscera que posee una estructura enormemente compleja y 
característica, debido a las numerosas funciones bioquímicas y endocrinas que tiene encomendadas. 
Por tanto, la morfología renal deberá ser bien estudiada si se quiere comprender la fisiología y las 
alteraciones patológicas que puede sufrir, y que son causa de graves disfunciones orgánicas. De la 
misma forma, el conocimiento, aunque sea somero, de la organogénesis renal facilitará 
posteriormente el entendimiento y la interpretación de las malformaciones renales. 
Anatomía 
Macroscópicamente, los riñones humanos son dos vísceras de color pardo-rojizo, y contornos lisos, 
que se localizan en la parte posterior del peritoneo, junto a la columna vertebral, y están rodeados 
por abundante tejido fibro-adiposo. Tienen forma de alubia y en el centro de su borde medial cóncavo 
aparece una profunda depresión denominada hilio. Los riñones miden en el adulto unos 11 cm de alto 
por 6 cm de ancho y 3 cm de grosor, situándose la porción más alta a nivel de la parte superior de la 
decimosegunda vértebra dorsal y la más baja, a la altura de la tércera vértebra lumbar. Aparecen 
orientados hacia abajo y hacia afuera en cuanto a sus ejes longitudinales y, en general, el riñón 
izquierdo está un poco más elevado que el derecho. Su peso oscila, aproximadamente, entre 150 y 
160 g en el hombre, siendo ligeramente menor en la mujer. 
El hilio renal está limitado por dos labios, uno anterior y otro posterior y se continúa con una cavidad 
denominada seno renal que se extiende hacia el interior. Por esta zona discurren los grandes vasos y 
los nervios renales, así como el extremo terminal superior del uréter, que tiene forma de embudo y 
que se denomina pelvis renal. El resto del seno renal está relleno de tejido fibroadiposo. En una visión 
anterior de los riñones se observa la vena renal en primer plano, tras ella aparece la arteria renal, 
localizándose la pelvis renal por detrás de los grandes vasos. 
Las paredes del seno renal están tapizadas por tejido conjuntivo de la cápsula renal y presentan 
numerosas protrusiones denominadas papilas renales. La pelvis del uréter se divide en dos o tres 
grandes ramas, que se conocen como cálices mayores y, a su vez, cada uno de éstos se bifurca en 
varias ramas más cortas o cálices menores. Existen en total de 7 a 14 cálices menores, cada uno de 
ellos con su extremo dilatado y acoplado alrededor de una a tres papilas renales. En los vértices de 
cada papila desembocan los tubos colectores mayores, que perforan tanto la papila como el extremo 
del cáliz correspondiente, originando el área cribosa papilar. 
La grasa y el tejido conjuntivo fibroso perirrenales se condensan formando una envoltura llamada 
fascia renal, que, además, otorga al riñón puntos de anclaje con las estructuras cercanas. No 
obstante, son las vísceras vecinas las que influyen decisivamente para que el riñón se mantenga en la 
posición correcta. 
Estructura general del riñón 
Cada riñón está tapizado íntimamente por una delgada cápsula conjuntiva rica en fibras colágenas, 
entre las que aparecen algunas células musculares lisas. Salvo en algunas situaciones patológicas, 
esta cubierta conjuntiva es fácilmente separable del parénquima renal. 
Cuando se observa el corte de un riñón hemiseccionado, se aprecian dos zonas fácilmente 
distinguibles a simple vista: una externa o corteza, de coloración rojo-pardusca, y una interna o 
médula, más pálida. La corteza renal forma un arco de tejido situado inmediatamente bajo la cápsula. 
Del córtex surgen proyecciones, que se sitúan entre las unidades individuales de la médula, 
denominadas columnas de Bertin. Asimismo, es posible observar finas estriaciones en la corteza, que 
discurren perpendicularmente a la superficie renal y que se conocen como rayos medulares. La 
médula renal está formada por unidades de aspecto cónico, con la base hacia la corteza, 
denominadas pirámides medulares. El vértice de cada pirámide se dirige hacia el sistema calicial y 
constituye una papila. En el riñón humano existen entre 12 y 18 pirámides medulares. 
Se puede establecer, en este momento, el concepto de lóbulo renal como la unidad morfo-funcional 
constituida por una pirámide medular con su corteza renal asociada. 
Vascularización renal 
Debido a las características funcionales de los riñones, se comprende fácilmente que estas vísceras 
posean una gran vascularización y que los vasos sanguíneos se repartan de forma muy específica. Por 
consiguiente, es esencial conocer la distribución vascular para comprender tanto la histología como la 
fisiología renal. 
La arteria renal alcanza al riñón por el hilio e inmediatamente se ramifica en dos grandes ramas, una 
anterior y otra posterior que, antes de penetrar en el tejido renal, se dividen en varias arterias 
segmentarias. Una vez que éstas se introducen en el parénquima renal, originan las arterias 
interlobulares, las cuales discurren por las columnas de Bertin hasta la base de las pirámides, donde 
dan lugar a lasarterias arciformes, que se incurvan para disponerse justamente entre la base de las 
pirámides y la corteza renal, siguiendo un trayecto lateral. A partir de ahí, las arterias arciformes 
emiten ramas denominadas arterias interlobulillares, que, de forma perpendicular a la superficie 
renal, ascienden por la corteza, donde pueden originar vasos colaterales antes de seguir su trayecto 
directo hacia la superficie. A partir de las arterias interlobulillares, en diferentes intervalos, se 
originan las arteriolas aferentes, cada una de las cuales va a irrigar un solo glomérulo. Generalmente, 
las arteriolas que llegan a los corpúsculos renales surgen de forma directa desde las arterias 
interlobulillares, pero a veces aparece una arteria intralobulillar intermedia. 
Al entrar en el corpúsculo renal, la arteriola aferente se divide en cinco a ocho ramas cortas, cada una 
de las cuales origina un segmento capilar independiente. En conjunto, la red capilar constituye el 
ovillo o penacho glomerular, que es un entramado vascular de alta especialización, ya que es en esta 
zona donde se realiza la ultrafiltración del plasma sanguíneo. Los capilares glomerulares drenan hacia 
la arteriola eferente, a través de la cual la sangre abandona el glomérulo. La mayor parte de las 
veces, esta arteriola eferente, nada más abandonar el corpúsculo renal, se ramifica en otra red de 
capilares que discurre por el intersticio en íntimo contacto con los túbulos renales, circunstancia que 
va a permitir que se desarrolle un proceso tan importante como el paso a la sangre de sustancias 
reabsorbidas por las células tubulares. Es destacable el hecho de que en la circulación cortical del 
riñón existan dos redes capilares, una glomerular y otra peritubular, consecutivas y unidas entre sí 
por una arteriola. 
Por otro lado, de las arteriolas eferentes que proceden de los corpúsculos yuxtamedulares emergen 
entre 12 y 25 capilares que descienden hacia la médula, siguiendo un largo trayecto entre los 
componentes tubulares medulares, y que se denominan vasos rectos descendentes. Estos capilares 
se ramifican en forma de malla, radialmente alargada, alrededor de ramas de asas de Henle y túbulos 
colectores, contribuyendo al intercambio de líquidos e iones que tiene lugar en la médula. Las 
terminaciones capilares convergen hacia los vasos rectos ascendentes, que siguen un trayecto 
paralelo y opuesto a los descendentes, hasta desembocar en el sistema venoso. No todos los vasos 
rectos proceden de arteriolas eferentes, sino que algunos pueden surgir como ramificaciones 
verticales directas de las arterias arciformes. 
El retorno venoso en el riñón sigue, en general, un trayecto opuesto a la circulación arterial. Los 
plexos capilares subcapsulares drenan hacia un plexo de venas estrelladas que, a su vez, 
desembocan en venas interlobulillares, las cuales descienden perpendicularmente a la superficie renal 
y van recibiendo la sangre procedente de las venas tributarias de la red capilar peritubular y, más 
abajo, de las venas tributarias procedentes de los vasos rectos. Sin embargo, muchos de los vasos 
medulares desembocan directamente en las venas arciformes, paralelas a sus homónimas arteriales, 
en las que desembocan, igualmente, las venas interlobulillares. A continuación, las venas arciformes 
drenan en las venas interlobulares, situadas entre las pirámides medulares, y, luego, en las venas 
tributarias mayores del hilio renal para formar, finalmente, la vena renal, que drenará hacia la cava 
inferior. 
 - 2 - 
Vasos linfáticos e inervación renal 
Los vasos linfáticos del riñón aparecen en el intersticio cortical paralelos al trayecto de los vasos 
sanguíneos y abandonan el riñón por el hilio. Parece que no existe circulación linfática en la médula 
renal. Existe, sin embargo, una red de capilares linfáticos que discurre por la cápsula renal y recibe el 
drenaje de la parte externa de la corteza. 
La inervación renal procede del plexo celíaco y se compone de ramas adrenérgicas y colinérgicas que 
pueden ser mielínicas o amielínicas. Sin embargo, no está totalmente clara la distribución de las 
ramas nerviosas en el interior de la víscera. Parece que las paredes vasculares, el aparato 
yuxtaglomerular y los túbulos son los principales destinatarios de las fibras nerviosas. 
La trascendencia de los nervios y de los vasos linfáticos renales puede considerarse de carácter 
secundario, ya que tras resultar destruidos, por ejemplo, en un trasplante, no parece que se afecte 
gravemente la viabilidad posterior del órgano. 
Histología 
La unidad morfo-funcional del riñón es la nefrona. En un hombre adulto existen de 1,5 a 2 millones 
de nefronas repartidas por toda la corteza renal, y en ellas se pueden distinguir dos componentes 
principales: el glomérulo y el sistema tubular córtico-medular. 
Las nefronas están situadas en la corteza renal siguiendo un patrón establecido que se repite 
periódicamente y que se denomina lobulillo renal. Este lobulillo está constituido por la subunidad de 
corteza comprendida entre dos arterias interlobulillares contiguas, y en el centro presenta un rayo 
medular que, a modo de eje, aparece surcado por un conducto colector principal que desciende 
verticalmente hacia las pirámides, recibiendo la orina concentrada en las nefronas situadas a ambos 
lados del rayo medular. 
Se reconocen cuatro subdivisiones en la porción tubular de la nefrona: el túbulo proximal, el túbulo 
intermedio (constituido por una parte de lo que clásicamente se ha denominado como asa de Henle), 
el túbulo distal y el sistema colector. Cada una de las citadas porciones se subdivide, a su vez, en 
diferentes segmentos. 
El extremo ciego de la porción proximal del sistema tubular aparece dilatado e invaginado, formando 
una estructura hueca, de finas paredes epiteliales, denominada cápsula de Bowman. La concavidad 
externa de dicha cápsula está ocupada por el ovillo capilar glomerular, y el conjunto compuesto por 
este ovillo más la cápsula de Bowman se conoce como corpúsculo renal, estructura que, junto al 
sistema tubular, completa la nefrona. 
Corpúsculo renal 
Tiene forma esférica y un diámetro de 100 a 150 µm. El lugar por donde entran y salen los vasos en 
el corpúsculo se denomina polo vascular, localizándose en la zona opuesta el polo urinario, que 
conecta con el túbulo proximal. 
El corpúsculo renal está envuelto por la cápsula de Bowman, estructura a modo de copa de doble 
pared, compuesta por un epitelio externo o parietal. Este epitelio presenta células muy finas y se 
refleja, a nivel del polo vascular, hacia el interior, originando una capa interna o visceral, cuyas 
células se aplican íntimamente contra los capilares glomerulares. Las células de esta capa son de 
mayor tamaño y poseen una estructura con prolongaciones, por lo que se las denomina podocitos. 
Entre las capas parietal y visceral de la cápsula queda una cavidad estrecha denominada espacio 
urinario o de Bowman, que está en continuidad y abierto a la luz del túbulo proximal. 
La capa parietal de la cápsula de Bowman está constituida por un epitelio plano simple compuesto de 
células poligonales, ricas en organelas, que asientan sobre una membrana basal. La capa visceral se 
modifica desde los estadios embrionarios hasta el adulto, y sus células son estrelladas con 
prolongaciones primarias, dirigidas hacia las asas capilares, y que, a su vez, originan prolongaciones 
secundarias, llamadas pedicelos, que se adosan contra las paredes de los capilares. Estos pedicelos 
se interdigitan con los de las células vecinas, dejando entre ellos hendiduras de filtración de 25-35 
nm, ocupadas por un diafragma de filtración de 4-6 nm, que se extiende desde la membrana de un 
pedicelo a la de otro en su porción más distal. Morfológicamente, los podocitos presentan un núcleo 
grande y plegado. En el citoplasma se observa un complejo de Golgi desarrollado, abundante retículo 
endoplásmico rugoso y ribosomas libres. El citoesqueleto es prominente, y estácompuesto por 
filamentos y microtúbulos que se extienden hasta las prolongaciones. La membrana plasmática posee 
un glucocáliz muy visible rico en sialoglucoproteínas. 
 - 3 - 
 
Microfotografía de un corte semifino de riñón de un animal de experimentación, donde se observa la sección de un 
corpúsculo renal. Además, se aprecia el aparato yuxtaglomerular en la entrada de la arteriola aferente y, en el 
polo opuesto, el nacimiento del túbulo proximal. 
Figura 1.1.1. 
El epitelio visceral de la cápsula de Bowman, junto con la pared de los capilares, constituye un 
dispositivo muy especializado, que permite que la sangre que llega hasta los capilares glomerulares 
sea sometida a un proceso de ultrafiltrado, con el fin de controlar el equilibrio hidroelectrolítico del 
organismo y eliminar productos de desecho. Este dispositivo se denomina: barrera de filtración 
glomerular y está constituido específicamente por la pared del endotelio capilar, la membrana basal 
glomerular y los pedicelos de los podocitos. 
Los capilares glomerulares están formados por un endotelio muy fino, de 40 nm, compuesto por 
células planas que presentan aberturas o fenestraciones de 40 a 100 nm en su pared, sin que exista 
diafragma que las aísle del exterior. Los núcleos de las células endoteliales protruyen hacia la luz 
vascular, y están localizados a un lado del área de contacto del capilar con los podocitos. El 
citoplasma contiene pocas organelas y escasas vesículas de pinocitosis, sin embargo, posee un 
glucocáliz muy visible, de 12 nm de espesor. 
Como todas las células epiteliales, los podocitos y el endotelio sintetizan su correspondiente 
membrana basal que, en esta zona del organismo, adopta una disposición especial por fusión 
embrionaria de ambas, originando la membrana basal glomerular. Esta membrana tiene un grosor de 
240 a 340 nm, y es esencial para el correcto funcionamiento del filtro glomerular. Con el microscopio 
óptico y tras efectuar técnicas de tinción, como el PAS o impregnaciones argénticas, la membrana 
basal glomerular se observa como una banda densa y homogénea. Con técnicas depuradas de 
microscopia electrónica, en la ultraestructura de esta membrana basal se distinguen tres bandas 
claramente identificables: una lámina clara interna, translúcida al microscopio electrónico, en íntimo 
contacto con la pared endotelial, una lámina densa a los electrones de situación central, y una lámina 
clara externa situada bajo los pedicelos. 
 
Microfotografía electrónica de la ultraestructura de la barrera de filtración glomerular en la que se aprecia la 
constitución trilaminar de la membrana basal glomerular (MBG). Se observan los finos diafragmas de la hendidura 
interpedicelar. 
Figura 1.1.2. 
 - 4 - 
El análisis de la composición química de la membrana basal glomerular es una cuestión difícil, ya que 
es una estructura muy fina, poco soluble y está muy adherida a las células que subyace. 
Fundamentalmente está constituida por colágenos de tipo IV y V, glucoproteínas como laminina, 
fibronectina y entactina, y proteoglicanos, como el heparán sulfato. Los componentes polianiónicos se 
concentran en las láminas claras, siendo la lámina densa más neutra en naturaleza. Parece ser que 
los radicales del heparán-sulfato cargados negativamente son los responsables de la barrera 
electrostática del filtro glomerular. 
La barrera de filtración se completa con el diafragma de la hendidura situado entre los pedicelos de 
las células epiteliales podocitarias. Esta estructura posee una constitución morfológica compleja 
formada por subunidades laminares, dispuestas de forma paralela, y conectadas a un filamento 
central, dejando entre ellas poros rectangulares. 
La membrana basal glomerular no rodea como tal toda la superficie del capilar glomerular, ya que el 
espacio que aparece entre dos asas capilares está ocupado por un tejido conectivo especial 
denominado mesangio, que sirve, en un principio, de sostén del entramado vascular. El mesangio 
está constituido por células mesangiales y por una matriz mesangial, similar en apariencia a la 
membrana basal glomerular. 
Las células mesangiales presentan contornos irregulares y constituyen el 25% de la celularidad 
glomerular. Emiten numerosos pseudópodos, en cuyo interior aparecen filamentos de actina y 
miosina anclados a la membrana. El núcleo es de mayor tamaño que el de los podocitos, y el 
citoplasma posee un retículo endoplásmico rugoso voluminoso y ribosomas y lisosomas abundantes. 
Estas células establecen entre ellas numerosas uniones comunicantes. 
La matriz mesangial presenta una ultraestructura similar a la de la lámina clara interna de la 
membrana basal glomerular, con la que se continúa a nivel de la zona de unión del mesangio con la 
pared del capilar. 
Aparte de la misión de soporte vascular, el mesangio, aunque no participa directamente en el proceso 
de filtración glomerular, desempeña un papel importante en el mismo por la capacidad para regular el 
flujo sanguíneo dentro del glomérulo. Este hecho se debe, por un lado, a que posee receptores 
importantes de moléculas como la angiotensina II y, por otro, a su aparato contráctil. Además, la 
célula mesangial tiene capacidad fagocítica y pinocítica, que le confieren la misión de depurar el 
material de desecho de la membrana basal glomerular y del espacio subendotelial. 
Túbulo proximal 
El túbulo proximal constituye el segmento más largo de la nefrona y, en conjunto, ocupan la mayor 
parte de la corteza. Arranca del polo urinario tras una transformación rápida de las células del epitelio 
plano de la cápsula de Bowman. En sus porciones iniciales se contornea cerca del corpúsculo renal, 
originando una porción tortuosa para, a continuación, formar un rizo que se dirige hacia la superficie 
del riñón, reflejándose para volver a la proximidad del corpúsculo, y localizarse en la vecindad de un 
rayo medular. Desde ahí se dirige directamente hacia la médula formando la porción recta (pars 
recta). 
El túbulo proximal mide unos 14 mm de largo por 60 µm de calibre. Histológicamente, está tapizado 
por un epitelio cúbico simple, de aspecto eosinófilo, en el que destaca ultraestructuralmente una 
membrana citoplásmica dotada, en su cara luminal, de un ribete en cepillo muy desarrollado que 
amplía más de 20 veces la superficie apical. Esta superficie posee también invaginaciones de la 
membrana denominadas canalículos apicales. Las superficies celulares laterales presentan numerosos 
repliegues, al igual que la cara basal que se invagina con las vecinas para formar un complejo 
laberinto de interdigitaciones. El núcleo es único y esférico; en el citoplasma destaca un aparato de 
Golgi muy desarrollado que se localiza supranuclearmente. Las mitocondrias son largas y tienen 
forma de bastón, orientándose radialmente en las porciones basales. Contiene numerosos lisosomas 
apicales y vacuolas que pueden estar vacías o presentar restos celulares procedentes de la 
fagocitosis. 
Las características morfológicas del túbulo proximal no son idénticas en todo su recorrido. Cuando se 
estudia con microscopia electrónica se pueden observar diferencias regionales que permiten 
identificar tres segmentos distintos. El segmento denominado S1 ocupa las porciones iniciales de la 
porción contorneada; sus células son las más altas, presentan grandes interdigitaciones y poseen más 
vacuolas y mitocondrias. El segmento S2 surge por transformación gradual del anterior y ocupa la 
parte distal de la porción contorneada y la inicial de la porción recta. Sus células son más bajas, con 
interdigitaciones basolaterales menores y las mitocondrias son más pequeñas y aparecen en menor 
 - 5 - 
número. Finalmente, el segmento S3 abarca el resto de la porción recta y presenta células cuboides 
con muy pocas interdigitaciones y mitocondrias, pero con las microvellosidades más largas de los tres 
segmentos. 
Túbulo intermedio (porción delgada del asa de Henle) 
Surge del estrechamiento brusco de la porción descendenterecta del túbulo proximal en la parte 
externa de la médula para formar un asa, cuya porción inicial es recta, descendente y delgada. La 
longitud y morfología de esta porción es diferente, dependiendo de que el corpúsculo renal de la 
nefrona a la que pertenece sea superficial o esté localizado en la profundidad de la corteza. En 
general, las asas cortas corresponden a corpúsculos superficiales y son siete veces más numerosas, 
situándose su inflexión en la zona medular externa. Las asas largas pueden extenderse incluso hasta 
la punta de la papila. 
Morfológicamente, la porción descendente delgada posee un diámetro de 15 µm y se compone de un 
epitelio plano, en el que desaparece el ribete en cepillo, para presentar sólo alguna microvellosidad 
apical. El núcleo protruye a la luz, por lo que es fácil confundirlo con los capilares vecinos. En asas 
cortas, las células, denominadas de tipo I, son poligonales y no presentan interdigitaciones entre 
ellas, mostrando la misma apariencia a lo largo de todo el trayecto. En los túbulos intermedios de 
asas largas se pueden reconocer morfológicamente hasta tres segmentos distintos. Las porciones 
iniciales están tapizadas por células de tipo II que presentan numerosas interdigitaciones laterales 
con las células vecinas y pliegues basales. A medida que desciende el asa, las células pierden 
interdigitaciones, transformándose en células de tipo III. Finalmente, las células de porciones 
ascendentes de asas largas vuelven a tener interdigitaciones, pero carecen de pliegues basales, 
denominándose células de tipo IV. 
Túbulo distal 
Es más corto y delgado que el túbulo proximal, pero el diámetro de la luz es ligeramente mayor. 
Comienza de forma abrupta allí donde aumenta el grosor de la porción delgada del asa de Henle en 
su segmento ascendente. En un principio es de localización medular, para dirigirse directamente 
hasta la corteza, justamente en la entrada del polo vascular del corpúsculo renal de la nefrona a la 
que pertenece. En este lugar, algunas células de su pared sufren una transformación para originar la 
mácula densa, que va a formar parte de un dispositivo específico denominado aparato 
yuxtaglomerular, que será descrito más tarde. A continuación, el túbulo muestra una serie de 
tortuosidades que forman la porción contorneada, que se sitúa generalmente por encima del 
corpúsculo, y que será la que desemboque en el tubo colector. 
La pared del túbulo distal está compuesta por un epitelio de células cúbicas, que es más alto en la 
porción contorneada. En la superficie luminal de la membrana citoplásmica no hay ribete en cepillo, 
aunque pueden observarse algunas microvellosidades cortas. La superficie basal presenta múltiples 
invaginaciones y plegamientos en los que, de forma característica, se alojan mitocondrias 
perpendicularmente a la base de las células, lo que confiere al túbulo una estriación característica 
cuando se observa en el microscopio óptico. El núcleo es redondeado y suele localizarse más cerca 
del polo luminal debido a los pliegues basales. En el citoplasma no existen vacuolas ni canalículos 
bajo la superficie apical. El aparato de Golgi es pequeño y supranuclear; se observan, igualmente, 
algunas cisternas de retículo endoplásmico rugoso y ribosomas libres. Poseen un par de centriolos 
típicos, de situación apical, uno de los cuales origina un cilio hacia la luz. Las mitocondrias tienen 
muchas crestas y numerosos gránulos en la matriz. 
Túbulos y conductos colectores 
La transición de los túbulos distales a los colectores no se hace de forma brusca, sino que existe un 
corto segmento de conexión en el que se pueden encontrar células de ambos repartidas 
aleatoriamente. La porción inicial del sistema de túbulos colectores discurre a lo largo de los rayos 
medulares, donde unos túbulos convergen con otros similares para descender hasta la médula interna 
y confluir cerca de la pelvis en los llamados conductos papilares de Bellini, que se abren al área 
cribosa de la punta de cada papila. 
El epitelio que constituye la pared de los túbulos distales presenta dos tipos celulares distintos. La 
mayor parte son células claras o principales, apareciendo en menor cantidad las células oscuras o 
intercaladas. 
Las células claras son casi planas en las porciones proximales y van ganando altura progresivamente, 
hasta adquirir un aspecto cúbico a medida que se desciende por el túbulo para convertirse en 
prismáticas en las porciones finales del sistema colector. La membrana celular es lisa en su contorno, 
 - 6 - 
y sólo se aprecian pliegues basales en las porciones altas, y alguna microvellosidad corta, además de 
un cilio de situación central, en la superficie apical. El núcleo está localizado centralmente, y el resto 
del citoplasma es claro por poseer pocas organelas, entre las que se encuentran mitocondrias muy 
pequeñas repartidas por toda la célula. 
Las células oscuras son cúbicas, sobre todo, en las porciones iniciales, donde son similares a las de 
los túbulos distales. La membrana posee numerosas microvellosidades, bajo las que se observan 
abundantes vesículas de pinocitosis. El núcleo es central con un nucléolo claro, y el citoplasma es 
oscuro, destacando en él numerosas mitocondrias ovales, hinchadas y repartidas por toda la célula. 
Los grandes conductos colectores de Bellini poseen una constitución similar en sus porciones iniciales 
a la de los túbulos colectores, pero, a medida que descienden por la médula, las células oscuras 
desaparecen quedando únicamente revestidos por células claras de aspecto cilíndrico. Es notorio que 
la membrana basal de estos conductos se engruesa progresivamente a medida que se acercan a la 
papila, situación que se hace más evidente con la edad. 
Intersticio renal 
Los espacios que quedan entre los túbulos renales están ocupados, además de por vasos sanguíneos 
y linfáticos, por tejido conectivo laxo compuesto por las correspondientes células y matrices 
extracelulares asociadas. Este tejido intersticial es escaso en la corteza y aumenta, tanto en 
proporción como en importancia, en la médula, sobre todo, en las proximidades de las papilas. 
La matriz extracelular del intersticio está constituida por un gel muy hidratado en el que destacan 
diferentes proteoglucanos y proteínas. Entre estos componentes aparecen fibras de colágeno, siendo 
frecuentes las inclusiones lipídicas. 
Las células presentes en el intersticio son escasas y su estirpe no está totalmente clara en el hombre. 
En la médula, donde son más abundantes, poseen una morfología externa en la que destacan 
múltiples prolongaciones finas que se extienden por la matriz extracelular, contactando con otras 
células intersticiales. Citológicamente, poseen numerosas mitocondrias, escaso retículo endoplásmico 
rugoso, lisosomas y algunas inclusiones lipídicas. En la corteza, la mayor parte de las células 
intersticiales presenta un citoplasma fusiforme, con gran cantidad de retículo endoplásmico rugoso, 
por lo que recuerdan más a los fibroblastos típicos del tejido conjuntivo. 
Aparato yuxtaglomerular 
En el hilio del corpúsculo renal se sitúa un dispositivo estructural que está constituido por tres partes 
distintas. En primer lugar, determinadas células de la capa media de la arteriola aferente en su 
porción final, que han sufrido una transformación para convertirse en células mioepitelioides, con 
gránulos en su interior. En segundo lugar, la mácula densa, porción del túbulo distal que se dispone a 
la entrada del corpúsculo renal. Y, finalmente, un grupo de células similares a las mesangiales, que 
aparecen entre el glomérulo y la mácula densa, y que se denominan células del lacis. 
Las células mioepitelioides son las encargadas de sintetizar la hormona renina y, aunque aparecen 
fundamentalmente en la arteriola aferente, no es raro encontrar un pequeño número de ellas en la 
pared de la arteriola eferente. Citológicamente, poseen un aparato de Golgi grande, filamentos 
contráctiles, numerosas mitocondriasredondeadas, abundantes cisternas de retículo endoplásmico 
rugoso y gran cantidad de gránulos rodeados de membrana. Se han descrito hasta tres tipos 
diferentes de gránulos, siendo algunos los precursores de las formas definitivas. Los gránulos 
denominados de tipo I tienen aspecto elongado con unas pocas inclusiones cristalinas romboidales, y 
se localizan dentro o en las proximidades del aparato de Golgi. Los gránulos de tipo II, de forma 
redondeada, contienen en su interior numerosas inclusiones iguales que las del tipo I. Los gránulos 
tipo de III son los más grandes y consisten en vesículas densas de forma cilíndrica u oval, rodeadas 
de una membrana poco definida, y contienen renina en su interior. 
La mácula densa es una placa especializada de células de la pared del túbulo distal, que aparece 
íntimamente acoplada al hilio vascular del glomérulo. Las células que la componen son más estrechas 
y más altas que las del resto del túbulo, mostrando una imagen morfológica en la que los núcleos 
celulares están más cerca unos de otros, lo que se traduce en una mayor densidad óptica al 
microscopio y, de ahí, su nombre de mácula densa. Estas células poseen escasas mitocondrias, un 
aparato de Golgi infranuclear y escasas invaginaciones de la membrana plasmática en su porción 
basal. La membrana basal del túbulo está mucho peor definida en esta zona del túbulo, 
confundiéndose con el material extracelular vecino. 
 - 7 - 
Las células del lacis aparecen dentro de un espacio de forma más o menos triangular, abierto por 
arriba, cuyos lados serían la mácula densa en su cara basal y las arteriolas aferente y eferente en sus 
caras laterales. Están por tanto en íntimo contacto con el resto de las formaciones del aparato 
yuxtaglomerular y con las células mesangiales intercapilares del glomérulo, de las que son 
prácticamente indistinguibles, y de ahí que también se las conozca como mesangio extraglomerular. 
Estas células poseen finas prolongaciones que originan entre ellas un entramado o lacis, rodeado de 
una matriz extracelular amorfa. 
Tras esta breve descripción de la arquitectura renal es fácil comprender que se trata de una víscera 
que posee una morfología tan compleja como bien organizada, de manera que tanto la anatomía 
macroscópica como su organización histológica sustentan una estructura que posibilita que en los 
riñones se lleven a cabo unas funciones bioquímicas y fisiológicas muy importantes para la correcta 
homeostasis del organismo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 - 8 - 
 
 
 
Capítulo 1.2. Desarrollo del riñón 
J. Rey 
Tabla de contenidos 
Introducción 
Control del desarrollo del riñón 
Genes implicados en el desarrollo del riñón 
Determinación del territorio nefrogénico 
Inducción de la yema ureteral 
Conversión mesénquima-epitelio y tubulogénesis 
Proteoglucanos y moléculas de adhesión en el desarrollo del riñón 
El estroma renal 
Formación de la nefrona 
Corolario 
Bibliografía 
Introducción 
En los mamíferos y en los vertebrados en general, el sistema urinario y el reproductor tienen un 
mismo origen ontogénico. Ambos sistemas se desarrollan a partir de un doble engrosamiento del 
mesodermo, denominado crestas urogenitales, y comparten estructuras comunes durante el 
desarrollo. Al final de éste, ambos sistemas constituyen estructuras independientes y separadas 
funcionalmente, aunque no anatómicamente, sobre todo, en el caso del hombre, donde la uretra sirve 
tanto para el transporte de la orina como del semen. Ambos sistemas comienzan a desarrollarse 
durante las fases embrionarias, pero el sistema urinario comienza y termina antes que el sistema 
reproductor. 
Durante el desarrollo del embrión de los mamíferos se produce la diferenciación de tres riñones 
diferentes: pronefros, mesonefros y metanefros. De ellos, tan sólo el tercero, el metanefros, dará 
lugar al riñón adulto. El pronefros es un riñón funcional en los peces y los anfibios, pero en los 
mamíferos constituye un vestigio evolutivo sin función renal. Es el primero en desarrollarse. En el 
hombre comienza a desarrollarse durante la cuarta semana después de la concepción y persiste hasta 
la sexta semana. Inicialmente consiste en una masa de células mesoblásticas que se extienden 
longitudinalmente formando un cordón desde la región inmediatamente por debajo del corazón hasta 
la parte caudal del cuerpo. Este cordón de células se ahueca y forma un tubo que gradualmente se 
separa del resto de las células adyacentes. Este tubo, denominado conducto de Wolf o pronéfrico, se 
abre en su parte inferior en el tubo digestivo posterior, y en su parte superior se conecta con 
invaginaciones del epitelio del peritoneo en forma de saco. El tejido mesoblástico entre estas 
invaginaciones forma una estructura glomerular vascular que se proyecta en la cavidad peritoneal. 
Esta región, localizada en la parte más superior de la cresta urogenital constituye lo que se conoce 
como pronefros, que rápidamente degenera y desaparece. 
Justo por detrás del pronefros y en la cara interna del conducto de Wolf, proyectándose en la cresta 
urogenital, se forman, hacia la cuarta semana, una serie de tubos ciegos que se abren al conducto de 
Wolf. El conjunto de estos tubos forma el mesonefros, también conocido como cuerpo de Wolf. 
Posteriormente, el extremo ciego de estos tubos se dilata y engloba una red glomerular de capilares 
sanguíneos. El mesonefros hace las funciones del riñón tan sólo en las etapas embrionarias del 
desarrollo. En cuanto el metanefros se diferencia, al inicio del desarrollo fetal, el mesonefros cesa su 
función renal y degenera en parte. En el hombre, sin embargo, va a dar lugar a los vasos eferentes y 
la rete testis del testículo. En la mujer, permanecen trazas del mesonefros constituyendo el 
parovarium. El conducto de Wolf en el hombre dará lugar al epidídimo y al vaso deferente. En la 
mujer, el conducto de Wolf se atrofia. 
El metanefros comienza a desarrollarse al final de la quinta semana y no es completamente funcional 
hasta el inicio de la vida fetal, hacia el final de la octava semana de gestación. El origen del 
metanefros es doble. Por un lado, una región especializada de la cresta urogenital, la masa 
metanefrogénica o mesénquima metanéfrico, se diferencia para dar lugar principalmente a la parte 
glomerular del riñón y a los túbulos contorneados. Las estructuras tubulares colectoras del riñón 
derivan de un divertículo que emerge de la parte final del conducto de Wolf cerca de la cloaca: la 
yema ureteral. Este divertículo se expande dentro de la masa metanefrogénica y se ramifica para dar 
lugar a las estructuras colectoras de la orina: pelvis renal, cálices, y túbulos colectores. La parte final, 
próxima a la cloaca, dará lugar al uréter. El resto de los canales tubulares del riñón derivan de una 
forma combinada tanto del mesénquima metanéfrico como de la yema ureteral. 
 - 9 - 
 
 
Una vez formado el metanefros, empieza a migrar desde la pelvis, donde se ha desarrollado, hasta la 
parte superior posterior del abdomen. Una vez situado en su localización definitiva, se desarrolla la 
red de vasos sanguíneos del riñón. 
La vejiga urinaria se desarrolla a partir de la expansión del seno urogenital, el cual está conectado al 
cordón umbilical del feto a través del alantoides. Hacia la semana duodécima, los dos uréteres se 
vacían en la vejiga, la orina es drenada desde aquí a través de la uretra y la conexión de la vejiga al 
alantoides se reduce a una estructura de soporte: el urachus. 
Control del desarrollo del riñón 
El pronefros y el mesonefros no forman parte del riñón adulto. Nos restringiremos en este apartado 
tan sólo a lo que se conoce sobre el desarrollo del metanefros. 
El desarrollo del riñón es un claro ejemplo de la inducción de interacciones morfogenéticas entre los 
tejidos, sobre todo, de tipo epitelial y mesenquimático. Dos zonas embrionarias diferentes, 
recíprocamenteinducidas, son las responsables de la formación del metanefros: la yema ureteral, que 
deriva del conducto de Wolf, y el mesénquima metanéfrico. Ambos se inducen recíprocamente a 
través de moléculas solubles y contactos célula-célula y célula-matriz extracelular. Subyacentes a 
estos fenómenos inductivos se encuentran los fenómenos de expresión génica diferencial, 
responsables últimos de la expresión de las moléculas inductoras y de aquellas necesarias para la 
función renal: transportadores de membrana, receptores, etcétera. 
Histológicamente, la morfogénesis renal implica la formación de un gran número de estructuras 
tubulares ramificadas. Parte de estas estructuras tubulares derivan del mesénquima metanéfrico, por 
un proceso de epitelización de las células mesenquimáticas, que dará lugar a la mayor parte de la 
nefrona, mientras que otras derivan directamente de la yema ureteral, que se ramifica sucesivamente 
dando lugar a los túbulos colectores. Sin embargo, este esquema simplificado ha sido recientemente 
puesto en duda. Se ha observado que células procedentes de la yema ureteral también forman parte 
de las nefronas, y viceversa, se han encontrado células mesenquimáticas en el árbol ureteral. Esto 
implicaría la existencia de complejos procesos de transición epitelio-mesénquima-epitelio en el 
desarrollo del riñón. 
Aunque todavía no se ha comprobado, se cree que el desarrollo del metanefros empieza con señales 
procedentes del mesénquima metanéfrico que originan la formación de la yema ureteral a partir del 
conducto de Wolf (Fig. 1.2.1). Posteriormente, este primordio empieza a crecer y a ramificarse dentro 
del mesénquima metanéfrico en respuesta otra vez a señales procedentes de éste. A su vez, la yema 
ureteral emite señales que inducen el inicio de la tubulogénesis de las células mesenquimáticas. Ésta 
comienza con condensaciones de células mesenquimáticas, alrededor de las puntas de las ramas del 
árbol ureteral, que generarán agregados mesenquimáticos pretubulares. Estos agregados se 
transforman primero en unas estructuras en forma de coma (cuerpos en Coma) que cambian a una 
forma de S (cuerpos en S) a medida que se epitelizan (Fig. 1.2.2). Finalmente se fusionan con los 
túbulos colectores derivados de la yema ureteral. Las nefronas, durante su desarrollo, atraen células 
endoteliales que formarán parte del glomérulo. Sin embargo, las bases moleculares de la 
vascularización están poco definidas actualmente. Tanto la angiogénesis como la vasculogénesis 
parecen estar implicadas en este proceso. 
 - 10 - 
 
Fases generales del desarrollo del riñón. La señal procedente del ectodermo induce la diferenciación del 
mesodermo intermedio. Éste se compacta y ahueca dando lugar al conducto de Wolf y nefronas primitivas, 
constituyendo el pronefros, no funcional en los mamíferos, que degenera pronto. El mesonefros se desarrolla 
siendo el riñón funcional durante la embriogénesis. Durante esta fase se diferencia el mesénquima metanéfrico, 
que dará lugar al metanefros o riñón definitivo. Al inicio del desarrollo fetal, el metanefros es ya funcional y actúa 
como riñón del feto. El mesonefros degenera, dando lugar a algunas estructuras del aparato reproductor. 
Figura 1.2.1. 
Genes implicados en el desarrollo del riñón 
En los últimos años se ha progresado considerablemente en el conocimiento de las bases moleculares 
del desarrollo renal. Esto se ha debido en parte a la generación de ratones mutantes nulos de 
diversos genes cuyo patrón de expresión sugería que desempeñaban algún papel en los procesos de 
morfogénesis del riñón. Estos estudios han puesto de manifiesto la existencia de un patrón de 
expresión génica secuencial regulada por señales secretadas o de contacto. Sin embargo, existen aún 
lagunas en este conocimiento que nos impiden tener una imagen completa del proceso a nivel 
molecular. Se han descrito más de 250 genes que podrían desempeñar algún papel en el desarrollo 
del riñón. Las limitaciones de espacio hacen imposible abordar aquí la descripción de cada uno de 
estos genes. Nos restringiremos exclusivamente a comentar aquellos mejor caracterizados en cuanto 
a su función. La base de datos de desarrollo del riñón reúne toda la información conocida sobre genes 
implicados en el desarrollo del riñón y constituye una fuente ideal para la ampliación del contenido de 
este capítulo. Se puede acceder a esta base de datos a través de Internet en dos direcciones: 
http://golgi.ana.edu.ac.uk/kidhome.html y 
http://www.ana.ed.ac.uk/anatomy/database/kidbase/kidhome.html. 
 
 - 11 - 
http://golgi.ana.edu.ac.uk/kidhome.html
http://www.ana.ed.ac.uk/anatomy/database/kidbase/kidhome.html
 
 
Morfogénesis del metanefros. El desarrollo del metanefros comienza con una señal inductiva, procedente del 
mesénquima metanéfrico, que induce la formación de la yema ureteral, a partir del extremo más caudal del 
conducto de Wolf. En respuesta, el epitelio del uréter en crecimiento induce la formación de agregados celulares 
mesenquimáticos en los extremos de las ramas del árbol ureteral. Estos agregados pre-tubulares se condensan y 
comienzan a epitelizarse, dando lugar, primero, a los cuerpos en Coma, y posteriormente a los cuerpos en S, 
precursores de la nefrona definitiva. Por último, tiene lugar la fusión de las estructuras tubulares derivadas del 
mesénquima con los túbulos colectores derivados del uréter y la diferenciación final de la nefrona: diferenciación 
de estructuras proximales y distales, formación e inervación del glomérulo y de la red de capilares sanguíneos. 
Figura 1.2.2. 
Determinación del territorio nefrogénico 
La primera fase del desarrollo renal es la especificación del linaje nefrogénico que formará las crestas 
urogenitales. Este linaje deriva del mesodermo intermedio que se diferencia a partir del mesodermo 
mediante señales inductoras aún desconocidas, pero que probablemente provienen de la superficie 
ectodérmica (Fig. 1.2.3A). Se ha propuesto que la proteína morfogenética del hueso Bmp-4 podría ser 
una de estas señales. Es probable que algunos genes implicados en la determinación de los ejes 
antero-posterior y dorsoventral del embrión desempeñen también un papel en esta fase inicial del 
desarrollo del riñón. Tal es el caso, por ejemplo, de los genes del grupo Hox, Hoxb-7, Hoxa-11 y 
Hoxd11, cuya importancia en la formación del riñón se ha demostrado. Otros genes que parecen 
operar en etapas previas al inicio del desarrollo del riñón propiamente dicho son: Lim-1, que codifica 
un factor de transcripción de tipo homeoproteína, y Pax-2, que codifica un factor de transcripción de 
tipo caja paired. Los embriones de ratón mutantes de estos genes carecen completamente de 
riñones. Sin embargo, el papel de estos factores de transcripción, sobre todo, Pax-2, en el desarrollo 
del riñón no sólo se limita a estas etapas tempranas de especificación del territorio nefrogénico, sino 
que también parece desempeñar papeles importantes en etapas posteriores, como sugiere su 
expresión en estructuras intermedias del desarrollo de la nefrona, como los cuerpos en Coma y en S. 
Inducción de la yema ureteral 
Una vez que el territorio morfogenético que dará lugar al riñón ha sido determinado, el desarrollo del 
riñón continúa mediante fenómenos de inducción recíproca entre la yema ureteral y el mesénquima 
metanéfrico. Señales procedentes del mesénquima metanéfrico inducen la formación de la yema 
ureteral como una evaginación de la parte más caudal del conducto de Wolf (Fig. 1.2.3B). Esta 
inducción está mediada en gran parte por el factor neurotrófico derivado de las células gliales 
(GDNF), secretado por el mesénquima metanéfrico. De hecho, la aplicación local de GDNF es capaz 
de inducir yemas ureterales ectópicas. El GDNF interacciona con receptores de membrana presentes 
en las células epiteliales de la yema ureteral, como c-ret, una tirosina-cinasa, y GDNFα, un co-
receptor ligado a la membrana por un anclaje de tipo glicosilfosfatidilinositol (GPI). Estecomplejo-
receptor del GDNF induce una señal intracelular en las células de la yema ureteral que provoca su 
 - 12 - 
crecimiento, hundiéndose en el mesénquima metanéfrico. La expresión de GDNF en el mesénquima 
metanéfrico depende, directa o indirectamente, del factor de transcripción Eya-1, homólogo del gen 
Eye absent de Drosophila melanogaster, implicado en el desarrollo de los ojos de la mosca. Los 
ratones mutantes nulos de Eya-1 carecen de oídos y de riñones. En estos ratones, el uréter no es 
capaz de invadir el mesénquima metanéfrico, probablemente debido a la falta de expresión de GDNF. 
Eya-1 también regula la expresión de otros marcadores tempranos del mesénquima metanéfrico, 
como los genes Six, que codifican factores de transcripción de un tipo relacionado con las 
homeoproteínas. Sin embargo, el papel de los genes Six en el desarrollo del riñón aún no ha sido 
establecido. 
 
Procesos moleculares en el inicio de la formación del riñón. A. La señal inductiva procedente del ectodermo, 
probablemente Bmp-4, induce el mesodermo intermedio. Los genes Pax-2, Lim-1, Hoxb-7, Hoxa-11 y Hoxd-11 
están implicados en el proceso de determinación del territorio nefrogénico. B. Inicio del programa de epitelización 
del mesénquima renal. La activación del factor de transcripción Eya-1 induce la secreción de GDNF por el 
mesénquima, el cual induce la formación de la yema ureteral a partir del conducto de Wolf. Los factores forkhead 
Foxc1 y Foxc2 controlan negativamente la expresión de Eya1 en territorios anteriores del mesénquima renal 
restringiendo la formación de la yema ureteral a posiciones caudales. 
Figura 1.2.3. 
Recientemente se ha sugerido que los factores de transcripción de la familia forkhead Foxc1 y Foxc2 
podrían regular negativamente la expresión de Eya-1 y GDNF. En ratones mutantes nulos Foxc1 y 
Foxc2 (también conocidos como Mf1 y Mfh1, respectivamente), la expresión de GDNF y Eya-1 se 
extiende más anteriormente, lo que podría explicar la formación de un segundo uréter en posiciones 
más anteriores y el desarrollo de riñones duplicados, con síntomas parecidos al defecto congénito de 
"duplicidad renal" en el hombre. 
Conversión mesénquima-epitelio y tubulogénesis 
En respuesta a los fenómenos inductivos del mesénquima, el uréter en desarrollo produce a su vez 
señales que originan la diferenciación del mesénquima y el inicio de la tubulogénesis (Fig. 1.2.4A). 
Recientemente se ha propuesto que al menos parte de estas señales procedentes del uréter podrían 
estar mediadas por el LIF (factor inhibidor de leucemia). Sin embargo, los ratones mutantes nulos del 
gen de LIF no muestran anormalidades en el desarrollo del riñón, lo que sugiere que tal vez otros 
factores de la familia de la interleucina 6, que actúan a través de la ruta de señalización de Stat-3, 
podrían suplir la falta de LIF. Estos factores son producidos por el epitelio ureteral y son capaces de 
inducir la conversión del mesénquima renal en epitelio. 
Uno de los genes importantes para la tubulogénesis del mesénquima metanéfrico es el gen supresor 
de tumores de Wilms (WT-1). Las mutaciones en el gen WT-1 son la causa más común de tumores 
renales infantiles. La expresión de WT-1 en respuesta al efecto inductor del uréter parece estar 
mediada por el factor de transcripción Pax-2. WT-1 induciría entonces la expresión de moléculas 
 - 13 - 
señalizadoras que inducirían la tubulogénesis. La naturaleza de las señales dependientes de WT-1 no 
se conoce exactamente. Las pruebas que apoyan esta función de WT-1 proceden de datos de análisis 
de expresión génica y del fenotipo de ratones mutantes que carecen de este gen. WT-1 se expresa 
desde muy temprano en el mesodermo intermedio, aunque después de la formación de la yema 
ureteral, la expresión de WT-1 aumenta, restringiéndose a los cuerpos en Coma y en S. Los ratones 
mutantes nulos de WT-1 carecen de riñones, posiblemente porque el uréter no se desarrolla y no 
envía señales al mesénquima metanéfrico. Éste degenera mediante un proceso apoptósico. Estos 
resultados sugieren que la ausencia de WT-1 impide la generación de señales desde el mesénquima 
metanéfrico, que regularían la inducción y el crecimiento del uréter. Un candidato posible para esta 
señal dependiente de WT-1 es la anfirregulina, un miembro de la familia del EGF (factor de 
crecimiento epidérmico), cuya expresión está regulada por WT-1. La anfirregulina es capaz de 
estimular la ramificación del uréter in vivo. Sin embargo, los ratones mutantes nulos de este gen 
muestran un desarrollo normal del riñón, lo que sugiere cierto grado de redundancia funcional entre 
estos factores. 
 
Moléculas implicadas en la tubulogénesis renal. A. La figura muestran esquemáticamente las moléculas que 
participan en los fenómenos de inducción recíproca entre el mesénquima renal y el uréter en crecimiento durante 
los procesos de epitelización y formación de túbulos. En el texto se hace una descripción detallada de estos 
fenómenos. B. La interacción entre el uréter y el mesénquima renal diferencia en este último dos tipos de 
poblaciones celulares distintas. Una entra en el programa de diferenciación nefrogénica dando lugar a las 
estructuras tubulares de la nefrona. La otra población permanece en estado mesenquimático, dando lugar al 
estroma renal. En la diferenciación del estroma, los factores Bmp-7 y FGF-2, secretados por el mesénquima, son 
importantes. Asimismo, el estroma produce señales, de naturaleza aún desconocida, que son importantes en el 
control de la tubulogénesis. 
Figura 1.2.4. 
 - 14 - 
Las señales del uréter inducen la condensación de las células mesenquimales y su epitelización en los 
extremos del árbol ureteral. Esto dará lugar a la formación de los cuerpos en Coma y, 
posteriormente, los cuerpos en S, precursores de la nefrona. A nivel molecular, la señal inductiva del 
uréter en crecimiento desencadena en el mesénquima metanéfrico una cascada de expresión de 
factores y proteínas de membrana que son esenciales para la diferenciación del mesénquima. Algunos 
de estos factores actúan de manera autocrina o paracrina sobre el propio mesénquima. Uno de los 
factores mesenquimáticos inducidos por el uréter mejor conocidos es Wnt-4. Este factor pertenece a 
una familia de proteínas secretadas que desempeñan un papel muy importante como reguladores de 
varios procesos del desarrollo embrionario. Wnt-4 se expresa en el mesénquima metanéfrico como 
respuesta al efecto inductor del uréter y es esencial para la tubulogénesis. Se detecta primero en las 
condensaciones celulares del mesénquima adyacentes a las puntas ureterales en crecimiento y, 
posteriormente, en los agregados pretubulares. En ratones mutantes nulos de Wnt-4, el uréter se 
forma e invade el mesénquima, pero no tiene lugar la tubulogénesis y, por lo tanto, carecen de 
nefronas. La expresión inicial de Wnt-4 en las células del mesénquima metanéfrico es inducida por el 
uréter en crecimiento, pero, posteriormente, el Wnt-4 secretado actuaría directamente sobre el 
mesénquima manteniendo su expresión debido a su capacidad autorreguladora. Pese a ser una 
molécula secretada, la acción de Wnt-4 está mediada por interacciones célula-célula y necesita de la 
presencia de proteogíicanos. No se conoce aún por qué mecanismos actúa Wnt-4, aunque se ha 
propuesto que la proteína policistina-1 podría intervenir en la cascada de transducción de señales 
promovida por la interacción de Wnt-4 con su receptor en la membrana de las células del epitelio 
ureteral. La policistina-1 está codificada por el gen PKD-1 cuya mutación produce la poliquistosis 
renal. 
Una molécula que posiblemente coopere con Wnt-4 en la inducción del mesénquima y la 
tubulogénesis es Bmp-7, perteneciente a la familia de proteínas morfogenéticas del hueso (BMP). 
Varias de estas proteínas se expresan durante el desarrollo del riñón (Bmp-4, Bmp-5 y Bmp-7). Los 
ratones mutantes nulos del gen Bmp-7 inician la tubulogénesis, pero ésta se interrumpe y no llegan a 
formarnefronas, o lo hacen en un número muy reducido. BMP-7 se expresa en el conducto de Wolf, 
en el mesénquima metanéfrico, en los agregados pretubulares durante su epitelización y, en el 
adulto, en los podocitos. Recientemente, se ha propuesto que Bmp-7 podría colaborar con FGF-2 
(factor de crecimiento derivado de fibroblastos) en el control del desarrollo del riñón, previniendo la 
apoptosis del mesénquima renal. Sin embargo, Bmp-7 y FGF-2 tanto independientemente como en 
combinación, parecen inhibir la tubulogénesis. Bmp-7 y FGF-2 colaborarían en el mantenimiento de 
una población celular mesenquimática indiferenciada en la zona nefrogénicamente activa. 
Otro miembro de la familia Wnt, Wnt-11, parece estar también implicado en la señal epitelogénica 
procedente del uréter. Los extremos del árbol ureteral expresan Wnt-11 y esta expresión es 
dependiente de la síntesis de proteoglucanos. Sin embargo, el potencial inductor de Wnt-11 en la 
nefrogénesis no ha sido establecido aún. Wnt-7b, otro factor de la familia, se expresa en los túbulos 
colectores, derivados del uréter primordial. 
La señal inductiva producida por el uréter parece depender del factor de transcripción de tipo 
homeoproteína Emx-2, expresado en la yema ureteral. Los ratones mutantes con déficit del gen Emx-
2 expresan WT-1, GDNF y c-ret, pero no expresan Wnt-4 y carecen de túbulos. Por lo tanto, Emx-2 
parece estar regulando la señal o señales iniciales que disparan la expresión de Wnt-4 en el 
mesénquima metanéfrico e inicia la tubulogénesis. En este sentido, Emx-2 podría estar regulando la 
expresión de LIF y Wnt-11. 
Proteoglucanos y moléculas de adhesión en el desarrollo del riñón 
Como se mencionó más arriba, los proteoglucanos son moléculas importantes en el desarrollo del 
riñón. La inhibición de la sulfatación de las cadenas laterales de glucosaminoglicanos inhibe el 
crecimiento y ramificación de la yema ureteral en cultivos in vitro. Tanto el uréter como el 
mesénquima metanéfrico expresan proteoglucanos, como Syndecan-1, un proteoglucano cuya 
expresión está regulada por WT-1, y Glypican-5, el cual se detecta en agregados mesenquimales y en 
estructuras en epitelización. Los datos genéticos existentes hasta el momento que sugieren el papel 
de los proteoglucanos en el desarrollo del riñón se basan en ratones mutantes nulos del gen del 
Glypican3, un proteoglucano de heparán-sulfato unido a la membrana a través de un anclaje de tipo 
GPI, o para el gen de la enzima HS2-sulfotransferasa (HS2ST). Ambos ratones mutantes presentan 
anormalidades en el desarrollo del riñón. En el caso de Glypican-3, las estructuras derivadas de la 
yema ureteral y los túbulos colectores presentan un crecimiento exagerado, mientras que los ratones 
deficientes de HS2ST tienen problemas en la ramificación del uréter. El modo de actuación de los 
proteoglucanos no está bien establecido. Por contener heparán-sulfato, estas moléculas podrían unir 
proteínas que ligan heparina, como algunos factores de crecimiento como Wnt y FGF-2, lo que sería 
importante para la interacción de estos factores con sus receptores. 
 - 15 - 
Otra molécula importante en los primeros pasos de diferenciación del mesénquima metanéfrico es la 
subunidad α8 de la integrina α8β1. Esta integrina se expresa en las células mesenquimales que 
rodean el conducto de Wolf. Cuando el uréter empieza a crecer, invadiendo el mesénquima y 
ramificándose, la expresión de la subunidad α8 aumenta y se detecta en los agregados 
mesenquimales. Sin embargo, cuando comienza el proceso de epitelización, cesa la expresión de esta 
integrina, no detectándose ni en los cuerpos en Coma ni en S, característicos del inicio de la 
tubulogénesis. Los ratones mutantes nulos de integrina α8 tienen defectos importantes en el 
desarrollo del riñón. Muchos nacen sin riñones o uréteres y en algunos casos, en los que el uréter ha 
crecido e invadido el mesénquima, no tiene lugar la ramificación del uréter ni se detectan nefronas 
diferenciadas. El ligando de esta integrina en el desarrollo del riñón no se conoce, pero 
probablemente se localice en los extremos del árbol ureteral, mediando las interacciones entre el 
epitelio ureteral y el mesénquima en las primeras fases del desarrollo renal. Otra integrina, la 
subunidad α6, también podría desempeñar algún papel en la conversión del mesénquima en epitelio 
durante la tubulogénesis. Se ha observado que los anticuerpos desarrollados frente a esta subunidad, 
o frente a su receptor, la laminina-α1, son capaces de bloquear la epitelización del mesénquima. 
Curiosamente, sin embargo, los ratones mutantes nulos de gen de la subunidad α6 son viables, lo 
que indica que el papel de la subunidad α6 podría ser suplido por el de otro miembro de la familia de 
las integrinas en su ausencia. 
La matriz extracelular y las membranas basales son también dos elementos importantes para el 
desarrollo del riñón, puesto que proporcionan superficies adhesivas y de soporte importantes para la 
diferenciación y la migración de las células durante la tubulogénesis y el crecimiento y la ramificación 
del árbol ureteral. Estos procesos implican la remodelación de la matriz extracelular y de las 
membranas basales, que suponen barreras para los movimientos morfogenéticos que ocurren 
durante el desarrollo del riñón. En estos procesos desempeñan un papel fundamental las proteasas de 
degradación de matriz, como las metaloproteasas de matriz MMP-2 y MMP-9. 
El estroma renal 
La inducción del mesénquima por el uréter diferencia dos poblaciones celulares en el mesénquima. 
Una de estas poblaciones se epiteliza y da lugar a las nefronas y conductos tubulares, mientras que la 
otra permanece en estado mesenquimal formando el estroma renal. Bmp-7 y FGF-2, secretados por 
el mesénquima renal, están implicados en la proliferación de las células del estroma (Fig. 1.2.4B). Las 
células del estroma expresan el factor de transcripción BF-2, perteneciente a la familia Fork head. 
Aunque el papel de BF2 en la morfogénesis renal no se conoce todavía, se cree que podría regular la 
expresión de algún factor secretado por las células del estroma importante para la tubulogénesis. 
Esta posibilidad se basa en experimentos con ratones mutantes con déficit del gen BF-2, los cuales 
muestran defectos en el sistema de túbulos y nefronas, sitios donde este gen no se expresa. 
Las células del estroma expresan también los factores de transcripción RARα2 y RARβ2, de la familia 
de los receptores nucleares. Estos factores podrían participar en el control de la ramificación del árbol 
ureteral. Los ratones mutantes nulos dobles para ambos factores de transcripción presentan un árbol 
ureteral muy reducido. En estos mutantes, la expresión del receptor de GDNF, c-ret, y de Wnt-11 en 
la yema ureteral es menor, por lo que se cree que RARα2 y RARβ2 podrían controlar la expresión de 
algún factor producido por las células del estroma que inducen la expresión de estas proteínas en el 
epitelio ureteral. Los niveles reducidos de c-ret y Wnt-11 podrían explicar la capacidad limitada del 
uréter para ramificarse. 
Un candidato probable para ser el factor difusible producido por las células del estroma es el FGF-7, 
un miembro de la familia del factor de crecimiento de fibroblastos. El FGF-7 se expresa en las células 
del estroma en las proximidades del uréter en crecimiento, el cual posee receptores para este factor. 
Además, los ratones mutantes nulos del gen de FGF-7 muestran riñones de pequeño tamaño, aunque 
funcionales, con un 30% menos de nefronas y un árbol ureteral reducido. Queda aún por determinar 
si la expresión de FGF-7 en las células del estroma depende de BF-2 o RARα/RARβ. 
Formación de la nefrona 
A pesar de que el conocimiento sobre el desarrollo del riñón ha progresado mucho en los aspectos 
referentes a la formación de las estructuras tubulares de la nefrona y los túbulos colectores, poco se 
conoce sobre los mecanismos y genes implicados en la diferenciación de las diferentes partes dela 
nefrona madura, y del desarrollo de la vasculatura y la inervación del riñón. Estudios recientes con el 
mutante no isthmus del pez cebra sugieren un papel para el gen Pax-2 en estas fases de la 
morfogénesis renal. Algunos experimentos in vitro parecen indicar que durante el desarrollo de la 
nefrona WT-1 actuaría como un represor de la expresión de Pax-2 (Fig. 1.2.5). Asimismo, Pax-2, que 
inicialmente activa la expresión de WT-1 en el mesénquima renal, en estas fases del desarrollo de la 
nefrona inhibiría la expresión de WT-1. Esta mutua exclusión de ambos factores hace que la 
 - 16 - 
expresión de Pax-2 quede restringida a la parte distal de la nefrona, mientras que WT-1 se expresaría 
en la parte proximal que dará lugar al glomérulo. El doble papel de Pax-2 como activador e inhibidor 
de la expresión de WT-1 parece depender de un tercer factor que interacciona con Pax-2, cambiando 
su función reguladora. Se ha propuesto que algún miembro de la familia groucho podría ser este 
factor modulador de la actividad de Pax-2. 
Tradicionalmente, se creía que el establecimiento de la vasculatura renal se llevaba a cabo 
exclusivamente mediante mecanismos angiogénicos que consistían en la invasión del riñón en 
desarrollo por vasos sanguíneos exógenos. Sin embargo, en experimentos recientes con trazadores 
de linaje en cocultivos y con ratones mutantes para flk-1 y tie-1, dos marcadores de linaje endotelial 
muy tempranos, se ha visto que los capilares glomerulares derivan predominantemente del 
mesénquima metanéfrico. Los genes implicados en esta diferenciación de las células mesenquimales 
del riñón a células endoteliales no se conocen todavía. En trabajos con modelos experimentales más 
simples, como la rana Xenopus y el pez cebra, se han identificado algunos genes, como casanova, en 
la rana, y cloche, en el pez cebra, que parecen ser importantes en el desarrollo del glomérulo; sin 
embargo, aún no se han identificado los correspondientes genes homólogos en los mamíferos y el 
hombre. El gen cloche del pez cebra es importante para la diferenciación de las células endoteliales 
del riñón y su función en el mantenimiento de la barrera de filtración. Cloche actúa por debajo de flk-
1 en la cascada de eventos que tienen lugar en la diferenciación de la célula endotelial. En los 
mamíferos, el factor de transformación derivado de tumores (TGFβ1) también actúa por debajo de 
flk-1 en la diferenciación del endotelio glomerular. Se ha demostrado que el TGFβ1 podría 
desempeñar algún papel en la organización de los capilares glomerulares y en la formación de las 
fenestras endoteliales. Sin embargo, los ratones mutantes nulos del gen de TGFβ1 no presentan 
ningún defecto en los riñones, lo que rebaja la importancia de este factor en el desarrollo del riñón. 
Por último el factor de crecimiento derivado de plaquetas, PDGF, y la integrina α3 parecen ser 
importantes para la formación del glomérulo y la diferenciación de las células mesangiales. 
 
Regulación cruzada de Pax-2 y WT-1 en el desarrollo final de la nefrona. La diferenciación de las estructuras 
distales y glomerulares de la nefrona madura depende de la actividad de los factores de transcripción Pax-2 y WT-
1. Los dos factores de transcripción se expresan inicialmente en ambas estructuras, pero pronto se establece una 
regulación negativa recíproca entre ambos. La interacción de Pax-2 con un correpresor de la familia groucho tiene 
un efecto negativo sobre la expresión de WT1. Recíprocamente, en la región glomerular, WT1 reprime la expresión 
de Pax-2. 
Figura 1.2.5. 
Corolario 
A diferencia de otros organismos más sencillos, en los que el desarrollo sigue pautas prefijadas donde cada célula 
primordial está programada para dar lugar una estructura particular y definida del adulto, en el desarrollo de los 
vertebrados, el destino final de una célula depende en gran medida de las condiciones de su entorno, es decir, de 
su interacción con otras células vecinas y con la matriz extracelular que la rodea. El desarrollo embrionario del 
riñón constituye un claro ejemplo de desarrollo dinámico, común a la mayoría de los procesos de desarrollo de los 
vertebrados. La interacción del mesodermo con el ectodermo, a través de factores difusibles, determina el primer 
territorio celular que dará lugar al sistema renal. Posteriormente, la interacción mutua entre las dos estructuras 
principales del sistema renal, el uréter y el mesénquima renal, desencadena la cascada de eventos que darán 
lugar finalmente al riñón. En estos eventos son de especial relevancia las transiciones mesénquima-epitelio que 
convierten un tejido amorfo como el mesénquima renal, en una compleja estructura tubular arboriforme en el 
riñón adulto. Estas interacciones uréter-mesénquima están mediadas por un abanico de moléculas, tanto difusibles 
como ancladas a las membranas celulares, y de sus receptores. Asimismo, la expresión adecuada de estas 
moléculas mediadoras depende absolutamente de la expresión de factores de transcripción específicos en los dos 
compartimentos celulares del metanefros. Por consiguiente, tanto los programas de expresión genética definidos, 
como las interacciones celulares precisas son los elementos básicos de los mecanismos moleculares que dirigen la 
morfogénesis y la diferenciación de las diferentes estructuras del riñón de los mamíferos. De lo brevemente 
expuesto en este capítulo podemos concluir que, a pesar de la complejidad de estos mecanismos, la idea global de 
cómo se forma el riñón a lo largo del desarrollo embrionario va emergiendo poco a poco. La combinación de los 
experimentos genéticos con ratones mutantes y las patologías genéticas renales en el hombre, junto a los 
estudios bioquímicos y de biología celular, permitirán seguir avanzando en este campo. 
 - 17 - 
 
 
Capítulo 1.3. Función renal: conceptos generales 
J. M. López Novoa 
D. Rodríguez Puyol 
Tabla de contenidos 
El flujo sanguíneo renal y su regulación 
Autorregulación del flujo sanguíneo renal 
Regulación exógena del flujo sanguíneo renal 
Medida del flujo sanguíneo renal 
La filtración glomerular y su regulación 
Medida del filtrado glomerular 
Mecanismos de transporte a lo largo de la nefrona 
Túbulo proximal 
Asa de Henle 
Túbulo distal 
Túbulo conector y túbulo colector 
Balance de sodio 
Mecanismos de concentración y dilución de la orina 
Concepto de agua libre 
Otras funciones renales 
Bibliografía 
La mayor parte de las reacciones químicas en que se basan los procesos vitales se producen en un 
medio líquido, formado fundamentalmente por agua, en la que están disueltas diversas sales 
minerales, proteínas y otros componentes en menor cuantía. Este medio líquido está dividido en dos 
compartimentos, el extracelular y el intracelular, que tienen características fisicoquímicas diferentes 
pero idéntica osmolaridad. 
Mediante procesos activos, el líquido intracelular se mantiene en constante intercambio con el 
extracelular, que baña a las células y que constituye el medio interno del animal. Tanto el volumen 
como las propiedades fisicoquímicas del líquido extracelular deben mantenerse dentro de unos 
estrechos márgenes para que las células funcionen normalmente. Algunos factores tienden a 
modificar el volumen y la composición del líquido extracelular. Los más importantes son la ingesta o 
pérdida de agua y electrólitos y la adición al medio de productos de desecho del metabolismo celular. 
En el organismo existe una regulación activa para mantener la constancia del medio interno de cara a 
todas las circunstancias que pudieran alterarlo. Esta regulación activa se basa fundamentalmente en 
dos sistemas que ejercen independientemente su capacidad reguladora: el ajuste de la ingesta por 
parte del aparato digestivo (sed, apetito) y el ajuste de las eliminaciones por el riñón. También, y en 
menor grado, la composición del líquido intersticial puede ser regulada por otros sistemas. Por 
ejemplo, el aparato respiratorio regula la concentraciónde CO2 del plasma y, por lo tanto, el equilibrio 
ácido-base del mismo. 
En este contexto, se puede afirmar que la misión fundamental del riñón es la de estabilizar el 
volumen y las características fisicoquímicas del líquido extracelular e, indirectamente, del intracelular, 
mediante la formación de orina. Para ello, el riñón conserva el agua y los electrólitos presentes 
normalmente en los fluidos del organismo, fundamentalmente, sodio, potasio, cloruro y bicarbonato, 
elimina el exceso de agua y electrólitos procedentes de la ingesta, elimina los productos metabólicos 
 
de desecho (urea, creatinina, hidrogeniones) y, finalmente, los productos tóxicos que pueden haber 
penetrado en el organismo. Esto se realiza mediante dos procesos fundamentales: la formación de un 
gran volumen de ultrafiltrado de líquido extracelular y el posterior procesamiento selectivo de este 
filtrado. En estos procesos, aproximadamente, el 99% del agua filtrada es conservada, permitiendo la 
excreción de sólo 1-2 litros diarios. Los cristaloides se conservan o excretados selectivamente 
mediante procesos de intercambio tubular, reabsorción o secreción, de forma que en la orina sólo se 
elimina el exceso de agua o de solutos procedente de la ingesta o del metabolismo. 
El riñón es capaz también de sintetizar diversas hormonas o precursores que desempeñan un papel 
importante en la regulación del sistema cardiovascular, e incluso en la propia función renal. 
 - 18 - 
El flujo sanguíneo renal y su regulación 
La formación de una gran cantidad de ultrafiltrado de plasma en los glomérulos renales requiere una 
gran irrigación sanguínea. El riñón humano normal recibe un flujo sanguíneo renal (FSR) de alrededor 
de 1.200 ml/min, que, suponiendo un valor hematocrito de 45%, corresponde a 660 ml de flujo 
plasmático renal (FPR), el mayor de todos los órganos del cuerpo en relación con su peso. Esto se 
debe a la existencia de una red vascular con una resistencia relativamente baja, cuyos componentes 
se sitúan a lo largo del recorrido de la sangre a través del riñón. La primera resistencia importante se 
debe a la arteriola aferente, antes de iniciarse el ovillo capilar glomerular. En ella se produce una gran 
caída en la presión hidrostática de la sangre, que no es tanta como pudiera preverse dada la 
magnitud de la resistencia, debido al hecho de que a la salida del ovillo capilar se sitúa otra 
resistencia importante, la de la arteriola eferente (Fig. 1.3.1). El conjunto de los capilares 
glomerulares, debido a su tortuosidad y pequeño calibre, también ejerce una resistencia sustancial al 
paso de la sangre a su través. 
La resistencia vascular está estrechamente regulada, en las arteriolas aferente y eferente, por el 
grado de contracción de sus paredes y, en el caso de los capilares, por los cambios geométricos 
inducidos por la contracción de las células pericapilares. Esta regulación diferencial de las resistencias 
vasculares en los distintos segmentos de la circulación renal permite controlar específicamente la 
presión hidrostática en cada una de las áreas de la circulación renal donde hay intercambios 
hidrosalinos: los capilares glomerulares, los capilares peritubulares y los vasos rectos medulares y 
papilares. Además, permite regular de forma semiindependiente la presión intracapilar y el flujo 
sanguíneo renal (Fig. 1.3.1). 
 
Presión hidrostática intravascular en diferentes zonas vasculares de la rata Munich-Wistar. Datos tomados de refs. 
1, 2 y 3, citas específicas. PAM, presión arterial media. 
Figura 1.3.1. 
La presión hidrostática dentro de los capilares glomerulares es un parámetro dinámico, regulado por 
la presión de perfusión renal y las resistencias de la arteriola aferente y eferente, dando como 
resultado una presión hidrostática media de 46 ± 8 mm Hg (estudios en ratas hidropénicas). La 
presión hidrostática de la sangre en los capilares peritubulares de la corteza y en los de la médula y 
papila (vasos rectos) viene regulada por la presión intraglomerular, la resistencia de la arteriola 
eferente y la resistencia del conjunto del sistema venoso. En estos capilares postglomerulares, la 
presión hidrostática depende de la zona del riñón, pero es siempre menor que la de los capilares 
glomerulares. 
Autorregulación del flujo sanguíneo renal 
Una característica básica de la regulación del flujo sanguíneo por cualquier órgano, y más 
especialmente por el riñón, es que su "intensidad" se mantiene constante con relativa independencia 
de la presión arterial (Fig. 1.3.2). Como el flujo sanguíneo depende de forma directa de la presión de 
perfusión y de forma inversa de la resistencia que ese órgano ejerce al paso de sangre, es fácil 
deducir que frente a los cambios en la presión de perfusión, se producen en el riñón cambios 
cuantitativamente similares en la resistencia vascular renal (RVR). Ésta es una propiedad intrínseca 
 - 19 - 
del riñón, que se produce incluso en riñones aislados y perfundidos "ex vivo". La respuesta adaptativa 
frente a los cambios de presión arterial se produce fundamentalmente en las arteriolas aferentes, lo 
que permite que la presión en el interior de los capilares glomerulares se mantenga también 
constante y que, por lo tanto, los cambios de la presión arterial afecten sólo mínimamente al filtrado 
glomerular. Esta propiedad, denominada autorregulación, es operativa sólo con ciertos límites de 
presión arterial, que en el hombre oscilan entre 80 y 140 mm Hg. 
 
Autorregulación del flujo sanguíneo renal total frente a cambios de presión arterial en el perro (cuadrados) y en la 
rata (círculos). Datos tomados de ref. 4, citas específicas. 
Figura 1.3.2. 
Se han planteado varias hipótesis para explicar la autorregulación del FSR. Se van a describir 
brevemente las tres mejor estudiadas y más aceptadas: la teoría miogénica, la retroalimentación 
túbulo-glomerular y la teoría metabólica, teniendo en cuenta que no son excluyentes, y que dos o los 
tres mecanismos pueden operar simultáneamente para autorregular el FSR. 
De acuerdo con la teoría miogénica, el músculo liso de las arterias se contrae y se relaja en respuesta 
a los aumentos y disminuciones de la tensión de la pared vascular. De esta forma, un aumento en la 
presión de perfusión que inicialmente distendería la pared vascular, iría seguido de una contracción 
de los vasos de resistencia, que elevaría la resistencia vascular en el mismo grado en el que se habría 
elevado la presión de perfusión, de forma que el flujo de sangre a través de la arteria no experimenta 
modificaciones apreciables. El factor que controlaría la contracción de la pared vascular sería la 
tensión de la misma (T), que viene dada, de acuerdo a la ley de Laplace, por el gradiente transmural 
de presión (P) y por el radio interno del vaso (R): 
T = P × R 
De esta forma, para mantener constante T frente a un aumento de P, el radio interno del vaso tendría 
que disminuir y viceversa. 
Esta interpretación de la teoría miogénica, aunque válida, es demasiado sencilla para explicar el 
control fino del FSR. Probablemente, la contracción de la pared arterial en respuesta a los cambios de 
presión tenga dos componentes, uno de respuesta mecánica pasiva de las capas elásticas de la 
pared, y un segundo, activo, sensible a la distensión del vaso. Esta distensión desencadenaría un 
mecanismo de contracción activa de las células del músculo liso vascular, probablemente mediada por 
un aumento del calcio libre citosólico. 
El segundo mecanismo que participa en la autorregulación es la retroalimentación túbulo-glomerular. 
Según esta teoría, un aumento de la presión de perfusión produciría un aumento de la presión 
hidrostática de los capilares glomerulares y el consiguiente aumento de la filtración glomerular (FG). 
Aumentaría así el flujo de líquido a través de zonas distales de la nefrona, lo que sería detectado por 
la mácula densa, que a su vez activaría mecanismos efectores que causan vasoconstricción 
preglomerular, reduciendo

Continuar navegando