Logo Studenta

Ley de Coulomb

¡Este material tiene más páginas!

Vista previa del material en texto

INSTITUTO TECNOLÓGICO SUPERIOR CENTRAL TÉCNICO
 
FORMATO DE MEMORANDO		Código: REG.DAC.022	
					Versión: 02	
					F. elaboración:
15-06-2017 	
					F. última revisión: 
20-10-2017	
					Página 1 de 1	
	Registro	Elaborado por:
Comisión de procesos y planificación		Revisado por:
C. Académico Superior	Aprobado por:
Consejo Académico Superior	
FÍSICA III
La ley de Coulomb
Para familiarizarnos un poquito con la Ley de Coulomb, revisemos un ejemplo que vemos todos los días.
Preguntémonos lo siguiente:
	¿Qué interacción hay entre la Luna y nuestro planeta?
Introducción
3
La Tierra y la Luna se atraen mutuamente por una fuerza gravitacional (Fg).
Introducción
4
La expresión que las relaciona involucra:
Las masas m1 y m2 de ambos cuerpos.
La distancia r entre ellos.
Y una constante G (Constante Universal Gravitacional).
Introducción
r
m1
m2
5
La expresión es la siguiente:
Introducción
r
m1
m2
Fg =
G
m1 m2
r2
6
Esta atracción ocurre entre cualquier cuerpo celeste y también con las estrellas.
Algo semejante ocurre a nivel mucho más pequeño con las cargas eléctricas.
Introducción
7
La expresión para la fuerza de interacción entre dos cargas puntuales q1 y q2 (pequeñas en relación con la distancia que las separa), es muy semejante a la que vimos para la fuerza gravitacional entre la Luna y la Tierra.
Esta expresión es la siguiente:
Ley de Coulomb
Fe =
k
q1 q2
r2
8
Es decir:
	La fuerza eléctrica es directamente proporcional al producto de las cargas, e inversamente proporcional al cuadrado de la distancia que separa a dichas cargas, dependiendo de una constante k según el medio en que estén presentes.
En donde:
	q1 y q2 : son las cargas en Coulomb.
	r : es la distancia en metros.
	k : es una constante que depende del medio; en el vacío corresponde aproximadamente a 9 x 109 (N·m2)/C2
	Fe: es la fuerza en Newton.
Ley de Coulomb
Fe =
k
q1 q2
r2
9
La siguiente imagen ilustra la definición de la ley de Coulomb.
En el ejemplo tenemos dos cargas puntuales iguales a 1 Coulomb y separadas por 1 metro, en el vacío.
Ley de Coulomb
q1
q2
1 m
1C
1C
10
Respecto a la ley de Coulomb hay que considerar lo siguiente:
Se aplica a cargas puntuales.
La fuerza eléctrica es una magnitud vectorial, por lo tanto, hay que considerar suma de vectores.
Si Fe es > 0, hay repulsión; entonces q1 y q2 tienen la misma carga.
Si Fe es < 0, hay atracción; entonces q1 y q2 tienen distinta carga.
Consideraciones:
11
Objetivos: Después de terminar esta unidad deberá:
Explicar y demostrar la primera ley de la electrostática y discutir la carga por contacto y por inducción.
Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas.
Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.
Carga eléctrica
Cuando una barra de caucho se frota con piel, se remueven electrones de la piel y se depositan en la barra.
Se dice que la barra se cargó negativamente debido a un exceso de electrones. Se dice que la piel se cargó positivamente debido a una deficiencia de electrones.
Los electrones se mueven de la piel a la barra de caucho.
positivo
negativo
+ + + +
 --
 --
Piel
Caucho
Vidrio y seda
Cuando una barra de vidrio se frota con seda, se remueven electrones del vidrio y se depositan en la seda.
Se dice que el vidrio está cargado positivamente debido a una deficiencia de electrones. Se dice que la seda está cargada negativamente debido a un exceso de electrones.
Los electrones de mueven del vidrio a la seda.
positivo
negativo
- - - -
 + +
 + +
seda
vidrio
El electroscopio
Electroscopio de esferas de médula de saúco
Electroscopio de hoja de oro
Aparatos de laboratorio que se usan para estudiar la existencia de dos tipos de carga eléctrica.
Dos cargas negativas se repelen
1. Cargue la barra de caucho al frotarla con piel.
2. Transfiera electrones de la barra a cada esfera.
Dos cargas negativas se repelen mutuamente.
Dos cargas positivas se repelen
1. Cargue la barra de vidrio al frotarla con seda.
2. Toque las esferas con la barra. Los electrones libres en las esferas se mueven para llenar los vacíos en la seda, lo que deja a cada esfera con deficiencia. (Se cargan positivamente.)
Las dos cargas positivas se repelen mutuamente.
Los dos tipos de carga
piel
caucho
Atracción
Note que la esfera cargada negativamente (verde) es atraída por la esfera cargada positivamente (roja).
¡Cargas opuestas se atraen!
seda
vidrio
Primera ley de la electrostática
Cargas iguales se repelen;
cargas opuestas se atraen.
Neg
Neg
Pos
Neg
Pos
Pos
Carga por contacto
1. Tome un electroscopio descargado, como se muestra abajo.
2. Ponga una barra cargada negativamente en contacto con la perilla.
3. Los electrones se mueven por la hoja y el eje, lo que hace que se separen. Cuando la barra se retira, el electroscopio permanece cargado negativamente.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cargue el electroscopio positivamente mediante contacto con una barra de vidrio:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Repita los procedimientos usando una barra de vidrio cargada positivamente. Los electrones se mueven desde la esfera para llenar la deficiencia en el vidrio, lo que deja el electroscopio con una carga neta positiva cuando se retira el vidrio.
Carga de esferas por inducción
-
-
-
-
-
Esferas no cargadas
Separación de carga
-
-
-
-
-
Aislamiento de esferas
Cargadas por inducción
-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
-
Inducción
Electrones repelidos
Inducción para una sola esfera
-
-
-
-
-
Esfera no cargada
Separación de carga
Los electrones se mueven a tierra
Cargada por inducción
+
+
+
+
Inducción
-
-
-
-
-
-
-
-
-
+
+
+
+
-
-
-
-
- - - -
-
-
-
-
+
+
+
+
-
-
-
-
La cantidad de carga
La cantidad de carga (q) se puede definir en términos del número de electrones, pero el Coulomb (C) es una mejor unidad para trabajo posterior. La siguiente puede ser una definición temporal:
Coulomb: 1 C = 6.25 x 1018 electrones
Esto significa que la carga en un solo electrón es:
1 electrón: e- = -1.6 x 10-19 C
Unidades de carga
El coulomb (que se selecciona para usar con corrientes eléctricas) en realidad es una unidad muy grande para electricidad estática. Por ende, con frecuencia es necesario usar los prefijos métricos.
1 mC = 1 x 10-6 C
1 nC = 1 x 10-9 C
1 pC = 1 x 10-12 C
Ejemplo 1. Si 16 millones de electrones se remueven de una esfera neutral, ¿cuál es la carga en coulombs sobre la esfera?
1 electrón: e- = -1.6 x 10-19 C
q = -2.56 x 10-12 C
Dado que se remueven electrones, la carga que permanece sobre la esfera será positiva.
Carga final sobre la esfera:
q = +2.56 pC
+ + + +
 + + +
 + + +
+ +
+ +
Ley de Coulomb
La fuerza de atracción o repulsión entre dos cargas puntuales es directamente proporcional al producto de las dos cargas e inversamente proporcional al cuadrado de la distancia entre ellas.
F
r
F
F
q
q
q’
q’
-
+
-
-
Cálculo de fuerza eléctrica
La constante de proporcionalidad k para la ley de Coulomb depende de la elección de las unidades para carga.
Cuando la carga q está en coulombs, la distancia r en metros y la fuerza F en newtons, se tiene:
Ejemplo 2. Una carga de –5 mC se coloca a 2 de una carga de +3 mC. Encuentre la fuerza entre las dos cargas.
-
+
2 mm
+3 mC
-5 mC
q
q’
Dibuje y marque lo dado en la figura:
r
F
F = 3.38 x 104 N; atracción
Nota: Los signos se usan SÓLO para determinar la dirección de la fuerza.
Estrategias para resolución de problemas
1. Lea, dibuje y etiquete un bosquejo que muestre toda la información dad en unidades SI apropiadas.
2. No confunda el signo de la carga con el signo de las fuerzas.Atracción/repulsión determina la dirección (o signo) de la fuerza.
3. La fuerza resultante se encuentra al considerar la fuerza debida a cada carga independientemente. Revise el módulo acerca de vectores, de ser necesario.
4. Para fuerzas en equilibrio: SFx = 0 = SFy = 0.
Ejemplo 3. Una carga de –6 mC se coloca a 4 cm de una carga de +9 mC. ¿Cuál es la fuerza resultante sobre una carga de –5 mC que se ubica a medio camino entre las primeras cargas?
-
+
2 cm
+9 mC
-6 mC
q1
q2
r2
2 cm
-
r1
1. Dibuje y etiquete.
q3
2. Dibuje fuerzas.
F2
F1
1 nC = 1 x 10-9 C
3. Encuentre resultante; derecha es positivo.
F1 = 675 N
F2 = 1013 N
Ejemplo 3. (Cont.) Note que la dirección (signo) de las fuerzas se encuentra de atracción-repulsión, no de + o – de la carga.
-
+
2 cm
+9 mC
-6 mC
q1
q2
r2
2 cm
-
r1
q3
F2
F1
F1 = 675 N
F2 = 1013 N
+
La fuerza resultante es la suma de cada fuerza independiente:
FR = F1 + F2 = 675 N + 1013 N;
FR = +1690 N
Ejemplo 4. Tres cargas, q1 = +8 mC, q2 = +6 mC y q3 = -4 mC se ordenan como se muestra abajo. Encuentre la fuerza resultante sobre la carga de –4 mC debida a las otras.
Dibuje diagrama de cuerpo libre.
-
53.1o
-4 mC
q3
F1
F2
Note que las direcciones de las fuerzas F1 y F2 sobre q3 se basan en atracción/repulsión de q1 y q2. 
+
-
4 cm
3 cm
5 cm
53.1o
+6 mC
-4 mC
+8 mC
q1
q2
q3
+
Ejemplo 4 (Cont.) A continuación encuentre las fuerzas F1 y F2 a partir de la ley de Coulomb. Tome los datos de la figura y use unidades SI.
F1 = 115 N, 53.1o S del O
F2 = 240 N, oeste
Por tanto, se necesita encontrar la resultante de dos fuerzas:
+
-
4 cm
3 cm
5 cm
53.1o
+6 mC
-4 mC
+8 mC
q1
q2
q3
F2
F1
+
Ejemplo 4 (Cont.) Encuentre los componentes de las fuerzas F1 y F2 (revise vectores).
53.1o
-
-4 mC
q3
F1= 115 N
F1y
F1x
F1x = -(115 N) cos 53.1o = - 69.2 N
F1y = -(115 N) sen 53.1o = - 92.1 N
Ahora observe la fuerza F2:
F2x = -240 N; F2y = 0
Rx = SFx ; Ry = SFy
Rx = – 69.2 N – 240 N = -309 N
Ry = -69.2 N – 0 = -69.2 N 
F2
240 N
Rx= -92.1 N
Ry= -240 N
Ejemplo 4 (Cont.) Ahora encuentre la resultante R de los componentes Fx y Fy. (revise vectores).
Rx= -309 N
Ry= -69.2 N
-
-4 mC
q3
Ry = -69.2 N
Rx = -309 N
f
R
Ahora se encuentra la resultanteR,q:
R = 317 N
Por tanto, la magnitud de la fuerza eléctrica es:
Ejemplo 4 (Cont.) La fuerza resultante es 317 N. Ahora es necesario determinar el ángulo o dirección de esta fuerza.
-69.2 N
-
-309 N
f
R
q
-62.9 N
O, el ángulo polar q es: q = 1800 + 77.40 = 257.40
El ángulo de referencia es: f = 77.40 S del O
Fuerza resultante: R = 317 N, q = 257.40
Resumen de fórmulas:
Cargas iguales se repelen; cargas iguales se atraen.
1 electrón: e- = -1.6 x 10-19 C
1 mC = 1 x 10-6 C
1 nC = 1 x 10-9 C
1 pC = 1 x 10-12 C
Control de lectura del siguiente 
documento
-19
6-
-
-1.6 x 10C
(16 x 10e)
1 e
q
æö
=
ç÷
èø
2
'
qq
F
r
µ
22
9
2
Nm
9 x 10
'C
Fr
k
qq
×
==
q
q
Fr
k
r
q
kq
F
¢
=
¢
=
2
2
 
donde
 
2
2
9-6-6
Nm
C
2-32
(9 x 10)(5 x 10C)(3 x 10C
'
(2 x 10m)
kqq
F
r
-
==
9-6-6
13
1
22
1
(9 x 10)(6 x 10)(5 x 10)
;
(0.02 m)
kqq
F
r
==
9-6-6
23
2
22
1
(9 x 10)(9 x 10)(5 x 10)
;
(0.02 m)
kqq
F
r
==
9-6-6
1
2
(9 x 10)(8 x 10)(4 x 10)
(0.05 m)
F
=
9-6-6
2
2
(9 x 10)(6 x 10)(4 x 10)
(0.03 m)
F
=
1323
12
22
12
; 
kqqkqq
FF
rr
==
y
22
x
R
; tan=
R
xy
RRR
f
=+
22
(309 N)(69.2 N)317 N
R
=+=
22
317 N
xy
RRR
=+=
y
x
R
309 N
tan
R-69.
 
2 N
f
-
==
2
9
2
Nm
9 x 10
C
k
×
=
2
'
kqq
F
r
=

Otros materiales