Logo Studenta

ECUACIONES_DIFERENCIALES_Y_TRANSFORMADAS

¡Este material tiene más páginas!

Vista previa del material en texto

Luis M. Sánchez Ruiz 
Matilde P. Legua Fernández 
 
 
 
 
 
 
 
 
 
 
ECUACIONES DIFERENCIALES Y 
TRANSFORMADAS DE LAPLACE 
CON APLICACIONES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EDITORIAL 
UNIVERSITAT POLITÈCNICA DE VALÈNCIA 
 
Para referenciar esta publicación utilice la siguiente cita: 
Sánchez Ruiz, Luis M; Legua Fernández, Matilde P. ( ). Ecuaciones diferenciales y transformadas de 
Laplace con aplicaciones. alencia: Editorial Universitat Politècnica de València 
© Luis M. Sánchez Ruiz 
 Matilde P. Legua Fernández 
© 2017, Editorial Universitat Politècnica de València 
 distribución: www.lalibreria.upv.es / Ref.: 0798_01_05_01 
Imprime: Byprint Percom, sl 
ISBN: 978-84-9048-649-8 
Impreso bajo demanda 
La Editorial UPV autoriza la reproducción, traducción y difusión parcial de la presente publicación con 
fines científicos, educativos y de investigación que no sean comerciales ni de lucro, siempre que se 
identifique y se reconozca debidamente a la Editorial UPV, la publicación y los autores. La autorización 
para reproducir, difundir o traducir el presente estudio, o compilar o crear obras derivadas del mismo en 
cualquier forma, con fines comerciales/lucrativos o sin ánimo de lucro, deberá solicitarse por escrito al 
correo edicion@editorial.upv.es. 
Impreso en España 
Índice General
1 Ecuaciones diferenciales 1
1.1 Introducción y de�niciones básicas . . . . . . . . . . . . 1
1.2 Ecuaciones de primer orden . . . . . . . . . . . . . . . . 2
1.3 Ecuaciones de variables separables . . . . . . . . . . . . . 5
1.3.1 De�nición y resolución . . . . . . . . . . . . . . . 5
1.3.2 Ecuaciones diferenciales homogéneas . . . . . . . 7
1.3.3 Ecuaciones diferenciales reducibles . . . . . . . . 9
1.4 Ecuaciones diferenciales exactas . . . . . . . . . . . . . . 11
1.4.1 De�nición y resolución . . . . . . . . . . . . . . . 11
1.4.2 Factores integrantes . . . . . . . . . . . . . . . . . 13
1.5 Ecuaciones lineales . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 De�nición y resolución . . . . . . . . . . . . . . . 14
1.5.2 Ecuación de Bernoulli . . . . . . . . . . . . . . . 16
1.5.3 Ecuación de Riccati . . . . . . . . . . . . . . . . . 17
1.6 Aplicación: Problemas de mezclas . . . . . . . . . . . . . 18
1.7 Ecuaciones no lineales en y0 . . . . . . . . . . . . . . . . 19
1.7.1 Ecuaciones resolubles en y0 . . . . . . . . . . . . . 19
1.7.2 Aplicación: Cálculo de la envolvente . . . . . . . 19
1.7.3 Ecuaciones resolubles en y . . . . . . . . . . . . . 21
1.7.4 Ecuaciones resolubles en x . . . . . . . . . . . . . 24
1.8 Aplicación: Trayectorias isogonales . . . . . . . . . . . . 26
1.9 Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . 27
1.10 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . 33
i
ii
2 Ecuaciones de orden superior 39
2.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Ecuaciones diferenciales incompletas . . . . . . . . . . . 40
2.2.1 Ecuaciones donde falta la y . . . . . . . . . . . . 40
2.2.2 Ecuaciones donde falta la x . . . . . . . . . . . . 42
2.3 Ecuaciones lineales de orden n . . . . . . . . . . . . . . . 43
2.3.1 De�nición. El operador derivada . . . . . . . . . . 43
2.3.2 Ecuación lineal homogénea . . . . . . . . . . . . . 45
2.3.3 Ecuación lineal no homogénea . . . . . . . . . . . 49
2.3.4 Método de Lagrange o variación de parámetros . 54
2.3.5 Ecuación de Euler-Cauchy . . . . . . . . . . . . . 56
2.3.6 Reducción del orden . . . . . . . . . . . . . . . . 59
2.4 Aplicación: Circuitos eléctricos . . . . . . . . . . . . . . 60
2.5 Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . 61
2.6 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . 63
3 Sistemas de ecuaciones 67
3.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Método matricial . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Sistema lineal homogéneo . . . . . . . . . . . . . 69
3.2.2 Sistema lineal no homogéneo . . . . . . . . . . . . 77
3.3 Método de eliminación . . . . . . . . . . . . . . . . . . . 79
3.4 Aplicación: Transformadores y redes . . . . . . . . . . . 82
3.5 Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . 84
3.6 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . 93
4 Métodos numéricos 95
4.1 Interpolación . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Resolución numérica de PVI . . . . . . . . . . . . . . . . 98
4.3 Métodos de un paso . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Método de Euler . . . . . . . . . . . . . . . . . . 99
4.3.2 Métodos de Runge-Kutta . . . . . . . . . . . . . . 102
4.4 Métodos multipaso lineales . . . . . . . . . . . . . . . . . 103
iii
4.4.1 Métodos explícitos e implícitos . . . . . . . . . . . 103
4.4.2 Generación de métodos lineales . . . . . . . . . . 104
4.4.3 Métodos predictor-corrector . . . . . . . . . . . . 106
4.5 Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . 107
4.6 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . 109
5 Transformadas de Laplace 111
5.1 Definición y conceptos básicos . . . . . . . . . . . . . . . 111
5.2 Propiedades y transformadas . . . . . . . . . . . . . . . . 116
5.3 Aplicación: Integrales impropias . . . . . . . . . . . . . . 130
5.4 Transformada inversa de Laplace . . . . . . . . . . . . . 130
5.4.1 Definición y propiedades . . . . . . . . . . . . . . 130
5.4.2 Cálculo de algunas transformadas inversas . . . . 135
5.4.3 Método de Heaviside . . . . . . . . . . . . . . . . 138
5.5 Aplicaciones de las transformadas . . . . . . . . . . . . . 142
5.5.1 Resolución de PVI. Función de transferencia . . . 142
5.5.2 Ecuaciones con coeficientes variables . . . . . . . 147
5.5.3 Ecuaciones integro-diferenciales . . . . . . . . . . 148
5.5.4 Sistemas de ecuaciones diferenciales . . . . . . . . 148
5.5.5 Estabilidad de sistemas dinámicos . . . . . . . . . 149
5.6 Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . 154
5.7 Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . 166
Prólogo
Las ecuaciones diferenciales modelan casi todos los procesos que aparecen
en la técnica en los cuales hay una relación de cambio entre las variables
involucradas. En dichos procesos es habitual contar con unas condiciones
iniciales de partida y, en la mayoría de ocasiones, se pueden emplear
entonces dos herramientas especí�cas para la búsqueda de solución: por
métodos numéricos cuya utilización aconseja conocer algunas nociones de
interpolación y mediante la transformada de Laplace que permite obtener
soluciones exactas en los casos más usuales como son por ejemplo los
modelados por ecuaciones o sistemas de ecuaciones lineales.
Con esta publicación se pretende satisfacer las necesidades básicas
que puedan tener los alumnos de ingeniería en técnicas de resolución de
ecuaciones diferenciales y problemas de valor inicial. Se han incluido los
resultados teóricos que dan el soporte matemático necesario para abordar
los problemas que aparecen, pero se ha evitado dar demostraciones que
sean excesivamente tediosas o complicadas de desarrollar; solo se han in-
cluido aquellas que pueden ayudar a conseguir una formació n adecuada
para abordar tipos de ecuaciones o aplicaciones no tratadas en este texto.
A lo largo del mismo hay una amplia exposición de ejemplos que facilitan
la comprensión de los diferentes temas presentados, �nalizando cada ca-
pítulo con una selección de ejercicios cuya resolución se recomienda para
veri�car que se ha entendido la materia desarrollada.
Los autores expresan su reconocimiento al profesor Manuel Legua
(1924—99), catedrático desde 1964 a 1989 de la Escuela Universitaria
de Ingeniería Técnica Industrial de Valencia —transformada en Escuela
Técnica Superior de Ingeniería del Diseño en 2002—, que les transmitió
la forma de enfocar la didáctica de las Matemáticas destinadas a cubrir
las necesidades de los ingenieros.
Asimismo desean expresar su agradecimiento a Isabel Moralespor
su ayuda en la elaboración de la primera versión de este texto, a los
compañeros de profesión que han hecho sugerencias respecto de dicha y
posteriores versiones, y a los alumnos que, con sus dudas y querer saber,
les han hecho ver los temas en los cuales tenían una mayor di�cultad.
Esperamos que estas notas faciliten la labor de nuestros futuros alumnos.
Los autores
Capítulo 1
Ecuaciones diferenciales
1.1 Introducción y de�niciones básicas
Existen situaciones en que se desea determinar una función desconocida
a partir de una ecuación, denominada diferencial, (ED) que contiene por
lo menos una de sus derivadas respecto de una variable independiente.
Ejemplo 1.1.1 Se lanza verticalmente una partícula P de masa m des-
de la super�cie de un planeta sin atmósfera cuya forma es una esfera
de radio R. Conociendo el valor de la gravedad g sobre su super�cie,
establecer la velocidad v de P en función de su distancia x al centro del
planeta. Hallar la velocidad que debemos imprimir a P para que escape
del campo gravitacional si g = 9.81 m/s2, R = 6500 km.
Sol.: La fuerza gravitacional es F (x) = km
x2
. Como F (R) = km
R2
= mg
resulta que k = gR2. Como es habitual denotamos a = dv
dt
, entonces
ma = gR
2m
x2
= m dv
dt
= m dv
dx
dx
dt
= mv dv
dx
= v dv = gR
2
x2
dx.
Integrando, 1
2
v2 = gR
2
x
+ C. Si dotamos a P con una velocidad inicial
v (R) = v0, entonces C =
1
2
v20 gR por lo que
v2 = 2gR
2
x
+ v20 2gR v =
q
2gR2
x
+ v20 2gR.
Si v20 2gR, P escapa ya que v no se anula. Para g = 9.81 m/s
2 y
R = 6500 km, la velocidad de escape es v0 11.293 km/s.
1
2 Capítulo 1
Una ecuación diferencial es ordinaria (EDO) si la incógnita es
función de una sola variable, y en derivadas parciales (EDP) si es
función de dos o más. En lo que sigue nos ocuparemos únicamente de las
primeras.
Una ecuación diferencial ordinaria es de orden n si involucra hasta la
derivada n-sima de la función desconocida, diciéndose que está expresada
en forma normal si viene dada por
y(n) = f(x, y, y0, . . . , y(n 1)).
Una función de�nida en un intervalo I R es solución o integral
de la ecuación diferencial si al sustituirla en ella se obtiene una identi-
dad. Si la solución contiene n constantes arbitrarias se llama integral
general (IG). Cada solución obtenida dando valores a las constantes
arbitrarias se llama integral particular (IP). Y las soluciones que no
pueden obtenerse a partir de una integral general se llaman integrales
singulares (IS). Las grá�cas de las soluciones se denominan curvas
integrales. Se resuelve un problema de valor inicial (PVI) si, da-
dos x0, y0, y
0
0, . . . , y
(n 1)
0 R, se busca una solución y(x) que satisfaga
y(x0) = y0, y
0(x0) = y
0
0, . . . , y
(n 1)(x0) = y
(n 1)
0 .
1.2 Ecuaciones de primer orden
Las EDO de primer orden se generan si entre la ecuación que representa
una familia F de curvas F (x, y, C) = 0 y su derivada total respecto de x,
Fx(x, y, C)+Fy(x, y, C) y
0 = 0, eliminamos el parámetro C. El resultado
se denomina ecuación diferencial de F .
Ejemplo 1.2.1 Hallar la ecuación diferencial de (x c)2 + y2 = 1.
Sol.: Eliminando c entre la ecuación de esta familia de circunferencias
y su derivada respecto de x, 2 (x c) + 2yy0 = 0, obtenemos su ecuación
diferencial y2
³
y0
2
+ 1
´
= 1. Aquí (x c)2+ y2 = 1 es la integral general
y cada una de las circunferencias es una integral particular. Es fácil ver
que y = ±1 son soluciones singulares.
Hay ecuaciones diferenciales, como 2 + y02 = 0, que carecen de solu-
ción. Enunciaremos dos resultados que garantizan la existencia de solu-
ciones, única en el primero de ellos con ayuda del siguiente concepto.
Ecuaciones diferenciales 3
De�nición 1.2.2 Una función f : A R2 R veri�ca una condición
de Lipschitz con respecto a y en A si hay una constante L, denominada
de Lipschitz, tal que |f(x, y1) f(x, y2)| L |y1 y2| en A.
Si fy es continua en A = [a, b] × [c, d], f satisface una condición
de Lipschitz ya que entonces |fy(x, y)| K (x, y) A, por lo que
|f(x, y1) f(x, y2)|
R y1
y2
|fy(x, y)| dy K |y1 y2| , (x, y1), (x, y2) A.
Teorema 1.2.3 (de Picard) Sea f una función continua en el rectán-
gulo A = [a, b] × [c, d] donde satisface una condición de Lipschitz con
respecto a y. Dado (x0, y0) del interior de A, existe un h > 0 tal que
y0 = f(x, y), y(x0) = y0, tiene una única solución en [x0 h, x0 + h].
Teorema 1.2.4 (de Peano) Sea f una función continua en el rectán-
gulo A = [a, b]× [c, d]. Si (x0, y0) está en el interior de A, entonces existe
un h > 0 tal que y0 = f(x, y), y(x0) = y0, tiene al menos una solución
en [x0 h, x0 + h].
Ejemplo 1.2.5 Analizar si f (x, y) = 2y
1
2 satisface una condición de
Lipschitz en el rectángulo A = {(x, y) R2 : |x| 2, |y| 1}. Estudiar
la unicidad de solución del PVI y0 = 2y
1
2 , y(0) = 0.
Sol.: Como f(0,y) f(0,0)
y 0
= 2y
1
2 no está acotado en las cercanías del
origen, f no satisface una condición de Lipschitz en A. Por tanto no es
de extrañar que, a pesar de ser f continua en A, el PVI dado presente
más de una solución como lo son y1(x) = x
2, y2(x) = 0.
Resolución grá�ca. Isoclinas
Una ecuación diferencial y0 = f(x, y), donde f es una función continua en
D R2, asocia a cada P (x, y) D una dirección de coe�ciente angular
m = f(x, y), que es la dirección en P de cualquier solución que pase
por P . Los puntos de D con su dirección se llama campo de direcciones,
pudiéndose visualizar con ayuda de pequeños segmentos con punto medio
en ciertos P D y su correspondiente dirección.
Si distribuimos los puntos P sobre curvas de ecuación m = f(x, y),
m R, se obtienen las curvas isoclinas que contienen a los puntos a
los que corresponde la misma dirección.
4 Capítulo 1
Ejemplo 1.2.6 Emplear el método de las isoclinas para hallar:
a) La curva que pasa por ( 1, 2) y en cada punto (x, y) la pendiente de
la tangente es el cuadrado de la abscisa x.
b) Las curvas tales que en cada punto (x, y) la pendiente sea el cociente
entre ordenada y abscisa.
c) La curva que pasa por el punto (0, 1) y veri�ca que la pendiente de la
tangente en cada punto (x, y) es igual al producto de ordenada y abscisa.
Sol.: a) La propiedad enunciada es y0 = x2. Las isoclinas son
m = x2 x = m, x = m, m 0.
El campo de direcciones en un entorno de ( 1, 2), por ejemplo en el
cuadrado [ 2, 0]× [ 3, 1] , es el siguiente.
Este método no proporciona la expresión analítica de la curva integral
que pasa por ( 1, 2) pero sugiere su grá�ca.
b) La propiedad enunciada es y0 = y
x
. Las isoclinas sonm = y
x
conm R,
y representan los puntos de curvas integrales en los que la pendiente es
m. En este caso coinciden con las curvas integrales.
c) La propiedad enunciada es y0 = xy por lo que las isoclinas son las
hipérbolas m = xy. Dando a m valores negativos, positivos y 0, notamos
que las curvas integrales son decrecientes en el segundo y cuarto cua-
drantes, crecientes en el primero y tercero, tienen pendiente nula sobre
OY (recta x = 0) y la recta y = 0 también es solución de la ecuación
Ecuaciones diferenciales 5
diferencial. La grá�ca de la curva integral que pasa por (0, 1) es
x
210-1-2
y
5
4
3
2
1
.
1.3 Ecuaciones de variables separables
1.3.1 De�nición y resolución
Una EDO y0 = f(x, y) se dice que es de variables separables si existen
dos funciones continuas P y Q tales que, operando, puede escribirse como
P (x) dx = Q(y) dy. Entonces se dice que tiene las variables separadas
y una integral general es
Z
P (x) dx =
Z
Q(y) dy + C, C constante arbitraria.
Ejemplo 1.3.1 Resolver
a) (1 y2) 3xy y0 = 0.
b) (1 y2) 3xy y0 = 0, y(4) = 3
2
.
c) (1 y2) 3xy y0 = 0, y( 3
3
) = 2.
d) (1 y2) 3xy y0 = 0, y(4) = 1.
e) (1 y2) 3xy y0 = 0, y(0) = 2.
Sol.: a) Separando las variables x e y,
dx
x
=
3y dy
1 y2
.
Integrando en ambos miembros,
ln |x| = 3
2
ln |1 y2|+ lnC |x| |1 y2|
3
2 = C, C > 0. (IG)
6 Capítulo 1
Las soluciones de una EDO son funciones de�nidas en un intervalo donde
la satisfacen. En este caso podemos expresar las soluciones en forma
explícita
y = ±
q
1 3
p
(C/x)2, x > C,y = ±
q
1 3
p
(C/x)2, x < C,
correspondientes a soluciones en las que 1 y2 > 0, e
y = ±
q
1 + 3
p
(C/x)2, x > 0, y = ±
q
1 + 3
p
(C/x)2, x < 0,
correspondientes a soluciones en las que 1 y2 < 0. Por otra parte siem-
pre que separamos variables hemos de esudiar si hemos perdido alguna
solución. En este caso hemos dividido por 1 y2 por lo que hemos des-
cartado que dicha expresión sea nula, Y efectivamente en este caso a)
también admite las soluciones singulares
y = ±1. (IS)
b) Para que y(4) = 3
2
4
¯̄
¯̄1
³
3
2
´2¯̄
¯̄
3
2
= 1
2
= C. Por tanto la
solución del PVI viene incluida en
2 |x|
¯̄
1 y2
¯̄ 3
2 = 1.
Analizando la condición inicial, que buscamos una solución en 4 > 0
donde y(4) < 0 y además 1 y2 = 1 3
4
> 0, observamos que la función
que la satisface es
y =
q
1 3
p
(1/2x)2, x >
1
2
.
c) Para que y( 3
3
) = 2 3
3
|1 22|
3
2 = 3 = C. Por tanto la solución
del PVI viene incluida en
|x|
¯̄
1 y2
¯̄ 3
2 = 3.
Analizando la condición inicial, que buscamos una solución en 3
3
< 0
donde y( 3
3
) > 0 y además 1 y2 = 1 4 < 0, observamos que la
función que la satisface es
y =
q
1 + 3
p
(3/x)2, x < 0.
Ecuaciones diferenciales 7
d) Si en la IG se plantea y(4) = 1 4 (1 1)
3
2 = 0 = C conduce a
x
¡
1 y2
¢ 3
2 = 0
que no debe considerarse como solución ya que el proceso de obtención
de la IG es válido para C > 0.
La función y = 1 es la solución de este PVI y corresponde a una de
las IS de a).
e) Si en la IG se plantea y(0) = 2 0 (1 4)
3
2 = 0 = C conduce a dar
la solución falsa (C 0)
x
¡
1 y2
¢ 3
2 = 0.
Este PVI no tiene solución.
Nota 1.3.2 Si (x0, y0) está en el interior de un rectángulo donde P y Q
son continuas, la solución de P (x) dx = Q(y) dy, y(x0) = y0 es
Z x
x0
P (x) dx =
Z y
y0
Q(y) dy.
Así, en Ejemplo 1.3.1 b) y c), las soluciones explícitas con las condiciones
iniciales dadas podrían haberse obtenido respectivamente mediante
b)
Z x
4
dx
x
=
Z y
3
2
3y dy
1 y2
, c)
Z x
3
3
dx
x
=
Z y
2
3y dy
1 y2
.
1.3.2 Ecuaciones diferenciales homogéneas
Una función f : A R2 R se dice que f es homogénea de grado k, si
f(tx, ty) = tkf(x, y) para (x, y), (tx, ty) A.
Una ecuación diferencial es homogénea si puede expresarse como
y0 = f(x, y) donde f es una función homogénea de grado 0.
Si f es homogénea de grado 0 el cambio y = xz la transforma en
z + xz0 = f(x, xz) = f(1, z) dz
f(1,z) z
= dx
x
,
que tiene las variables separadas. Si su solución es F (x, z, C) = 0, la
solución de la ecuación original es F
¡
x, y
x
, C
¢
= 0.
Para seguir leyendo haga click aquí
http://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_798-1-5

Continuar navegando

Materiales relacionados

757 pag.
ECUACIONES DIFERENCIALES APLICADAS

SIN SIGLA

User badge image

Alexis Sanchez

724 pag.
Ec Dif

UNAM

User badge image

nohemi43

434 pag.