Logo Studenta

GUIA-7-BIOLOGIA-OCTAVO

¡Estudia con miles de materiales!

Vista previa del material en texto

COLEGIO INSTITUTO TECNICO INTERNACIONAL I.E.D. 
AREA CIENCIAS NATURALES, BIOLOGÍA 
JORNADA TARDE 
ASIGNATURA: BIOLOGÍA, GRADO OCTAVO 801, 802 Y 804 
LIC. NANCY MATEUS GONZÁLEZ 
GUIA 7: SISTEMA NERVIOSO EN ANIMALES 
GUIA PROGRAMADA DESDE EL 1 DE JUNIO HASTA EL 5 DE JUNIO 
1. SISTEMAS DE COORDINACIÓN 
Los animales, como organismos vivos, necesitan de la función de relación, que les permite detectar 
cambios en el entorno y responder a ellos. para conseguirlo dispone de diferentes sistemas de 
coordinación. Los sistemas de coordinación se encargan de que todas las funciones corporales se 
realicen de forma coordinada. Son el sistema nervioso y el sistema hormonal o endocrino. Juntos forman 
el sistema neuroendocrino. La función de relación consiste en la captar información del medio 
(estímulos) y elaborar respuestas para adaptarse a los cambios del entorno. En este proceso intervienen los 
siguientes elementos: Estímulos: cualquier cambio en el medio que pueda ser detectado. Pueden se físicos 
(radiaciones, temperatura, presión) o químicos (hormonas, fármacos,…).Receptores: estructuras que captan 
estímulos internos o externos. Efectores: estructuras que producen respuestas (músculos, 
glándulas).Transmisores: llevan la información entre receptores y efectores. Pueden ser señales eléctricas 
o sustancias químicas (neurotransmisores, hormonas).Las respuestas de los sistemas de coordinación 
llevan a dos mecanismos: Comportamiento: es el conjunto de respuestas nerviosas y hormonales ante 
estímulos externos. En animales la repuesta más habitual es el movimiento. Homeostasis: es el conjunto 
de respuestas nerviosas y hormonales ante estímulos internos. La homeostasis mantiene las 
constantes vitales en equilibrio: presión sanguínea, temperatura, latidos, respiración, excreción, pH, etc. 
2. EL SISTEMA NERVIOSO 
El sistema nervioso (SN) es una compleja red encargada de interpretar y almacenar la información que llega 
de células especializadas en captar estímulos (los receptores). Luego transmite esa información a otras 
células del nervioso o a los efectores, que darán respuestas (músculos y glándulas).El sistema nervioso 
se compone de un tejido especial, el tejido nervioso formado por dos tipos de células: neuronas y células 
de la glía. 
2.1. EXCITABILIDAD NEURONAL 
La capacidad de captar estímulos y emitir respuestas se debe a la excitabilidad neuronal, es decir, a la 
generación de impulsos nerviosos gracias a un potencial de membrana. 
2.1.1. POTENCIAL DE MEMBRANA O DE REPOSO El potencial de membrana es la diferencia de 
potencial entre el exterior y el interior de la membrana plasmática. Esta diferencia se debe a una acumulación 
de cargas de distinto signo y es de unos -70 milivoltios (mV). El signo menos indica que en el interior hay más 
cargas negativas, debido al Cl- y a proteínas con carga negativa. •La bomba de Na+/K+: se encuentra en la 
membrana plasmática y saca de la células iones Na+ al tiempo que introduce iones K+, lo que provoca un 
desequilibrio. •Canales de K+: los canales de K+ se hallan siempre abiertos, por lo que el K+, muy 
abundantes en el interior, tienden a salir a favor de gradiente químico. Sin embargo la alta concentración de 
cargas negativas en el interior se opone a esta salida (gradiente eléctrico).•Potencial de membrana: 
cuando ambos gradientes se equilibran, se alcanza el potencial en reposo o potencial de membrana, que 
es de unos -70 mV. 
2.1.2. DESPOLARIZACIÓN: POTENCIAL DE ACCIÓN La presencia de un estímulo abre los canales de Na+ 
y cierra los de K+. Al entrar masivamente Na+ a favor de gradiente, se alcanza el umbral de excitación, que 
termina haciendo positivo el interior celular. Se da así una despolarización, que puede llevar el potencial a 
+40 mV, momento en que se alcanza el potencial de acción, que genera un impulso nervioso que se 
propaga por el axón hasta la siguiente neurona a través de la sinapsis. 
COLEGIO INSTITUTO TECNICO INTERNACIONAL I.E.D. 
AREA CIENCIAS NATURALES, BIOLOGÍA 
JORNADA TARDE 
ASIGNATURA: BIOLOGÍA, GRADO OCTAVO 801, 802 Y 804 
LIC. NANCY MATEUS GONZÁLEZ 
2.1.3. REPOLARIZACIÓN La repolarización consiste en recuperar el potencial de -70 mV. Tras una 
excitación, se cierran los canales de Na+, se abren los de K+ y vuelve a actuar la bomba de Na+/K+. 
Durante la repolarización (unos milisegundos) la neurona no puede reaccionar a un estímulo y se dice que 
está en periodo refractario. 
2.2. CONDUCTIVIDAD NEURONAL 
El impulso nervioso ocasionado por el potencial de acción se transmite por toda la neurona, 
desde las dendritas hacia el axón y los botones sinápticos. Esto se consigue con la apertura y 
cierre sucesivo de los diferentes canales iónicos. La despolarización se transmite de forma 
similar. Las neuronas más gruesas y las mielinizadas transmiten el impulso mucho más deprisa, 
gracias a la conducción saltatoria de un nódulo de Ranvier al siguiente. 
 
 
 
 
 
2.3. SINAPSIS 
La sinapsis es la unión funcional entre dos neuronas o una neurona y un efector (músculo o 
glándula). Hay sinapsis eléctricas (el impulso nervioso pasa de una célula a otra libremente), 
pero la mayoría son químicas, el potencial de acción se transmite por sustancias químicas 
llamadas neurotransmisores. Éstos se sintetizan en el soma y se almacenan en vesículas 
sinápticas situadas en las terminaciones del axón, llamadas botones sinápticos. El potencial 
de acción recorre el axón de la neurona presináptica, llega a los botones sinápticos y allí se 
abren los canales de Ca+. El Ca+ entra en los botones y provoca el vaciado de los 
neurotransmisores a la hendidura sináptica mediante exocitosis. Los neurotransmisores se 
unen a la membrana de la neurona postsináptica y provocan la apertura de sus canales 
iónicos:•Si el neurotransmisor es excitador (noradrenalina, acetilcolina, glutamato,…) se abren 
los canales de Na+. El sodio entra en la neurona postsináptica, que se despolariza y da lugar a 
un potencial de excitación postsináptico (PEPS) que contribuye al potencial de acción. •Si el 
neurotransmisor es inhibidor (encefalinas, endorfinas, glicina,…) se abren los canales de Cl-, 
que entra, o los de K+, que sale, hiperpolarizando la neurona postsináptica y genera un 
potencial de inhibición postsináptico (PIPS), que dificulta el potencial de acción. La neurona 
COLEGIO INSTITUTO TECNICO INTERNACIONAL I.E.D. 
AREA CIENCIAS NATURALES, BIOLOGÍA 
JORNADA TARDE 
ASIGNATURA: BIOLOGÍA, GRADO OCTAVO 801, 802 Y 804 
LIC. NANCY MATEUS GONZÁLEZ 
postsináptica realiza entonces una integración, sumando los efectos excitadores e inhibidores. 
Si la suma supera el umbral necesario, se genera el potencial de acción y el impulso nervioso 
continúa. 
 
 
 
2.4 SISTEMA NERVIOSO EN INVERTEBRADOS 
En la evolución animal se aprecia una tendencia a agrupar las neuronas en ganglios y a la 
cefalización, favorecida por la simetría bilateral. La cefalización llevó a la acumulación ganglionar 
en la parte delantera del animal, formando la cabeza, donde se acumularon los principales 
receptores. 
2.4.1. PORÍFEROS Las esponjas no tienen un SN propiamente dicho. Sólo grupos de neuronas 
dispersas y sin interconexión apenas. 
2.4.2. CNIDARIOS Presentan un plexo nervioso, una red neuronal sencilla y extendida por todo 
el cuerpo. Lo usa para la contracción celular y captura de alimento. 
2.4.3. EQUINODERMOS Presentan un anillo nervioso central que rodea al esófago y del que 
parten cordones nerviosos radiales hacia cada brazo o región del cuerpo, originando una red 
nerviosa superficial 
2.4.4. PLATELMINTOS Y NEMATODOS Sistema nervioso cordal. Existen ganglios 
cerebrales en la cabeza de los que parten cordones nerviosos que recorren todo el cuerpo. 
2.4.5. ANÉLIDOS, MOLUSCOS Y ARTRÓPODOS Sistema nervioso ganglionar. Hay ganglios 
cerebrales dorsales que forman un anillo alrededor del esófago (collar periesofágico). Este 
anillo se comunica con dos cordones nerviososventrales unidos por fibras transversales: cordón 
nervioso escaleriforme. Anélidos: un par de ganglios conectados en cada segmento. SN con 
aspecto de escalera. Moluscos: hay una progresión. Los más sencillos (bivalvos) tienen dos 
cordones con 3 a 5 pares de ganglios repartidos por todo el cuerpo. En los cefalópodos sólo hay 
un cordón y los ganglios se agrupan en una masa cerebral protegida por una cápsula gelatinosa. 
Artrópodos: la cefalización aumenta, los ganglios cerebrales forman un cerebro con varias 
regiones. 
 
COLEGIO INSTITUTO TECNICO INTERNACIONAL I.E.D. 
AREA CIENCIAS NATURALES, BIOLOGÍA 
JORNADA TARDE 
ASIGNATURA: BIOLOGÍA, GRADO OCTAVO 801, 802 Y 804 
LIC. NANCY MATEUS GONZÁLEZ 
 
 
 
2.5. EL SISTEMA NERVIOSO EN VERTEBRADOS 
En vertebrados el procesamiento de la información se realiza principalmente en una estructura 
nerviosa muy compleja: el sistema nervioso central (SNC), formado por el encéfalo (encerrado 
en el cráneo) y la médula espinal (protegida por la columna vertebral). Del SNC parten 
nervios que, junto a los ganglios simples forman el sistema nervioso periférico (SNP).A partir 
del tubo neural del embrión se forma el cordón hueco de la médula espinal y, en su parte 
anterior, se ensancha para dar el encéfalo, que presenta tres regiones: Prosencéfalo: o encéfalo 
anterior, que incluye al cerebro. Mesencéfalo: o encéfalo medio. Rombencéfalo: que incluye el 
cerebelo y el bulbo raquídeo. 
 
 
COLEGIO INSTITUTO TECNICO INTERNACIONAL I.E.D. 
AREA CIENCIAS NATURALES, BIOLOGÍA 
JORNADA TARDE 
ASIGNATURA: BIOLOGÍA, GRADO OCTAVO 801, 802 Y 804 
LIC. NANCY MATEUS GONZÁLEZ 
 
 
ACTIVIDAD 
1. Explique los sistemas de coordinación de los seres vivos. 
2. ¿Cuáles son las características del sistema nervioso? 
3. Dibuje la neurona con sus partes. 
4. Explique qué es la sinapsis. 
5. Mediante un mapa conceptual explique el sistema nervioso en invertebrados. 
6. ¿Cómo está organizado el sistema nervioso en vertebrados? 
7. Realice el dibujo de los encéfalos en animales vertebrados. 
 
NOTA: Realizar el trabajo en el cuaderno, tomar las fotos como evidencia y enviarlas al correo: 
nancy.mateus@iedtecnicointernacional.edu.co. PLAZO DE ENTREGA: 5 DE JUNIO 
NO OLVIDAR LAS CLASES QUE SE INICIARON POR MEET 
A sus correos de Gmail se han enviado las invitaciones para las clases virtuales en Meet y se 
harán los días martes con el siguiente horario: 
801: 2:00 pm 
804: 3:00 pm 
802: 4:00 pm 
Cada martes envío la invitación con el enlace para que se puedan conectar, 20 minutos antes de 
iniciar la clase. Sí por alguna razón no le ha llegado la invitación me escriben al correo para 
poder iniciar. Muchas gracias. 
mailto:nancy.mateus@iedtecnicointernacional.edu.co

Continuar navegando

Otros materiales