Logo Studenta

AhumadaVargasOscarEsteban2021

¡Este material tiene más páginas!

Vista previa del material en texto

1 
 
Análisis y Selección de Dispositivos de Sujeción utilizados para la Fabricación de piezas en 
Procesos de Mecanizado: Tornos y Máquinas Fresadoras CNC 
 
 
 
 
 
 
 
Johnn Sebastian Fonseca Fonseca 
Cod. 20172574083 
Oscar Esteban Ahumada Vargas 
Cod. 20172574136 
 
 
 
 
 
 
Facultad Tecnológica, Universidad Distrital Francisco José De Caldas 
Tecnología en Mecánica Industrial 
Ing. Jonny Ricardo Dueñas 
10 de septiembre de 2021 
 
2 
 
Nota de aceptación: 
 
______________________________________________________________________ 
__________________________________________________________ 
__________________________________________________________ 
__________________________________________________________ 
__________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
__________________________________________ 
Firma del jurado 
 
 
 
 
 
3 
 
Dedicatoria 
Este trabajo de grado está dedicado a nuestras familias, por su apoyo incondicional durante toda 
la carrera y a Dios por permitirnos cumplir un sueño más. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 
 
Agradecimientos 
Nuestros más profundos agradecimientos a la Universidad Francisco José de Caldas, al proyecto 
curricular de Tecnología en Mecánica Industrial, a todos los profesores quienes con la enseñanza 
de sus conocimientos nos permitieron crecer profesionalmente, gracias a cada uno de ustedes por 
su apoyo, paciencia y dedicación. 
Finalmente queremos expresar nuestro más sincero agradecimiento al Ingeniero Jonny Ricardo 
Dueñas principal colaborador durante todo este proceso, quien con su dirección, enseñanza, 
conocimiento y colaboración permitió el desarrollo de este trabajo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 
 
Resumen 
Este trabajo de grado tiene como propósito hacer un análisis de los dispositivos de sujeción en 
procesos de mecanizado, buscando así, tener un criterio en el momento de la selección y amarre 
de la pieza. Para realizar este análisis se inició por realizar una investigación sobre los diferentes 
tipos de dispositivos de sujeción, los cuales se pudieron clasificar en dispositivos para sujetar el 
material en bruto y dispositivos para sujetar la herramienta. 
Se analizaron las fuerzas de corte, donde nos dimos cuenta que estas son afectadas por los 
parámetros de corte, filo de la herramienta, entre otros. Luego se estudiaron las fuerzas de apriete 
en función de la forma en que el dispositivo amarra la pieza. 
Gracias a todo el análisis realizado se logró crear un paso a paso que será muy útil en procesos de 
torneado y fresado, teniendo en cuenta diversos factores que van desde el plano de fabricación de 
la pieza hasta escoger el dispositivo de sujeción. 
 Palabras clave: fuerzas de corte, fuerzas de sujeción, vibraciones, dispositivos. 
 
 
 
 
 
 
 
 
 
 
6 
 
Tabla de contenido 
1. Introducción ...................................................................................................................................... 10 
2. Planteamiento del problema ............................................................................................................ 11 
3. Estado del arte ................................................................................................................................... 12 
4. Justificación ....................................................................................................................................... 16 
5. Objetivos ............................................................................................................................................ 17 
5.1. Objetivo general ........................................................................................................................ 17 
5.2. Objetivos específicos ................................................................................................................. 17 
6. Marco teórico .................................................................................................................................... 18 
6.1. Importancia de la localización y referenciación tecnológica de las piezas ........................... 18 
6.2. Sujeción de las piezas ................................................................................................................ 18 
6.3. Simbolización geométrica ......................................................................................................... 20 
6.4. Elección de las superficies de partida ...................................................................................... 21 
6.5. Requerimientos tecnológicos del dispositivo ........................................................................... 22 
6.6. Fuerzas de maquinado .............................................................................................................. 23 
7. Metodología ....................................................................................................................................... 25 
8. Dispositivos de sujeción y sus fuerzas de sujeción.......................................................................... 26 
8.1. Dispositivos de sujeción en máquinas y herramientas ........................................................... 26 
8.1.1. Dispositivos para sujetar el material en bruto ................................................................... 27 
8.1.1.1. Copa autocentrante. ................................................................................................... 28 
8.1.1.2. Prensa de banco. ........................................................................................................ 30 
8.1.1.3. Bridas de sujeción. ..................................................................................................... 32 
8.1.1.4. Dispositivos de sujeción para geometría compleja. ................................................... 34 
8.1.2. Dispositivos para sujetar la herramienta ........................................................................ 37 
8.1.2.1 Sujeción portaherramientas-husillo de la máquina ................................................... 38 
8.1.2.2. Sujeción portaherramienta-Herramienta. ................................................................. 41 
8.2. Análisis fuerzas de corte ........................................................................................................... 44 
8.3. Fuerzas de sujeción ................................................................................................................... 51 
8.3.1. Sujeción concéntrica ......................................................................................................... 53 
8.3.2. Sujeción axial ..................................................................................................................... 56 
9. Análisis de vibraciones en procesos de mecanizado ....................................................................... 61 
9.1. Vibraciones de tipo forzadas .................................................................................................... 61 
9.2. Vibraciones autoexitadas .......................................................................................................... 62 
10. Estrategia para la selección de dispositivos de sujeción en procesos de mecanizado .............. 64 
7 
 
11. EJEMPLO DE SELECCIÓN DEL DISPOSITIVO DE SUJECION ................................................................... 68 
11.1 PLANO PIEZA ............................................................................................................................... 68 
11.2 OPERACIONES A REALIZAR ......................................................................................................... 70 
11.3 REGIMEN DE CORTE ...................................................................................................................70 
11.4 FUERZAS DE CORTE .................................................................................................................... 70 
11.5 FUERZAS DE SUJECION ............................................................................................................... 71 
11.6 COMPARAR FUERZAS ................................................................................................................. 71 
12. Conclusiones .................................................................................................................................. 73 
13. Bibliografía .................................................................................................................................... 74 
 
 
 
 
 
 
 
 
 
 
 
 
8 
 
Índice de figuras 
Ilustración 1. Plantilla modular .................................................................................................................. 13 
Ilustración 2. Grados de libertad................................................................................................................. 14 
Ilustración 3. Reducir las deformaciones ................................................................................................... 19 
Ilustración 4. Reducir vibraciones ............................................................................................................... 20 
Ilustración 5. Eliminación grado de libertad ............................................................................................... 21 
Ilustración 6. Simbolización normal de referencia ..................................................................................... 21 
Ilustración 7. Fuerza de maquinado ............................................................................................................ 24 
Ilustración 8. Metodología a tratar en el apartado 8. Fuente: elaboración propia .................................... 26 
Ilustración 9. Modelo CAD Copa Autocentrante......................................................................................... 28 
Ilustración 10. Vista explosionada modelo CAD Copa Autocentrante (Elaboración propia en SolidWorks®)
 .................................................................................................................................................................... 29 
Ilustración 11. Modelo CAD Prensa de banco ............................................................................................. 31 
Ilustración 12. Vista explosionada modelo CAD Prensa de banco (Elaboración propia en SolidWorks®) .. 31 
Ilustración 13. Brida de Sujeción ................................................................................................................. 32 
Ilustración 14. Brida de sujeción interesfuerzo .......................................................................................... 33 
Ilustración 15. Brida de sujeción de interapoyo ......................................................................................... 33 
Ilustración 16. Brida de sujeción interapriete ............................................................................................. 34 
Ilustración 17. Plantilla modular ................................................................................................................ 34 
Ilustración 18. Perno de sujeción ................................................................................................................ 35 
Ilustración 19. Posiciones del perno de sujeción ........................................................................................ 36 
Ilustración 20. Sujeción fixture ................................................................................................................... 37 
Ilustración 21. Cono ISO .............................................................................................................................. 38 
Ilustración 22. Cono CAT ............................................................................................................................. 39 
Ilustración 23. Cono BT ............................................................................................................................... 40 
Ilustración 24. Cono HSK ............................................................................................................................. 40 
Ilustración 25. Cono Hidráulico ................................................................................................................... 41 
Ilustración 26. Portafresa ............................................................................................................................ 41 
Ilustración 27. Modelo CAD Cono Portapinzas ........................................................................................... 42 
Ilustración 28. Vista explosionada modelo CAD Cono Portapinzas (Elaboración propia en SolidWorks®) 43 
Ilustración 29. Modelo CAD Portabrocas .................................................................................................... 44 
Ilustración 30. Vista explosionada modelo CAD Portabrocas (Elaboración propia en SolidWorks®) ......... 44 
Ilustración 31. Fuerza resultante que actúa sobre la herramienta de corte .............................................. 45 
Ilustración 32. Angulo Φ y zona primaria de deformación ......................................................................... 46 
Ilustración 33. Fuerza de cizalladura Fs ....................................................................................................... 48 
Ilustración 34. Fuerzas aplicadas en la cara de la herramienta .................................................................. 48 
Ilustración 35. Fuerzas de corte (Elaboración propia en SolidWorks®) ...................................................... 49 
Ilustración 36. Par de fuerzas en una operación de torneado .................................................................... 53 
Ilustración 37. Ejes coordenados en Torno ................................................................................................. 55 
Ilustración 38. Modelo 3D dirección de las fuerzas corte-sujeción en operación de torneado (Elaboración 
propia en SolidWorks®) ............................................................................................................................... 55 
Ilustración 39. Modelo 3D dirección de las fuerzas corte-sujeción en operación de torneado (Elaboración 
propia en SolidWorks®) ............................................................................................................................... 56 
Ilustración 40. Par de fuerzas en una operación de fresado (Elaboración propia en SolidWorks®) .......... 58 
Ilustración 41. Dirección fuerzas proceso fresado (Elaboración propia en SolidWorks®) .......................... 59 
Ilustración 42. Sujeción al aire .................................................................................................................... 60 
Ilustración 43. Sujeción al aire .................................................................................................................... 60 
9 
 
Ilustración 44. Desalineación paralela ........................................................................................................ 62 
Ilustración 45. Desalineación angular ......................................................................................................... 62 
Ilustración 46. Grafica frecuencia de la herramienta Vs velocidad de corte .............................................. 63 
Ilustración 47. Esquema elección de Dispositivo de Sujeción. Fuente: Elaboración propia ...................... 66 
Ilustración 48. Plano de microfundicion (Elaboración propia en SolidWorks®) ......................................... 68 
Ilustración 49. Plano pieza terminada (Elaboración propia en SolidWorks®) ............................................ 69 
Ilustración 50. Sujeción seleccionada(Elaboración propia en SolidWorks®) ............................................. 72 
Ilustración 51. Sujeción seleccionada (Elaboración propia en SolidWorks®) ............................................. 72 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10 
 
 
 
1. Introducción 
A continuación, vamos a detallar los requerimientos que se deben tener en cuenta a la hora de 
seleccionar un elemento de sujeción para así lograr una buena restricción de los grados de libertad 
en la pieza de trabajo, para que se optima como también segura para el operario y la máquina 
herramienta que se esté utilizando. 
Se tendrán en cuenta aspectos como el costo, la incidencia de las fuerzas que se producen a la hora 
de mecanizar una pieza de trabajo, el sistema de apriete para que cuando se esté produciendo el 
arranque de viruta la pieza no se mueva, la eficacia en términos de medidas que se tiene que 
conseguir en una operación de arranque de viruta. 
Para llegar a cabo este trabajo se realizó una búsqueda bibliográfica acerca de estas temáticas para 
darle solución a la problemática. 
 
 
 
 
 
 
 
 
 
 
11 
 
 
 
2. Planteamiento del problema 
La fabricación de piezas utilizando una maquina fresadora en la industria metalmecánica 
generalmente para la sujeción de estas al momento de mecanizar, se utilizan elementos genéricos 
como lo son; bridas y prensas, los cuales por simple inspección cumplen con su función, la cual es 
no permitir el movimiento de la pieza durante su fabricación cuando el sólido tiene formas 
regulares, pero ¿qué pasa cuando el elemento a fabricar tiene otra geometría? 
La importancia de escoger un dispositivo de sujeción acorde con la pieza a fabricar influye en 
varios factores, uno de ellos es la seguridad del operario que está manejando la máquina, ya que si 
por algún motivo la pieza se suelta del elemento que lo tiene anclado puede ocasionar un accidente. 
Por otro lado, el dispositivo de sujeción debe garantizar que sea capaz de soportar las fuerzas 
producidas al momento de mecanizar la pieza, así como evitar que se produzcan deformaciones y 
vibraciones que puedan afectar la calidad del producto a fabricar. 
El tiempo que se requiere para elaborar una pieza disminuye o por el contrario aumenta en función 
de la cantidad de operaciones y las herramientas que se tengan disponibles, pero también influye 
lo que se pueda demorar el operario en hacer el montaje del material a mecanizar y el desmontaje 
del elemento ya terminado, para ello es muy importante escoger un dispositivo de sujeción que 
tenga gran facilidad de ensamble. 
 
 
 
 
12 
 
 
 
3. Estado del arte 
Para la sujeción de piezas encontramos algunos artefactos como lo son los posicionadores o 
plantillas, estos dispositivos son más comúnmente usados para taladrar o sostener guías que 
faciliten la operación que se está ejecutando. También, encontramos los sujetadores; son los 
dispositivos más comunes usados en los tornos, fresadoras, rectificadora, limadoras, ya que 
ofrecen un muy buen desempeño para posicionar efectivamente la herramienta de corte. Estos 
sujetadores pueden ser giratorios o simplemente las prensas estacionarias que observamos 
generalmente en las fresadoras. 
Además, existen sujetadores permanentes que llevan este nombre gracias a que se fabrican para 
una aplicación específica, luego se desechan. Estos sujetadores permiten una muy buena precisión 
en las medidas y generalmente son usados para un alto volumen de producción. 
Al seleccionar un dispositivo de sujeción se deben tener en cuenta factores tales como la cantidad 
de producción que se va a mecanizar. Cuando se selecciona un dispositivo de sujeción complejo y 
costoso indudablemente estamos mejorando la productividad, eliminando los errores en las 
medidas y acelerando el tiempo que se tarda la pieza de trabajo en una operación. 
Existe un tipo de elemento de sujeción que combina los sujetadores permanentes con los 
sujetadores de uso convencional, llamados plantillas de sujeción modulares (figura 1), estas 
plantillas brindan demasiada versatilidad ya que nos brindan los beneficios de un sujetador 
permanente, pero con un montaje reutilizable o desarmable, disminuyendo así la posibilidad de 
error del operario y aumentando la velocidad de montaje y desmontaje de la pieza de trabajo. 
 
13 
 
 
 
 
 
 
 
 
 
Ilustración 1. Plantilla modular1 
 
Para seleccionar un sistema de sujeción es importante tener en cuenta 3 variables, las cuales son: 
el costo, la seguridad, y la exactitud que pueda llegar a tener. En el apartado del costo es importante 
definir qué tan rentable puede salir un sistema de sujeción, en el caso de una plantilla hay que tener 
en cuenta el costo del diseño, fabricación, almacenamiento y materia primas. La exactitud hace 
referencia al resultado optimo el cual tiene que alcanzar en temas de mediciones, tolerancias y 
rangos de operación. Y, por último, la seguridad que nos brinda cuando se está realizando una 
operación de mecanizado, si un dispositivo de sujeción es peligroso para el operado o su entorno, 
no es pertinente utilizarlo. 
Para lograr una buena sujeción de una pieza en un mecanizado es importante restringir los 12 
grados de libertad (figura 2), esto se logra a partir del buen posicionamiento de la pieza de trabajo. 
Otro factor relevante son las fuerzas de corte que actúan en un mecanizado, por ejemplo, en un 
mecanizado usando un tornillo de banco las fuerzas de corte se deben ubicar en dirección a la 
mordaza para que se anulen y así lograr una buena sujeción. 
 
1 AVILA,B (2000). Sistemas de sujeción y soporte mecánico (primera ed., Vol. I). San Nicolas de los Garza, México: 
Universidad Autónoma de Nuevo León 
14 
 
 
Ilustración 2. Grados de libertad2 
 
Otro apartado importante de un sistema de sujeción es la selección de la mordaza, su principal 
función es asegurar la pieza de trabajo contra los posicionadores, para así evitar el movimiento. 
También es importante seleccionar bien la mordaza ya que si se usa por ejemplo un tornillo de 
banco se usa en operaciones donde hay demasiadas vibraciones, estas podrían aflojar el tornillo y 
permitir el movimiento de la pieza de trabajo, lo cual es indeseable. Adicionalmente se tiene que 
tener en cuenta que estas mordazas no hagan deformaciones en el material de trabajo, así como 
también las mordazas deben de ser fáciles de ubicar para que el proceso sea más productivo. Otra 
consideración que se debe tener al ubicar las mordazas, es que no interfieran con el movimiento 
de la máquina herramienta, esto es de vital importancia por ejemplo con las máquinas CNC, ya 
que el usillo o la herramienta de corte se pueden chocar contra el dispositivo de sujeción. 
Las fuerzas que se generan en una operación de maquinado también son determinantes para la 
elección de un dispositivo de sujeción. En un proceso de mecanizado la interacción de la 
 
2 AVILA,B (2000). Sistemas de sujeción y soporte mecánico (primera ed., Vol. I). San Nicolas de los Garza, México: 
Universidad Autónoma de Nuevo León 
15 
 
herramienta de corte con la pieza de trabajo genera fuerzas radiales y axiales, las cuales se pueden 
reducir a una fuerza resultante.3 
También se debe considerar la temperatura a la que puede llegar una pieza al ser mecanizada. La 
potencia consumida en el corte se invierte en la deformación plástica de la viruta y en los distintos 
rozamientos. Estos trabajos se convierten en calor que se invierte en aumentar las temperaturas de 
la viruta, la herramienta y la pieza de trabajo. La herramienta pierde resistencia conforme aumenta 
su temperatura, aumentando su desgaste y por lo tanto disminuyendo su vida útil. Por otro lado, 
un calentamiento excesivo de la pieza de trabajo puede variar las propiedades del material debido 
a cambios micro estructurales por efectos térmicos, también puede afectar a la precisióndel 
mecanizado al estar mecanizando una pieza dilatada que a temperatura ambiente se puede 
contraer.4 
 
 
 
 
 
 
 
 
 
 
3 AMESTOY, M. E. (2007). Principios de Mecanizado y Planificación de procesos (primera ed., Vol. I). Cartagena, 
Colombia: Universidad Politécnica de Cartagena. 
4 CELY, J.J. (2018). Diseño y Fabricación de Dos Sistemas de Sujeción para el Centro de Mecanizado Leadwell V20-I 
(primera ed., Vol. I). Bogotá, Colombia: Universidad Distrital Francisco José de Caldas 
 
16 
 
4. Justificación 
Actualmente, en la industria manufacturera debido a la necesidad de producir piezas en el menor 
tiempo posible con buenos índices de calidad, se ve obligada a mejorar sus procesos de producción, 
buscando que sean más eficientes, para ello, un factor importante es el buscar la forma en la que 
se va a sujetar el material a mecanizar, ya que de ello depende si la pieza a fabricar cumple con los 
debidos requerimientos técnicos. El dispositivo de sujeción escogido para anclar la pieza mientras 
se mecaniza, debe garantizar que sea capaz de soportar las fuerzas de corte, vibraciones y 
deformaciones, producidas al momento de realizar el proceso de arranque de viruta. 
Por lo tanto, el uso de dispositivos de sujeción se debe tener muy en cuenta al momento de querer 
producir piezas con los debidos requerimientos técnicos, ya que el tiempo utilizado en el montaje 
y desmontaje del elemento a fabricar, viéndolo desde el punto de vista económico se traduce en 
dinero, es decir en ganancias o pérdidas. 
Como ya se mencionó anteriormente, la eficiencia con la que se vaya a realizar dicha operación, 
depende en gran medida del dispositivo de sujeción, este ayudara a que se realice de una forma 
más precisa la pieza y evitando riesgos laborales. 
 
 
 
 
 
 
 
 
17 
 
5. Objetivos 
 
5.1. Objetivo general 
• Analizar dispositivos de sujeción utilizados para la fabricación de piezas en procesos de 
mecanizado: tornos y maquinas fresadoras CNC. 
 
5.2. Objetivos específicos 
• Recolección de información de dispositivos de sujeción: torneado y fresado. 
• Definir la magnitud y dirección de las fuerzas producidas durante el proceso de mecanizado 
en operaciones de torneado y fresado. 
• Analizar las fuerzas de apriete del dispositivo de sujeción. 
• Analizar las condiciones de vibración en las operaciones de fresado y torneado para la 
correcta selección del dispositivo de sujeción. 
• Definir una estrategia para la selección o el diseño de dispositivos de sujeción en procesos 
de mecanizado. 
 
 
 
 
 
 
 
 
18 
 
6. Marco teórico 
Es importante tener en cuenta los conceptos más generales para abordar el tema de dispositivos de 
sujeción, para ello se van a definir aspectos como la posición de la pieza al momento de realizar 
un proceso de mecanizado, los grados de libertad necesarios para garantizar un correcto 
funcionamiento del dispositivo y otros factores que afectan la fabricación de la pieza, como 
vibraciones y deformaciones. 
 
6.1. Importancia de la localización y referenciación tecnológica de las piezas 
La buena eficiencia con la que una maquina fresadora puede trabajar, depende en gran medida del 
tipo de dispositivo de sujeción que se vaya a utilizar, para ello el elemento debe cumplir con las 
siguientes funciones: 
• No debe presentar cambios en cuanto a la referenciación y la orientación de posición que tiene 
la pieza durante el maquinado. 
• Tener establecida con gran precisión la forma en que va a estar ubicada la pieza con respecto 
a las coordenadas de la máquina. 
• Poder producir lo establecido durante el proceso de manufactura. 
Para hacer una buena referenciación y localización de la pieza solo es posible realizarla si se usan 
de forma adecuada los elementos de orientación, posicionamiento y la forma de apoyar la pieza en 
el dispositivo. 
 
6.2. Sujeción de las piezas 
Se tiene en cuenta lo siguiente: 
19 
 
• Para mantener la posición se debe garantizar que el dispositivo de sujeción amarre a la pieza 
en la correcta posición y que esté en contacto con las superficies de montaje, sin importar que 
durante el proceso de mecanizado se produzcan fuerzas de corte y deformaciones, las cuales 
no deben ocasionar que la pieza se deforme más del 0.5 respecto a la tolerancia que se necesite 
dejar. 
En la siguiente figura se ilustra la forma más óptima para realizar una sujeción a la pieza, evitando 
en lo posible, deformar el elemento 
 
Ilustración 3. Reducir las deformaciones5 
 
• Para encontrar las áreas de sujeción, es necesario tener en cuenta las siguientes 
recomendaciones para encontrar el lugar apropiado para las áreas de sujeción, esto con el 
propósito de evitar deformaciones excesivas. 
• Las fuerzas de sujeción se deben aplicar a la derecha de cada contacto de la puesta en posición. 
• La presión del amarre debe ser lo más tenue posible. 
 
Para reducir las vibraciones se tienen las siguientes indicaciones: 
 
5 A. Chevalier, J. B. (1998). Tecnologia del diseño y fabricacion de piezas metalicas. Mexico: Limusa. Pag 11 
 
20 
 
• Las fuerzas de sujeción deben aplicarse lo más cerca posible, respecto a la superficie que se va 
a maquinar. 
• La fuerza de corte se debe hacer a la pieza sobre sus apoyos. 
• Las deformaciones del montaje producidas, se deben despreciar, ya que se van a tener en cuenta 
las fuerzas de conservación de posición y las fuerzas de corte. 
En la siguiente imagen, se ilustra la forma correcta sobre cómo se debe realizar la sujeción para 
reducir vibraciones durante el proceso de arranque de viruta del material. 
 
Ilustración 4. Reducir vibraciones6 
 
6.3. Simbolización geométrica 
Sirve para definir la forma en que se va a posicionar geométricamente una pieza en base a los 
grados de libertad que se eliminan. 
• Grado de libertad: Un grado de libertad hace referencia a la posibilidad de realizar un 
movimiento relativo de rotación o de translación entre la montadura y la pieza. 
Un sólido que no posee relación alguna tiene 6 grados de libertad, 3 en rotación y 3 en translación. 
En la siguiente figura, se ilustra cómo en teoría se puede lograr eliminar un grado de libertad por 
tener un contacto puntual. 
 
6 A. Chevalier, J. B. (1998). Tecnologia del diseño y fabricacion de piezas metalicas. Mexico: Limusa. Pag 11 
 
21 
 
 
Ilustración 5. Eliminación grado de libertad
7
 
 
6.4. Normal de referencia 
 
La representación de un contacto puntual teórico se debe hacer mediante un vector normal (normal 
de referencia) a la superficie valorada. 
En la siguiente ilustración, se muestra como debe ser la representación de un vector normal de 
referencia. 
 
Ilustración 6. Simbolización normal de referencia
8 
 
6.4. Elección de las superficies de partida 
En el estudio de fabricación de una pieza se debe tener un documento, el cual especifique una 
secuencia lógica de las fases para llevar a cabo la elaboración del elemento. 
 
7 A. Chevalier, J. B. (1998). Tecnologia del diseño y fabricacion de piezas metalicas. Mexico: Limusa. Pag 12 
 
8 A. Chevalier, J. B. (1998). Tecnologia del diseño y fabricacion de piezas metalicas. Mexico: Limusa. Pag 12 
 
22 
 
En la primera fase, se consideran cosas como dimensiones y tolerancias de posición, las cuales 
hacen parte del dibujo de definición, con el fin de relacionar las superficies maquinadas con las 
superficies a maquinar. 
 (Nieto, 1991) especifica que para hacer el análisis del dibujo de definición se puede tener en cuenta 
lo siguiente: 
- Número de piezas por fabricar. 
- Ritmo. 
- Material. 
- Estudio de las formas de la pieza. 
- Establecimiento de una referencia, donde los ejes deben figurar en cada vista. 
- Trazado en rojo y señalamiento de referencias de las superficies maquinadas. 
- Trazado en verde y señalamiento de referencias de las superficies a maquinar. 
- Análisis de las especificaciones segúnlos tres ejes y para todas las vistas, las cuales deben definir, 
dimensiones, formas, posiciones y sus respectivas tolerancias, estados de superficies y 
especificaciones particulares, como el esmerilado o la orientación de las estrías de maquinado. 
- En la investigación y elección de cotas de relación con el semiproducto, se debe tener en cuenta 
que, si existen dos o más dimensiones de relación con el semiproducto de un mismo eje, se debe 
dejar solo una. 
 
6.5. Requerimientos tecnológicos del dispositivo9 
Al fabricar una pieza se debe hacer un análisis especifico de diseño, el cual debe cumplir las 
siguientes condiciones de operación del dispositivo: 
 
9 Nieto, E. C. (1991). Disposivos de sujeción para maquinas herramientas CNC. Bogota: Cassa reativa. Pag 20 
23 
 
- Versatilidad: se debe poder trabajar cuatro o cinco caras de la pieza mediante un giro relativo en 
el dispositivo 
- Intercambiabilidad y modularidad: posibilidad de usar el dispositivo de sujeción en otro tipo de 
elementos 
- Definición de la zona de trabajo: limitado en cuando a peso de la pieza por máximo 50 kg y 
restringiendo las dimensiones máximas y mininas que puede tener 
- Tamaño del dispositivo: este es un factor importante en el diseño, el cual está definido a partir del 
volumen de accionamiento y el grado de modularidad del dispositivo 
Cada elemento que hace parte del conjunto y el dispositivo en general, deben tener rigidez, ya que 
de esto depende en gran medida la precisión con la que se vaya a realizar el maquinado. 
 
6.6. Fuerzas de maquinado 
En los dispositivos de sujeción las fuerzas producidas durante el mecanizado de una pieza, 
básicamente se relacionan con la dirección y magnitud, por ejemplo, en el proceso de taladrado las 
fuerzas principales de corte son paralelas a la herramienta de corte como se puede apreciar en la 
figura 7. 
En general, las fuerzas de maquinado deben actuar sobre el dispositivo de sujeción, el cual debe 
estar bien seleccionado o diseñado para sujetar la pieza a mecanizar. 
La fórmula para calcular esta fuerza está enfocada en una relación física, la cual es: 
Fuerza = Potencia / Velocidad 
 
24 
 
 
Ilustración 7. Fuerza de maquinado10 
 
Esta fórmula solo calcula la magnitud de la fuerza, para hallar la dirección, esta puede tener 3 
componentes (eje X, Y o Z) y se debe hacer intuitivamente en función de los movimientos que se 
hagan durante el mecanizado. La dirección de la fuerza y su magnitud pueden cambiar en cualquier 
instante, ya sea en el inicio, mitad o final del proceso de corte. 
 
 
 
 
 
 
 
 
 
 
 
10 AVILA,B (2000). Sistemas de sujeción y soporte mecánico (primera ed., Vol. I). San Nicolas de los Garza, México: 
Universidad Autónoma de Nuevo León 
25 
 
7. Metodología 
Para la realización de este trabajo se llevarán a cabo una serie de actividades, las cuales son 
cuidadosamente seleccionadas para asegurar una muy buena ejecución del mismo. 
Como primera medida, se realiza la recolección de información sobre los dispositivos de sujeción 
que existen y cuáles son los criterios que se tienen para una buena selección, este apartado es uno 
de los más importantes, ya que nos va a proporcionar los lineamientos en los cuales debemos 
centrarnos para lograr nuestro objetivo. 
Teniendo claras nuestras bases se procederá a realizar una revisión teórica, en la cual nos brinde 
suficiente información para así poder definir y analizar las fuerzas de corte y las vibraciones 
producidas durante una operación de maquinado, para posteriormente definir una estrategia óptima 
para la selección o diseño de un dispositivo de sujeción en procesos de mecanizado. 
 
 
 
 
 
 
 
 
 
 
 
 
26 
 
8. Dispositivos de sujeción y sus fuerzas de sujeción 
A continuación, se dará paso al análisis de estos dispositivos y sus fuerzas siguiendo la 
metodología propuesta en el siguiente mapa conceptual. 
 
Ilustración 8. Metodología a tratar en el apartado 8. Fuente: elaboración propia 
 
Como se evidencia en la figura 8, se comenzara con analizar diferentes dispositivos de sujeción 
para tener una idea fundamental acerca de estos mecanismos, se logrará dividiendo los dispositivos 
de sujeción en dos grupos para facilitar su reconocimiento y su análisis, luego de ello, se analizarán 
las fuerzas de corte que se presentan en el mecanizado, abordándolas desde la teoría de corte 
ortogonal para así luego poder tener un desarrollo más claro en el análisis de las fuerzas de 
sujeción, las cuales, también se dividen en dos grupos ya que por la naturaleza de estos dispositivos 
generan sus fuerzas de apriete en diferente forma. 
 
8.1. Dispositivos de sujeción en máquinas y herramientas 
Los dispositivos de sujeción son accesorios usados en la industria metalmecánica con el fin de 
mantener la posición de la pieza a mecanizar, existen variedad de estos elementos en función de 
27 
 
varios factores como, el espacio disponible que tiene la bancada de la máquina para trabajar, el 
tipo de pieza que se quiere fabricar y las herramientas con las cuales se van a realizar las 
operaciones de arranque de viruta11. 
 En la industria lo que se busca es que las herramientas y las piezas se soporten y fijen de la forma 
más segura y rápida posible, es por ello que debe existir una relación herramienta-máquina y pieza-
máquina, para que puedan haber estos enlaces debe existir una fuerza que los una, para conseguirlo 
se utilizan dispositivos de sujeción, su funcionamiento radica en el principio de la acción y 
transmisión de las fuerzas de corte, debido a la acción de esas fuerzas resulta una resistencia de 
rozamiento, las cuales deben por lo menos igualar las fuerzas de deslizamiento originadas durante 
el arranque de viruta12. 
En procesos de torneado y fresado dependiendo del tipo de operación a realizar se usan diferentes 
tipos de dispositivos de sujeción, entre los que se encuentran: 
 
8.1.1. Dispositivos para sujetar el material en bruto 
Este tipo de dispositivos están diseñados para evitar que durante el proceso de arranque de viruta 
el material sufra deformaciones plásticas y desplazamientos de la pieza, en ocasiones pueden 
presentarse deformaciones elásticas, las cuales deben ser pequeñas para que luego de quitar la 
fijación, las piezas salgan con los requerimientos técnicos exigidos, tales como, tolerancias 
geométricas y acabados superficiales. En función de la geometría de la pieza que se quiera fabricar, 
 
11 TecnologÃ-a de los oficios metalÃorgicos. (s. f.). Google Books. https://books.google.com.co/books?id=YeLfJ0K-
4bAC&pg=PA411&dq=dispositivos+de+sujecion&hl=es-
419&sa=X&ved=2ahUKEwij4LWp9sLwAhVBZN8KHVtcBwAQ6AEwAXoECAQQAg#v=onepage&q=dispositivos%20de
%20sujecion&f=false 
12 Metalotecnia fundamental. (s. f.). Google Books. 
https://books.google.com.co/books?id=hjvnaD7RBSIC&pg=PA240&dq=dispositivos+de+sujecion&hl=es-
419&sa=X&ved=2ahUKEwij4LWp9sLwAhVBZN8KHVtcBwAQ6AEwAnoECAIQAg#v=onepage&q=dispositivos%20de%
20sujecion&f=false 
28 
 
se elige el tipo de máquina-herramienta a usar y luego el dispositivo de sujeción, por ejemplo, si 
se quiere hacer una operación de fresado, lo más conveniente sería usar una prensa de banco o 
unas bridas de sujeción. 
A continuación, se va a describir los dispositivos más comúnmente usados en la industria: 
 
8.1.1.1. Copa autocentrante. 
Este elemento es usado en el torneado para sujetar el material con forma cilíndrica para realizar 
diferentes mecanizados como, refrentado, cilindrado, chaflanado, ranurado, entre otros. En la 
siguiente imagen se muestra un modelo en 3D sobre la copa autocentrante. 
 
 
Ilustración 9. Modelo CAD Copa Autocentrante13 
 
El área de contacto son los puntos sobre los cuales se va a sujetar el material, en este caso, como 
se puede apreciar en la figura anterior, el tipo de elemento de sujeción, es de una superficie 
concéntrica con tres zonas de apoyo. 
 
13 GrabCAD:Design Community, CAD Library, 3D Printing Software. (s. f.). Gradcad. https://grabcad.com/ 
 
29 
 
Para visualizar de una mejor manera los elementos que conforman el dispositivo, en la siguiente 
imagen se muestra una vista explosionada del modelo CAD. 
 
Ilustración 10. Vista explosionada modelo CAD Copa Autocentrante (Elaboración propia en SolidWorks®)14 
 
Este elemento de sujeción consta de una parte móvil, en la que interactúan, la corona, piñón y 
mordazas, los cuales, se mueven al mismo tiempo. Para accionar estos elementos se debe hacer 
manualmente, a partir de una llave, la cual entra en la cabeza del piñón y al girarla provoca un 
movimiento rotacional del piñón a la corona, debido a que están en contacto. Esta unión de piñón-
corona, se debe a que, el piñón en su base cuenta con un indentado que, al entrar en contacto con 
los dientes de la corona, hacen que se transmita el movimiento por rozamiento de las partes, 
posteriormente, ya que la corona en su otro lado tiene una espira (rosca de Arquímedes), encaja 
con los dientes de la mordaza, provocando finalmente una transmisión de movimiento, desde la 
llave, hasta las mordazas, las cuales son las encargadas de sujetar la pieza durante el proceso de 
mecanizado . 
 
14 SolidWorks version educativa 
30 
 
Por otro lado, el cuerpo de la copa cumple la función de darle rigidez al mecanismo y evita que los 
demás componentes se desalineen. 
Existen otras presentaciones de este elemento de sujeción concéntrica, mandriles de dos, tres o 
cuatro mordazas, en donde, las mordazas pueden ajustarse de forma independiente o no, 
dependiendo del tipo de pieza a fabricar, pero el principio de funcionamiento es el mismo 
 
8.1.1.2. Prensa de banco. 
La prensa de banco cuenta con una boca móvil y otra fija; la boca móvil es desplazada linealmente 
con ayuda de un tornillo, el cual en su extremo posee una manivela para facilitar su movimiento y 
en su parte inferior cuenta con unas guías para garantizar su correcta alineación con respecto a la 
boca fija. Para evitar el desgaste de las bocas, se atornillan en sus extremos mordazas, las cuales 
pueden ser intercambiables. 
Tienen un uso muy común en la industria, dependiendo de la necesidad o comodidad del operario 
existen también prensas de mando hidráulico y de mando oleo neumático, haciendo más fácil el 
proceso de apriete de la pieza a mecanizar 
En la siguiente figura se muestra un modelado del dispositivo y en la figura 11 se muestra una 
vista explosionada para que se vean todas las partes. 
 
 
31 
 
 
Ilustración 11. Modelo CAD Prensa de banco15 
 
En este caso, son dos las áreas de contacto con el material, la sujeción es de superficie plana y las 
zonas de contacto con el material son paralelas entre sí. 
 
Ilustración 12. Vista explosionada modelo CAD Prensa de banco (Elaboración propia en SolidWorks®)16 
 
 
15 GrabCAD: Design Community, CAD Library, 3D Printing Software. (s. f.). Gradcad. https://grabcad.com/ 
16 SolidWorks version educativa 
32 
 
Al girar la manivela en sentido horario, la boca móvil se acerca a la boca fija, permitiendo así, 
aprisionar la pieza, si por el contrario se gira la manivela en sentido antihorario, se produce una 
separación entre las bocas y por consiguiente se libera la pieza. 
 
8.1.1.3. Bridas de sujeción. 
Este dispositivo es usado para sujetar el material a trabajar en procesos de fresado, la brida posee 
un perno con una ranura en T en su extremo, esta es ubicada en las guías que tiene la mesa de la 
máquina, para ajustar la altura de sujeción se usa el tornillo, el cual cuenta con una cabeza 
moleteada, el apriete de la pieza es rápido solo basta con girar la tuerca en sentido horario. 
Generalmente las bridas de sujeción se fabrican en acero templado, el perno con ranura en T es de 
acero forjado y el tornillo de ajuste es de acero endurecido. 
En la siguiente imagen se ilustra una brida de sujeción y sus respectivas partes que conforman el 
dispositivo: 
 
Ilustración 13. Brida de Sujeción17 
 
 
17 Imagen tomada de: JW Winco México, S.A. de C.V. (s. f.). NO. 6314 V Bridas simples ajustables de acero, con 
perno para ranura en T. JW Winco Standard Parts. https://www.jwwinco.com/es-mx/productos/2.3-Tension-con-
levas-excentricas-y-cunas/Cunas-de-sujecion/NO.-6314-V-Bridas-simples-ajustables-de-acero-con-perno-para-
ranura-en-T 
33 
 
Existen tres clases de bridas de sujeción las cuales son18: 
• Brida de sujeción de interesfuerzo: En este grupo están las bridas deslizantes y las giratorias, 
las cuales permiten la liberación de la pieza de forma sencilla al aflojar el tornillo, en la 
siguiente imagen se ilustra este tipo de bridas 
 
Ilustración 14. Brida de sujeción interesfuerzo19 
 
• Bridas de sujeción de interapoyo: A diferencia de las bridas de sujeción de interesfuerzo, 
estas llevan en la palanca un tornillo o leva, el cual debe estar invertido con respecto a la 
pieza a mecanizar, a continuación, se muestran este tipo de bridas: 
 
Ilustración 15. Brida de sujeción de interapoyo20 
 
En esta brida de interapoyo el material va a quedar por un lado en contacto con una superficie 
plana y por el otro lado el punto de contacto es una línea. 
 
18 A. Chevalier, J. B. (1998). Tecnologia del diseño y fabricacion de piezas metalicas. Mexico: Limusa. 
19 Imagen tomada de: Amazon.com: VERTEX, Kit de sujeción, 52 Pcs, ranura 5/8 inches, Stud 1/2 inches, ck-104b, 
1003 – 012: Home Improvement. (s. f.). Amazon. https://www.amazon.com/-/es/VERTEX-sujeci%C3%B3n-52-Pcs-
inches-ck-104b/dp/B00LEZMZUS 
20 Imagen tomada de: WDS 216 series - Brida de sujeción de leva by WDS Component Parts | DirectIndustry. (s. f.). 
Direct Industry. https://www.directindustry.es/prod/wds-component-parts/product-14778-463571.html 
34 
 
• Bridas de sujeción de interapriete: Son básicamente las bridas articuladas, estos 
sujetadores se usan como fueron diseñados o en ocasiones se usan con un elemento de 
adaptación, esto dependiendo de la superficie a sujetar, en la siguiente imagen se puede 
apreciar un modelo de estas bridas: 
 
Ilustración 16. Brida de sujeción interapriete21 
En este dispositivo el área de contacto del material es una superficie plana como se puede observar en la anterior 
figura. 
 
8.1.1.4. Dispositivos de sujeción para geometría compleja. 
En la industria se fabrican demasiadas piezas con geometría irregular, que impiden a los elementos 
de sujeción convencionales sujetar de manera efectiva una pieza en una operación de mecanizado, 
esto se traduce en un riesgo para el operario de la máquina, la máquina-herramienta y también la 
pieza de trabajo ya que no se cumplirían los requerimientos técnicos de la misma. 
Ilustración 17. Plantilla modular 22 
 
21 Imagen tomada de: Normelemente Kg, N. (s. f.). Dispositivos de sujeción rápida variables con biela | norelem. 
norelem Normelemente KG. https://www.norelem.com/es/es/Productos/Vista-general-de-producto/Sistema-
flexible-de-piezas-est%C3%A1ndar/05000-Dispositivos-de-sujeci%C3%B3n 
22 AVILA,B (2000). Sistemas de sujeción y soporte mecánico (primera ed., Vol. I). San Nicolas de los Garza, México: 
Universidad Autónoma de Nuevo León 
35 
 
Generalmente en este tipo de piezas se suelen usar dispositivos modulares que permitan cumplir 
con una alta gama de formas y tamaños para lograr una buena sujeción en este tipo de piezas23. 
Los dispositivos modulares brindan demasiadas ventajas, como por ejemplo un montaje 
reutilizable y de fácil reglaje, para así disminuir la posibilidad de error cuando el operario este 
ubicando la pieza de trabajo. Estos dispositivos utilizan elementos mecánicos de fijación como 
bridas, primas, tornillos, entre otro, como se aprecia en la figura. 
Otro dispositivo usado es el perno de sujeción, el cual usa un dado para anclarse en la bancada de 
la máquina-herramienta, es ideal para sujetar piezas con geometría irregular ya que se adapta a 
distintostamaños y formas. Además, proporciona una altura a la pieza a mecanizar ideal para 
realizar operaciones de taladrado y roscado. 
Ilustración 18. Perno de sujeción24 
 
 
 
23 Nieto, E. C. (1991). Disposivos de sujeción para maquinas herramientas CNC. Bogota: Cassa reativa. Pag 20 
24 Imagen tomada de: Lizaga, B.. (2011). Elementos mecánicos de fijación. 2021, de Baselga lizaga Sitio web: 
https://baselgalizaga.com/img/cms/documentos/catalogo/amfo/elementos_fijacion.pdf 
36 
 
Ilustración 19. Posiciones del perno de sujeción25 
 
 
 
• Sujeción Fixture 
 
Es usada en la fabricación a gran escala, ya que es una herramienta que sirve para sujetar un 
dispositivo para así poder mecanizar un gran número de piezas. Su uso más común es para asegurar 
la posición y orientación en una ubicación especifica, garantizan que todas las piezas fabricadas 
tengan las mismas especificaciones técnicas y reduce el costo de mano de obra. Algunas de sus 
ventajas son26: 
- Aumentan la productividad ya que, eliminan el marcado individual, posicionamiento y 
verificación. El tiempo de operación se reduce debido al aumento de velocidad de corte y alta 
rigidez de sujeción. 
- Logran la fabricación de grandes cantidades de piezas con alto grado de precisión. 
 
 
25 Imagen tomada de: Lizaga, B.. (2011). Elementos mecánicos de fijación. 2021, de Baselga lizaga Sitio web: 
https://baselgalizaga.com/img/cms/documentos/catalogo/amfo/elementos_fijacion.pdf 
26 W. (s. f.). Datos Principales:Fixturas. Censa Industrial. Recuperado 9 de septiembre de 2021, de 
https://censaindustrial.com/datos-principales-fixturas/ 
37 
 
 
Ilustración 20. Sujeción fixture27 
 
 
8.1.2. Dispositivos para sujetar la herramienta 
Luego de analizar los dispositivos más comunes para sujetar el material en bruto, el documento se 
centra ahora en estudiar los dispositivos para sujetar la herramienta. 
Estos dispositivos son los encargados de transmitir la potencia generada de la maquina a la 
herramienta de corte, además deben evitar su deslizamiento, provocado por las fuerzas de corte al 
momento de realizar la operación de arranque de viruta, para ello, se debe generar una fuerza de 
rozamiento que a lo menos iguale esa fuerza. A partir del tamaño de la herramienta y el tipo de 
mecanismo de sujeción que posea la máquina, se elige el portaherramientas más indicado28. 
Las maquinas utilizadas en procesos de mecanizado (fresadora, taladradora, contra punto del torno, 
etc.) llevan en el husillo alojamientos en los cuales se acoplan los conos, que a su vez alojan 
diferentes sistemas portaherramientas, con el propósito de sujetar las herramientas de corte y que 
éstas puedan ser intercambiables. 
 
27 W. (s. f.). Datos Principales:Fixturas. Censa Industrial. Recuperado 9 de septiembre de 2021, de 
https://censaindustrial.com/datos-principales-fixturas/ 
28 Conos porta-herramientas para mecanizado de alta velocidad. (s. f.). Interempresas. Recuperado 29 de mayo de 
2021, de https://www.interempresas.net/MetalMecanica/Articulos/26079-Conos-porta-herramientas-para-
mecanizado-de-alta-velocidad.html 
38 
 
Debido a que en el mercado mundial existen diferentes clasificaciones de los conos, existen 
estándares internacionales de normalización, entre los cuales se encuentra, ISO, DIN, NT Y ANSI, 
en función de las dimensiones y conicidad del mango. Las formas y tamaños del cono 
portaherramientas deben ser equivalentes al acoplamiento del husillo de la máquina. 
A continuación, se presentan algunos de los conos más comunes en la industria metalmecánica29: 
 
8.1.2.1 Sujeción portaherramientas-husillo de la máquina 
• Cono métrico o ISO: En Colombia se utilizan conos estandarizados bajo la norma 
estadounidense ISO y la norma alemana DIN, en máquinas convencionales y centros de 
 
• mecanizado, esto debido a que, las primeras máquinas de arranque de viruta que llegaron al 
país, venían con estos sistemas de sujeción, y hasta el momento esto no ha cambiado. 
 
Ilustración 21. Cono ISO30 
 
 
29 Agudelo, S. (s. f.). CONOS Y PORTAHERRAMIENTAS. Academia. 
https://www.academia.edu/28166250/CONOS_Y_PORTAHERRAMIENTAS 
 
30 Imagen tomada de: Mandrino portautensili cono ISO30 tipo prolungato per Biesse - HSD [T118.804.R]. (s. f.). 
Utensileria. Recuperado 30 de mayo de 2021, de https://www.utensileriaonline.it/macchine-e-utensili-per-legno-c-
545/mandrino-portautensili-cono-iso30-tipo-prolungato-per-biesse-hsd-p-14706.php 
39 
 
Esta norma ISO define seis tamaños básicos de conos; 30, 35, 40, 45, 50 y 60; entre más grande 
sea la máquina, mayor será el número de cono que se debe usar. El cono ISO más usado en 
Colombia es el número 40. 
• CAT: Equivalente bajo la norma DIN al 69871. Son fabricados por la multinacional 
Caterpillar, estas herramientas son de cambio rápido, son elaboradas en acero aleado o forjado, 
con tratamientos térmicos de cementado y templados para que su vida útil sea más larga y 
resistente, además, son rectificados para garantizar una buena precisión. 
 
 
Ilustración 22. Cono CAT31 
 
Para identificar un cono CAT se debe observar el diseño de la ranura de agarre, como se puede observar 
en la imagen anterior, está centrada en medio de las dos pestañas. 
• BT (norma MAS 403): Son usados en máquinas europeas japonesas y chinas, estos conos al 
igual que los ISO, son los más usados en Colombia, están fabricados en acero forjado, la ranura 
de agarre viene descentrada, por lo que la pestaña superior es más amplia que la inferior. Estas 
herramientas son endurecidas y rectificadas, son intercambiables con todas las pinzas ER (es 
un adaptador cilíndrico-cónico que se acopla dentro del portapinza). 
 
31 Imagen tomada de: Glacern Machine Tools - ER Collet Chucks. (s. f.). Glacern. Recuperado 30 de mayo de 2021, 
de https://glacern.com/er_collet_chucks 
40 
 
 
Ilustración 23. Cono BT32 
 
Al igual que los conos CAT, se pueden identificar por la ranura de agarre, ya que como lo muestra 
la imagen anterior, está viene descentrada, haciendo que la pestaña superior sea más amplia que la 
inferior. 
• HSK (DIN 69893): Son portaherramientas de mango hueco, aun no son usados en Colombia. 
Están diseñadas para el mecanizado de alta velocidad, igual o superior a 8000 rpm. Vienen en 
tamaños de herramental 32, 40, 50, 80 y 100. Entre las ventajas que tiene esta su peso y tamaño, 
ya que es más corto y el cambio de herramienta es rápido, debido a que puede recorrer menos 
distancia y manejar mejor el momento de inercia. 
 
Ilustración 24. Cono HSK33 
Como puede observarse en la imagen anterior, estos elementos utilizan un cono corto, poco profundo de 
proporción 1/10, debido a ello, se pueden hacer mecanizados a alta velocidad. 
 
32 Imagen tomada de: FT: Cono BT40 para Cortador Tipo Corona con Piloto de Ø 27mm | FAMATOOLS.com. (s. f.). 
Famatools. Recuperado 30 de mayo de 2021, de http://www.famatools.com/cono-bt40-cortador-tipo-corona-fmb-
27mm 
33 Imagen tomada de: PORTAPINZAS CONO HSK-50F | 7- Fresas y mandrinos para pantógrafo CNC | Sistemi Klein. 
(s. f.). Klein. Recuperado 30 de mayo de 2021, de https://www.sistemiklein.com/es/productos/17-7--fresas-y-
mandrinos-para-pant%C3%B3grafo-cnc/966-portapinzas-cono-hsk-50f.html 
41 
 
• Hidráulico: Estos portaherramientas sujetan la herramienta por medio de un sistema que usa 
aceite a presión. Las ventajas que poseen es que reducen la desalineación y el salto de la 
herramienta respecto al cono, además de la precisión y rigidez que tienen, estos conos 
hidráulicos son capaces de soportar fuerzas de corte elevadas. 
 
Ilustración 25. Cono Hidráulico34 
 
 
8.1.2.2. Sujeción portaherramienta-Herramienta. 
• Portafresa, tipo árbol o Shell: Generalmente en el ámbito laboral se le conoce como 
mandril o portafresa, son usados para montar fresas en operaciones de corte. 
 
Ilustración 26. Portafresa35 
En la imagen anterior podemos observar un cono BT sujetando la fresa por medio de tornillos,el 
cambio de la herramienta es relativamente rápido. 
 
34 Imagen tomada de: Cono de expansiÃ3n hidráulica delgado BT 40 A = 120. (s. f.). Link Innovate Your 
Industry. Recuperado 30 de mayo de 2021, de https://www.hoffmann-group.com/ES/es/hoe/Herramientas-de-
sujeci%C3%B3n-y-retenci%C3%B3n-mec%C3%A1nica/Porta-herramientas-y-soportes-para-tornos-y-
fresadoras/Cono-de-expansi%C3%B3n-hidr%C3%A1ulica-delgado-BT%C2%A040-
A%C2%A0%3D%C2%A0120/p/303465 
35 Imagen tomada de: Cono Porta-Fresa ó de Arbol. (s. f.). Imocom · Mecanizado. Recuperado 30 de mayo de 2021, 
de https://imocom.com.co/mecanizado/portfolio/cono-porta-fresa-o-de-arbol/ 
42 
 
El costo de estos dispositivos es bastante elevado y solo se puede usar herramientas del mismo 
diámetro en cada cono, suelen usarse en operaciones de acabado y en el mecanizado de moldes en 
materiales duros. 
• Portapinzas: Este dispositivo sirve para sujetar la herramienta con la que se va a realizar el 
mecanizado, al girar la tuerca portapinza en sentido horario, este se enrosca en el cono, 
produciendo un efecto de compresión sobre la pinza, la cual es básicamente un resorte y es 
donde se ubica la herramienta, al girar la tuerca en sentido antihorario permite a la pinza volver 
a su tamaño normal y así liberar la herramienta. 
En las figuras 27 y 28 se muestra el modelado del dispositivo y una vista explosionada, para 
identificar todas sus partes: 
 
 
 
Ilustración 27. Modelo CAD Cono Portapinzas36 
 
 
36 GrabCAD: Design Community, CAD Library, 3D Printing Software. (s. f.). Gradcad. https://grabcad.com/ 
43 
 
 
Ilustración 28. Vista explosionada modelo CAD Cono Portapinzas (Elaboración propia en SolidWorks®)37 
 
 
• Portabrocas: Son usados para sujetar diferentes tipos de herramientas de mango cilíndrico, 
estos elementos vienen estandarizados según el tamaño, desde 8, 16, 25, 32 40 y 50, con el fin 
de cubrir una amplia variedad de diámetros, desde 0,2 a 34 mm. Poseen un gran par de apriete 
brindando rigidez y equilibrio a las herramientas (brocas y machos) usadas. Este dispositivo 
asegura la sujeción y liberación de la pieza en forma rápida, ya que no necesita de ninguna 
llave, el proceso de apriete de la herramienta introducida en las mordazas es manual, basta con 
girar la carcasa cónica, en sentido horario las mordazas se desplazarán hacia afuera sujetando 
la herramienta. Cabe resaltar que debido a que la espiga y el tornillo no están en contacto 
directo en ningún momento, no será posible que la herramienta se suelte de las mordazas. 
En las figuras 29 y 30 se muestra el modelado del dispositivo y una vista explosionada, para 
identificar todas las partes del portabrocas: 
 
37 SolidWorks version educativa 
44 
 
 
Ilustración 29. Modelo CAD Portabrocas38 
 
 
Ilustración 30. Vista explosionada modelo CAD Portabrocas (Elaboración propia en SolidWorks®)39 
 
8.2. Análisis fuerzas de corte 
Las fuerzas de corte en una operación de maquinado son algo complejas de determinar, pero 
generalmente se dispone de un método geométrico simplificado que desprecia muchas de las 
complejidades presentadas en estas operaciones, describiendo así la mecánica de los procesos con 
buena fidelidad. 
Este método geométrico simplificado trabaja en dos dimensiones, en el cual el sistema de fuerzas 
se reduce a una fuerza resultante R`` o Fr, como se ve en la figura 31. En este sistema para medir 
las componentes de esta fuerza Fr se utiliza un dinamómetro, para así obtener la magnitud de las 
componentes de esta fuerza Fr, las cuales son: La fuerza de corte Fc, que va en la misma dirección 
 
38 GrabCAD: Design Community, CAD Library, 3D Printing Software. (s. f.). Gradcad. https://grabcad.com/ 
39 SolidWorks version educativa 
45 
 
de la velocidad de corte, y la fuerza de empuje Ft, que va en dirección perpendicular a la fuerza de 
corte. 
 
Ilustración 31. Fuerza resultante que actúa sobre la herramienta de corte40 
 
 
Ernst y Merchant fueron unos de los primeros en utilizar este método que comprende una zona de 
deformación primaria, que puede ser aproximada a un plano de deslizamiento que interactúa desde 
la punta de la herramienta hasta la parte exterior del material que empieza a deformarse. El método 
de corte ortogonal considera un ángulo Φ para definir la posición del plano de corte, la zona 
primaria de deformación (longitud ls), se puede calcular en función de los espesores de viruta antes 
y después del corte como se ve en la siguiente figura.41 
 
40 Groover, M.. (2007). Fundamentos de Manufactura Moderna. México, D.F: McGRAW-HILL/INTERAMERICANA 
EDITORES, S.A. DE C.V. Pag 491 
41 López, J.. (2017). Fundamentos de Procesos Convencionales de Fabricación Mecánica. Cartagena: Ediciones 
UPCT. Pag 62 
46 
 
 
Ilustración 32. Angulo Φ y zona primaria de deformación42 
 
Ls está definido como se ve en la figura 32, donde ac es el espesor de viruta antes del maquinado y 
a0 el espesor de viruta después del maquinado. El espesor a0 suele medirse con micrómetros 
directamente en la viruta, pero también se puede calcular de acuerdo con la siguiente ecuación. 
𝑎0 =
𝑚𝑐
𝑙2𝑏𝜌
 (1) 
 
 
42 López, J.. (2017). Fundamentos de Procesos Convencionales de Fabricación Mecánica. Cartagena: Ediciones 
UPCT. Pag 63 
47 
 
Donde mc es la masa de un trozo de viruta y l2 es la longitud de ese trozo de viruta, b es el ancho 
del corte y ρ es la densidad del material. 
Igualando las dos ecuaciones de ls se llega a la siguiente expresión: 
𝑡𝑎𝑛𝛷 =
𝑟𝑐 cos 𝛾
1−𝑟𝑐 sin 𝛾
 (2) 
Donde rc es la relación de espesores de viruta antes y después del corte llamada razón de corte. 
𝑟𝑐 =
𝑎𝑐
𝑎0
 (3) 
El siguiente parámetro importante es la resistencia a la cizalladura del material que es una 
constante del material que se mantiene durante toda la operación de mecanizado, se denota como 
τs y puede calcularse como: 
𝜏𝑠 =
𝐹𝑠
𝐴𝑠
 (4) 
Donde Fs (fuerza de cizallamiento) es la proyección de la fuerza Fr en la dirección del plano de 
deslizamiento, como se ve en la figura 9, As es el área de dicho plano. De acuerdo con la figura 31 
se puede deducir la siguiente ecuación: 
𝐹𝑠 = 𝐹𝑐 cos 𝛷 − 𝐹𝑡 sin 𝛷 (5) 
Ahora otra forma de determinar el esfuerzo cortante del material es combinando las ecuaciones de 
τs ,Fs y As para obtener la siguiente deducción: 
𝜏𝑠 = 
𝐹𝑠
𝐴𝑠
=
𝐹𝑐 cos 𝛷−𝐹𝑡 sin 𝛷
𝐴𝑐𝑏
sin 𝛷 (6) 
 
48 
 
 
Ilustración 33. Fuerza de cizalladura Fs43 
 
Ilustración 34. Fuerzas aplicadas en la cara de la herramienta44 
 
En la figura 34 se muestran todas las fuerzas que actúan en el mecanizado de una pieza, de esta 
imagen se pueden deducir las siguientes ecuaciones para hallar la magnitud de cada una de ellas 
en función de Ft y Fc, como se muestra a continuación: 
 
 
43 López, J. (2017). Fundamentos de Procesos Convencionales de Fabricación Mecánica. Cartagena: Ediciones UPCT. 
Pag 65 
44 López, J. (2017). Fundamentos de Procesos Convencionales de Fabricación Mecánica. Cartagena: Ediciones UPCT. 
Pag 66 
49 
 
𝐹𝑓 = 𝐹𝑐 sin 𝛾 + 𝐹𝑡 cos 𝛾 (7) 
𝐹𝑛 = 𝐹𝑐 cos 𝛾 − 𝐹𝑡 sin 𝛾 (8) 
𝑁 = 𝐹𝑐 sin 𝛷 + 𝐹𝑡 cos 𝛷 (9) 
N es la fuerza normal a Fs. Ff es la fuerza de fricción que se genera con el contacto de entre el filo 
de corte y la viruta. Fn es la fuerza normal a Ff. Ahora es importante deducir las siguientes 
ecuaciones para lograr determinar teóricamente las magnitudes de Ft y Fc en términos de la 
resistencia a la cizalladura del material como se muestra a continuación: 
𝐹𝑐 =
𝜏𝑠𝐴𝑠 cos(𝛽−𝛾)
sen𝛷cos(𝛷+𝛽−𝛾)
 (10) 
𝐹𝑡 =
𝜏𝑠𝐴𝑠 sin(𝛽−𝛾)
sen𝛷cos(𝛷+𝛽−𝛾)
 (11) 
En la siguiente imagen se ilustra un modelo en 3D sobre las fuerzas de corte: 
 
Ilustración 35. Fuerzas de corte (Elaboración propia en SolidWorks®)45 
 
45 SolidWorks version educativa 
50 
 
Estas ecuaciones suponen que la resistencia de cizalladura del material es una contante sin importarla velocidad de deformación, la temperatura, entre otros. 
A continuación, se dará una retroalimentación de todas las definiciones anteriormente tratadas, con 
el fin de dar un poco más de claridad en el tema: 
➢ Φ es el ángulo formado entre el plano de cizallamiento (ls) y la dirección de corte de la herramienta, 
recibe el nombre de ángulo de plano de deslizamiento, cuando este ángulo aumenta su magnitud, 
las fuerzas disminuyen ya que el área del plano de cizallamiento disminuye, sucede lo contrario 
cuando Φ disminuye. 
➢ γ es el ángulo formado entre la cara de la herramienta y la normal de la superficie de la pieza de 
trabajo, llamado ángulo de desprendimiento o ángulo de ataque, este ángulo depende de la 
herramienta de corte y tiene mucha influencia en la formación de la viruta. 
➢ α es el ángulo formado ente la nueva superficie y la herramienta de trabajo, llamado ángulo de 
incidencia, este ángulo tiene como objetivo dejar un espacio entre estas dos para proteger de 
cualquier abrasión y no degradar el acabado. Como se nota en las ecuaciones este ángulo no tiene 
ninguna incidencia en los cálculos propuestos. 
➢ β es el ángulo formado entre la fuerza resultante (Fr) y la fuerza normal a la fricción (Fn), llamado 
ángulo de fricción. 
➢ Ft y Fc son la descomposición de la fuerza resultante Fr. Fc es generada en la misma dirección del 
movimiento de corte y Ft es perpendicular a la misma, esta última está relacionada con el espesor 
de la viruta antes de ser deformada. 
➢ Ff es la fuerza de fricción, generada por el contacto de la cara de ataque de la herramienta de corte 
y la viruta deformada. Fn es la fuerza normal a Ff. 
51 
 
➢ Por último, Fs que representa la fuerza necesaria para lograr la cizalladura del material en el plano 
(ls). N es la fuerza normal a Fs. 
➢ Como se observa en el diagrama de fuerzas, cada par de fuerzas debe de tener como resultante la 
misma magnitud, pero en sentidos diferentes y, además, ser colineal a la fuerza Fr, para que lograr 
que estén balanceadas. 
En los procesos de torneado y fresado es muy importante aprovechar al máximo la potencia 
disponible de la maquina herramienta con el fin de que el proceso sea mas eficiente, una forma de 
verificar que tan productivo puede ser un mecanizado, es con la fuerza especifica de corte Kc, la 
cual indica la energía consumida por unidad de volumen de material removido, este parámetro se 
define así: 
𝐾𝑐 =
𝐹𝑐
𝐴𝑠
 (12) 
 
 
 
 
8.3. Fuerzas de sujeción 
Finalmente, de acuerdo a la metodología propuesta en el mapa conceptual de la figura 7, el último 
tema a tratar en este apartado, luego de haber analizado los dispositivos de sujeción y las fuerzas 
de corte, son las fuerzas de sujeción. Para analizar de una mejor manera estas fuerzas, se han 
clasificado en sujeción concéntrica y sujeción axial, teniendo en cuenta la dirección de la fuerza 
de corte, ya que esta cambia en función del tipo de operación que se esté realizando. 
Durante un proceso de mecanizado el amarre de la pieza debe ser fijo sin importar la magnitud de 
las fuerzas de corte a la cual está sometida, es decir, que este bien localizada durante todo el 
proceso de fabricación, para ello, los apoyos deben restringir los seis grados de libertad y para 
asegurar que la pieza siempre este en contacto con ellos se somete a unas fuerzas de apriete. Estas 
52 
 
fuerzas deben ser mayores que las fuerzas originadas durante el proceso de corte, para evitar que 
la pieza se deslocalice, pero no deben ser en exceso ya que podría provocar deformaciones en la 
pieza46. 
Una restricción que tiene las fuerzas de sujeción es el posible daño que pueda recibir la pieza en 
las superficies de apoyo, debido a las fuerzas de presión que ejerce el dispositivo de sujeción sobre 
el material. La fuerza que actúa sobre una superficie no es puntual, sino que es la resultante de una 
distribución determinada de presiones. Entre más grande sea la superficie de contacto, menor será 
el daño producido a la pieza. 
Luego de conocer la fuerza de corte necesaria para realizar el arranque de la viruta al material, ya 
sea en un proceso de fresado o torneado, se puede saber la magnitud de las fuerzas necesarias para 
igualar a lo menos estas fuerzas, evitando así, desplazamientos y deformaciones de la pieza, 
durante el maquinado. Esta reacción teórica es recomendable multiplicarla por un coeficiente de 
seguridad K, en el cual se tienen distintos factores no calculados como lo son, vibraciones, posibles 
impactos y distribución no uniforme de carga a lo largo de superficies de contacto. Generalmente 
K = 2,5 ÷ 3,0 para operaciones de desbaste y K= 1,5 ÷ 2,0 en operaciones de acabado. 
Para calcular las fuerzas de amarre se debe hacer un análisis de las ecuaciones de equilibrio de 
fuerzas y momentos. De esa forma se puede obtener las fuerzas de apriete mínimo dependiendo 
del dispositivo de sujeción a usar, es decir si se va a hacer una operación de fresado o torneado 
Generalmente, en los dispositivos de sujeción más usados, el apriete del material en bruto y las 
herramientas de corte se realiza de dos maneras, sujeción concéntrica y sujeción de geometría 
 
46 Amestoy, M. E. (2007). Principios de Mecanizado y Planificación de (primera ed., Vol. I). (D. d. Fabricación, Ed.) 
Cartagena, Colombia: Universidad Politécnica de Cartagena. Pag 50 
53 
 
plana, para ver la forma como se realiza el cálculo, a continuación, aparece el procedimiento para 
cada tipo de apriete47. 
 
8.3.1. Sujeción concéntrica 
Supongamos un proceso de torneado, donde el material a mecanizar es sujetado por una copa 
(autocentrante o mordazas independientes), la fuerza de corte en función del área de corte genera 
sobre el amarre un momento torsor, el cual debe ser soportado por el rozamiento generado en las 
garras de la copa. 
 
Ilustración 36. Par de fuerzas en una operación de torneado48 
Si se toma una posición en donde una de las garras se encuentra en el punto más alto, como lo 
muestra la figura anterior, haciendo el respectivo análisis de fuerzas teniendo en cuenta su 
dirección en el eje Y se obtiene que49: 
𝑄𝑦 = 𝐹𝑐 
Donde, 𝑄𝑦 es la fuerza de sujeción y 𝐹𝑐 es la fuerza de corte. 
 
47 Amestoy, M. E. (2007). Principios de Mecanizado y Planificación de (primera ed., Vol. I). (D. d. Fabricación, Ed.) 
Cartagena, Colombia: Universidad Politécnica de Cartagena. Pag 50 
48 Amestoy, M. E. (2007). Principios de Mecanizado y Planificación de (primera ed., Vol. I). (D. d. Fabricación, Ed.) 
Cartagena, Colombia: Universidad Politécnica de Cartagena. 
49 Amestoy, M. E. (2007). Principios de Mecanizado y Planificación de (primera ed., Vol. I). (D. d. Fabricación, Ed.) 
Cartagena, Colombia: Universidad Politécnica de Cartagena. Pag 51 
54 
 
La fuerza tangencial (𝑄𝑡) va hacia adentro como se puede apreciar, pero también se puede denotar 
en función del coeficiente de rozamiento máximo (μ) y la componente en Y de la fuerza de sujeción 
de la siguiente manera: 
𝑄𝑡 = μ𝑄𝑦 (13) 
Ahora con el análisis de momentos se tiene que: 
𝑛𝑄𝑡
𝐷´
2
= 𝐹𝑐
𝐷
2
 (14) 
Donde, D es el diámetro de la pieza sobre el cual se aplica la fuerza de corte, D´ es el diámetro de 
la pieza en el que se aprieta la pieza, n es el número de mordazas de la copa. 
Despejando 𝑄𝑦 de las ecuaciones, se puede saber cuál es el mínimo valor que debe tener la fuerza 
de sujeción: 
𝑄𝑦 = 
𝐹𝑐𝐷
μn𝐷´
 (15) 
 
 
En procesos de torneado la dirección de la herramienta se puede realizar de dos formas, una es 
respecto al eje x (trasversal) y la otra al eje z (longitudinal), como lo muestra la siguiente figura: 
 
 
55 
 
Ilustración 37. Ejes coordenados en Torno50 
 
 
• Dirección longitudinal: 
 
 
 
Ilustración 38. Modelo 3D dirección de las fuerzas corte-sujeción en operación de torneado (Elaboración 
propia en SolidWorks®)51 
 
Como podemos apreciar en la figura 35, esta es una operación decilindrado, en donde el avance 
del buril va en la dirección Z-, la pieza está girando en sentido antihorario, las fuerzas de corte y 
sujeción van en sentido contrario y son perpendiculares a la herramienta de corte. 
 
 
 
 
 
50 Kennisgeving voor omleiding. (s. f.). Birt. Recuperado 8 de septiembre de 2021, de 
https://www.google.com/url?sa=i&url=https%3A%2F%2Fikastaroak.birt.eus%2Fedu%2Fargitalpen%2Fbackupa%2F
20200331%2F1920k%2Fes%2FPPFM%2FMCN%2FMCN02%2Fes_PPFM_MCN02_Contenidos%2Fwebsite_14_siste
mas_de_referencia_y_coordenadas.html&psig=AOvVaw2S5WxWWEY_40WwVSAv4TnL&ust=1631147919735000
&source=images&cd=vfe&ved=0CAsQjRxqFwoTCKjsl-CR7vICFQAAAAAdAAAAABAD 
51 SolidWorks versión educativa. 
56 
 
• Dirección transversal 
 
Ilustración 39. Modelo 3D dirección de las fuerzas corte-sujeción en operación de torneado (Elaboración 
propia en SolidWorks®)52 
 
Respecto a la imagen anterior, se puede apreciar una operación de refrentado en la que el avance 
de la herramienta va en la dirección X-, por ende, la fuerza de corte debe ir perpendicular a la 
herramienta hacia abajo y para equilibrar el sistema, la fuerza de sujeción va al lado opuesto de Fc. 
 
8.3.2. Sujeción axial 
En este tipo de sujeción, generalmente el sistema de apriete más usado es con tornillos, como por 
ejemplo en prensas de banco o en bridas de sujeción, estos brindan diversas ventajas debido a su 
estructura simple, la amplificación de fuerza obtenida y la fiabilidad que brinda para el 
autobloqueo. 
 
52 SolidWorks versión educativa. 
57 
 
El autobloqueo hace alusión a que cuando la fuerza externa (R) deje de actuar la fuerza de amarre 
siga siendo la misma. 
La fuerza externa es la aplicada a la tuerca en el caso de las bridas de sujeción o de la manivela en 
el caso de la prensa de banco. 
Este mecanismo se puede aplicar de dos formas53: 
- Directamente contactando la pieza. 
- Indirectamente aplicando fuerza en medio de un brazo de palanca, es decir, en uno de sus extremos 
es fijo y en el otro presiona la pieza. 
 
 
Con la siguiente expresión se puede calcular la fuerza de sujeción: 
𝑄 = 
2𝑅𝐿
𝐷(tan(α+β2)) 
 (16) 
Esta ecuación se dedujo a partir de un análisis por equilibrio de momentos, teniendo en cuenta una 
fuerza externa (R), el diámetro (D), la longitud (L), el ángulo de hélice (α) y el ángulo de fricción 
(β2) del tornillo. 
 
La dirreción de la fuerza de corte puede cambiar en cualquier instante. Ya sea, al inicio, mitad o 
final del proceso de corte. En la siguiente imagen se muestra un modelo 3D sobre como van 
direccionadas las fuerzas de sujecion y corte en un proceso de fresado tangencial donde el sentido 
de giro de la herramienta va en concordancia con el movimiento de la mesa. 
 
 
53 Amestoy, M. E. (2007). Principios de Mecanizado y Planificación de (primera ed., Vol. I). (D. d. Fabricación, Ed.) 
Cartagena, Colombia: Universidad Politécnica de Cartagena. Pag 55 
58 
 
 
Ilustración 40. Par de fuerzas en una operación de fresado (Elaboración propia en SolidWorks®)54 
 
Otro ejemplo de cómo van direccionadas las fuerzas involucradas en un proceso de fresado, se 
puede apreciar en la siguiente figura, donde se ilustra nuevamente un proceso de fresado 
tangencial, pero esta vez la pieza se mueve en sentido contrario, respecto al giro de la herramienta 
y podemos ver como cambia el sentido de las fuerzas de corte y sujeción con tan solo cambiar un 
parámetro en el proceso de corte. 
 
54 SolidWorks versión educativa. 
59 
 
 
Ilustración 41. Dirección fuerzas proceso fresado (Elaboración propia en SolidWorks®)55 
 
Otro factor a tener en cuenta aparte de la magnitud y dirección de las fuerzas de sujeción, es la 
esbeltez, la cual es una característica mecánica del material en bruto a mecanizar, la cual relaciona 
el diámetro y su longitud. Esta relación D/L es un valor adimensional y sirve para verificar si al 
momento de hacer una operación de mecanizado es necesario sujetar la pieza en ambos extremos 
o solo en uno56. 
 Cuando la relación de esbeltez sea un valor considerable, lo mejor es sujetar la pieza en ambos 
extremos, para evitar que se produzca pandeo en el material cuando se esté realizando el proceso 
de corte. 
 
55 SolidWorks versión educativa. 
56 Echenagucia, J. (s. f.). Columnas esbeltas euler parte 1. Shideshare. Recuperado 9 de septiembre de 2021, de 
https://es.slideshare.net/jechenaguciar/columnas-esbeltas-euler-parte-1 
60 
 
 
Ilustración 42. Sujeción al aire57 
 
En la imagen anterior podemos apreciar una sujeción al aire, es decir, el material a mecanizar 
esta sujetado solamente por las mordazas y se usa cuando la pieza es no esbelta, ósea que la 
longitud no es elevada con respecto al diámetro. 
Por el contrario, cuando la pieza es esbelta, es decir que la longitud es bastante alta con respecto 
al diámetro, en estos casos se usa una sujeción entre plato y punto para evitar que se produzca 
pandeo, como se puede apreciar en la siguiente figura: 
 
Ilustración 43. Sujeción al aire58 
 
En resumen, el análisis de las fuerzas de sujeción se hace teniendo en cuenta las fuerzas de corte 
(magnitud y dirección) generadas en un proceso de fresado o torneado, las cuales, varían en 
función de los parámetros de corte, como avance y profundidad de corte. Luego de tener calculadas 
estas fuerzas, se hace el análisis de equilibrio de fuerzas y momentos, el cual se hace teniendo en 
cuenta el dispositivo de sujeción, ya que el principio de funcionamiento es diferente. Por último, 
 
57Procesos de mecanizado. (s. f.). egela. Recuperado 9 de septiembre de 2021, de http://egela.oteitzalp.org 
58Procesos de mecanizado. (s. f.). egela. Recuperado 9 de septiembre de 2021, de http://egela.oteitzalp.org 
61 
 
luego de tener calculada la fuerza de apriete, se debe multiplicar por el factor de seguridad K, 
dependiendo si se trata de una operación de desbaste o acabado. 
 
9. Análisis de vibraciones en procesos de mecanizado 
 
El análisis de vibraciones en máquinas es usado para prevenir posibles problemas mecánicos que 
puedan originarse durante un proceso de fabricación, los cuales podrían aumentar el tiempo de 
elaboración de una pieza. En el mantenimiento predictivo este análisis es usado para observar las 
condiciones de funcionamiento de las máquinas, con ello se logra planificar acciones correctivas, 
con el fin de reducir tiempos muertos y así, evitar paradas no programadas59. 
El mantenimiento predictivo básicamente son acciones y técnicas usadas con el fin de encontrar 
posibles fallos en las maquinas antes de que estas ocurran. 
En un proceso de mecanizado las vibraciones generadas están relacionadas a la rigidez de la 
máquina usada, por consiguiente, entre más rigidez, se reducirán las vibraciones o el traqueteo 
formado y el acabado superficial de la pieza será mejor. Debido a lo anterior se debe tener en 
cuenta el efecto que generan estas vibraciones, ya que si no se controlan podría afectar la vida útil 
de la herramienta de corte, no lograr obtener las dimensiones requeridas en la pieza, producir 
marcas en el material de trabajo y generar un ruido alto durante el mecanizado. 
Existen dos tipos de vibraciones las cuales son: 
 
 
9.1. Vibraciones de tipo forzadas 
 
Este tipo de vibraciones son las ocasionadas por los componentes de la máquina, como, por 
ejemplo, el motor y el accionamiento de engranajes. Es una fuerza periódica ocasionada por el 
movimiento entre la herramienta y la pieza. 
Cada máquina vibra en función a las tolerancias proporcionadas a cada elemento que la compone. 
Entonces, un cambio en la vibración normal de la máquina, asumiendo que esté trabajando en 
condiciones normales de operación, hará notar que se está presentando un posible fallo. Existen 
diferentes tipos de fallos los cuales producen cambios en la vibración característica de la máquina, 
lo que ayuda a encontrar la fuente del problema. 
A continuación, se van a

Continuar navegando