Logo Studenta

TEMAS-DE-FISICA

¡Este material tiene más páginas!

Vista previa del material en texto

TEMAS DE FÍSICA
 
por Luis B. López Vázquez 
Catedrático de Física
Temas de física
© Luis B. López Vázquez
ISBN: 978–84–9948–163–0
Depósito legal: A–731–2010
Edita: Editorial Club Universitario. Telf.: 96 567 61 33
C/ Decano, 4 – 03690 San Vicente (Alicante)
www.ecu.fm
e-mail: ecu@ecu.fm
Printed in Spain
Imprime: Imprenta Gamma. Telf.: 965 67 19 87
C/ Cottolengo, 25 – 03690 San Vicente (Alicante)
Reservados todos los derechos. Ni la totalidad ni parte de este libro puede reproducirse o 
transmitirse por ningún procedimiento electrónico o mecánico, incluyendo fotocopia, grabación 
magnética o cualquier almacenamiento de información o sistema de reproducción, sin permiso 
previo y por escrito de los titulares del Copyright.
ÍNDICE
A modo de prólogo. .......................................................................................11
1. La Física como ciencia. .......................................................................11
2. La Física y la técnica. ......................................................................... 12
3. Justificación de la elección de temas. ................................................. 12
Tema I: Campos escalares y vectoriales ...................................................... 13
1. Introducción: magnitudes y unidades ................................................. 13
2. Campos escalares y vectoriales: representación ................................. 15
2.1. Representación de campos escalares ......................................... 15
2.2. Representación de campos vectoriales ...................................... 16
3. Gradiente de un escalar ...................................................................... 17
4. Flujo de un vector. Divergencia ......................................................... 19
5. Teorema de Gauss o de la divergencia ............................................... 23
6. Circulación de un vector. Rotacional ................................................. 24
7. Teorema de Stokes o del rotacional .................................................... 32
8. Operaciones de segundo orden ........................................................... 33
8.1. Laplaciana de una función escalar ............................................. 33
8.2. Laplaciana de un vector ............................................................. 34
9. Bibliografía ......................................................................................... 34
10. Problemas de examen ....................................................................... 34
Tema II: Movimiento oscilatorio ................................................................. 47
1. Introducción ....................................................................................... 47
2. Oscilador lineal armónico .................................................................. 48
2.1. Ecuación de movimiento ........................................................... 48
2.2. Solución general ........................................................................ 52
2.3. Representación gráfica ............................................................... 55
3. Energía de un oscilador ...................................................................... 57
4. Asociación de resortes ........................................................................ 59
4.1. Asociación en serie .................................................................... 60
4.2. Asociación en paralelo ............................................................... 60
5. Composición de movimientos oscilatorios ........................................ 61
5.1. Composición de movimientos que se propagan en igual dirección ..61
5.1.a. Movimientos con igual frecuencia y amplitud, y distinto 
desfase inicial .............................................................................. 61
5.1.b. Movimientos de igual frecuencia, y distinta amplitud y 
desfase inicial. ............................................................................. 63
5.1.c. Movimientos de distinta frecuencia, igual amplitud y 
desfase inicial nulo. ..................................................................... 65
5.2. Composición de movimientos que se propagan en direcciones 
perpendiculares. ................................................................................ 68
5.2.a. Movimientos de igual frecuencia. ..................................... 68
5.2.b. Movimientos de distinta frecuencia .................................. 72
6. Movimiento oscilatorio amortiguado. ................................................ 74
6.1. Amortiguamiento fuerte. ............................................................ 77
6.2. Amortiguamiento crítico. ........................................................... 79
6.3. Amortiguamiento débil .............................................................. 82
7. Oscilaciones forzadas. ........................................................................ 85
8. Resonancia ......................................................................................... 88
8.1. Variación de la amplitud con la frecuencia. ............................... 89
8.2. Resonancia característica. .......................................................... 90
8.3. Variación del desfase inicial con la frecuencia. ......................... 91
9. Bibliografía. ........................................................................................ 92
10. Problemas de examen ....................................................................... 92
Tema III: Movimiento ondulatorio ............................................................ 127
1. Introducción ..................................................................................... 127
2. Movimiento ondulatorio de una serie de puntos .............................. 129
3. Ecuación diferencial de una onda plana ........................................... 132
4. Composición de ondas de igual dirección ........................................ 137
5. Composición de ondas de igual frecuencia ...................................... 140
5.1. Interferencias ........................................................................... 140
5.2. Ondas estacionarias ................................................................. 143
6. Bibliografía ....................................................................................... 146
7. Problemas de examen ....................................................................... 146
Tema IV: Acústica ...................................................................................... 161
1. Introducción ..................................................................................... 161
2. Velocidad de las ondas transversales en una cuerda......................... 162
3. Velocidad de las ondas longitudinales .............................................. 164
3.1. En sólidos ................................................................................ 164
3.2. En fluidos ................................................................................ 167
4. Ondas estacionarias de presión ........................................................ 169
5. Teoría de Bernouilli de los tubos sonoros ........................................ 171
5.1. Tubos abiertos. ......................................................................... 173
5.2. Tubos cerrados. ........................................................................ 174
6. Intensidad y sonoridad ..................................................................... 175
7. Efecto Doppler. ................................................................................. 178
8. Bibliografía. ...................................................................................... 180
9. Problemas de examen. ...................................................................... 180
Tema V: Mecánica de fluidos. .................................................................... 197
1. Introducción..................................................................................... 197
2. Concepto de fluido ........................................................................... 197
3. Gasto................................................................................................. 199
4. Ecuación de continuidad .................................................................. 200
5. Introducción a la dinámica de fluidos .............................................. 203
6. Ecuaciones de Euler ......................................................................... 204
7. Ecuación fundamental de la dinámica. ............................................. 205
8. Potencial de fuerzas y velocidades. .................................................. 207
9. Ecuación de Bernouilli ..................................................................... 209
10. Aplicaciones de la ecuación de Bernouilli ......................................211
10.1. Tubo de Venturi ......................................................................211
10.2. Tubo de Pitot. ......................................................................... 212
10.3. Teorema de Torricelli. ............................................................ 213
10.4. Sifón....................................................................................... 214
11. Bibliografía. .................................................................................... 215
12. Problemas de examen ..................................................................... 215
Tema VI: Conducción del calor ................................................................. 233
1. Introducción y postulados ................................................................ 233
1.1. Primer postulado ...................................................................... 234
1.2. Segundo postulado ................................................................... 234
1.3. Tercer postulado ....................................................................... 235
2. Ecuación diferencial de la conducción del calor .............................. 236
3. Conducción del calor a través de una pared plana ........................... 237
3.1. Pared simple ............................................................................ 237
3.2. Pared compuesta ...................................................................... 239
4. Conducción a través de un tubo cilíndrico ...................................... 241
4.1. Tubo cilíndrico simple ............................................................. 241
4.2. Tubo cilíndrico compuesto ...................................................... 243
5. Bibliografía ....................................................................................... 244
6. Problemas de examen ....................................................................... 244
Tema VII: Termodinámica ......................................................................... 255
1. Introducción: trabajo y calor ............................................................ 255
1.1. Trabajo. .................................................................................... 257
1.2. Calor......................................................................................... 258
2. Primer principio de la termodinámica. ............................................. 259
3. Segundo principio de la termodinámica. .......................................... 261
3.1. Enunciado del segundo principio ............................................ 261
3.2. Máquina de Carnot .................................................................. 263
4. Escala termodinámica o Kelvin de temperaturas ............................ 264
5. Entropía ............................................................................................ 266
6. Coeficientes termodinámicos ........................................................... 269
7. Funciones de Gibbs y relaciones de Maxwell. ................................. 271
7.1. Energía interna. ........................................................................ 272
7.2. Energía libre de Helmholtz. ..................................................... 273
7.3. Entalpía libre de Gibbs ............................................................ 273
7.4. Entalpía o calor total. ............................................................... 274
8. Gases ideales .................................................................................... 275
8.1. Ecuación de estado .................................................................. 276
8.2. Transformaciones en gases perfectos ...................................... 278
8.2.1. Transformación isocora. .................................................. 278
8.2.2. Transformación isobara. .................................................. 279
8.2.3. Transformación isoterma ................................................ 279
8.2.4. Transformación adiabática .............................................. 280
8.3. Ley de Mayer ........................................................................... 281
8.4. Entropía de un gas ideal. .......................................................... 282
8.5. Ciclo de Carnot de un gas ideal ............................................... 283
9. Bibliografía. ...................................................................................... 285
10. Problemas de examen. .................................................................... 285
Tema VIII: Teoría cinética de los gases ..................................................... 323
1. Introducción: hipótesis fundamentales. ............................................ 323
2. Interpretación cinética de la presión. ................................................ 324
3. Interpretación cinética de la temperatura ......................................... 327
4. Principio de equipartición de la energía ........................................... 328
5. Bibliografía. ...................................................................................... 332
6. Problemas de examen. ...................................................................... 332
Tema IX: Óptica. ........................................................................................ 339
1. Naturaleza de la luz .......................................................................... 339
1.1. Teoría corpuscular. ................................................................... 339
1.2. Teoría ondulatoria. ................................................................... 340
1.3. Teoría de la onda material. ....................................................... 341
2. Velocidad de propagación de la luz ................................................. 342
3. Óptica geométrica ............................................................................ 344
4. Índice de refracción. Ángulo límite. Reflexión total. ....................... 344
4.1. Índice de refracción ................................................................. 344
4.2. Ángulo límite. Reflexión total ................................................. 345
5. Principio de Fermat .......................................................................... 347
6. Bibliografía. ...................................................................................... 348
7. Problemas de examen. ...................................................................... 348
Tema X: Sistemas ópticos centrados. ......................................................... 357
1. Introducción: definiciones ................................................................ 357
2. Ecuaciones de transformación .......................................................... 358
3. Focos: ecuaciones de Newton .......................................................... 360
4. Aumento lateral: planos principales ................................................. 362
5. Distancias focales: ecuación canónica .............................................363
6. Aumento angular: puntos nodales y antinodales .............................. 365
6.1. Criterio de signos ..................................................................... 365
6.2. Aumento angular ...................................................................... 366
6.3. Puntos nodales y antinodales ................................................... 367
6.4. Condición de estigmatismo ..................................................... 368
7. Construcción de imágenes ................................................................ 368
7.1. Punto situado fuera del eje ....................................................... 368
7.2. Punto situado en el eje óptico .................................................. 369
8. Dioptrio esférico: construcción de Weierstrass ................................ 370
8.1. Caso general ............................................................................ 370
8.2. Elementos cardinales ............................................................... 371
8.3. Construcción de Weierstrass .................................................... 372
9. Elementos cardinales de una asociación de sistemas ....................... 374
9.1. Determinación gráfica .............................................................. 374
9.2. Determinación analítica ........................................................... 376
9.3. Aplicación a una asociación de dioptrios esféricos ................. 377
10. Lentes esféricas: elementos cardinales ........................................... 378
10.1. Posición de los focos ............................................................. 378
10.2. Distancias focales .................................................................. 380
10.3. Planos principales .................................................................. 381
11. Tipos de lentes ................................................................................ 381
12. Centro óptico .................................................................................. 383
13. Lentes delgadas .............................................................................. 385
13.1. Elementos cardinales ............................................................. 385
13.2. Construcción de imágenes ..................................................... 386
14. Bibliografía. .................................................................................... 388
15. Problemas de examen. .................................................................... 388
Tema XI: Electrostática. ............................................................................. 429
1. Introducción ..................................................................................... 429
2. Ley de Coulomb. .............................................................................. 430
3. Campo eléctrico. ............................................................................... 435
4. Potencial electrostático. .................................................................... 437
4.1. Definición ............................................................................................437
4.2. Ejemplo de cálculo del potencial para una distribución continua ...440
5. Teorema de Gauss ............................................................................ 442
6. Aplicaciones del teorema de Gauss .................................................. 446
6.1. Estructura del campo electrostático ......................................... 446
6.2. Campo y potencial de una esfera conductora .......................... 449
6.3. Campo y potencial de una esfera aislante ............................... 451
6.4. Campo y potencial de una distribución lineal de carga ....................453
6.5. Campo y potencial de una distribución superficial plana de carga ..454
6.6. Campo y potencial entre dos láminas cargadas con cargas de 
signos contrarios ................................................................................. 455
7. Presion electrostática ........................................................................ 456
8. Energía electrostática ....................................................................... 457
8.1. Energía de un sistema de cargas puntuales .............................. 458
8.2. Energía de una distribución continua de carga ........................ 459
8.3. Energía de una esfera conductora ............................................ 461
9. Capacidad: condensadores ............................................................... 462
9.1. Capacidad de un condensador esférico .................................... 464
9.2. Capacidad de un condensador plano ....................................... 464
9.3. Capacidad de un condensador cilíndrico ................................. 465
9.4. Asociación de condensadores .................................................. 465
10. Energía de un condensador............................................................. 467
10.1. Energía de un condensador plano .......................................... 467
10.2. Fuerza entre placas de un condensador plano ....................... 468
11. Bibliografía ..................................................................................... 471
12. Problemas de examen ..................................................................... 471
Tema XII: Corriente continua .................................................................... 495
1. Introducción ..................................................................................... 495
2. Intensidad y densidad de corriente ................................................... 496
3. Ley de Ohm ...................................................................................... 498
4. Efecto Joule ...................................................................................... 500
5. Fuerza electromotriz ......................................................................... 502
6. Asociación de resistencias ................................................................ 506
6.1. Asociación en serie .................................................................. 506
6.2. Asociación en paralelo ............................................................. 506
7. Lemas de Kirchhoff .......................................................................... 507
7.1. Lema de los nudos ................................................................... 507
7.2. Lema de las mallas .................................................................. 508
7.3. Aplicación práctica .................................................................. 508
8. Método de las corrientes cíclicas de Maxwell ................................. 510
9. Aplicaciones de los lemas de Kirchhoff ............................................511
9.1. Amperímetro .............................................................................511
9.2. Voltímetro ................................................................................ 513
9.3. Puente de Wheatstone .............................................................. 514
10. Asociación de pilas ......................................................................... 516
10.1. Asociación en serie ................................................................ 516
10.2. Asociación en paralelo ........................................................... 516
11. Bibliografía ..................................................................................... 517
12. Problemas de examen ..................................................................... 517
Tema XIII: Campo magnético ................................................................... 543
1. Introducción ..................................................................................... 543
2. Campo magnético ............................................................................. 544
3. Fuerza magnética sobre un conductor .............................................. 545
4.Fuerza magnética sobre un circuito .................................................. 547
5. Campo magnético de la corriente continua: ley de Biot-Savart ....... 549
6. Campo creado por un conductor rectilíneo ...................................... 552
7. Campo creado por una espira circular .............................................. 554
8. Campo creado por un solenoide ....................................................... 555
9. Fuerza entre conductores .................................................................. 558
10. Ley circuital de Ampère ................................................................. 561
11. Bibliografía ..................................................................................... 562
12. Problemas de examen ..................................................................... 563
Tema XIV: Inducción magnética ............................................................... 579
1. Ley de inducción de Faraday. ........................................................... 579
2. F.e.m. Inducida por movimiento de conductores ............................. 582
2.1. Conductor rectilíneo con velocidad lineal constante. .............. 582
2.2. Espira rectangular con velocidad lineal constante. .................. 583
2.3. Espira que gira con velocidad angular constante. .................... 585
3. Autoinducción e inducción mutua. ................................................... 586
3.1. Autoinducción ............................................................................... 586
3.2. Energía de un campo magnético. ............................................. 588
3.3. Coeficiente de autoinducción de un cable coaxial. .................. 590
3.4. Inducción mutua ...................................................................... 591
3.5. Coeficiente de inducción mutua de dos solenoides ................. 592
4. Bibliografía. ...................................................................................... 593
5. Problemas de examen ....................................................................... 594
Tema XV: Corriente alterna ....................................................................... 607
1. Introducción ..................................................................................... 607
2. Circuito en serie RLC. ...................................................................... 608
2.1. Caso general ............................................................................ 608
2.2. Circuito con resistencia óhmica pura. .......................................611
2.3. Circuito con autoinducción pura .............................................. 612
2.4. Circuito con capacidad pura .................................................... 612
3. Empleo de notación compleja .......................................................... 613
3.1. Triángulo de impedancias ........................................................ 614
3.2. Asociación de impedancias ...................................................... 616
4. Valores medios de una corriente alterna ........................................... 617
5. Valores eficaces de una corriente alterna .......................................... 617
6. Disipación de potencia en un circuito de corriente alterna .............. 619
7. Resonancia de un circuito serie RLC ............................................... 621
8. Curvas de reactancia ......................................................................... 622
8.1. Reactancia capacitativa ............................................................ 623
8.2. Reactancia inductiva ................................................................ 623
8.3. Reactancia ................................................................................ 623
8.4. Impedancia ............................................................................... 623
9. Bibliografía ....................................................................................... 624
10. Problemas de examen ..................................................................... 624
11
A MODO DE PRÓLOGO
1. LA FÍSICA COMO CIENCIA
El objeto de toda ciencia es conocer, y con tal fin, cada una de ellas 
agrupa una serie de conocimientos seguros y ciertos, ordenados siguiendo un 
método. Sin embargo, las ciencias son cambiantes, es decir, evolutivas, por 
lo que es difícil tratar de establecer una definición de cada una de ellas que 
exprese claramente el conjunto de conocimientos que agrupa, y por otro lado, 
si pretendemos definir cada ciencia atendiendo al método que utiliza para 
adquirir nuevos conocimientos, es indudable que, hoy por hoy, todas ellas 
aplican, con mayor o menor éxito, la misma metodología. No es pues tarea 
fácil encontrar una definición correcta de la Física, de ahí que la mayoría de 
los libros aunque definen alguna parte de ella, por ejemplo, la mecánica, la 
óptica, etc., suelen evitar definirla.
De todas las definiciones que conozco, es sin duda la de D. Julio 
Palacios, la que me satisface más. En su libro El lenguaje de la Física y su 
peculiar filosofía, la define así: La Física se propone descubrir y dar forma 
matemática a las leyes universales que relacionan entre sí las magnitudes 
que intervienen en los fenómenos reales. En esta definición, aunque me he 
permitido sustituir “fenómenos naturales” por “fenómenos reales”, se recoge 
no solo todo lo que la Física es y lo que puede llegar a ser, sino que en ella se 
establecen las diferencias con las demás ciencias que por su afinidad con ella, 
pueden a veces, confundirse. 
La Física estudia fenómenos reales, y esa es su principal diferencia con las 
Matemáticas, y dentro de ellos, las magnitudes que intervienen, entendiendo 
que una magnitud corresponde a una cualidad o propiedad medible, por lo 
que si una cualidad no es medible, como por ejemplo la bondad, está fuera de 
la Física, lo que convierte a ésta en una ciencia totalmente cuantitativa y no 
descriptiva, como en ocasiones ocurre con la Química. Una vez descubiertas 
las magnitudes que intervienen en los fenómenos reales, hay que relacionarlas 
matemáticamente para encontrar leyes universales, es decir, establecer 
relaciones cuantitativas que se cumplan en todo tiempo y en todo lugar. 
Esta es una definición abierta que no excluye “a priori” ningún tipo posible 
de conocimiento siempre que cumpla las características anteriores, es decir, si 
alguna vez fuera medible la bondad y apareciese como causa o efecto de un 
fenómeno real, esta magnitud podría llegar a formar parte de la Física.
12
A modo de prólogo
2. LA FÍSICA Y LA TÉCNICA
La técnica tiene como objeto dominar el mundo real. Sin embargo, 
difícilmente puede dominarse algo si no se conoce, de ahí que la Física sea la 
Ciencia indispensable para llegar a ser un buen técnico, y aunque el hombre 
fue antes técnico que científico, solo cuando tuvo el suficiente conocimiento 
del mundo real consiguió un espectacular avance técnico. Está claro que en 
los últimos cien años la técnica ha avanzado más que en los quinientos mil 
años anteriores y ello solo es explicable debido al conocimiento científico. 
Hoy por hoy es impensable que la técnica sea solo experimental, y no esté 
basada en el conocimiento del mundo real que la ciencia aporta. 
3. JUSTIFICACIÓN DE LA ELECCIÓN DE TEMAS
En la elección de los temas se ha tenido en cuenta que en la Ingeniería 
Civil, la Mecánica es una asignatura que en los planes de estudio comparte 
curso con la Física por lo que para evitar repeticiones, se han elegido temas de 
Mecánica que solo afectan a movimientos oscilatorios y ondulatorios. 
13
TEMA I: CAMPOS ESCALARES Y VECTORIALES
1. INTRODUCCIÓN: MAGNITUDES Y UNIDADES
Se entiende por magnitud, cualquier cualidad o propiedad medible. Para 
poder medir es necesario fijar una unidad de medida o patrón con la que se 
compare la magnitud que se desea medir para conocer cuántas veces ésta contiene 
a aquella. Según esto, habría que definir tantas unidades comomagnitudes físicas. 
Sin embargo, esto no es así pues basta con definir un número limitado de unidades 
para que automáticamente queden definidas todas ellas. Por ejemplo, si definimos 
la unidad de longitud como L, la unidad de superficie quedará totalmente definida 
como L2, y la de superficie como L3. Las magnitudes cuya unidad es necesario 
definir reciben el nombre de magnitudes fundamentales mientras que el resto se 
llaman magnitudes derivadas. La expresión de una magnitud derivada en función 
de las magnitudes fundamentales recibe el nombre de ecuación de dimensiones de 
esa magnitud y es demostrable que cualquier magnitud derivada puede expresarse 
como producto de magnitudes fundamentales elevadas a un exponente pudiendo 
ser éste positivo o negativo y entero o fraccionario, es decir: 
M = Aα Bβ Cγ...
Desde un punto de vista teórico, basta con definir dos únicas unidades, la unidad 
de masa y la unidad de tiempo, para que el resto queden totalmente definidas. Para 
poder suprimir una magnitud fundamental y su unidad correspondiente, basta con 
introducir una constante como es el caso de la definición de metro que se puede 
expresar como: L(m) =c(m/s) T(s), siendo c la velocidad de propagación de la 
luz en el vacío. Tradicionalmente se toman como magnitudes fundamentales la 
longitud (L), la masa (M) y el tiempo (T), aunque nosotros tomaremos además 
para expresar la ecuación de dimensiones de cualquier magnitud la temperatura 
(θ) y la carga eléctrica (Q).
Un sistema de unidades corresponde al conjunto de unidades que se obtiene 
al definir las unidades correspondientes a las magnitudes fundamentales. Los 
sistemas teóricos de unidades que se utilizan toman tres magnitudes fundamentales, 
y son los siguientes:
Sistema Giorgi (MKS): la longitud (metro), la masa (kilogramo) y tiempo 
(segundo).
Sistema Cegesimal: la longitud (centímetro), la masa (gramo) y el tiempo 
(segundo).
14
Campos escalares y vectoriales
Sistema Técnico o Terrestre: la longitud (metro), la fuerza (kilopondio o 
kilo fuerza) y el tiempo (segundo). Se llama terrestre puesto que se define la 
unidad de fuerza como la fuerza con que la Tierra atrae a un kilogramo masa.
Con objeto de facilitar la diseminación de unidades patrón y para que 
estas sean fácilmente materializables en cualquier laboratorio, se definió el 
Sistema Internacional o sistema SI único, que además en nuestro país tiene 
carácter legal. En este sistema se definen siete unidades patrón o de referencia 
y dos unidades suplementarias. Las unidades fundamentales definidas son: 
metro (longitud), kilogramo (masa), tiempo (segundo), amperio (intensidad 
de corriente eléctrica), grado Kelvin (temperatura), mol (cantidad de 
sustancia), candela (intensidad luminosa). Las unidades suplementarias 
que corresponden a magnitudes adimensionales son: radián (ángulo plano), 
estereorradián (ángulo sólido). Definir dos magnitudes kilogramo y mol que 
sirven esencialmente para medir lo mismo se debe únicamente al hecho de 
que las reacciones químicas solo son ajustables en moles. 
En cuanto a su naturaleza, las magnitudes físicas pueden clasificarse en: 
magnitudes escalares y magnitudes vectoriales. 
Magnitudes escalares son aquellas que quedan totalmente definidas cuando 
se expresa la cantidad y unidad en que se ha medido (t, W, etc.).
Magnitudes vectoriales son aquellas en que para su total definición es 
necesario representarlas por vectores ( v, F,

 etc.). Un vector es un segmento de 
recta en el que se indica un sentido. La longitud del segmento corresponde al 
módulo (cantidad y unidad), la recta a que pertenece corresponde a la dirección, 
el punto inicial del segmento recibe el nombre de punto de aplicación y sobre 
el punto final se indica, mediante una flecha, el sentido. Sin embargo, no todas 
las magnitudes físicas necesitan todos y cada uno de los datos reseñados 
para su correcta definición, por lo que se puede establecer una clasificación 
de las magnitudes vectoriales en función del tipo de vector requerido para su 
representación:
- Vector ligado es aquel en el que son precisos todos los datos reseñados, 
es decir, punto de aplicación, sentido, dirección y módulo, por ejemplo, el 
desplazamiento, la velocidad, etc.
- Vector deslizante, que es aquel en el que el punto de aplicación puede ser 
cualquiera de su recta de dirección como por ejemplo, la fuerza. 
- Vector libre, que es aquel en que como recta de dirección vale cualquier 
recta paralela a la dada como por ejemplo, la velocidad angular.
Esta diversidad de magnitudes físicas nos obliga a dar reglas estrictas 
para poder operar con ellas. Así la simple suma de magnitudes vectoriales 
será realizable solo cuando se trate de vectores libres, vectores deslizantes 
15
Temas de Física
situados sobre rectas que se cruzan, o vectores ligados concurrentes (con el 
mismo punto de aplicación), o bien, cuando al multiplicar dos magnitudes 
vectoriales, el resultado de esta multiplicación corresponda a una magnitud 
escalar (producto escalar), las reglas para efectuar este producto son distintas 
de las que corresponden a cuando el resultado del producto es una magnitud 
vectorial (producto vectorial). 
2. CAMPOS ESCALARES Y VECTORIALES: REPRESENTACIÓN
Se entiende por campo de un magnitud, aquella región del espacio 
donde dicha magnitud está definida y tiene un valor. Si la magnitud definida 
es una magnitud escalar, el campo corresponderá a un campo escalar, si la 
magnitud es vectorial, el campo será vectorial. El valor de la magnitud en 
cada punto del campo dependerá de las coordenadas del punto y del tiempo. 
En el espacio tridimensional, y utilizando un sistema cartesiano de referencia, 
las coordenadas del punto serán x, y, z, por lo que: U = f(x,y,z,t), ó, v

= 
f ’(x,y,z,t).
Si dichas funciones no dependen del tiempo (t), se dice que el campo es 
estacionario. Las funciones son entonces unívocas, es decir, a cada punto del 
campo le corresponde un único valor de la magnitud. El considerar que el 
campo de una magnitud es estacionario es siempre posible si pensamos que, 
realmente, podemos decir: en el instante t.
2.1. Representación de campos escalares
Dado un campo escalar estacio-
nario, en un espacio tridimensional, 
definido mediante un sistema carte-
siano de referencia (U = f(x,y,z)), su 
representación es muy sencilla, pues 
consiste en unir todos los puntos con 
igual valor de la magnitud. Dado que 
la función es unívoca y continua, 
dicha representación corresponderá a 
superficies envolventes que no tienen ningún punto común. Cada una de estas 
superficies recibe el nombre de superficie equiescalar. Si dicha representación 
se realiza en el plano (U = f(x,y)), la unión de los puntos de igual valor de la 
magnitud corresponderá a una serie de líneas llamadas isolíneas, que serán 
líneas cerradas que no se cortan. En función de la magnitud concreta de que se 
16
Campos escalares y vectoriales
trate, reciben nombres particulares, así cuando es la temperatura, se llamarán 
isotermas, isobaras, si es la presión, etc. Por lo general, suelen representarse 
valores discretos de la magnitud, es decir, variaciones de valores de cinco en 
cinco, de diez en diez, etc.
2.2. Representación de campos vectoriales
Un campo vectorial, aunque sea estacionario ( v

=f(x,y,z)), tiene una 
representación más compleja, dado que el valor representativo de la magnitud 
en cada punto es un vector. Para representar un campo vectorial se acude a 
trazar líneas de campo, que son líneas para las que el vector representativo de 
la magnitud en cada punto es siempre tangente a ellas. Para trazar la línea de 
campo que pasa por el punto P, se traza un segmento infinitesimal que tenga 
la dirección de v

, obteniéndose el punto P’, a partir de este punto, se traza un 
nuevo segmento infinitesimal en la dirección de v′ , y así sucesivamente, de 
tal forma que como hemos dicho, el vector representativo de la magnitud en 
cada punto es siempre tangente a la líneade campo. Esto nos da la dirección 
y el sentido del vector, el módulo del vector en cada punto será función 
de la densidad de las líneas de campo 
representadas, de tal forma que hay 
que fijar por convenio dicho módulo en 
función del número de líneas de campo 
que atraviesen una superficie unidad que 
contenga al punto en cuestión y normal 
a la línea de campo que pasa por él. Así 
por ejemplo, fijada una superficie de 
1 cm2, por cada línea que atraviese dicha 
superficie, si el campo representado es 
el campo de las velocidades, le podemos 
hacer que corresponda un módulo de 
5 m/s.
Dado que la representación de campos escalares es más simple que la 
la de campos vectoriales, y las operaciones con magnitudes escalares son 
también más simples que con magnitudes vectoriales, se definen una serie de 
funciones que nos permiten asociar a un determinado campo, otro de igual o 
distinto tipo. Estas funciones corresponden al gradiente, la divergencia y el 
rotacional.
17
Temas de Física
3. GRADIENTE DE UN ESCALAR
Se entiende por gradiente de un escalar, una aplicación vectorial sobre 
un campo escalar, de tal forma que a cada punto P de un campo escalar 
en el que la magnitud vale U, le hace corresponder un vector aplicado en 
P ( grad U

), cuya proyección sobre cualquier dirección es igual a la derivada 
de U en el punto P, siguiendo esa dirección. Dado que la proyección de un 
vector sobre otro corresponde a su producto escalar, esta definición puede 
expresarse por:
grad U dr = dU ⋅
 
, siendo dr

, un vector sobre una dirección cualquiera.
Realmente, esta definición nos dice poco sobre lo que el gradiente es y 
significa, pues lo único que podemos deducir de ella es que el gradiente es 
independiente del sistema de coordenadas que se utilice.
Consideremos un campo escalar estacionario U=f(x,y,z), en un espacio 
tridimensional con un sistema cartesiano de referencia, siendo f, una función 
unívoca, continua y derivable, su derivada será:
U U UdU = dx + dy + dz 
x y z
∂ ∂ ∂
∂ ∂ ∂
Si el vector dr

tiene como componentes (dx,dy,dz), el vector grad U

, 
corresponderá entonces al vector:
U U Ugrad U = i + j + k 
x y z
∂ ∂ ∂
∂ ∂ ∂
 
 
 
U U Ugrad U dr = dx + dy + dz = dU 
x y z
∂ ∂ ∂
⋅
∂ ∂ ∂
 
Consideremos un punto P, perteneciente a una superficie equiescalar, U 
= constante, y el vector dr

, como suma de dos vectores, uno situado sobre 
la superficie equiescalar ( dt

), y otro normal a ella ( dn

). Por la propiedad 
distributiva respecto a la suma, tendremos: 
18
Campos escalares y vectoriales
grad U dr = grad U ( dt + dn ) = grad U dt + grad U dn = dU ⋅ ⋅ ⋅ ⋅
        
 
El producto: 0grad U dt = | grad U | | dt | cos = α⋅
   
, puesto que la derivada 
de U según la dirección dt, al pertenecer a la superficie U = cte, dU = 0, por 
lo que el ángulo que forma el vector gradiente con la superficie equiescalar, 
ha de ser de π/2, es decir, el gradiente es un vector normal a la superficie 
equiescalar a la que P pertenece.
Por otro lado, en el producto:
grad U dn = | grad U | | dn | cos = dU β⋅
   
Dado: ß = 0, obtendremos:
dU| grad U | = 
| dn |


Es decir, el módulo del vector 
gradiente corresponde a la va-
riación de la magnitud U, en la 
dirección normal a la superficie 
equiescalar a la que el punto P 
pertenece.
El gradiente es, pues, una aplicación por la que a cada punto P de un 
campo escalar U, se le hace corresponder un vector aplicado en P, cuyo 
módulo da la variación de la magnitud U en la dirección normal a la 
superficie equiescalar a la que P pertenece, y su sentido corresponde al de 
los valores crecientes de la magnitud U.
Si definimos un operador vectorial (“nabla”), por:
 = i + j + k 
x y z
∂ ∂ ∂
∇
∂ ∂ ∂
 
 
, entonces: grad U = U ∇
 
Si hemos dicho que operar con magnitudes escalares es más fácil que 
operar con magnitudes vectoriales, el definir una aplicación que lo que 
19
Temas de Física
realmente hace es, dado un campo escalar, construir sobre él, punto a punto, 
un campo vectorial, parece que es complicar las cosas. Sin embargo, tenemos 
que tener en cuenta que la mayor utilidad del gradiente es que si en un campo 
vectorial v = f(x,y,z), al efectuar el producto escalar del vector representativo 
de la magnitud ( v ), por un elemento de línea ( dr

), obtenemos una diferencial 
exacta ( v dr⋅


= dU), podemos afirmar que el campo vectorial v

, deriva de un 
campo escalar U, que llamaremos potencial escalar de ese campo vectorial, 
de tal forma que: v = grad U

 . Es decir, el gradiente es algo que nos permite 
estudiar determinados campos vectoriales a partir del estudio de campos 
escalares (potenciales), asociados a ellos.
4. FLUJO DE UN VECTOR. DIVERGENCIA
Toda superficie elemental puede representarse por un vector ( ds

), cuyo 
módulo corresponde al valor de la superficie, y es normal a ella.
Dada una superficie ( ds

), en un campo vectorial ( v

), se llama flujo 
elemental del vector a través de la superficie, al producto escalar del vector, 
por el vector representativo de la superficie.
d = v ds = | v | | ds | cos φ α⋅
 
 
0d > φ , si α < π/2, entonces 
se dice que el vector sale de la 
superficie.
0d < φ , si α > π/2, entonces 
se dice que el vector entra en la 
superficie.
El flujo total será: = v dsφ ∫ ∫ ⋅


 
Cuando calculamos el flujo total a través de una superficie cerrada, estamos 
calculando el exceso de magnitud que sale respecto a la que entra.
Dado un campo vectorial ( v ), se entiende por divergencia de v , una 
aplicación escalar que a cada punto P del campo, en el que el valor de 
la magnitud es v , le hace corresponder un escalar ligado a dicho punto, 
20
Campos escalares y vectoriales
cuyo valor es la derivada del flujo del vector v , calculado a través de una 
superficie elemental cerrada que contenga a P.
0
lim s
v ds
div v = 
τ τD →
⋅∫ ∫
D
 

Aunque matemáticamente no sea del todo correcto, podemos decir que 
la divergencia corresponde al flujo puntual del vector. La divergencia es una 
aplicación escalar sobre un campo vectorial, por la que al vector representativo 
de la magnitud en cada punto, se le asocia un escalar cuyo valor corresponde 
al flujo puntual del vector, de tal forma que sobre un campo vectorial dado, 
construye un campo escalar. Los valores posibles de la divergencia serán:
0div v >  , esto querrá decir que sale más magnitud de la que entra, o lo 
que es lo mismo, que en dicho punto nacen líneas de campo. Todos los puntos 
en los que esto ocurre se llaman “manantiales” o “fuentes”.
0div v <  , esto querrá decir que entra más magnitud de la que sale, o lo 
que es lo mismo, que en dicho punto mueren líneas de campo. Todos estos 
puntos se llaman “sumideros”.
0div v =  , esto quiere decir que llega tanta magnitud como la que sale, o 
lo que es lo mismo, que a dicho punto, llegan tantas líneas de campo como 
las que salen de él. Si esto ocurre en todos los puntos del campo, se dice 
entonces que dicho campo vectorial es solenoidal, siendo entonces sus líneas 
de campo, líneas cerradas.
La divergencia es una aplicación que nos da una idea clara de las 
características del campo. Si sus líneas de campo son cerradas o abiertas, y en 
este segundo caso, en qué puntos nacen, y en cuáles mueren.
Por la definición que hemos dado de divergencia, parece que efectuar su 
cálculo es bastante complejo, sin embargo, veremos que no es así.
Supongamos un punto P, 
dentro de un campo vectorial, 
en el que v tiene como compo-
nentes (vx, vy, vz), y tomando el 
punto P como origen de coor-
denadas, construyamos un sis-
tema cartesiano de referencia. 
Consideremos un paralelepípe-
do elemental de lados dx, dy, dz, 
construido con tres de sus caras 
21
Temas de Física
sobre los planos principales. Por la definiciónque hemos dado, la divergencia 
de v en P corresponderá al flujo de calculado a través de cada una de las super-
ficies del paralelepípedo elemental, dividido por el volumen total del mismo.
Para efectuar el cálculo del flujo, empezaremos por calcularlo a través de 
las dos caras normales al eje x.
La superficie l tiene como vector representativo 1ds

(‑dydz, 0, 0), luego el 
flujo de v

a través de la superficie será: 1 xd v dydzφ = − .
El vector representativo de la superficie 2ds

, tendrá como componentes 
(dydz, 0, 0), por lo que el flujo de v

 a través de esta superficie, corresponderá 
al producto de la componente x de v , ya que el producto de sus otras dos 
componentes será nulo. La componente x de v

 sobre dicha superficie 
valdrá: 
x
x
vv dx
x
∂
+
∂
es decir, lo que vale sobre la superficie 1ds

, más lo que varía su valor al 
desplazarnos a lo largo del eje x una distancia dx. Esta forma de representar el 
valor de una magnitud en un punto, en función de su valor conocido en otro 
punto muy próximo a él, es algo que haremos con frecuencia. El flujo a través 
de la superficie 2ds

, será entonces: 
2
x
x
vd v dx dydz
x
φ  ∂= + ∂ 
Si tomamos las dos caras del paralelepípedo normales al eje y, los vectores 
representativos de dichas superficies serán: 3ds

 (0, ‑dxdz, 0); 4ds

 (0, dxdz, 0)
La componente y de v sobre cada superficie será: 
vy sobre 3ds

vy +
yv dy
y
∂
∂
 sobre 4ds

Luego el flujo de v

 a través de dichas superficies será:
22
Campos escalares y vectoriales
3 4;
y
y y
v
d v dxdz d v dy dxdz
y
φ φ
∂ 
= − = + ∂ 
Si consideramos las dos caras del paralelepípedo normales al eje z, los 
vectores representativos de dichas superficies serán:
5ds

(0, 0, ‑dxdy); y, 6ds

(0, 0, dxdy).
La componente z de v

sobre cada una de las superficies, que es la única 
cuyo producto no es nulo, será:
vz, sobre 5ds

; 
z
z
vv dz
z
∂ + ∂ 
, sobre 6ds

.
El flujo de v

a través de dichas superficies será: 
5 6;
z
z z
vd v dxdy d v + dz dxdy
z
φ φ ∂ = − =  ∂  
El flujo total corresponderá 
a la suma de los flujos a través 
de cada una de las seis caras, y 
la divergencia de v

 será dicho 
flujo, dividido por el volumen 
total del paralelepípedo, que es:
τD =dxdydz
yx z
x x y y z z
vv vv +v + dx dydz + v +v + dy dxdz + v +v + dz dydx 
x y z
div v 
dxdydz
∂ ∂ ∂   − − −    ∂ ∂ ∂    =

yx zvv vdiv v = + + = v 
x y z
∂∂ ∂
∇ ⋅
∂ ∂ ∂

 
23
Temas de Física
Luego la divergencia de un vector corresponde al producto escalar del 
operador “nabla” por el vector.
5. TEOREMA DE GAUSS O DE LA DIVERGENCIA
El teorema de Gauss o de la divergencia dice que el flujo de un vector 
calculado sobre una superficie cerrada es igual a la divergencia del vector 
calculada sobre el volumen total que dicha superficie encierra.
s
v ds = div v d 
τ
τ⋅∫∫ ∫∫∫
 

Aunque dicho teorema podría 
deducirse directamente de la propia 
definición de divergencia, vamos a 
tratar de demostrar que se cumple 
esa igualdad, acudiendo simple-
mente a cuestiones de concepto. 
Consideremos una superficie cerra-
da s que contiene un volumen. Di-
vidamos este volumen en volúme-
nes elementales iτD , tan pequeños 
como queramos, estando cada uno 
de ellos limitado por una superficie isD . El flujo de v
 calculado a través de s 
podrá expresarse como suma de los flujos a través de cada una de las super-
ficies elementales isD , dado que toda superficie será común a dos elementos 
de volumen contiguos, anulándose por lo tanto la suma de sus flujos, al ser 
iguales pero de signo opuesto, salvo para las superficies que correspondan a 
la superficie límite que determina el volumen .τ
1
n
i
is
v ds v s
=
⋅ = ⋅D∑∫∫
   
Si dividimos y multiplicamos cada uno de estos sumandos, por el valor 
del volumen iτD , nos quedará:
24
Campos escalares y vectoriales
1
n
i
i
i i
v s τ
τ=
 ⋅D
D 
D 
∑
 
En donde lo encerrado entre paréntesis, corresponde a la divergencia de v

calculada sobre cada elemento de superficie. 
( )
1
n
i
i i
div v τ
=
D∑

Teniendo en cuenta que el concepto de integral corresponde a la suma 
continua de elementos infinitesimales, nos quedará:
div v d 
τ
τ⋅∫∫∫
 , que era lo que pretendíamos demostrar.
6. CIRCULACIÓN DE UN VECTOR. ROTACIONAL
Se entiende por circulación de un vector a lo largo de una línea, al 
producto escalar del vector por el vector representativo de dicha línea:
dC = v dl = | v | | dl | cos α⋅
 
 
Si queremos calcular la circulación total 
entre dos puntos: 
B
A
C = v dl ⋅∫


Un ejemplo de circulación es el trabajo, pudiendo definirse como la 
circulación de la fuerza. Como toda integral definida, la circulación goza 
de la propiedad de que al invertir su sentido, su valor absoluto permanece 
invariable pero cambia de signo:
B A
A B
 v dl = ‑ v dl ⋅ ⋅∫ ∫
 
 
25
Temas de Física
Si v deriva de un escalar ( v = grad U


), la circulación del vector solo 
depende del valor del potencial escalar U en el punto final e inicial, y no de la 
línea o camino seguido entre ambos:
B B B
A A A
C = v dl grad U dl dU = U(B) ‑ U(A)⋅ = ⋅ =∫ ∫ ∫
 

Luego la circulación, en este caso, corresponde a la diferencia de potencial 
entre ambos puntos.
Dado un campo vectorial ( v ), se denomina rotacional de v ( rot v

 ), a 
una aplicación vectorial que en cada punto P del campo, al vector ( v ), 
le hace corresponder otro vector ( rot v

 ), tal que, definida una superficie 
que contenga a P, la dirección de dicho vector es normal a la superficie, su 
módulo corresponde a la circulación de v a lo largo de la línea que limita 
dicha superficie, y su sentido corresponde al del avance de un tornillo que 
se gire en el sentido en el que la circulación se calcula. 
0
limn
S
v dl
 v = rot sD →
⋅
D
∫
 


Aunque esta definición parece com-
pleja, no lo es tanto. Consideremos un 
punto P en el que el valor representativo 
de la magnitud es v . Consideremos una 
línea cerrada ( dl

), que contenga a P y que 
delimita una superficie sD . Por definición, 
el vector rot v


 será un vector normal a 
dicha superficie cuyo sentido depende del 
sentido en el que se calcule la circulación 
a lo largo de la línea ( dl

), y cuyo módulo 
corresponderá a la circulación del vector 
v

 en el punto P.
26
Campos escalares y vectoriales
Al igual que en el caso de la divergencia, el cálculo del rotacional puede 
realizarse de forma simple.
Consideremos un punto P de un campo vectorial tridimensional, en el que el 
valor representativo de la magnitud es v

, de componentes. Tomemos el punto P 
como origen de un sistema cartesiano de referencia, y sobre cada uno de los planos 
XY, YZ, ZX, definimos una superficie elemental. Si calculamos la circulación 
de v

 a lo largo del perímetro de cada una de estas superficies, y dividimos por 
el valor de la superficie, obtendremos cada una de las tres componentes del 
vector rotacional ( rot v

 ).
Para calcular la componente 
x del vector rotacional ( xrot v

), 
tendremos que definir un 
rectángulo elemental sobre 
el plano YZ. A continuación 
calcularemos la circulación 
de v

 a lo largo de cada uno 
de sus lados siguiendo el 
sentido contrario al giro de 
las agujas de un reloj, para 
obtener el sentido positivo de 
la componente xrot v

:
- Lado 1PP (0, dy, 0). La circulación corresponderá al producto escalar de 
v por el lado 1PP : 
yv dy
- Lado 1 2PP (0, 0, dz). La circulación corresponderá al producto escalar de
v por el lado 1 2PP , es decir, a la componente z de v
 por dz, pues los otros dos 
productos son nulos. Sin embargo, aunque desconocemos el valor de dicha 
componente sobre P1, su valor será lo que vale en P ( zv ), más lo que varía este 
valor cuando nos trasladamos una distancia dy a lo largo del ejey, es decir:
27
Temas de Física
z
z
v v + dy 
y
 ∂
 ∂ 
 
La circulación de v a lo largo del lado 1 2PP , será:
z
z
v v + dy dz
y
 ∂
 ∂ 
- Lado 2 3P P (0, ‑dy, 0). La circulación de v

 a lo largo de dicha línea 
corresponderá entonces al producto escalar de la componente y de v , pues los 
otros productos serán nulos. Igual que en el caso anterior, desconocemos el 
valor que tiene la componente y de v en el punto P3. Este valor será el valor 
que tenía dicha componente en el punto P (vy), más lo que ha variado este 
valor al desplazarnos a lo largo del eje z, una distancia dz, es decir:
y
y
v v + dz 
z
∂ 
 ∂ 
Luego la circulación de v

 a lo largo de 3P P , será: 
y
y
v‑ v + dz dy
z
∂ 
 ∂  
- Lado 3P P (0,0,-dz). La circulación de v a lo largo de dicha línea será 
entonces el producto de la componente z de v por dz, pues los otros productos 
serán nulos. Por otro lado, dado que la línea 3P P , contiene al punto P, la 
componente z de v

 será vz, luego la circulación será: z‑v dz
La circulación total de v

 a lo largo del rectángulo PP1P2P3, será 
entonces:
28
Campos escalares y vectoriales
y yz z
y z y z
v vv vv dy + v + dy dz ‑ v + dz dy ‑ v dz = ‑ dydz 
y z y z
∂ ∂   ∂ ∂ 
    ∂ ∂ ∂ ∂    
Si dividimos por la superficie de dicho rectángulo (dydz), obtendremos la 
componente x del vector rotacional:
yz
x
vv v = ‑ rot y z
∂∂
∂ ∂

Para calcular las otras dos componentes del rotacional, habrá que seguir 
un procedimiento análogo.
- yrot v

: Se define un rectángulo elemental normal al eje y. Se calcula 
la circulación de v a lo largo de cada lado del rectángulo para obtener la 
circulación total, y se divide por la superficie del rectángulo.
- Lado 3PP (0, 0, dz). Circulación de v

 a lo largo de dicho lado: zv dz .
- Lado 3 4P P (dx, 0, 0). Componente x de v
 en dicho lado: 
x
x
vv + dz
z
∂
∂ 
Circulación de v

 a lo largo de dicho lado: xx
v v + dz dx
z
∂ 
 ∂ 
- Lado 4 5P P (0,0,-dz). 
Componente z de v sobre dicho lado:
z
z
vv + dx
x
∂
∂ 
Circulación de v a lo largo de dicho lado: 
 
29
Temas de Física
z
z
v‑ v + dx dz
x
∂ 
 ∂ 
- Lado 5P P (‑dx, 0, 0). Componente x de v

: vx
Circulación de v a lo largo de dicho lado: ‑ vxdx
Circulación total de v

 a lo largo del rectángulo PP3P4P5:
x z x z
z x z x
v v v vv dz + v + dz dx ‑ v + dx dz ‑ v dx = ‑ dxdz 
z x z x
∂ ∂ ∂ ∂     
     ∂ ∂ ∂ ∂     
Componente y del vector rotacional: x zy
v vrot v = ‑ 
z x
∂ ∂
∂ ∂

- zrot v

: Se define un rectángulo elemental normal al eje z. Se calcula 
la circulación de v

 a lo largo de cada lado del rectángulo para obtener la 
circulación total, y se divide por la superficie del rectángulo.
- Lado 5PP (dx, 0, 0).
Circulación de v

 a lo largo de dicho lado: vxdx 
- Lado 6 5P P (0, dy, 0).
Componente y de v

: 
y
y
v v + dx 
x
∂ 
 ∂ 
Circulación de v

 a lo largo de dicho lado:
y
y
v v + dx dy
x
∂ 
 ∂ 
30
Campos escalares y vectoriales
- Lado 6 1P P (‑dx, 0, 0).
Componente x de v sobre dicho lado:
x
x
v v + dy 
y
 ∂
 ∂ 
Circulación de v

 a lo largo de 6 1P P : 
x
x
v v + dy dx
y
 ∂
−  ∂ 
- Lado 1PP (0, ‑dy, 0).
Circulación de v a lo largo de 1PP : y‑ dyv
Circulación total de v a lo largo del rectángulo PP5P6P1:
y yx x
x y x y
v vv vv dx + v + dx dy v + dy dx v dy = ‑ dxdy 
x y x y
∂ ∂   ∂ ∂  − −    ∂ ∂ ∂ ∂     
Componente z del vector rotacional: y xz
v vrot v = ‑ 
x y
∂ ∂
∂ ∂

 
Luego el vector será:
y yz x z xv vv v v vrot v = ‑ i + ‑ j + ‑ k 
y z z x x y
∂ ∂   ∂ ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂ ∂ ∂    
 
 

 
Que puede escribirse: 
31
Temas de Física
x y z
i j k
rot v = v = 
x y z
v v v
∂ ∂ ∂
∇ ×
∂ ∂ ∂
  
 
 
Si calculamos el rotacional en todos los puntos de un campo vectorial v

, y 
obtenemos: 0rot v = 


. Se dice entonces que dicho campo es irrotacional, y es 
demostrable que el campo vectorial v

 deriva de un campo escalar U, siendo: 
v = grad U


El rotacional es pues una aplicación que asocia un campo vectorial a otro 
campo vectorial, y que, en general, se pretende que ese campo sea más simple. 
Consideremos por ejemplo, un disco de radio r que gira en torno a un eje con 
velocidad angular ω

. Cada punto del disco tendrá una velocidad lineal, que 
será: v = rω ×
  
 
Apliquemos el operador rotacional, al campo de las velocidades lineales: 
rot v = v = rω∇ × ∇ × ×
 
   
El doble producto vectorial cumple, aunque no vamos a demostrarlo, 
que: 
( ) ( )a b c = a c b a b c × × ⋅ − ⋅       
En nuestro caso, siendo:
x y z ( i + j + k), r ( xi + yj + zk ), i + j + k x y z
ω ω ω ω
 ∂ ∂ ∂
∇  ∂ ∂ ∂ 
  
     
 
Resulta:
rot v = ( r)ω∇× ×
 
  
 = x y z
x y z+ + + + r 
x y z x y z
ω ω ω ω
   ∂ ∂ ∂ ∂ ∂ ∂
−   ∂ ∂ ∂ ∂ ∂ ∂   
 
32
Campos escalares y vectoriales
rot v


=3 x x x y z
x y z y z i j k + j + k 
x x x y z
ω ω ω ω ω ω
 ∂ ∂ ∂ ∂ ∂ − + +  ∂ ∂ ∂ ∂ ∂  
 
  

=3 2=ω ω ω−
  
Esta misma expresión la hubiéramos obtenido aplicando la definición:
20
2lim 2 2l
s
 v dl
rv vrot v = = = = 
s r r
π ω
πD →
⋅
D
∫



 
Así pues, aplicando el operador rotacional, el campo de las velocidades 
lineales se sustituye por el de las velocidades angulares, y como consecuencia, 
las ecuaciones del movimiento circular son idénticas a las ecuaciones 
del movimiento rectilíneo sin más que sustituir magnitudes lineales por 
magnitudes angulares. 
7. TEOREMA DE STOKES O DEL ROTACIONAL
El teorema de Stokes o del rotacional dice que la circulación de un vector 
a lo largo de una línea cerrada es igual al flujo del rotacional de dicho 
vector calculado sobre una superficie que tiene esa línea como borde.
l s
 v dl = rot v ds⋅ ⋅∫ ∫∫
 
 
Aunque dicho teorema puede dedu-
cirse de la definición de rotacional, va-
mos a tratar de demostrarlo.
Consideremos una línea cerrada l, y 
tomando como borde esa línea, construi-
mos una superficie S.
Dividamos la superficie S en super-
ficies elementales iSD , tan pequeñas 
como queramos, estando limitada cada 
una de ellas por una línea li. La circula-
ción de v

 a lo largo de la línea l podrá expresarse como suma de las circula-
ciones de v

 calculadas sobre cada elemento li, dado que la circulación sobre 
cada línea que tenga un elemento contiguo se anulará, pues es recorrida en un 
33
Temas de Física
sentido en el elemento 1, mientras que en el elemento contiguo 2, es recorrida 
en sentido contrario. Por tal motivo, solo intervendrán en el cálculo de la cir-
culación las líneas que no tengan ningún elemento contiguo, es decir, la línea 
que corresponde al borde.
1
n
i
i=l
 v dl = ( v dl ) ⋅ ⋅∑∫
 
 
Si dividimos y multiplicamos cada sumando, por el valor de la superficie 
infinitesimal,
1
n
i
i
i= i
v dl s
s
 ⋅
D 
D 
∑


Lo encerrado entre paréntesis corresponde a rot v
 
, por lo que nos 
quedará:
1
( )
n
i i
i
rot v s
=
⋅ D∑
 
Teniendo en cuenta que el concepto de integral corresponde a la suma 
continua de elementos infinitesimales, nos queda: 
s
rot v ds⋅∫∫
 

Que es lo que queríamos demostrar.
8. OPERACIONES DE SEGUNDO ORDEN
8.1. Laplaciana de una función escalar
Se llama Laplaciana de una función escalar a un operador de segundo 
orden definido por: 
34
Campos escalares y vectoriales
2 2 2
2 2 2
U U UU = div grad U = U = + + 
x y z
∂ ∂ ∂
D ∇ ⋅∇
∂ ∂ ∂
  
8.2. Laplaciana de un vector
Se llama Laplaciana de un vector a otro vector definido como: 
v = grad ( div v ) ‑ rot ( rot v ) D
  
  
2 2 22 2 2 2 2 2
2 2 2 2 2 2 2 2 2
y y yx x x z z zv v vv v v v v v v = ++ i + + + j + + + k 
x y z x y z x y z
 ∂ ∂ ∂   ∂ ∂ ∂ ∂ ∂ ∂
D      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

9. BIBLIOGRAFÍA
- Feynman, R.P., Leighton, R.B.,y Sands, M.: FÍSICA. Ed. Fondo 
Educativo Interamericano. San Juan de Puerto Rico, 1963.
- Wills, A.P.: VECTOR ANALYSIS WITH AN INTRODUCTION TO 
TENSOR ANALYSIS. Ed. Dover Publications Inc. New York, 1958.
10. PROBLEMAS DE EXAMEN
10.1. Hallar las constantes a, b, y c, para que la superficie U = ax2 + 
by2 + cz2, sea perpendicular a la superficie V = x2 + y2 ‑ 4z, en el punto (2, 
2, 2). Calcular un vector unitario en dirección normal a la primera de las 
superficies.
a) 2 2 2 4 4 4grad U = ax i + by j + cz k = a i + b j + c k 
  
   
2 2 4 4 4 4grad V = x i + y j ‑ k = i + j ‑ k 
  
   
16 16 16grad U grad V = a + b ‑ c = 0 ⋅
 
 De donde:
0 1 2a + b ‑ c = ; a = b = ; c = 
b) 4 4 4grad U = i + j + k 
 
 
35
Temas de Física
2 2 2 2 2 2 2 2 2
4 4 8
4 4 8 4 4 8 4 4 8
grad Ur = = i + j + k 
| grad U | + + + + + +


 


4 4 8
96 96 96
r = i + j + k 

 

10.2. A partir del punto (-1, 3, 2), ¿hacia qué dirección aumenta más rápidamente 
la función ( )2 2 2F = x y + z xy + z+ − ? ¿Y la función 2 2 2 12G = x + y xz − − ?
a) ( 2 ( ) ) ( 2 ( ) ) ( 2 2 )grad F = x+ y y i + x+ y x j + z + k − −
 
 
 
Sustituyendo para el punto dado: 
(2 ( 1 3) 3) (2 ( 1 3) 1) (2 2 2) 5 6grad F = + i + ‑ + + j + + z = i + j + k − − ⋅
 
   

b) ( 2 2 ) 2 2grad G = x z i + y j x k − −
 
 
Sustituyendo para el punto dado:
(2 ( 1) 2 2) 2 (3) 2 ( 1) 6 6 2grad G = i + j ‑ k = i + j + k − − ⋅ − −
  
   
10.3. Dadas las superficies 
2 22 2 7 0U = x + y xz =− − ,
23 4 0V = x xy+ z =− − hallar el ángulo que forman en el punto (-1, 2, -1).
U U Ugrad U = i + j + k 
x y z
∂ ∂ ∂
∂ ∂ ∂
 
 
 
(2 2 ) 4 2 8 2grad U = x z i + y j x k = j + k − −
  
  
(6 ) 8grad V = x ‑ y i x j + k = i + j + k − −
  
   
grad U grad Vcos = 
| grad U | | grad V |
α ⋅
 
 
36
Campos escalares y vectoriales
8 2 10 0 14927
64 4 64 1 1 4488
 + cos = = = , 
+ 
α
+ + ;
1, 42 81º 20 ' = rad = α
10.4. Demostrar que cualquiera que sean los valores de a y b, las familias 
de hipérbolas equiláteras: x2 ‑ y2 = a, xy = b, se cortan en ángulos rectos. 
2 2grad U = x i y j ; grad V = y i + x j −
 
   
2 2 2 2
2 2 0
24 4
grad U grad V xy yxcos = = = = 
| grad U | | grad V | x + y + y + x
πα α⋅ − ⇒
 
 
10.5 Calcular: grad φ

, siendo 2 2 2,nr r x y zφ = = + +

.
 
r r rgrad = i + j + k 
r x r y r z
φ φ φφ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
 
 
1n r x r y r z = n r ; = ; = ; = 
r x r y r z r
φ −∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
1 1 1 2 2( )n n n n nx y zgrad = n r i + n r j + n r k = n r xi + yj + zk = n r r 
r r r
φ − − − − −
  
   

10.6. Hallar el módulo y dirección (cosenos directores) del gradiente de 
la función escalar:
2 2 2U x y z= + + , en el punto (2, -2, 1)
; 2 2 2 4 4 2U U Ugrad U i j k grad U x i y j z k i j k
x y z
∂ ∂ ∂
= + + = + + = − +
∂ ∂ ∂
   
     
2 2 24 4 2 36 6grad U = + + = =

37
Temas de Física
4 2 2 1; ;
6 3 3 3
cos cos cosα β γ= = = − =
10.7. Hallar el gradiente de la función escalar: U = 2x‑ xy+2 y2‑ yz + z2, en 
el punto (1,1,1), y los puntos estacionarios de dicho campo si los tuviese.
a)
( ) ( ) ( ); 2 4 2 2U U Ugrad U i j k grad U y i x y z j y z k i j k
x y z
∂ ∂ ∂
= + + = − + − + − + − + = + +
∂ ∂ ∂
   
     
b) 2 0 ; 4 0 ; 2 0U U Uy x y z z y
x y z
∂ ∂ ∂
= − = = − + − = = − =
∂ ∂ ∂
Resolviendo el sistema: 2 0 ; 4 0 ; 2 0 ;y x y z y z− = − + − = − + =
Se obtiene: ( )7 ; 2 ; 1; : 7, 2,1x y z Luego el punto es P= = = : P (7,2,1,)
10.8. Sea el vector 2 2 2a x y i + y z j + xz k =

 

. Calcular la divergencia de 
dicho vector en los vértices del cuadrado situado en el plano XY con centro 
en el origen de coordenadas y 2 m de lado, perpendiculares a los ejes x e y, 
indicando cuál de ellos es manantial, y cuál sumidero. 
2 2 2div a = xy + yz + xz 
En el punto (1, -1, 0) 2div a =

. Manantial.
En el punto (-1, 1, 0) 2div a = − . Sumidero.
En el punto (-1, -1, 0) 2div a = 

. Manantial.
En el punto (1, -1, 0) 2div a = −

. Sumidero.
10.9. Dados los vectores 2 2 2 , 2 2 2 2a = x i + y j + k b = z i + x j + k.y
  
   

 
Calcular: a) div a , y div b.


 b) div a b,×

 en el punto (1, 1, 1).
a) 2 2 4 0div a = + = ; div b = 


38
Campos escalares y vectoriales
b) 3 2 2
2
2 2 2 (4 4 ) (4 4 ) (4 4 )
2 2 2
i j k
a b = x y = y x i + z xy j + x yz k 
z x y
× − − −
  
 
 

En el punto (1, 1, 1): 4 8 4 16div [ a b ] = xy ‑ y = × − − −


10.10. Si la función escalar: 3 2 42 x y zφ = . a) Probar que: div grad = φ φD

. 
b) Calcular: div grad φ

 en el punto (1, 1, - 1).
a) 2 2 4 3 4 3 36 4 8grad = i + j + k = x y z i + x y z j + x yz k
x y z
φ φ φφ ∂ ∂ ∂
∂ ∂ ∂
  
   
2 4 3 4 3 2 212 4 24div grad = xy z + x z + x y zφ

2
2 2 4 2 4
26 12 = x y z ; = x y zx x
φ φ∂ ∂
∂ ∂
2
3 4 3 4
24 4 = x yz ; = x zy y
φ φ∂ ∂
∂ ∂
2
3 2 3 3 2 2
28 24 = x y z ; = x y zz z
φ φ∂ ∂
∂ ∂
2 2 2
2 4 3 4 3 2 2
2 2 2 12 4 24 = + + = xy z + x z + x y z div grad x y z
φ φ φφ φ∂ ∂ ∂D =
∂ ∂ ∂

b) 2 4 3 4 3 2 212 4 24 12 4 24 40div grad = xy z + x z + x y z φ = + + =

10.11. Sea el vector ( 3 ) ( 4 ) ( 3 )u = x yz i + y + xz j + x az k.− −

 

 Calcular 
el valor de a, para que dicho vector sea solenoidal. Siendo el vector v = xyz j


, 
decir si el vector u v×  , es solenoidal. Calcular div a b ×

 , en el punto (1, -1, 1).
39
Temas de Física
a) 
( 3 ) ( 4 ) (3 ) 1 1 0x ‑ yz y+ xz x ‑ azdiv u = + + = + a = 
 x y z
∂ ∂ ∂
−
∂ ∂ ∂
 Luego, a = 2
b) 3 4 3 2 (3 2 ) ( 3 )
0 0
i j k
u v = x yz y+ xz x z = xyz x z i + xyz x ‑ yz k 
xyz
× − − − −
  


 
2 2 2 2( ) (2 2 ) 3 ( 3 ) 3 6 6 2div u v = ‑ yz x z xyz + xy x yz z = xyz xy z + yz + x y xy× − − − − − −
 
Luego no es solenoidal.
c) ( ) 6 6 2 1 3div u v × = − − − = −
 
10.12. Hallar el flujo de 3 2 5a = x i y j + z k−

 
 , a través de una esfera de 
radio 2 y centro en el origen de coordenadas.
2
2 3
0
4(3 2 5)4 6 2 64 200,96
3
 = a ds = div a d = + r dr = = = φ τ π π π∫ ∫ ⋅ ∫ ∫ ∫ −∫

 
10.13. Calcular div a

, y grad div a
 
, si 2a r i + yrj + zrk=

 

, siendo 
2 2 2 2r = x + y + z .
a) yx z
aa adiv a = + + 
x y z
∂∂ ∂
∂ ∂ ∂

2 2xa x = r = x 
x r
∂
∂ ;
2
ya y y = r + y = r + 
y r r
∂
∂
;
 
2
za z z = r + z = r + 
z r r
∂
∂
2 2 2
2 2 2 3y + z xdiv a = x+ r + , o tambien, x+ r 
r r
−

 
o también
 
2 2 2
2 2 2 3y + z xdiv a = x+ r + , o tambien, x+ r 
r r
−

40
Campos escalares y vectoriales
b) 
div a div a div agrad div a = i + j + k 
x y z
∂ ∂ ∂
∂ ∂ ∂
  
 
 

2 2
22 2
div a x y + z x = + 
 x r r r
∂
−
∂

2 2
2
2 ( )
2
yyr y + zdiv a y r = + =
 y r r
−∂
∂
 2 2
3
4y y( + )y z ‑ 
r r
2 2
2 2
2 3
2 ( ) 4 ( )2
zzr y + zdiv a z z z y zr = + = 
 z r r r r
−∂ +
−
∂

10.14. Si 2 ,a r i + yrj + zrk=

 
 en donde r, es: 2 2 2 2r x y z = + + . Calcular: 
a) div a

. b) grad div a

 .
2 22 2
) 2 2 2 2 3( ) r (yr) (zr) x y z +y xr za div a + + r +r + y +r + z x+ r + x+ r 
r x y z r r r r r
 ∂ ∂ ∂ ∂
= = = = − ∂ ∂ ∂ ∂ 

2 2 2
2 2 2
3 2 3 32 x x x y y z zx x xb) grad div a i + + + j + + k + 
r r r r r r r r r r
     
= −     
     
 
 

23 2
3 3 3
3 32 x y x y z zx xgrad div a i + + + j+ + k + 
r r r r r r
    
=     
    
 
 

10. 15. Si los vectores: , 2 2 3u i j k v i j k= + − = − +
 
   
 
, determinan una 
superficie, calcular el flujo del vector 4r i j k= + +

 

, a través de ella. 
Dado que el vector representativo de una superficie corresponde al 
producto vectorial de los lados que la forman:
41
Temas de Física
1 1 1 5 4
2 2 3
i j k
S u v i j k= × = − = − −
−

 

 
 
( ) ( )1 1 1 5 4 4 20r Sθ = ⋅ = ⋅ + ⋅ − + ⋅ − = −


10.16. Sea el vector 
2 2 2a = x y i + y z j + xz k

 

 . Calcular: a) rot a


. b) rot rot a
 
 . 
c) Demostrar que: 2( )rot rot a = a a∇ ∇ ⋅ − ∇
   
   .
a) 2 2 2
2 2 2
i j k
rot a = = y i z j x k 
x y z
x r y r z r
∂ ∂ ∂
− − −
∂ ∂ ∂
  
 
 

b) 
2 2 2
2 2 2
i j k
rot rot a = = z i + x j + y k 
x y z
y z x
∂ ∂ ∂
∂ ∂ ∂
− − −
  
  
 

c) 
2( ) ( 2 2 2 ) ( 2 2 2 ) a a = xy + yz + xz y i + z j + x k ∇ ∇ ⋅ − ∇ ∇ −
   
 
 
2( ) (2 2 ) (2 2 ) (2 2 ) (2 2 2 ) 2 2 2a a = y+ z i + x+ z j + y+ x k yi + zj + xk = zi + xj + yk∇ ∇ ⋅ − ∇ −
    
     
 
Luego: ( ) 2a a rotrota∇ ∇ ⋅ − ∇ =    
10.17. Sea a = xr i + yr j + zr k

 
 , siendo 2 2 2 2r x + y + z= . Demostrar que 
dicho vector es irrotacional.
; ;r x r y r z = = = 
x r y r z r
∂ ∂ ∂
∂ ∂ ∂
42
Campos escalares y vectoriales
0
i j k
y z z x x yrot a = = z y i + x z j + y x k = 
x y z r r r r r r
xr yr zr
∂ ∂ ∂      − − −     ∂ ∂ ∂      
  
 
 

10.18. Siendo 23 y= x e sen zφ , calcular: rot grad φ
 
.
2 26 3 3y y ygrad = x e sen z i + x e sen z j + x e cos z k φ
 
 
2 26 3 3y y y
 i j k 
rot grad = 
x y z
 xe senz x e senz x e cosz 
φ ∂ ∂ ∂
∂ ∂ ∂
  
 
2 2(3 3 ) (6 6 (6 6 )y y y y y yrot grad = x e cosz ‑ x e cosz i + xe cosz ‑ xe cosz)j ‑ xe senz ‑ xe senz k = 0 φ
 
 
 
10.19. Siendo 3 2( )v x i ‑ x + y + z j + x z k =

 
 . Calcular: rot grad div v
 

 
en el punto (1, 1, 1).
3 2( ) ( ) ( ) 3 1 2x x+ y+ z xzdiv v = + + = x + + xz 
 x y z
∂ ∂ ∂
∂ ∂ ∂

( ) ( ) ( ) (6 2 ) 2div v div v div vgrad div v = i + j + k = x+ z i + x k 
x y z
∂ ∂ ∂
∂ ∂ ∂
  
  
  

0 (2 2) 0 0
6 2 0 2
 i j k
 rot grad div v = = i + ‑ j + k = 
x y z
 x z x
∂ ∂ ∂
∂ ∂ ∂
+
  
  
 

 
Luego ( grad div v


), es un vector irrotacional.
43
Temas de Física
10.20. Si a = (r) v φ
 
, en donde (r)φ es una función de r, siendo 
2 2 2r = x + y + z , y v = x i + y j + z k 

 

, probar que a

 es irrotacional.
i j k
 (r)z (r)y (r)x (r)z (r)y (r)xrot a = = i ‑ + j ‑ +k ‑ 
x y z y z z x x y
(r)x (r)y (r)z
φ φ φ φ φ φ
φ φ φ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
  
 
 

r r r r r rrot a = i z (r) ‑ y (r) + j x (r) ‑ z (r) + k y (r) ‑ x (r) 
y z z x x y
φ φ φ φ φ φ
   ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′ ′    ∂ ∂ ∂ ∂ ∂ ∂    
 
 

( ) ( ) ( ) 0y z z x x yrot a = i z (r) y (r) + j x (r) z (r) + k y (r) x (r) = 
r r r r r r
φ φ φ φ φ φ′ ′ ′ ′ ′ ′− − −
 
 

10.21. Si 2 22 3v xz i yz j xz k= − +

 
 , calcular ( )v rot v∇ ⋅


 
, en el punto (1, 
1, 1).
( )2
2 2
4 3
2 3
i j k
rot v yi xz z j
x y z
xz yz xz
∂ ∂ ∂
= = + −
∂ ∂ ∂
−

 

 

( )2 2 2 32 4 3 2 3v rot v xyz xz z yz xyz yz⋅ = − − = − +

 
( ) ( ) ( )2 2 3 22 2 3 4 9v rot v yz i xz z j xyz yz k∇ ⋅ = − + − + + − +    
En el punto (1, 1, 1): ( ) 2 5v rot v i j k∇ ⋅ = − + +    
10. 22. Demostrar si el campo vectorial: ( ) ( ) ( )v y z i x z j x y k= + + + + +

 
 , 
admite un campo escalar U, y calcularlo.
44
Campos escalares y vectoriales
a)
( ) ( ) ( ) ( ) ( ) ( ) 0x y x z y z x y x z y zrot v = i j k 
y z z x x y
∂ + ∂ + ∂ + ∂ + ∂ + ∂ +     
− + − + − =     ∂ ∂ ∂ ∂ ∂ ∂     
 
 

Luego admite un potencial U, porque es irrotacional.
b)
( ) ( , ); ( , ) ; ( , ) ( )U U f y zv grad U y z U y z x f y z x z x f y z zy g z
x y y
∂ ∂ ∂
= = + ⇒ = + + = + = + ⇒ = +
∂ ∂ ∂


( ) ( ) ( ) ( ); 0g z g zUU xy yz zx g z x y g z cte
z z z
∂ ∂∂
= + + + = + + ⇒ = ⇒ =
∂ ∂ ∂
Luego la solución es:U xy yz zx cte= + + +
O bien: ( ) ( ) 1x
U v U y z dx y z x C
x
∂
= ⇒ = + = + +
∂ ∫ ;
( ) ( ) 2y
U v U x z dy x z y C
y
∂
= ⇒ = + = + +
∂ ∫
( ) ( ) 3z
U v U x y dz x y z C
z
∂
= ⇒ = + = + +
∂ ∫ ; 
Sumando y eliminando términos iguales: 
U xy yz zx C= + + +
10. 23. Si entendemos que el trabajo de 
una fuerza es su circulación, calcular el trabajo 
realizado por la fuerza 
23 2F xy i y j= −

 
, 
al circular a lo largo del trapecio de la figura. Todas las distancias están en 
metros. 
En la recta OA, x = y, y por tanto dx =dy:
( )
11,1 1,1 1 3
2 2
0
0,0 0,0 0 0
13 2
3 3
A xW F ds xy dx y dy x dx Jδ
 
= ⋅ = ⋅ − ⋅ = ⋅ = = 
 
∫ ∫ ∫

45
Temas de Física
En la recta AB, y = 1, y por tanto dy = 0
( )
22,1 2 2
2
1,1 1 1
3 93 2 3
2 2
B
A
xW xy dx y dy x dx Jδ
 
= ⋅ − ⋅ = ⋅ = = 
 
∫ ∫
En la recta BC, x = 2, y por tanto dx = 0
( )
02,0 0 3
2 2
2,1 1 1
3 23 2 2
3 3
C
B
yW xy dx y dy y dy Jδ
 
= ⋅ − ⋅ = − ⋅ = − = 
 
∫ ∫
En la recta CO, y = 0, y por tanto F = 0, 0 0cWδ =
1 9 2 110
3 2 3 2
W Jδ = + + + =
47
TEMA II: MOVIMIENTO OSCILATORIO
1. INTRODUCCIÓN
Al plantearnos el estudio del movimiento de un sistema, lo primero que 
tenemos que tener en cuenta es el número de grados de libertad que tiene, pues 
este número corresponde al número de relaciones linealmente independientes 
que tenemos que encontrar, para poder resolver el problema de conocer, para 
cada instante concreto, cuál es la posición que cada elemento del sistema 
ocupa, y qué velocidad y aceleración tiene. Un sistema completo, e integrable, 
es decir, con solución, se dice que es un sistema holónomo, y la mayor parte 
de los sistemas lo son. Un sólido enteramente libre es un sistema holónomo 
con seis grados de libertad, mientras que una esfera que gira y se traslada 
simultáneamente sobre un plano fijo, a pesar de tener solo tres grados de 
libertad, no lo es. 
Vamos a empezar el estudio del movimiento, por el sistema más simple, 
que es aquel con un solo grado de libertad, y consecuentemente, nos basta 
establecer una relación, y si ésta es integrable, obtener la solución buscada. 
Esta condición la cumple el movimiento rectilíneo uniforme o uniformemente 
acelerado, pero también el movimiento oscilatorio. 
En ocasiones se toman como sinónimos los términos oscilación, vibración 
y ondulación u onda, aunque realmente no lo son. Una oscilación corresponde 
a un movimiento de vaivén hacia uno y otro lado de una posición de equilibrio 
central, movimiento idéntico para todos los elementos que constituyen el 
sistema. Una vibración es también un movimiento de vaivén respecto a una 
posición de equilibrio central pero en la que las características del movimiento 
de cada elemento o parte pueden ser distintas. Un péndulo oscila, una cuerda 
de guitarra vibra. La propagación de una oscilación o una vibración a través 
de un medio constituye lo que se llama onda, es decir, onda u ondulación es 
una perturbación periódica, sea ésta la que sea, que se propaga a través de un 
medio.
Una oscilación puede ser libre, cuando solo intervienen fuerzas internas, 
o forzada, cuando es una fuerza externa la que obliga a oscilar al sistema. 
Cuando se estudia el movimiento oscilatorio, puede tenerse en cuenta la 
existencia de la fuerza de rozamiento, inherente a todo movimiento, con lo 
que entonces hablaremos de movimiento oscilatorio amortiguado, o por el 
contrario, puede estudiarse el movimiento oscilatorio de forma ideal, sin tener 
en cuenta el rozamiento, refiriéndonos entonces

Continuar navegando

Materiales relacionados

650 pag.
fISICA esencial - Luisa Rámirez

User badge image

Desafio PASSEI DIRETO

346 pag.
84-7786-910-3-completo

Escuela Universidad Nacional

User badge image

Carlos Andrés Colona Martinez

50 pag.
Apunte-Fisica-SUI-0

UBAM

User badge image

Contenidos Muy Locos

135 pag.