Logo Studenta

METODO_DE_LA_DISTRIBUCION_DE_MOMENTOS

¡Estudia con miles de materiales!

Vista previa del material en texto

MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
El profesor de estructuras Hardy Cross inventó un método iterativo para resolver las ecuaciones de 
equilibrio en función de los desplazamientos y rotaciones de las ecuaciones pendiente deflexión y 
facilitar el análisis de estructuras con varios grados de libertad.
Debido a que este método es una solución a las ecuaciones del método de pendiente deflexión, tiene 
las mismas limitaciones de este:
Se desprecian las deformaciones axiales de los elementos
Se desprecian las deformaciones por cortante
Estructuras construidas con materiales elásticos y que no salgan de este rango
Deformaciones pequeñas
Adicionalmente el método tiene sus propias limitaciones:
Solo trabaja con las ecuaciones de equilibrio rotacional en los nudos
No da una solución directa cuando están involucrados grados de libertad traslacionales
Se limita a determinar como es la distribución de los momentos en los elementos que llegan a un 
nudo
No plantea ecuaciones de compatibilidad de deformaciones para grados de libertad traslacionales
Sin embargo todas estas limitaciones el método revolucionó el análisis de estructuras en el año 1930.
Repasemos un poco los pasos a seguir en el método de la rigidez utilizando las ecuaciones pendiente 
deflexión:
1. Planteamiento de ecuaciones de equilibrio en los grados de libertad libres
2. Planteamiento de las ecuaciones pendiente deflexión: corresponden a expresar los momentos 
de extremo de los elementos en función de unos momentos de empotramiento perfecto y de los 
giros y desplazamientos de cada extremo del elemento. La formulación de estas ecuaciones se 
hace partiendo de asumir el elemento empotrado en sus dos extremos y de ir soltando cada 
grado de libertad y corrigiendo estos momentos por estos posibles movimientos.
3. Se reemplazan las ecuaciones de pendiente deflexión en las ecuaciones de equilibrio y se 
resuelve para los giros y desplazamientos.
4. Se encuentran los momentos de extremo en función de los giros y desplazamientos hallados.
Repasemos el método de solución iterativa de un sistema de ecuaciones: se asume que todas las 
incógnitas menos una son iguales a cero, entonces se encuentra el valor de esta incógnita en una de 
las ecuaciones. Este valor se reemplaza en las otras ecuaciones y se encuentra el valor de las otras 
incógnitas cuando todas menos ella y la primera son iguales a cero. Los valores encontrados 
representan una primera solución al sistema de ecuaciones planteado. Estos valores vuelven a 
reemplazarse en la primera ecuación para encontrar un nuevo valor de la primera incógnita, con el 
cual se vuelven a encontrar las otras incógnitas. En este proceso iterativo los resultados cada vez van 
difiriendo en menor cantidad lo que nos indica que nos acercamos a la respuesta que satisface todas 
las ecuaciones.
Teniendo presente este método iterativo podemos observar que él parte de asumir que todas las 
Página 1 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
incógnitas son cero menos una, en nuestro sistema esto indica que partiendo de elementos 
empotrados en sus extremos, liberamos un solo grado de libertad de toda la estructura, por ejemplo 
para una viga de dos luces sin considerar posibles desplazamientos relativos, podríamos liberar el 
giro en b, θb, y encontramos el valor de ese giro necesario para que se cumpla que la suma de 
momentos en B es cero, esto es, que momento adicional debo agregar en b para que se produzca un 
giro que equilibre el nudo, siempre que θa y θc sean iguales a cero (empotramiento a ese lado).
Al aplicar el momento adicional en B se puede encontrar por medio de la ecuación de equilibrio en 
B, el valor de θb. Con este valor puedo encontrar los momentos que se generan en los extremos 
opuestos de los elementos manteniendo sus giros iguales a cero. En este paso se ha hecho cumplir 
una de las ecuaciones de equilibrio (ΣMb=0) pero las otras dos ecuaciones no se satisfacen. Se 
procede a soltar otro grado de libertad, por ejemplo θa manteniendo los otros dos valores iguales a 
cero. Para satisfacer su ecuación de equilibrio se debe aplicar un momento externo igual y de 
sentido contrario al momento desequilibrado en ese nudo. Se encuentra el valor del giro debido a 
este momento y se halla el momento del elemento en el extremo contrario B. Otra vez se 
desequilibró el nudo B. Si analizamos de nuevo la estructura pero esta vez soltando el nudo B 
sometido al momento contrario al generado en la segunda iteración estaríamos equilibrando el nudo 
B.
Este proceso continúa hasta que los momentos que tenemos que equilibrar en cada paso se van 
haciendo menores.
Note que en este proceso cada iteración es independiente de la anterior y corresponde a una 
corrección de los momentos finales en los extremos, por eso y por superposición los momentos 
finales corresponden a la suma de los momentos generados en cada iteración.
Cuando tenemos una estructura con un nudo al cual le llegan varios miembros el proceso de 
equilibrio en ese nudo nos lleva a repartir ese momento en todos los elementos, esa repartición se 
hace de acuerdo con la rigidez a rotación de cada elemento. Mostraremos con el siguiente ejemplo la 
forma en que se reparten los momentos en un nudo.
Página 2 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
Grado de libertad libre= θb
Ecuaciones de equilibrio en el sentido del grado de libertad libre:
Ecuaciones pendiente deflexión:
note que los momentos están dados solamente en función del giro en b ya que los otros grados de 
libertad son cero.
Si llamamos al termino la rigidez rotacional del elemento a un giro, K, podemos expresar la 
ecuación de equilibrio como:
despejando para θb, tenemos:
reemplazando en la ecuación de cada momento nos queda:
Página 3 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
notamos que el momento en el nudo se distribuye de acuerdo con la relación , a la cual le 
damos el nombre de factor de distribución. Los factores de distribución de los miembros que llegan 
a un nudo deben sumar uno. (por qué?). El elemento que tenga mayor rigidez tiene mayor factor de 
distribución por lo tanto se lleva mayor parte del momento. Para elementos con EI constantes el 
miembro mas rígido es aquel que tiene menor longitud.
Cuando en un nudo solo llegan dos elementos con EI iguales, se puede expresar el factor de 
distribución en función de las longitudes:
y
Analicemos que pasa con los momentos generados en los otros nudos no libres, en este caso los 
extremos de elemento empotrados:
Por ecuaciones pendiente deflexión
esto nos muestra que el momento generado en un extremo fijo cuando el otro extremo se libera es 
igual a la mitad del momento del lado que giró.
Esta conclusión nos ayuda mucho en el proceso iterativo porque nos da el valor del momento 
generado en el extremo opuesto al liberado, a este valor se le llama momento trasladado.
Para este ejemplo ya llegamos al final de su solución encontrando los momentos de empotramiento 
en los extremos fijos.
Supongamos que el apoyo A no sea un empotramiento sino una articulación, entonces el momento 
mab tiene que ser cero, en este caso podemos volver a analizar toda la estructura aplicando un 
momento en A igual a –mab para que ese nudo se encuentre en equilibrio y considerando el nudo b 
rígido. A este paso se le llama equilibrio del nudo A.
Página 4 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
donde mab´ corresponde al momento en A en esta iteración.
Este caso genera un momento en el extremo B de ese elemento igual a la mitad del momento en A 
que volvió a desequilibrar el nudo B.
Al aplicar equilibrio en B nos damos cuenta que se debeaplicar un momento igual a mba´ pero con 
signo contrario y que este momento se debe distribuir en todos los elementos de acuerdo con el 
factor de distribución. Esto correspondería a un equilibrio en el nudo B, o sea aplicar un momento 
externo que equilibre el generado en A.
Se continua con las iteraciones de traslado y equilibrio en cada nudo hasta que los momentos 
trasladados y de equilibrio sean muy pequeños. Al final se suman todos los momentos de cada 
iteración con su respectivo signo para hallar el momento final.
En este proceso iterativo nos damos cuenta que las ecuaciones pendiente deflexión usadas no 
involucran desplazamientos relativos de los extremos de elementos ni tienen en cuenta ecuaciones de 
equilibrio en los grados de libertad correspondientes a desplazamientos. El método solo trabaja 
aplicando ecuaciones de equilibrio rotacional a los nudos. Esta razón hace que el método de Cross 
no se pueda usar directamente para resolver estructuras con desplazamientos laterales. Como 
alternativa para solucionar este problema se presenta un método por superposición que se explica 
mas adelante.
Se debe tener en cuenta que el método de distribución de momentos es una forma de resolver las 
ecuaciones pendiente deflexión por lo tanto no es un método diferente.
MODIFICACIÓN DEL FACTOR DE DISTRIBUCIÓN CUANDO HAY UN EXTREMO 
ARTICULADO:
Para elementos con una articulación en un extremo podemos modificar el factor de distribución del 
nudo opuesto de tal manera que este no le traslade momentos al extremo articulado. Note que el 
extremo articulado lo único que haría sería devolver este momento ya que él no puede absorber 
ningún momento. Caso opuesto a un extremo empotrado en el que cualquier momento que llegue se 
queda en él.
Tomemos una viga sencilla
Página 5 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
Ecuaciones de equilibrio
Ecuaciones pendiente deflexión para el tramo AB:
reemplazando en las ecuaciones de equilibrio:
y volviendo a reemplazar en las ecuaciones de momentos:
o lo que es lo mismo 
esto quiere decir que hemos modificado la rigidez del elemento AB para tener en cuenta el hecho de 
que su extremo B está articulado. Así los factores de distribución en el nudo B ya tienen en cuenta 
que los momentos en B son cero y que por lo tanto cualquier momento generado para equilibrio en el 
nudo A no se traslada al nudo B.
CASOS CON DESPLAZAMIENTO RELATIVO ENTRE LOS EXTREMOS DE ELEMENTOS
Cuando un extremo se desplaza con respecto al otro en forma perpendicular al elemento, se generan 
momentos en los extremos dados por . Este valor se encuentra en las ecuaciones de 
pendiente deflexión modificando los momentos de extremo. Si el desplazamiento es conocido, como 
por ejemplo un asentamiento de un apoyo, simplemente se evalúa el momento de empotramiento 
generado por este desplazamiento y se resuelve la estructura con estos momentos iniciales. Si el 
desplazamiento no se conoce, como en el caso de un pórtico no simétrico, el método de cross ya no 
se puede usar directamente porque los factores de distribución de momentos tendrían que involucrar 
la rigidez a desplazamientos relativos y los momentos trasladados ya no obedecerían al factor de ½.
El método que se plantea es por superpoción, resolviendo primero la estructura con una reacción 
ficticia que impida el desplazamiento y después sumándole los efectos de analizar la estructura con 
una fuerza igual al negativo de la reacción hallada en el primer paso. Este método se deja para que 
ustedes lo estudien, para mi parecer en vez de estar facilitando los procedimientos se complican mas 
por lo tanto podemos considerar que no es relevante presentarlo.
Página 6 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...
Dejamos también la inquietud de que pasa con elementos inclinados en el método de pendiente 
deflexión y por ende en el método de la distribución de momentos.
Página 7 de 7MÉTODO DE LA DISTRIBUCIÓN DE MOMENTOS
03/11/2013http://estructuras.eia.edu.co/estructurasII/metodo%20de%20la%20rigidez/metodo%20...

Otros materiales

Materiales relacionados

228 pag.
21 pag.
Cap10-Pandeo

User badge image

osmar lopez

17 pag.
Metodo de las fuerzas

SIN SIGLA

User badge image

Mariamiel Gallucci