Logo Studenta

guia-laboratorio-onda-en-una-cuerda

¡Estudia con miles de materiales!

Vista previa del material en texto

Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
LAS ONDAS
INTRODUCCIÓN
En esta práctica se va a estudiar la propagación de ondas transversales en una cuerda. La velocidad
de propagación de cualquier onda transversal en una cuerda tensa está dada por la expresión:
v =
√
T
µ
Donde T es la tensión en la cuerda y µ es la densidad lineal de masa. De otro lado, la velocidad de
propagación de cualquier onda periódica está dada por:
v = λf
donde f es la frecuencia y λ la longitud de onda.
OBJETIVOS
1. Determinar que factores tienen un efecto sobre la amplitud y longitud de una onda.
2. Calcular y medir diferentes caracteŕısticas de la onda (frecuencia, periodo, amplitud, longitud de
onda).
3. Describir las relaciones entre cada una de estas caracteŕısticas de las ondas
MARCO TEORICO
En f́ısica,una onda consiste en la propagación de una perturbación de alguna propiedad de un medio, por
ejemplo, densidad, presión, campo eléctricoo campo magnético, a través de dicho medio, implicando
un transporte de enerǵıa sin transporte de materia. El medio perturbado puede ser de naturaleza
diversa como aire,agua,un trozo de metal e, incluso, inmaterial como elvaćıo. La magnitud f́ısica cuya
perturbación se propaga en el medio se expresa como una función tanto dela posición como del tiempo
ψ(~r, t). Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
∇2ψ(~r, t) = 1
v2
∂2ψ
∂t2
(~r, t)
donde v es la velocidad de propagación de la onda. Por ejemplo, ciertas perturbaciones de la presión
de un medio, llamadas sonido,verifican la ecuación anterior, aunque algunas ecuaciones no lineales
también tienen soluciones ondulatorias, por ejemplo, unsolitón.
Elementos de un Movimiento Ondulatorio
La longitud de onda (λ): es la distancia que existe entre dos puntos consecutivos de la perturbación
que oscilan en la misma fase, es decir que se encuentran en el mismo estado de vibración. Su unidad
de medida en el S.I. es el metro (m).
λ = vt λ =
v
f
1
Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
La amplitud (A): es la distancia de una cresta a donde la onda está en equilibrio. La amplitud
es usada para medir la enerǵıa transferida por la onda. Cuando mayor es la amplitud, mayor es la
enerǵıa transferida (la enerǵıa transportada por una onda es proporcional al cuadrado de su amplitud).
El peŕıodo (T ): es el tiempo que tarda la onda en recorrer una distancia igual a su longitud de onda o
lo que es igual al tiempo que tarda cada punto de la perturbación en realizar una oscilación completa.
Su unidad de medida en el S.I. es el segundo (s).
T =
t
No.oscilaciones
T =
1
f
La frecuencia (f): es el número de longitudes de onda que avanza la onda en cada segundo o lo
que es igual al número de oscilaciones completas que realiza cada punto de la perturbación en cada
segundo. Su unidad de medida es el Hertz (Hz). El peŕıodo y la frecuencia son inversos entre śı.
f =
No.oscilaciones
t
f =
1
T
La velocidad de propagación (v): es la distancia que recorre la perturbación en cada segundo.
Como el tiempo que tarda la propagación en avanzar una longitud de onda λ es T , entonces:
v =
λ
t
v = λf
Cresta: El punto más alto de una onda.
Valle: El punto más bajo de una onda.
Clasificación de las ondas
Las ondas se clasifican atendiendo a diferentes aspectos:
En función del medio en el que se propagan
Ondas mecánicas: las ondas mecánicas necesitan un medio material elástico (sólido, ĺıquido o
gaseoso) para propagarse. Las part́ıculas del medio oscilan alrededor de un punto fijo, por lo que
no existe transporte neto de materia a través del medio.
Ondas electromagnéticas: las ondas electromagnéticas se propagan por el espacio sin necesi-
dad de un medio material, pudiendo por lo tanto propagarse en el vaćıo. Esto es debido a que las
ondas electromagnéticas son producidas por las oscilaciones de un campo eléctrico, en relación
con un campo magnético asociado. Las ondas electromagnéticas viajan aproximadamente a una
velocidad de 300000 km/s, de acuerdo a la velocidad puede ser agrupado en rango de frecuencia.
En función de su dirección
Ondas unidimensionales: las ondas unidimensionales son aquellas que se propagan a lo largo
de una sola dirección del espacio, como las ondas en los muelles o en las cuerdas. Si la onda se
propaga en una dirección única, sus frentes de onda son planos y paralelos.
2
Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
Ondas bidimensionales o superficiales: son ondas que se propagan en dos direcciones. Pue-
den propagarse, en cualquiera de las direcciones de una superficie, por ello, se denominan también
ondas superficiales. Un ejemplo son las ondas que se producen en una superficie ĺıquida en reposo
cuando, por ejemplo, se deja caer una piedra en ella.
Ondas tridimensionales o esféricas: son ondas que se propagan en tres direcciones. Las on-
das tridimensionales se conocen también como ondas esféricas, porque sus frentes de ondas son
esferas concéntricas que salen de la fuente de perturbación expandiéndose en todas direcciones.
El sonido es una onda tridimensional.
En función del movimiento de sus part́ıculas
Ondas longitudinales: son aquellas que se caracterizan porque las part́ıculas del medio se
mueven o vibran paralelamente a la dirección de propagación de la onda. Por ejemplo, las on-
das śısmicas P, las ondas sonoras y un muelle que se comprime dan lugar a una onda longitudinal.
Ondas transversales: son aquellas que se caracterizan porque las part́ıculas del medio vibran
perpendicularmente a la dirección de propagación de la onda. Por ejemplo, las olas del mar, las
ondas que se propagan en una cuerda y las ondas śısmicas S.
PROCEDIMIENTO EXPERIMENTAL
En este laboratorio virtual la tensión, el amortiguamiento y la frecuencia se puede ajustar.
En esta actividad, se llega a investigar los conceptos de las ondas y las longitudes de onda. Se llega a ex-
plorar diferentes tamaños de ondas oscilar y que factores tienen un efecto sobre su amplitud y longitud.
Parte A: • Haga clic en este enlace: http://phet.colorado.edu/en/simulation/wave-on-a-string
• Haga clic en Ejecutar ahora
• Cambie la opción de manual a oscilación.
• Cambiar el final de final fijado a sin final.
• Ajuste la amortiguación a cero.
3
Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
Parte B: En esta parte usted va a tomar mediciones de longitud de onda y el peŕıodo de tiempo de una onda
simulado por una aplicación. Con estas mediciones debe crear un gráfico en papel milimetrado.
De la gráfica se encuentra la velocidad de la onda.
1. Hay dos ecuaciones que vamos a trabajar: V = λ f y f = 1/T . Escriba lo que cada una de
las letras en las fórmulas representan.
λ es la longitud de onda.
T es el periodo.
f es la frecuencia.
V es la velocidad lineal de la onda.
2. Usando las ecuaciones anteriores, la relación entre T y λ está dada por la ecuación:
3. En el siguiente diagrama, etiquetar lo siguiente: media longitud de onda, longitud de onda,
la fuente de perturbación (SOD).
4. Inicie el programa asegurandose que la configuración es como se indica a continuación:
a) Ajuste la amplitud al 60 %.
b) Establezca la frecuencia al 15 %.
c) Ajuste la amortiguación al 0 %.
4
Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
d) Ajuste la tensión en alta.
e) Marque las casillas para Reglas y Contador.
f ) Ajuste los botones de selección para oscilacion y sin final.
g) Pulse Pausa.
h) Arrastre la regla horizontal hasta que quede alineada con la ĺınea discontinua horizontal,
y sucero es a la izquierda final de la cadena.
5. Para tomar sus medidas, realizará 10 ensayos. Comience con frecuencia en el 15 % y luego
aumentar en un 5 % para cada ensayo. Tabule sus datos en el siguiente cuadro. Asegúrese
de escribir las unidades de medicion en los espacios provistos.
Parte C: En esta parte, se investigará la influencia del factor de tensión en los componentes de onda
1. Cambiar la tensión de la cadena a 7/10 del alto valor. ¿Qué parámetros de la onda cambian?
Encierra en un ćırculo la(s) que se aplican.
a) Velocidad
b) Peŕıodo
c) Longitud de onda
2. Calcular la velocidad de la nueva onda.
3. Aumentará la frecuencia del oscilador al cambiar la tension de la cuerda?
CÁLCULOS Y ANÁLISIS DE RESULTADOS
Parte A: 1. ¿Cómo la amplitud afecta a la forma de la onda?
2. ¿Cómo la frecuencia afecta la forma de la onda?
3. Usando del temporizador, ¿Cómo mediŕıa el peŕıodo de la onda en la simulación?
4. ¿ Cómo se podŕıa medir la frecuencia de la onda en la simulación? Suponga que usted no
sabe el el valor que a configurado.
5. Mantenga la configuración actual:
• Sin final
• Presione reiniciar
• Amortiguamiento en cero.
6. Observe lo que ocurre con los puntos verdes. A medida que la onda se desplaza hacia ade-
lante (de izquierda a derecha en la pantalla), ¿Qué ocurre con los puntos verdes? ¿Cómo se
mueven? (Centrarse en un solo punto a la vez puede ayudar a resolver esto.)
7. Si esto fuera una onda en la playa, ¿Cuan rápido cree que las crestas de la onda se moveŕıan
hacia usted? Calcular la velocidad de las crestas.
8. Juega con la amortiguación, frecuencia y amplitud. ¿Qué observaciones adicionales puede
hacer? Enumere por lo menos tres. (Recuerde cambiar sólo 1 variable a la vez, y mantener
fijas el resto de las variables)
5
Universidad Nacional Autónoma de Honduras
En el Valle de Sula
UNAH-VS
Departamento de F́ısica
Experimento Virtual No. 1
LF200
Parte B: 1. Haciendo uso de los datos recopilados, plotear en papel mm λ vs T . Encontrar la ecuación
de esta recta.
2. Cuáles son las unidades de la pendiente?
3. Explicar por qué la pendiente de la ĺınea es V y luego indicar la velocidad de la onda, en cm/s.
Referencias
[1] Maŕıa Teresa Caballero Caballero, Julián Espinosa Tomás, Jorge Pérez Rodŕıguez, and
Juan José Miret Maŕı. Tema 2. oscilaciones y ondas (curso 2010-2011). F́ısica, 2010.
[2] Alicia Guerrero de Mesa. Oscilaciones y ondas. Univ. Nacional de Colombia, 2005.
[3] Paul M Fishbane and Stephen Gasiorowicz. FISICA. VOLUMEN 1. 1994.
[4] Phet. Onda en una cuerda — phet, interactive simulations, 1998.
[5] Wikipedia. Onda estacionaria — wikipedia, la enciclopedia libre, 2014.
6

Continuar navegando