Logo Studenta

Mini-Turbina Eólica

¡Este material tiene más páginas!

Vista previa del material en texto

UNIVERSIDAD POLITÉCNICA DE MADRID 
 
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Y ENERGÍA 
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES 
 
Titulación: GRADUADO EN INGENIERÍA DE LA ENERGÍA 
Intensificación: Tecnologías Energéticas 
 
 
PROYECTO FIN DE GRADO 
 
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA 
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES 
 
 
DISEÑO Y CONSTRUCCIÓN DE UNA 
MINI-TURBINA EÓLICA 
 
 
 
 
MIGUEL SUAU DE CASTRO ENERO 2014 
UNIVERSIDAD POLITÉCNICA DE MADRID 
 
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Y ENERGÍA 
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES 
 
 
 
 
Titulación: GRADUADO EN INGENIERÍA DE LA ENERGÍA 
Intensificación: Tecnologías Energéticas 
 
 
 
 
DISEÑO Y CONSTRUCCIÓN DE UNA 
MINI-TURBINA EÓLICA 
 
 
 
Realizado por 
Miguel Suau de Castro 
 
Dirigido por 
Carlos Veganzones Nicolás
I 
 
Índice de contenidos 
 
 
DOCUMENTO 1: MEMORIA ............................................................................................. 1 
1 Objetivo y alcance ...................................................................................................... 2 
2 Introducción: La energía eólica .................................................................................. 3 
2.1 Evolución histórica............................................................................................... 3 
2.2 Recurso eólico ..................................................................................................... 3 
2.3 Variabilidad del viento .......................................................................................... 5 
2.4 Turbulencia .......................................................................................................... 5 
2.5 Situación actual y relevancia de la energía eólica ............................................... 6 
3 Fundamentos aerodinámicos ..................................................................................... 8 
3.1 Teoría del disco actuador .................................................................................... 8 
3.2 Teoría del disco actuador con estela giratoria ................................................... 15 
3.3 Teoría del elemento de pala .............................................................................. 18 
3.4 Método BEM: 'Blade Element Momentum' ........................................................ 26 
4 Proceso de cálculo y modelización .......................................................................... 30 
4.1 Descripción del entorno de programación Matlab ............................................. 30 
4.2 Función MetodoBEM ......................................................................................... 30 
4.3 Fución CalculoPala............................................................................................ 32 
4.4 Función PerfilAero ............................................................................................. 34 
4.5 Función Curvas ................................................................................................. 35 
5 Aplicación: mini-turbina eólica de pequeña potencia ............................................... 36 
5.1 Criterios de diseño............................................................................................. 36 
5.2 Cálculo de la pala y resultados .......................................................................... 43 
5.3 Sistema de regulación de paso de pala ............................................................. 50 
6 Diseño del prototipo ................................................................................................. 52 
6.1 Descripción del programa de diseño, Autocad .................................................. 52 
6.2 Diseño de las palas ........................................................................................... 52 
6.3 Diseño del sistema de regulación de paso de pala ........................................... 54 
6.4 Diseño del buje y el eje de acoplamiento .......................................................... 57 
7 Fabricación y construcción del prototipo .................................................................. 60 
7.1 Descripción de la impresora 3D ........................................................................ 60 
7.2 Piezas de plástico.............................................................................................. 60 
II 
 
7.3 Piezas metálicas................................................................................................ 61 
7.4 Rodamientos ..................................................................................................... 62 
8 Caracterización del prototipo ................................................................................... 64 
8.1 Intensidad del viento variable ............................................................................ 65 
8.2 Ángulo de paso variable .................................................................................... 70 
9 Conclusiones ........................................................................................................... 74 
10 Bibliografía ............................................................................................................ 75 
DOCUMENTO 2: ESTUDIO ECONÓMICO ..................................................................... 76 
1 Costes del proyecto ................................................................................................. 77 
2 Viabilidad económica ............................................................................................... 79 
DOCUMENTO 3: ANEXOS ............................................................................................. 80 
1 Códigos de programación ........................................................................................ 81 
1.1 Función CalculoPala .......................................................................................... 81 
1.2 Función MetodoBEM ......................................................................................... 84 
1.3 Función PerfilAero ............................................................................................. 84 
2 Tabla de coeficientes aerodinámicos ....................................................................... 86 
3 Catálogos ................................................................................................................. 88 
3.1 Rodamiento lineal .............................................................................................. 88 
3.2 Rodamiento giratorio ......................................................................................... 90 
DOCUMENTO 4: PLANOS .............................................................................................. 90 
1 Pistón ....................................................................................................................... 91 
2 Biela ......................................................................................................................... 92 
3 Manivela ................................................................................................................... 93 
4 Eje de la pala ........................................................................................................... 94 
5 Buje 1 ....................................................................................................................... 95 
6 Buje 2 ....................................................................................................................... 96 
7 Buje 3 ....................................................................................................................... 97 
8 Pala ..........................................................................................................................98 
9 Buje 4 ....................................................................................................................... 99 
10 Eje rotor 1 ........................................................................................................... 100 
11 Eje rotor 2 ........................................................................................................... 101 
 
 
III 
 
Índice de figuras 
 
 
Figura 1: Cinturones de viento terrestre. .............................................................................. 4 
Figura 2: Cobertura de la demanda eléctrica. ...................................................................... 6 
Figura 3: Tubo de corriente y disco actuador. ...................................................................... 9 
Figura 4: Velocidad del viento y presión en las distintas partes del tubo de corriente. ...... 10 
Figura 5: Variación de los coeficientes de potencia y empuje con el coeficiente de 
velocidad inducida axial. .................................................................................................... 15 
Figura 6: Tubo de corriente y disco actuador con estela giratoria. ..................................... 16 
Figura 7: Elemento de pala. ............................................................................................... 19 
Figura 8: Características perfil aerodinámico. .................................................................... 20 
Figura 9: Fuerza de sustentación sobre un perfil asimétrico. ............................................. 21 
Figura 10: Efecto Magnus. ................................................................................................. 22 
Figura 11. Flujo sobre un perfil orientado con un ángulo de ataques superior al crítico. ... 23 
Figura 12 (a): Velocidad del viento y sus componentes sobre un perfil aerodinámico. 
(b): Fuerzas de sustentación y arrastre y sus componentes sobre un perfil aerodinámico.
 ........................................................................................................................................... 25 
Figura 13: Diagrama de flujo de la función MetodoBEM .................................................... 32 
Figura 14: Diagrama de flujo de la función CalculoPala. ................................................... 33 
Figura 15: Coeficiente de potencia en función de la velocidad específica y del número de 
palas. ................................................................................................................................. 37 
Figura 16: Geometría del perfil NREL S823....................................................................... 40 
Figura 17: Variación del coeficiente de sustentación con el ángulo de ataque para 
𝑅𝑒 = 50000. ...................................................................................................................... 42 
Figura 18: Variación del coeficiente de arrastre con el ángulo de ataque para 𝑅𝑒 = 50000.
 ........................................................................................................................................... 42 
Figura 19: Variación del cociente 𝐶𝐿𝐶𝐷 con el ángulo de ataque para 𝑅𝑒 = 50000. ........ 43 
Figura 20: Componentes de la velocidad del viento .......................................................... 45 
Figura 21: Ángulo de calado de los perfiles en función del radio. ...................................... 45 
Figura 22: Cuerda de los perfiles en función del radio. ...................................................... 46 
Figura 23: Geometría de los diez perfiles que componen la pala. ..................................... 46 
Figura 24: Coeficiente de potencia en función de la velocidad específica. ........................ 48 
Figura 25: Coeficiente de potencia en función de la velocidad específica para cuatro 
ángulos de paso distintos. ................................................................................................. 49 
Figura 26: Coeficiente de par sobre el eje en función de la velocidad específica. ............. 50 
Figura 27: Perfiles aerodinámicos orientados según su ángulo de calado óptimo ............ 53 
Figura 28: Pala del rotor eólico. ......................................................................................... 53 
Figura 29: Punta de pala .................................................................................................... 54 
Figura 30: Mecanismo biela-manivela del sistema de regulación de velocidad. ................ 55 
Figura 31: Pistón del sistema de regulación de velocidad. ................................................ 56 
Figura 32: Sistema de regulación de velocidad. ................................................................ 56 
Figura 33: Buje del rotor eólico .......................................................................................... 57 
IV 
 
Figura 34: Sujeción del pistón ............................................................................................ 58 
Figura 35: Rotor eólico....................................................................................................... 59 
Figura 36: Casquillos metálicos de revestimiento para piezas giratorias. .......................... 61 
Figura 37: Eje del rotor fabricado en aluminio ................................................................... 62 
Figura 38: Rodamiento lineal de bolas............................................................................... 63 
Figura 39 Rodamiento giratorio de bolas ........................................................................... 63 
Figura 40: Caracterización del rotor eólico ........................................................................ 64 
Figura 41: Ensayo de vacío ............................................................................................... 65 
Figura 42: Ensayo en carga ............................................................................................... 66 
Figura 43: Curva P – Ω, velocidad variable ........................................................................ 68 
Figura 44: Curva M – Ω, velocidad variable ....................................................................... 69 
Figura 45: Curva CP – λ, velocidad variable ..................................................................... 70 
Figura 46: Curva P – Ω, ángulo de paso variable .............................................................. 72 
Figura 47: Curva M – Ω, ángulo de paso variable .............................................................. 73 
Figura 48: Curva CP – λ, ángulo de paso variable ............................................................ 73 
 
 
 
Índice de tablas 
 
Tabla 1: Coordenadas geométricas adimensionales del perfil NREL S823. ...................... 34 
Tabla 2: Coeficientes aerodinámicos del perfil NREL S833 para 𝑅𝑒 = 50000. ................. 41 
Tabla 3: Criterios de diseño del rotor ................................................................................. 43 
Tabla 4: Características geométricas y aerodinámicas de los diez elementos de pala. ..... 44 
Tabla 5: Condiciones nominales de trabajo ....................................................................... 47 
Tabla 6: Empuje, par, potencia y coeficiente de potencia en condiciones nominales. ....... 47 
Tabla 7: Resultados del ensayo de vacío a velocidad variable .......................................... 66 
Tabla 8: Velocidad 1, resultados del ensayo en carga ....................................................... 67 
Tabla 9: Velocidad 2, resultados del ensayo en carga ....................................................... 67 
Tabla 10: Velocidad 3, resultados del ensayo en carga ..................................................... 68 
Tabla 11: Resultados del ensayo de vacío con ángulo de paso variable ........................... 70 
Tabla 12: Ángulo 1, resultados delensayo en carga ......................................................... 71 
Tabla 13: Ángulo 2, resultados del ensayo en carga ......................................................... 71 
Tabla 14: Ángulo 3, resultados del ensayo en carga ......................................................... 72 
Tabla 15: Costes de material ............................................................................................. 77 
Tabla 16: Gasto por mano de obra .................................................................................... 78 
Tabla 17: Costes totales ..................................................................................................... 78 
 
 
V 
 
 
Notaciones y símbolos 
 
𝑚: Masa de aire que circula por el tubo de corriente 
𝐴: Área barrida por las palas 
𝜌: Densidad del aire 
𝑈: Velocidad del aire 
𝑡: Tiempo 
𝐸𝑐: Energía cinética 
𝑃𝑉: Potencia del viento 
𝐺: Gasto másico de aire 
𝐴1: Área de la sección de entrada al tubo de corriente 
𝐴2: Área de la sección anterior al rotor 
𝐴3: Área de la sección posterior al rotor 
𝐴4: Área de la sección de salida al tubo de corriente 
𝑢1: Velocidad del aire a la entrada del tubo de corriente 
𝑢2: Velocidad del aire justo antes de pasar por el rotor 
𝑢3: Velocidad del aire a la salida del rotor 
𝑢4: Velocidad del aire a la salida del tubo de corriente 
𝑝1: Presión del aire a la entrada del tubo de corriente 
𝑝2: Presión del aire justo antes de pasar por el rotor 
𝑝3: Presión del aire a la salida del rotor 
𝑝4: Presión del aire a la salida del tubo de corriente 
𝐹: Empuje axial del aire sobre el rotor 
𝑎: Coeficiente de velocidad inducida axial 
𝐶𝑇: Coeficiente de empuje 
𝑃: Potencia del rotor 
𝐶𝑃: Coeficiente de potencia 
𝑀: Par ejercido por el viento sobre el eje del rotor 
𝑎′: Coeficiente de velocidad inducida angular 
𝑁: Número de palas 
VI 
 
𝑅: Radio de las palas 
𝑟: Posición respecto al eje de giro del rotor de un elemento de pala 
𝜆: Velocidad especifica de punta de pala 
𝜆𝑟: Velocidad específica en función del radio 
Ω: Velocidad de giro del rotor 
𝐿: Fuerza de sustentación 
𝐷: Fuerza de arrastre 
𝐶𝐿: Coeficiente de sustentación 
𝐶𝐷: Coeficiente de arrastre 
𝜔: Componente tangencial de la velocidad del viento 
𝐶𝑛: Coeficiente de la componente normal de las fuerzas que actúan sobre el rotor 
𝐶𝑡: Coeficiente de la componente tangencial de las fuerzas que actúan sobre el rotor 
𝜎: Solidez de la pala 
𝐹: Factor de Prandtl 
𝑅𝑒: Número de Reynolds 
𝜌: Densidad del aire 
𝜇: Viscosidad del aire 
𝐿𝑐: Longitud característica (cuerda en el caso de perfiles aerodinámicos) 
𝐶𝑝𝑖𝑠𝑡𝑜𝑛: Carrera del pistón 
𝑟𝑚𝑎𝑛𝑖𝑣𝑒𝑙𝑎: Radio de la manivela 
𝑃𝐽𝑜𝑢𝑙𝑒: Pérdidas por efecto Joule 
𝑟𝑔𝑠𝑖𝑝: Resistencia generador síncrono 
𝐿𝑔𝑠𝑖𝑝: Inductancia generador síncrono 
𝑅: Resistencia de la carga 
𝑈: Tensión en la carga 
𝐼: Intensidad de corriente 
𝑃𝑒𝑗𝑒: Potencia en el eje 
𝑀𝑒𝑗𝑒: Par en el eje 
 
 
 
VII 
 
Resumen 
 
Dado que es difícil imaginar en el futuro una sociedad moderna donde la energía no juegue 
un papel fundamental y puesto que numerosos estudios han demostrado que el ritmo actual 
de consumo de combustibles es insostenible y perjudicial para la vida del planeta, es fun-
damental concienciar a la humanidad de que un cambio de tendencia no solo es necesario 
sino que es imperativo. 
 
No se trata de erradicar por completo el uso de fuentes de carácter fósil, pues en muchos 
países es su principal o incluso su única forma de obtener energía, sino de avanzar hacia 
un equilibrio en la generación, para lo que será vital permitir el desarrollo de energías limpias, 
aumentar la eficiencia de la tecnología y reducir el consumo. 
 
En este contexto se ha decidido construir un rotor eólico de pequeñas dimensiones que 
servirá como herramienta de estudio para alumnos de ingeniería. Para diseñar la turbina se 
ha desarrollado un modelo de programación informática que, basado en conceptos aerodi-
námicos, permite calcular la geometría de las palas en función de unas condiciones iniciales, 
estimar la potencia del rotor y obtener sus curvas de funcionamiento. 
 
Uno de los principales problemas de la tecnología eólica es su alta variabilidad, por ello se 
ha implementado un sistema de regulación de velocidad; se trata de un mecanismo que 
actúa sobre la orientación de las palas y permite regular la potencia de un generador 
eléctrico acoplado al rotor. Los aerogeneradores actuales recurren a este tipo de sistemas 
para tratar de suavizar los desequilibrios de potencia que puedan producir las ráfagas de 
viento. 
 
Se ha recurrido a un software de diseño asistido por ordenador para dibujar tanto el rotor 
como el sistema de regulación de velocidad. La mayoría de las piezas del rotor se han 
fabricado con ayuda de una impresora 3D, otras, las metálicas, se han tallado en aluminio 
mediante un torno. 
 
Aunque el programa informático que realiza los cálculos aerodinámicos devuelve datos 
teóricos a cerca del comportamiento del rotor, se ha creído necesario probar el molino 
mediante ensayos de laboratorio a fin de obtener un resultado más realista. 
 
 
 
VIII 
 
Abstract 
 
Given that it’s difficult to imagine any modern society in the future where energy does not 
play a crucial role, and as many studies have shown that the actual rate of fuel consumption 
is unsustainable and harmful to life on the planet, it is essential to raise mankind’s awareness 
that a change in the current trend is not only necessary, but is also imperative. 
 
It is not a question of completely eradicating the use of fossil fuels, as in many countries 
they are the main or even the only way of generating energy, but rather working towards a 
balance in generation. To do so it is vital to encourage the development of clean energies, 
increase technological efficiency and reduce consumption. 
 
In view of this we have decided to build a small scale wind turbine rotor which can be used 
as a study tool for engineering students. To design the turbine a software programme was 
developed based on aerodynamic concepts, which allows us to calculate the geometry of 
the blades depending on certain initial conditions, estimate the power of the turbine, and 
obtain performance curves. 
 
One of the main issues with wind technology is its high variability, and therefore we 
implemented a speed regulation system consisting of a mechanism that varies the 
orientation of the blades and thus allows us to regulate the power of an electric generator 
attached to the turbine. Current wind powered generators use this type of system to try to 
smooth out spikes in power that may be caused by gusts of wind. 
 
We have used CAD software to design both the turbine itself and the speed regulation 
system. Most of the turbine parts have been manufactured with the aid of a 3D printer, while 
the other metallic parts have been turned on made a lathe in aluminum. 
 
Although the software programme which calculates the aerodynamics provide us theoretical 
data about the operation of the rotor. We consider it necessary to test the wind turbine in a 
lab to obtain more accurate results. 
 
 
 
 
 
 
DISEÑO Y CONSTRUCCIÓN DE UN 
ROTOR EÓLICO 
 
 
 
 
 
DOCUMENTO 1: MEMORIA 
 
 
 
 
 
 
 
2 
 
 
1 Objetivo y alcance 
 
El rotor construido servirá de modelo para realizar estudios y prácticas relacionadas con la 
generación de energía eléctrica a través de medios de producción eólicos. Si bien en un 
principio pueda parecer que estos sistemas han de ser similares a los de generación 
convencional, el hecho de recurrir al viento como fuente de energía requiere un 
planteamiento distinto debido a su carácter imprevisible. 
 
Es importante destacar la enorme aportación que ha supuesto el uso de una impresora 3D. 
Hastaahora la mayoría de modelos y prototipos de aerogenerador que había en la 
universidad contaban con una geometría simplificada debido a las limitaciones a la hora de 
fabricar las palas. La impresora ha hecho posible dotar al rotor de una forma aerodinámica 
acorde a la de los sistemas eólicos comerciales de modo que cualquier análisis usando el 
nuevo aerogenerador será mucho más preciso. 
 
Otro aspecto significativo es que la turbina cuenta con un sistema de regulación de 
velocidad. La posibilidad de variar el ángulo de paso de las palas permite aumentar el rendi-
miento en la generación de energía cuando se trabaja en condiciones de funcionamiento 
distintas a las nominales. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 
 
 
2 Introducción: La energía eólica 
 
 
2.1 Evolución histórica 
 
Desde que aparecieran molinos accionados por el viento, utilizados para moler el grano o 
bombear agua, hace ya más de tres mil años, el hombre ha recurrido a la fuerza del viento 
para obtener energía. 
 
Con la invención de la máquina de vapor a finales del siglo XVIII, la consecuente revolución 
industrial y la llegada de los combustibles fósiles; la energía eólica se vio relegada a un 
segundo plano. Su uso se contemplaba únicamente en ambientes rurales, mientras que en 
las grandes ciudades industriales todo el desarrollo tecnológico giraba en torno a las 
máquinas térmicas. 
 
En el panorama actual donde, por un lado, el demostrado impacto que tienen los gases 
procedentes de la combustión sobre nuestro entorno y nuestra salud ha hecho crecer la 
consciencia medioambiental de la sociedad y, por otro, la caducidad de los recursos fósiles 
como fuente de energía, han provocado que durante los últimos 50 años energías ya en 
desuso como la eólica y la hidráulica hayan ganado de nuevo importancia. 
 
El desarrollo de nuevos materiales y los avances en aerodinámica hicieron posible alcanzar 
una alta eficiencia en los aerogeneradores actuales. A lo largo del siglo XX fisicos como 
Albert Betz o Hermann Glauert fueron importantes participes en el diseño de las nuevas 
turbinas eólicas. 
 
 
 
2.2 Recurso eólico 
 
Sin duda uno de los grandes obstáculos que debe salvar la tecnología eólica, es la alta 
variabilidad del viento. Las grandes empresas eléctricas tratan de encontrar 
emplazamientos donde los niveles de viento y sus variaciones sean adecuados para instalar 
molinos generadores. 
 
4 
 
2.2.1 Formación de las corrientes de viento 
 
Se entiende por viento el movimiento de masas de aire en la atmósfera. La diferencia de 
presión atmosférica entre dos puntos geográficos distintos es la causa de dicho movimiento. 
 
Como es sabido, la presión de un gas varía con la temperatura, así en las zonas próximas 
al ecuador, que reciben mayor radiación del sol y por tanto son más calurosas, la densidad 
del aire es menor y las presiones atmosféricas son inferiores. Cuanto más alejado este un 
punto del ecuador mayor será su presión atmosférica. Según lo anterior, las corrientes de 
aire tienden a elevarse y circular por la atmósfera para caer de nuevo al mezclarse con las 
masas de aire frio. En su movimiento, las corrientes se ven influidas por la rotación del globo 
debido al efecto coriolis (figura 1). 
 
 
 
 
Figura 1: Cinturones de viento terrestre. 
 
Si bien las causas y efectos en la formación de corrientes pueden parecer claros, existen 
multitud de factores que alteran dichos movimientos y que le confieren al viento su carácter 
imprevisible. 
 
5 
 
2.3 Variabilidad del viento 
 
Como se ha dicho, son muchos los agentes externos que pueden alterar los movimientos y 
las intensidades de las corrientes de viento. Accidentes geográficos, vegetación, cambios 
estacionales de temperatura o el mencionado efecto coriolis, son algunos de ellos pues 
influyen sobre el viento tanto a nivel local como planetario. 
 
Pese a la dificultad de predecir cambios en la intensidad de las corrientes de aire a largo 
plazo, la distribución de Weibull es un método estadístico que pretende estimar la 
probabilidad de que un determinado régimen de viento se de en un lugar concreto. La 
función de distribución expresa la probabilidad de que una velocidad del viento exceda un 
valor límite durante un periodo determinado. 
 
Los parques eólicos se sirven de este tipo de recursos de probabilidad para estimar la 
intensidad del viento en determinadas zonas y calcular su producción. 
 
 
 
2.4 Turbulencia 
 
Debido a la rugosidad del terreno y a las variaciones de temperatura, el desplazamiento 
local de las corrientes de aire dista mucho de ser ordenado y suave, siendo, por tanto, de 
carácter turbulento. Se entiende por flujo turbulento, las fluctuaciones rápidas y caóticas de 
las magnitudes de un fluido en movimiento. Si bien la velocidad media del viento es 
relativamente estable, a lo largo del día se pueden registrar multitud de velocidades distintas 
en torno a esa velocidad media. 
 
Este flujo desordenado afecta altamente al trabajo de un aerogenerador pues provoca 
cargas, tensiones y componentes vibratorias negativas que pueden producir fatiga en los 
materiales. Por otro lado, las ráfagas de viento actuarán sobre la máquina acelerando el 
giro bruscamente y variando la energía que el generador eléctrico entrega en cada 
momento, este hecho puede afectar al equilibrio del sistema eléctrico si el generador se 
encuentra acoplado a la red. 
 
Pese a su carácter imprevisible, existen modelos matemáticos que tratan de describir el 
flujo turbulento, un ejemplo son las ecuaciones de Navier-Stokes. Sin importar el porqué 
de este fenómeno se recurre de nuevo a medios estadísticos que trabajan con espectros 
6 
 
de turbulencia, para calcular su intensidad, y de alguna forma poder predecir en qué medida 
se verá afectado el rotor del molino cuando esté funcionando. 
 
 
 
2.5 Situación actual y relevancia de la energía eólica 
 
Es, sin ninguna duda, innegable el papel fundamental de la energía eólica como fuente de 
captación de potencia eléctrica. Aspectos como su sostenibilidad o el hecho de ser una 
energía libre de emisiones contaminantes han potenciado el desarrollo de este tipo de 
tecnología. Su importancia es tal que ha llegado incluso a superar, en términos de demanda 
eléctrica, a las plantas de generación convencionales. Sin ir más lejos en España en el año 
2013 la energía que más contribuyó a la cobertura de la demanda eléctrica fue la eólica con 
un 21%, situándose por encima de la nuclear o del carbón (figura 2). 
 
 
 
 
Figura 2: Cobertura de la demanda eléctrica. 
Fuente: Red eléctrica de España 
 
 
El total de la potencia eólica instalada en todo el mundo asciende a 282,5 GW. España con 
casi 23 GW de potencia instalada se sitúa en cuarto lugar en la lista de países con mayor 
potencia eólica instalada, por detrás de China, Estados Unidos y Alemania. 
 
 
7 
 
Por otro lado, y pese a sus las múltiples ventajas, tanto la energía eólica como el resto de 
las renovables, se ven en ocasiones limitadas por sus altos costes de producción, muy 
superiores a los costes de producción de energía mediante combustibles fósiles. Es por ello 
vital el papel de los gobiernos en proporcionar apoyo y favorecer su desarrollo. Volviendo 
al ejemplo español, en 2014 el Ministerio de Industria anunció la supresión de las primas a 
renovables, lo que ha supuesto enormes pérdidas y numerosos despidos a las empresas 
que en su momento confiaron en invertir dinero en el sector. 
 
Los centros de investigación dedicados al desarrollo de la tecnología eólica, conscientes 
del amplio margen de evolución, centran sus estudios en reducir costes, aumentar la 
eficiencia, disminuir el impacto o mejorar la calidad de la energía. Por otro lado son muchas 
las empresas que han invertido en plantas eólicas off-shore que aun siendo una tecnología 
poco probada muestraun enorme potencial. 
La mayoría de escuelas de ingeniería alrededor de todo el mundo conocedoras del 
creciente interés de la industria renovable, ofertan ya entre sus estudios, grados y másteres 
de energías renovables y en concreto de energía eólica. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 
 
 
3 Fundamentos aerodinámicos 
 
Son muchos los sistemas que se enfrentan al rozamiento del aire cuando están en 
funcionamiento y que por tanto requieren un buen estudio aerodinámico. En el caso de 
molinos de generación eléctrica este hecho se convierte en una necesidad pues lo que se 
pretende no es solo minimizar el rozamiento, sino además, extraer energía del viento. 
 
 
3.1 Teoría del disco actuador 
 
Esta teoría recurre a un modelo simplificado del rotor eólico para explicar cómo y por qué 
se produce un intercambio de energía cuando el viento atraviesa el aerogenerador. Se 
considera una turbina ideal, con un número infinito de palas y representada por un disco de 
espesor nulo y área igual a la barrida por las palas al girar, conocido como disco actuador 
(figura 3). 
 
Hipótesis de partida: 
– Movimiento estacionario. 
– Flujo incompresible 
– Velocidad inducida unidimensional y uniforme 
– Fluido no viscoso 
– Estela no giratoria 
 
9 
 
 
 
Figura 3: Tubo de corriente y disco actuador. 
 Fuente: ‘Wind Energy Handbook’, T.Burton, D.Sharpe, N.Jenckins, E.Bossanyi. 
 
 
El diferencial de masa que atraviesa la sección del disco actuador se puede calcular como: 
 
𝑑𝑚 = 𝜌𝐴𝑈𝑑𝑡 
 
 
La energía cinética del viento o energía cinética extraíble por el rotor será entonces: 
 
𝑑𝐸𝑐 = 𝑑𝑚
𝑈2
2
=
1
2
𝜌𝐴𝑈3𝑑𝑡 
 
y la finalmente potencia total del viento es: 
 
𝑃𝑣 =
𝑑𝐸𝑐
𝑑𝑡
=
1
2
𝜌𝐴𝑈3 
 
Se considera un flujo aire que se desplaza uniformemente dentro de un tubo que contiene 
el disco, la sección del tubo es menor a la entrada que a la salida. A medida que el fluido 
10 
 
atraviesa el tubo va perdiendo velocidad debido al cambio de sección. Aplicando la ley de 
conservación de masa en distintas secciones del tubo (figura 4), se calcula el gasto másico: 
 
𝐺 = 𝜌𝐴1𝑢1 = 𝜌𝐴2𝑢2 = 𝜌𝐴3𝑢4 = 𝜌𝐴4𝑢4 
 
Figura 4: Velocidad del viento y presión en las distintas partes del tubo de corriente. 
 
y puesto que: 
 
𝐴2 = 𝐴3 
 
la velocidad del viento se verá inalterada en su paso por la turbina: 
 
𝑢2 = 𝑢3 
 
la ecuación de cantidad de movimiento para el tubo de corriente, según la dirección del eje 
de la turbina es: 
 
𝐹 = (𝜌𝐴1𝑢1)𝑢1 − (𝜌𝐴4𝑢4)𝑢4 = 𝐺(𝑢1 − 𝑢4) 
 
Así pues, el viento, al verse frenado, ejerce una fuerza sobre el disco actuador y se produce, 
por tanto, un intercambio de energía. 
 
Por otro lado la fuerza que ejerce el viento sobre el disco actuador y en definitiva sobre el 
rotor eólico se puede calcular a partir de la diferencia de presión del aire antes y después 
11 
 
de la turbina: 
 
𝐹 = 𝐴2(𝑝2 − 𝑝3) 
 
Si se aplica la ecuación de Bernoulli entre las sección de entrada al tubo de corriente y la 
cara frontal del disco, y entre la cara posterior del disco actuador y la sección de salida del 
tubo de corriente (1-2 y 3-4), se puede calcular la presión del aire antes y después del rotor 
eólico. 
 
𝑝1 +
1
2
𝜌𝑢1
2 = 𝑝2 +
1
2
𝜌𝑢1
2 
 
𝑝3 +
1
2
𝜌𝑢3
2 = 𝑝4 +
1
2
𝜌𝑢4
2 
 
teniendo en cuenta que: 
 
𝑝1 = 𝑝4 = 𝑝𝑎 
 
se obtiene una nueva expresión de la fuerza del viento sobre la turbina. 
 
𝐹 = 𝐴2(𝑝2 − 𝑝3) =
1
2
𝜌𝐴2(𝑢1
2 − 𝑢4
2) 
 
Igualando esta ecuación a la obtenida al aplicar la teoría de la cantidad de movimiento: 
 
1
2
𝜌𝐴2(𝑢1
2 − 𝑢4
2) = 𝜌𝐴2𝑢2(𝑢1 − 𝑢4) 
 
Se deduce que la velocidad del aire en la sección del disco actuador es: 
 
𝑢2 = 𝑢3 =
𝑢1 + 𝑢4
2
 
 
De manera que el fluido pierde la mitad de su velocidad antes de alcanzar la turbina y la 
12 
 
otra mitad, una vez atravesado el rotor. 
 
 
3.1.1 Coeficientes aerodinámicos 
 
En este apartado se definen una serie de coeficientes aerodinámicos, que serán útiles a la 
hora de calcular y definir la geometría de las palas de un rotor eólico. 
 
Coeficiente de velocidad inducida axial a 
 
Es una forma adimensional de estimar la disminución de la velocidad axial del aire al 
alcanzar la turbina. 
 
𝑎 =
𝑢1 − 𝑢2
𝑢1
 
 
Coeficientes de empuje 
 
Se trata de un factor adimensional que caracteriza el empuje axial del viento sobre el rotor. 
 
Si en la ecuación: 
 
𝐹 =
1
2
𝜌𝐴(𝑢1
2 − 𝑢4
2) 
 
se sustituye por el coeficiente a, sabiendo que: 
 
𝑢2 = 𝑢3 =
𝑢1 + 𝑢4
2
 
 
 
 
se tiene: 
 
13 
 
𝐹 =
1
2
𝜌𝐴𝑈24𝑎(1 − 𝑎) 
 
donde: 
 
𝑈 = 𝑢1 
 
El coeficiente de empuje es igual a: 
 
𝐶𝑇 =
𝐹
1
2 𝜌𝐴𝑈
2
= 4a(1 − 𝑎) 
 
Y entonces la expresión de la fuerza de empuje del viento sobre el rotor queda: 
 
𝐹 = 𝐶𝑇
1
2
𝜌𝐴𝑈2 
 
 
Coeficiente de potencia 
 
Conocida la ecuación del empuje, se calcula la potencia mecánica que se transmite a la 
turbina como: 
 
𝑃 = 𝐹𝑢2 = (𝜌𝑢2𝐴2) (
1
2
𝑢1
2 −
1
2
𝑢4
2) 
 
El primer paréntesis refleja la cantidad de aire en términos de masa que circula a través del 
rotor. El segundo paréntesis muestra la energía cinética por unidad de masa que pierde el 
aire debido a la presencia de la turbina eólica. De lo anterior se extrae que cuanto mayor 
sea el efecto que produzca el rotor sobre la velocidad del aire mayor será la diferencia entre 
la energía cinética a la entrada y a la salida y tanto mayor será el segundo factor de la 
ecuación, sin embargo, si ocurre esto, la velocidad de aire en el rotor será más pequeña y 
el primer paréntesis se hará menor. De esta forma, se debe alcanzar un régimen de 
velocidades, tal que la potencia sea máxima. 
 
14 
 
Sustituyendo en la ecuación anterior por el coeficiente de velocidad inducida axial, y 
sabiendo que la potencia del viento es: 
 
𝑃𝑣 =
1
2
𝜌𝐴𝑈3 
 
la expresión de la potencia queda: 
 
𝑃 = 𝐹𝑢 =
1
2
𝜌𝐴𝑈34𝑎(1 − 𝑎)2 = 𝑃𝑣4𝑎(1 − 𝑎)
2 
 
 
De tal forma que el coeficiente de potencia, se puede definir como la relación entre la 
potencia transmitida a la turbina y la potencia del viento. 
 
𝐶𝑃 =
𝑃
𝑃𝑣
=
𝑃
1
2 𝜌𝐴𝑈
3
= 4a(1 − 𝑎)2 
 
finalmente: 
 
𝑃 = 𝐶𝑃
1
2
𝜌𝐴𝑈3 = 𝐶𝑃𝑃𝑣 
 
Puesto que 𝐶𝑃 únicamente depende de 𝑎, al derivar 𝐶𝑃 e igualar a cero, obtenemos el valor 
de la velocidad inducida axial a, que hace máximo el coeficiente de potencia 𝐶𝑃: 
 
𝑎 =
1
3
 
 
Y por tanto, el valor máximo de 𝐶𝑃 es: 
 
𝐶𝑃𝑚𝑎𝑥 =
16
27
≃ 0,5927 
 
Es decir, que en el mejor de los casos, un aerogenerador podrá extraer como máximo un 
15 
 
57,29% de la potencia total del viento. A este máximo del coeficiente de potencia se le 
conoce como límite de Betz (figura 5). 
 
 
Figura 5: Variación de los coeficientes de potencia y empuje con el coeficiente de 
velocidad inducida axial. 
 Fuente: ‘Wind Energy Explained’ J.F. Manwell, J.G. McGowan, A.L. Rogers. 
 
 
 
3.2 Teoría del disco actuador con estela giratoria 
 
Se trata de una corrección al modelo anterior que contempla el efecto giratorio que produce 
el molino sobre la estela. Puesto que el intercambio de energía entre el viento y la turbina 
se realiza por medio del giro, según la teoría de conservación del momento cinético, el par 
que ejerce el viento sobre el rotor será igual y de sentido contrario al que genera el molino 
sobre las partículas de aire. 
 
Dada su complejidad, este modelo se escapa al interés del proyecto por lo que no se entrará 
en deducciones ni se desarrollaran las ecuaciones, sin embargo, se ha creído necesario 
definir una serie de conceptos que esta teoría introduce y que son útiles para el diseño 
aerodinámico del rotor eólico. 
 
16 
 
 
 
Figura 6: Tubo de corriente y disco actuador con estela giratoria. 
 Fuente: ‘Wind Energy Explained’ J.F. Manwell, J.G. McGowan,A.L. Rogers. 
 
En este caso, puesto que se tiene en cuenta que el rotor está girando, las leyes de 
conservación se deberán aplicar sobre un anillo del tubo de corriente de espesor diferencial 
y área 2𝜋𝑟𝑑𝑟 (figura 6). Este nuevo volumen de control tiene su razón en que dado que las 
condiciones aerodinámicas varían con el radio, las ecuaciones de par, empuje y potencia 
también lo harán: 
 
𝑑𝑀 = 2𝜋𝜔𝜌𝑈(1 − 𝑎)𝑟3𝑑𝑟 
 
𝑑𝐹 = 4𝑎(1 − 𝑎)𝜋𝑟𝜌𝑈2𝑑𝑟 
 
𝑑𝑃 = 𝑑𝑀Ω = 2𝜋𝜔Ω𝜌𝑈(1 − 𝑎)𝑟3𝑑𝑟 
 
 
 
 
 
17 
 
3.2.1 Coeficientes aerodinámicos 
 
Coeficiente de velocidad inducida angular 
 
Es una forma adimensional de estimar la magnitud de la componente tangencial de la 
velocidad del viento en función del régimen de giro de la turbina. 
 
𝑎′ =
𝜔
2𝛺
 
 
Velocidad especifica de punta de pala 
 
Es la relación entre la velocidad tangencial de la punta del rotor y la velocidad del viento: 
 
𝜆 =
𝛺𝑅
𝑈
 
 
Particularizando para cualquier sección de la pala: 
 
𝜆𝑟 =
𝛺𝑟
𝑈
 
 
Coeficiente de potencia 
 
El coeficiente de potencia, puesto que en este caso las condiciones de viento son distintas 
a lo largo de la pala, varía con el radio: 
 
𝐶𝑃𝑟 = 4𝑎′(1 − 𝑎)𝜆𝑟
2 
 
 
 
 
 
De esta nueva ecuación se extrae que la potencia total de la turbina es: 
18 
 
 
 
𝑃 = 4𝜋𝜌𝛺2𝑈 ∫ 𝑎′(1 − 𝑎)𝑟3
𝑅
0
𝑑𝑟 
 
Entonces el coeficiente de potencia global queda: 
 
𝐶𝑃 =
8
𝜆2
∫ 𝑎′(1 − 𝑎)𝜆𝑟
3
𝜆
0
𝑑𝑡 
 
Se puede ver que el coeficiente de potencia ya no solo depende de 𝑎, como en el caso de 
estela no giratoria, sino también de 𝑎′ y 𝜆𝑟. Con la introducción del concepto de estela 
giratoria esta teoría entiende que la aparición de una componente tangencial en la velocidad 
del viento, tras atravesar la turbina, supone un incremento en la energía cinética total de la 
estela y que, por tanto, el porcentaje de energía extraíble del viento es inferior al límite de 
Betz. 
 
 
 
3.3 Teoría del elemento de pala 
 
El elemento de pala es la superficie de espesor diferencial, obtenida al realizar un corte 
transversal a las palas (figura 7). Las teorías anteriores contemplaban al rotor como un 
disco plano, sin importar su forma geométrica ni su comportamiento particular de cara al 
viento. En este apartado se profundiza en los efectos que produce el viento sobre cada 
superficie o perfil aerodinámico y se estudian las fuerzas que actúan sobre el total de la 
pala. 
 
 
19 
 
 
 
Figura 7: Elemento de pala. 
 Fuente: ‘Wind Energy Handbook’, T.Burton, D.Sharpe, N.Jenckins, E.Bossanyi. 
 
 
3.3.1 Características perfil aerodinámico 
 
A continuación se definen algunos conceptos útiles para el estudio de un perfil 
aerodinámico (figura 8): 
 
- Cuerda: Es la línea que une los puntos del perfil que se encuentran más alejados 
entre sí. 
 
- Espesor: Es la distancia entre el borde superior e inferior del perfil, medida en 
dirección perpendicular a la cuerda. 
 
- Ángulo de ataque (α): Es el ángulo que forman la cuerda y la velocidad relativa con 
la que incide el viento sobre el perfil. 
 
- Ángulo de calado o ángulo de paso (θ): Es el ángulo que forma la cuerda del perfil 
con el plano de rotación de la pala. 
20 
 
 
- Ángulo de incidencia o ángulo de flujo (φ): Es el ángulo que forma la velocidad rela 
la velocidad del plano de rotación de la pala 
 
Figura 8: Características perfil aerodinámico. 
 
 
3.3.2 Fuerza de sustentación 
 
Lo que se pretende exponer es una idea intuitiva de cómo se produce y que efecto tiene la 
fuerza de sustentación sobre un perfil aerodinámico, sin entrar en los complicados modelos 
de ecuaciones que no son objeto de este estudio. 
 
Todo cuerpo que se desplaza a través de un fluido, es susceptible de experimentar el 
fenómeno de la sustentación. Forma, posición o régimen de giro del objeto en movimiento, 
son las causas de este fenómeno. 
 
Según el teorema de Bernoulli, al aumentar la velocidad de un fluido, disminuye su presión. 
A continuación se estudiaran tres casos distintos en los que aparece sustentación: 
 
 
 
21 
 
– Perfil asimétrico y ángulo de ataque igual a cero (figura 9): Las partículas de aire al 
entrar en contacto con el perfil se separan, y debido a la forma irregular del perfil 
respecto al plano de desplazamiento, la velocidad de las partículas que circulen por 
la parte superior será mayor que la velocidad de las partículas que se desplazan por 
la parte inferior; pues el camino que deben recorrer es mayor en el borde superior. 
Finalmente, la diferencia de velocidades generará una diferencia de presiones, y 
aparecerá una fuerza vertical ascendente. 
 
 
 
Figura 9: Fuerza de sustentación sobre un perfil asimétrico. 
 
 
– Perfil simétrico y ángulo de ataque distinto de cero: Aun siendo el perfil simétrico 
respecto a su cuerda, no lo es respecto al plano de desplazamiento, y por tanto, el 
resultado es el mismo que en el caso anterior. 
 
– Efecto Magnus (figura 10): Se trata de un caso particular de sustentación. La 
superficie gira sobre sí misma. En función del sentido de giro, el fluido se verá 
frenado en una de sus caras y acelerado en la otra. Este fenómeno aparece 
habitualmente en deportes como el tenis o el fútbol, los jugadores al golpear el balón 
imprimen sobre él un giro que unido al desplazamiento generará una trayectoria en 
forma de parábola. (Figura 10). 
 
 
 
 
 
 
 
22 
 
 
 
 
Figura 10: Efecto Magnus. 
 
La fuerza de sustentación permite a los aviones despegar y mantenerse en el aire. Tal es 
la importancia de esta fuerza en aviación que aun fallando el motor un avión podría planear 
suavemente hasta el suelo. 
 
La forma geométrica del rotor de un generador eólico busca, en definitiva, provocar sobre 
el viento una gran diferencia de presiones que haga que la fuerza de sustentación sea lo 
mayor posible. 
 
 
3.3.3 Fuerza de arrastre 
 
Probablemente mucho más evidente que la anterior, esta fuerza actúa en sentido opuesto 
al movimiento del cuerpo. La presencia de viscosidad en los fluidos hace que aparezca una 
componente de fricción que frenará el movimiento del objeto que lo atraviese. 
 
Si bien los antiguos molinos de viento se servían de la fuerza de arrastre para girar; las 
turbinas eólicas actuales utilizan la fuerza de sustentación para mover su hélice. 
 
23 
 
La fuerza de arrastre tiene un carácter negativo sobre la producción de potencia en 
aerogeneradores, por eso es importante dotar a las palas de una forma aerodinámica 
adecuada con tal de minimizar este efecto. 
 
 
3.3.4 Coeficientes aerodinámicos 
 
De la teoría del elemento de pala, se desprenden tres coeficientes aerodinámicos que, 
como se ha dicho, permitirán determinar la magnitud de las fuerzas que actúan sobre los 
perfiles aerodinámicos y, en definitiva, sobre el total de la pala. 
 
Coeficiente de sustentación 
 
𝐶𝐿 =
𝐿
1
2 𝜌𝑈
2𝐴 
 
 
El coeficiente de sustentación, depende en gran medida del ángulo de ataque del perfil. El 
valor de 𝐶𝐿 aumenta linealmente con 𝛼 hasta alcanzar el ángulo crítico a partir del cual se 
dice que el perfil ha entrado en perdida (figura 11). Al entrar en perdida la fuerza de 
sustentación que actúa sobre el perfil decrece a medida que 𝛼 aumenta. 
 
 
 
Figura 11. Flujo sobre un perfil orientado con un ángulo de ataques superior al crítico. 
Fuente: ‘Wind Energy Handbook’, T.Burton, D.Sharpe, N.Jenckins, E.Bossanyi. 
24 
 
 
Coeficiente de arrastre 
 
𝐶𝐷 =
𝐷
1
2 𝜌𝑈
2𝑐
 
 
Como se ha dicho se debe minimizar el efecto del arrastre sobre el rotor eólico para hacer 
más efectiva la captación de energía, por lo que en el diseño de perfiles aerodinámicos se 
tiende a buscar coeficientes de arrastre relativamente bajos. 𝐶𝐷 será pequeño mientras el 
ángulo de ataque también lo sea. Al entrar en perdida, la fuerza de arrastre sobreel perfil 
aumenta rápidamente y el perfil deja de ser efectivo. 
 
Un factor usual para determinar la calidad aerodinámica de un perfil es el cociente: 
 
𝜀 =
𝐶𝐷
𝐶𝐿
 
 
El cociente ronda el valor de 𝜀 = 0,01 en los buenos perfiles. 
 
 
3.3.5 Geometría de fuerzas 
 
Si se recurre a la trigonometría es posible establecer relaciones entre las componentes de 
las fuerzas de sustentación y arrastre que afectan a un elemento concreto de la pala; de 
manera que, si se conoce el ángulo de incidencia del viento, su intensidad, y las 
características geométricas del perfil, es posible determinar el par y la potencia que 
provocará el viento sobre el rotor (figura 12). 
 
Los coeficientes aerodinámicos de un perfil concreto vienen dados por su forma y varían 
con el ángulo de ataque. Los datos, calculados en ensayos, son proporcionados por los 
fabricantes mediante tablas, estas recogen los valores para cada tipo de perfil y ángulo de 
ataque. 
 
25 
 
 
 
Figura 12 (a): Velocidad del viento y sus componentes sobre un perfil aerodinámico. 
(b): Fuerzas de sustentación y arrastre y sus componentes sobre un perfil aerodinámico. 
Fuente: ‘Wind Energy Handbook’, T.Burton, D.Sharpe, N.Jenckins, E.Bossanyi. 
 
 
sin 𝜙 =
𝑈(1 − 𝑎)
ω
 
 
cos 𝜙 =
Ω𝑟(1 + 𝑎′)
𝜔
 
 
Sumando las componentes tangencial y normal de las fuerzas que actúan sobre los perfiles 
de radio 𝑑𝑟 y multiplicando por 𝑁 palas: 
 
d𝐹𝑛 = (𝐿 cos 𝜙 + 𝐷 sin 𝜙)𝑁𝑑𝑟 
 
 
𝑑𝐹𝑡 = (𝐿 sin 𝜙 + 𝐷 cos 𝜙)𝑁𝑑𝑟 
 
 
Por otro lado, si se expresan las fuerzas de sustentación y arrastre en función de sus 
coeficientes adimensionales que como se ha dicho dependen del ángulo de ataque, se tiene: 
 
26 
 
𝐿(𝛼) =
1
2
𝜌𝑐𝜔2𝐶𝐿(𝛼) 
 
𝐷(𝛼) =
1
2
𝜌𝑐𝜔2𝐶𝐷(𝛼) 
 
Sustituyendo: 
 
𝑑𝐹𝑛 =
1
2
𝜌𝑐𝜔2𝑁(𝐶𝐿 cos 𝜙 + 𝐶𝐷 sin 𝜙)𝑑𝑟 
 
𝑑𝐹𝑡 =
1
2
𝜌𝑐𝜔2𝑁(𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙)𝑑𝑟 
 
el par que ejercen los elementos de radio 𝑑𝑟 sobre el rotor es: 
 
𝑑𝑀 =
1
2
𝜌𝜔2𝑐𝑁(𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙)𝑟𝑑𝑟 
 
y finalmente la potencia se puede calcular como: 
 
𝑑𝑃 =
1
2
𝜌𝜔2Ω𝑐𝑁(𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙)𝑟𝑑𝑟 
 
 
 
3.4 Método BEM: 'Blade Element Momentum' 
 
El método BEM desarrollado por Glauert y Betz, es un proceso de cálculo que pretende 
determinar cómo afecta la forma geométrica de una pala a su funcionamiento. Dicho 
método, nacido a raíz de la unión de la teoría de cantidad de movimiento y de la teoría del 
elemento de pala, permite establecer una relación entre los coeficientes de velocidades 
inducidas (a y a') y las fuerzas que actúan sobre los perfiles aerodinámicos (L y D). 
 
La teoría del elemento de pala asume que al momento de fuerzas, causantes del giro del 
rotor, solo contribuye el flujo de aire que atraviesa las palas en la dirección axial y no 
27 
 
participa, por tanto, la masa de aire que circula en la dirección radial. Así, cada uno de los 
elementos o perfiles bidimensionales, en los que se divide la pala, contribuirá al par de giro 
de manera independiente. 
 
Igualando a las ecuaciones de empuje y par producido según la teoría del disco actuador y 
según la teoría del elemento de pala se obtiene: 
 
𝑎
1 − 𝑎
=
𝑐𝑁𝐶𝑛
8𝜋𝑟 sin2𝜙
 
 
𝑎′
1 + 𝑎′
=
𝑐𝑁𝐶𝑡
8𝜋𝑟 sin 𝜙 cos 𝜙
 
 
Se define solidez de pala 𝜎 como un parámetro que relaciona el área total que ocupan las 
palas, y el área barrida por las mismas. Puesto que la longitud de cuerda varía con el radio 
de la pala, se calcula la solidez para cada elemento de pala: 
 
𝜎(𝑟) =
𝑁𝑐(𝑟)
2𝜋𝑟
 
 
Sustituyendo y despejando 𝑎 y 𝑎′ : 
 
𝑎
1 − 𝑎
=
𝜎𝐶𝑛
4sin2𝜙
→ 𝑎 = (
4sin2𝜙
𝜎𝐶𝑛
+ 1)−1 
 
 
𝑎′
1 + 𝑎′
=
𝜎𝐶𝑡
4 sin 𝜙 cos 𝜙
→ 𝑎′ = (
4 sin 𝜙 cos 𝜙
𝜎𝐶𝑡
− 1)−1 
 
Las condiciones aerodinámicas en la pala son muy distintas a lo largo de toda su 
envergadura, por tanto, si se busca optimizar la potencia de la turbina; la forma, tamaño y 
posición de sus perfiles deberá variar también con el radio. 
 
El método BEM divide la longitud total de la pala en una serie de elementos y procediendo 
de manera iterativa, permite obtener la forma adecuada de cada perfil para que el total de 
la pala sea lo más eficiente posible. 
28 
 
 
3.4.1 Correcciones al método BEM 
 
Número finito de palas 
 
Esta corrección pretende salvar los errores cometidos al haber contemplado el rotor eólico 
como un conjunto infinito de palas. La estela que desprende un rotor de número finito de 
palas es muy distinta a la estudiada mediante la teoría del disco actuador. Por otro lado, de 
la teoría de la sustentación se sabe que la presión del fluido en la parte inferior de la pala 
es mayor que en la parte superior, sin embargo, en la zona cercana a la punta el fluido se 
escapa por el borde y las presiones tienden a igualarse. 
 
Con la intención de corregir la trayectoria de las partículas de aire que atraviesan el rotor, y 
en definitiva modelizar la estela de la turbina de manera que su forma se aproxime aún más 
a la realidad, Prandtl introdujo un factor (F) conocido como factor de pérdidas en la punta 
de pala. Este se incluye directamente en las ecuaciones de empuje, par y potencia, para de 
alguna forma caracterizar la disminución de la fuerza que experimenta cada sección de la 
pala debido a la finitud en el número de palas y a las pérdidas en la punta. 
 
𝐹 =
2
𝜋
arc cos (𝑒𝑥𝑝−𝑓) 
 
𝑓 =
𝑁(𝑅 − 𝑟)
2𝑟 sin 𝜙
 
 
𝑑𝐹𝑛 =
1
2
𝜌𝐹𝑐𝜔2𝑁(𝐶𝐿 cos 𝜙 + 𝐶𝐷 sin 𝜙)𝑑𝑟 
 
𝑑𝑀 =
1
2
𝜌𝐹𝜔2𝑐𝑁(𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙)𝑟𝑑𝑟 
 
𝑑𝑃 =
1
2
𝜌𝜔2Ω𝑐𝑁(𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙)𝑟𝑑𝑟 
 
 
 
 
29 
 
Rotor muy cargado 
 
Se contempla la situación en la que la velocidad inducida axial supera valores de 𝑎 = 0.4, 
en ese caso el modelo del disco actuador carece de validez debido a que la velocidad del 
aire tras atravesar el rotor es muy pequeña y el área en la sección de salida del tubo de 
corriente se hace demasiado grande. Se considera que una turbina se encuentra muy 
cargada cuando 𝑎 > 0.5, ya que si se diera esa situación la velocidad a la salida del tubo 
sería negativa y el rotor actuaría como un disco sólido e impediría una circulación libre del 
fluido a su través. 
 
Tratando de solucionar lo anterior, Glauert introduce un factor de corrección que se aplica 
sobre el coeficiente de empuje cuando la velocidad inducida axial supera un cierto valor 
crítico 𝑎𝑐~0.2. 
 
𝐶𝑇 {
4𝑎(1 − 𝑎)𝐹 𝑎 ≤ 𝑎𝑐
 4[𝑎𝑐
2 + (1 − 2𝑎𝑐)𝑎]𝐹 𝑎 > 𝑎𝑐 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30 
 
4 Proceso de cálculo y modelización 
 
Con tal de obtener datos suficientemente precisos, y puesto que para calcular la geometría 
de la pala se va a seguir un proceso iterativo, se ha creído necesario recurrir a herramientas 
informáticas de programación que, por otro lado, resultan muy útiles para realizar gran 
cantidad de cálculos en poco tiempo. 
 
El código presenta un potencial muy por encima de lo esperado cuando comencé a trabajar 
en este proyecto. Probablemente no se trate del algoritmo más eficiente en cuanto a tiempo 
de ejecución, pero los resultados que se obtienen son bastante precisos y completos. El 
modelo de cálculo está basado en el método BEM y se compone de cuatro funciones, que 
a continuación se describen. 
 
 
 
4.1 Descripción del entorno de programación Matlab 
 
Matlab es una herramienta de cálculo matemático que manipula datos con forma de 
vectores o matrices. Matlab actúa como intérprete entre usuario y computadora ofreciendo 
un lenguaje de programación propio que permite implementar algoritmos y crear modelos 
o aplicaciones. Se trata de una herramienta usual en los sectores de la ciencia y la 
ingeniería. 
 
He recurrido a este software, para desarrollar un modelo que calcula la forma y 
características aerodinámicasde un rotor eólico, en base a unas variables de entrada. 
Matlab es un software especialmente indicado cuando se desea trabajar con mucha 
información. El lenguaje de programación resulta sencillo e intuitivo, por lo que es muy útil 
para usuarios poco avanzados en la programación informática. 
 
 
4.2 Función MetodoBEM 
 
La función MetodoBEM calcula, a partir de 𝜆𝑟 y de los criterios de diseño, la geometría 
óptima de un perfil (cuerda y ángulo de calado). La función contiene dos bucles 
concatenados. 
 
31 
 
El bucle externo prueba tamaños cada vez mayores de cuerda, hasta que encuentra el 
tamaño ideal que proporciona el mayor coeficiente de potencia. 
 
El bucle interior toma un valor inicial para los coeficientes de velocidad (a y a') y procede 
de manera iterativa para calcular velocidades inducidas y ángulo de calado de un elemento 
de pala concreto. 
 
Se calcula el ángulo de incidencia como: 
 
𝜙 = arctan (
1 − 𝑎
(1 + 𝑎′)𝜆𝑟
) 
 
 
Puesto que es conocido el ángulo de ataque α óptimo del perfil que se va a utilizar, se 
determina el ángulo de calado θ: 
 
 
𝜃 = 𝜙 − 𝛼 
 
Partiendo del ángulo de incidencia calculado y de los coeficientes de sustentación y arrastre 
del perfil se pueden obtener los coeficientes normal y tangencial de las fuerzas que actúan 
sobre un elemento de pala: 
 
𝐶𝑛 = 𝐶𝐿 cos 𝜙 + 𝐶𝐷 sin 𝜙 
 
𝐶𝑡 = 𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙 
 
Y siguiendo el método BEM se calculan las nuevas velocidades inducidas axial y tangencial: 
 
𝑎 = (
4sin2𝜙
𝜎𝐶𝑛
+ 1)−1 
 
𝑎′ = (
4 sin 𝜙 cos 𝜙
𝜎𝐶𝑡
− 1)−1 
32 
 
Si el error cometido entre los nuevos valores de 𝑎 y 𝑎′ y los iniciales es mayor a una 
tolerancia impuesta se repite de nuevo el cálculo tomando esta vez como valores de partida 
los últimos calculados. 
 
La figura 13 muestra un diagrama que pretende aclarar el comportamiento de la función 
MetodoBEM 
 
 
Figura 13: Diagrama de flujo de la función MetodoBEM 
 
 
4.3 Fución CalculoPala 
 
La función CalculoPala (figura 14) que contiene a las otras funciones, genera un vector de 
diez valores que se corresponden con los diez elementos en los que se ha dividido la pala. 
 
Esta función llama al algoritmo BEM para obtener 𝑎 , 𝑎′, 𝜃 y 𝑐𝑝 de cada perfil, estos valores 
son recogidos en vectores y almacenados en un archivo de tipo .txt. 
 
33 
 
Recurriendo a métodos de integración numérica se calcula el empuje, el par, la potencia y 
el coeficiente de potencia teóricos del rotor: 
 
𝐹𝑛 = 
1
2
𝜌𝑁𝑈2 ∫
𝑐𝐹(1 − 𝑎)2
sin2 𝜙
𝐶𝑛𝑑𝑟
𝑅
𝑟0
 
 
𝑀 = 
1
2
𝜌𝑁Ω2 ∫
𝑐𝐹(1 + 𝑎′)2
cos2 𝜙
𝐶𝑡𝑑𝑟
𝑅
𝑟0
 
 
𝑃 = 
1
2
𝜌𝑁Ω3 ∫
𝑐𝐹(1 + 𝑎′)2
cos2 𝜙
𝐶𝑡𝑑𝑟
𝑅
𝑟0
 
 
Conocida la forma definitiva de la pala, se prueban distintos valores de la velocidad 
específica 𝜆 para, por medio de la función curvas, representar una serie de curvas de 
funcionamiento. 
 
 
 
Figura 14: Diagrama de flujo de la función CalculoPala. 
34 
 
4.4 Función PerfilAero 
 
Esta función contiene los parámetros adimensionales que definen la forma del perfil que se 
va a utilizar en las palas. Dichos parámetros suelen publicarse en la página web de los 
laboratorios dedicados a diseñar y ensayar perfiles aerodinámicos. En la tabla 1 se refiere 
un ejemplo correspondiente al caso del perfil NREL S833. 
 
x/c y/c x/c y/c 
1 0 0,000137 0,0019 
0,996065 0,001004 0,000005 -0,000388 
0,98502 0,004646 0,000267 -0,002838 
0,968439 0,01109 0,00051 -0,004055 
0,94764 0,01954 0,005161 -0,014877 
0,923225 0,028827 0,014227 -0,026119 
0,895095 0,037957 0,027615 -0,037318 
0,862843 0,046779 0,045093 -0,047937 
0,826835 0,055487 0,066696 -0,057725 
0,787593 0,063938 0,092161 -0,06635 
0,745618 0,071919 0,121486 -0,073652 
0,701398 0,079186 0,154343 -0,079439 
0,655387 0,085456 0,190655 -0,083625 
0,607899 0,090488 0,230021 -0,086135 
0,559249 0,094305 0,272278 -0,086956 
0,510051 0,096851 0,316953 -0,086108 
0,460675 0,097982 0,363791 -0,083647 
0,411514 0,097776 0,412249 -0,079666 
0,363095 0,096316 0,461977 -0,074263 
0,315946 0,093639 0,512361 -0,067552 
0,270564 0,089788 0,563 -0,059518 
0,22744 0,084804 0,61351 -0,050246 
0,187003 0,078746 0,663842 -0,039707 
0,149688 0,071682 0,71399 -0,028763 
0,11583 0,0637 0,763368 -0,018233 
0,085796 0,054909 0,811239 -0,008893 
0,059807 0,045441 0,856691 -0,001519 
0,038158 0,035491 0,898436 0,003017 
0,021003 0,025264 0,934459 0,004533 
0,008633 0,015086 0,963162 0,003879 
0,001918 0,006451 0,983725 0,002236 
0,001336 0,00533 0,99596 0,000675 
0,000805 0,004131 1 0 
 
Tabla 1: Coordenadas geométricas adimensionales del perfil NREL S823. 
Fuente: NREL (National Renewable Energy Laboratory) www.nrel.gov. 
 
35 
 
A partir de los valores de la tabla 1 se puede obtener la forma de un elemento de pala para 
un determinado tamaño de cuerda. PerfilAero se encarga de calcular las coordenadas y 
dibujar en una gráfica los 10 perfiles. Finalmente los datos se guardan en archivos en 
formato .txt para que puedan ser importados a un programa de diseño asistido por 
ordenador. 
 
 
 
4.5 Función Curvas 
 
La función curvas actúa de forma similar a la función BEM pero en este caso, conocida la 
forma de los diez perfiles, el código calcula, para distintas velocidades específicas, los 
valores de 𝑎 𝑦 𝑎′, de tal forma que finalmente se determina el coeficiente de potencia de la 
turbina para cada λ. 
 
Conocidos los valores del coeficiente de potencia en distintas situaciones es posible obtener 
una serie de curvas de funcionamiento que permitirán predecir el comportamiento del rotor 
a distinta carga. 
 
Se repite el proceso anterior para distintos valores de ángulo de ataque, al variar la 
orientación de las palas los coeficientes de sustentación y arrastre del perfil aerodinámico 
son distintos, de manera que se obtienen nuevas curvas de funcionamiento 
 
En el Anexo 1 se incluyen los códigos de las cuatro funciones. 
 
 
 
 
 
 
 
 
 
 
 
36 
 
 
5 Aplicación: mini-turbina eólica de pequeña 
potencia 
 
En este capítulo, se utilizará el programa descrito en el capítulo 4 para, una vez establecidas 
unas condiciones de diseño, calcular la geometría de un rotor eólico de tamaño reducido. 
Por supuesto aparecerán diferencias en el diseño respecto a los grandes generadores 
derivadas del tamaño, no solo la potencia es más pequeña sino también las fuerzas y el par 
que actúa sobre el molino. 
 
 
5.1 Criterios de diseño 
 
El diseño de una máquina eólica generadora tiene la particularidad, frente al diseño de otras 
máquinas generadoras, de que las condiciones de trabajo son inciertas debido a la alta 
variabilidad del viento. Es por ello necesario estimar e imponer una serie de valores que 
permitan determinar la forma y características aerodinámicas del aerogenerador. 
 
 
5.1.1 Número de palas 
 
Debido a su enorme tamaño, el rotor de un aerogenerador se ve sometido a enormes cargas 
y tensiones. Aunque existen modelos de aerogeneradores bipala y monopala, más 
sencillos de fabricar y más económicos, su estabilidad se encuentra altamente cuestionada. 
 
Según explica la teoría de cantidad de movimiento, la potencia máxima extraíble del viento 
es independiente del número de palas (N), 𝑃 =
1
2
𝜌𝐴𝑈3𝐶𝑃 , sin embargo, existe una 
corrección, que estudia el efecto que tiene un número finito de palas sobre la potencia de 
la turbina. De esta forma, se introduce un factor de pérdidas de punta de pala, conocido 
como factor de Prandtl, que será tanto más importante cuanto menor sea N (figura 15). 
 
37 
 
 
Figura 15: Coeficiente de potencia en función de la velocidad específica y del número de 
palas. 
Fuente: ‘Wind Energy Explained’ J.F. Manwell, J.G. McGowan, A.L. Rogers. 
 
La mayoría de los aerogeneradores de eje horizontal actuales tienen tres palas, pues se ha 
demostradoque de esta forma se alcanza una solución de compromiso entre estabilidad, 
potencia y precio. La explicación es que, además de ser una estructura físicamente estable, 
un número de palas superior a tres no implica un aumento demasiado grande de la potencia 
pero si del precio. 
 
Un N demasiado alto podría provocar algo conocido como efecto pared, es decir, que a una 
cierta velocidad de giro, el rotor fuera visto por el viento como una pared, y le procurara un 
empuje en su misma dirección. A esa velocidad la sustentación en una pala se vería 
entorpecida por la presencia de las otras y el viento ya no actuaría sobre el giro del rotor. 
 
 
5.1.2 Velocidad especifica de punta de pala 
 
La potencia máxima que un aerogenerador puede extraer del viento varía enormemente 
según la intensidad del fluido y el régimen giro del rotor. Puesto que es difícil determinar la 
velocidad angular de giro de un aerogenerador para una intensidad del viento determinada, 
pues depende, entre otros factores, del par ofrecido por la maquina eléctrica generadora, 
se recurre a un coeficiente adimensional que, sin especificar las condiciones concretas de 
funcionamiento, permite determinar el comportamiento del fluido y en definitiva del rotor, 
este factor se conoce como velocidad específica (𝜆). 
38 
 
Si se busca alcanzar la máxima potencia se debe estimar el valor óptimo de λ que asegure 
un elevado rendimiento en la captación de energía. En nuestro caso, la velocidad específica 
nominal de trabajo será la que se imponga a la hora de calcular la forma de las palas ya 
que el programa va a determinar la geometría que mejor responda a unas condiciones 
concretas de viento y régimen de giro. 
 
 
5.1.3 Régimen de giro 
 
En la práctica se comprueba que la velocidad de giro del aerogenerador depende de 
múltiples factores externos. Aun así, se debe imponer un valor que permita calcular la 
potencia que entrega el rotor y determinar la velocidad nominal del viento. 
 
Los generadores eléctricos convencionales requieren velocidades de giro muy elevadas 
para funcionar. Esas velocidades son inalcanzables para un rotor de gran tamaño, pues 
provocarían altas aceleraciones centrifugas difícilmente soportables por la estructura. Es 
por eso que los grandes aerogeneradores disponen de cajas multiplicadoras que aumentan 
la velocidad de giro del eje en detrimento del par. Así los molinos eólicos de generación 
eléctrica presentan un par elevado y giran lentamente (15-20 rpm). 
 
En nuestro caso no es necesario colocar una caja multiplicadora pues el aerogenerador es 
pequeño y ligero, y las aceleraciones resultantes del giro podrán ser soportadas por todos 
los elementos sin problemas. Así si se quiere caracterizar el rotor se puede aplicar una 
velocidad de giro similar a la de los generadores eléctricos comerciales. 
 
 
5.1.4 Radio del rotor 
 
La potencia del aerogenerador depende en gran medida del área barrida por sus palas al 
girar y en definitiva del radio 𝑃 = 𝐶𝑃
1
2
𝜌𝜋𝑅2𝑈3 . Las empresas de ingeniería tratan de 
construir aerogeneradores cada vez más grandes y de mayor potencia. 
 
El tamaño del aerogenerador que se construye en este proyecto, se ve altamente limitado 
por el tamaño de la impresora. Este hecho no supone un problema, pues el objetivo no es 
obtener energía, sino estudiar el comportamiento del aerogenerador. 
 
39 
 
 
5.1.5 Velocidad nominal del viento 
 
Considerando el hecho de que es físicamente imposible que en un lugar la velocidad del 
viento se mantenga constante durante todo el tiempo, se tomará el punto nominal del 
aerogenerador en torno a un valor de la velocidad del viento, cuya probabilidad, en el lugar 
de emplazamiento, justifique la limitación de potencia extraída para vientos superiores a 
dicho valor. 
 
De esta manera impuestos los valores de radio, régimen de giro y velocidad específica. Se 
puede calcular la velocidad nominal del viento: 
 
𝑈𝑛 =
Ω𝑅
𝜆
 
5.1.6 Selección del perfil aerodinámico 
 
Puesto que la eficiencia de una maquina eólica depende en gran medida del conjunto 
aerodinámico de las palas, es importante escoger un perfil tal que permita obtener los 
mejores resultados. 
 
Existen numerosos institutos y laboratorios, entre los que destacan NASA (NACA) o NREL, 
dedicados a analizar, diseñar y probar el funcionamiento de los perfiles aerodinámicos. Los 
primeros diseños se concibieron para ser empleados en aviación, y si bien aseguran buenos 
resultados al ser utilizados en aerogeneradores, el desarrollo de la tecnología hizo que 
instituciones como la NASA o NREL comenzaran a diseñar perfiles específicos para molinos 
de energía eólica. 
 
Estos perfiles se centran en evitar que la suciedad acumulada en las palas pueda afectar 
al rendimiento del aerogenerador. Los perfiles se diseñan con el objetivo de reducir las 
labores de mantenimiento, sin poner en peligro otros requisitos como la eficacia 
aerodinámica, la rigidez, la resistencia de las palas o su facilidad de fabricación. 
 
Como se ha explicado, en la teoría del elemento de pala, el rotor eólico se mueve gracias 
al efecto que la sustentación provoca sobre los perfiles. También es conocido el efecto 
negativo de la fuerza de arrastre, por tanto, a la hora de seleccionar un perfil este debe 
presentar alto coeficiente de sustentación y bajo coeficiente de arrastre. 
40 
 
 
Figura 16: Geometría del perfil NREL S823. 
Fuente: NREL (National Renewable Energy Laboratory) www.nrel.gov. 
En base a los criterios expuestos se ha escogido un perfil del tipo NREL S833, diseñado 
para ser utilizado en aerogeneradores y especialmente indicado para aerogeneradores de 
reducido tamaño. Además, el perfil es apto para el tipo de flujo de aire que actuará sobre el 
rotor cuando se realicen los ensayos y que viene determinado por el número de Reynolds. 
Las características de diseño del perfil y su forma se muestran en la tabla 2 y en la figura 
16. 
 
El coeficiente de Reynolds es un número adimensional que permite caracterizar el 
movimiento de las particulas de un fluido. Se trata de una relación entre parámetros típicos 
de un fluido en movimiento. Dependiendo del tamaño del número de Reynolds, se podra 
considerar que el flujo es laminar o turbulento. 
 
𝑅𝑒 =
𝜌𝑣𝑠𝐿𝑐
𝜇
 
 
En nuestro caso, dadas las dimensiones de los perfiles y la velocidad nominal del viento 
con la que se pretende trabajar, se obtienen valores de Reynolds en torno a 4 × 104 y 6 ×
104. Existen tablas en las que se muestran los distintos coeficientes aerodinamicos de un 
perfil en función del número de Reynolds y del ángulo de ataque (α). En concreto, la tabla 
2 muestra los valores de los coeficientes de sustentación y arrastre del perfil NREL S833 
para un Reynolds de 5 × 104 y distintos ángulos de ataque. 
 
41 
 
 
α CL CD CM CL/CD 
7,25 0,39830 0,05665 -0,014 7,03089144 
7,50 0,44380 0,05605 -0,0159 7,91793042 
7,75 0,49890 0,05468 -0,018 9,12399415 
8,00 0,52010 0,055 -0,0178 9,45636364 
8,25 0,57060 0,05325 -0,0187 10,715493 
8,50 0,64620 0,04868 -0,0196 13,2744454 
8,75 0,76870 0,03978 -0,0222 19,3237808 
9,00 0,86940 0,03432 -0,0257 25,3321678 
9,25 0,91180 0,03362 -0,0259 27,1207615 
9,50 0,94040 0,03414 -0,0253 27,5454013 
9,75 0,95770 0,03534 -0,0239 27,0996038 
10,00 0,98210 0,03674 -0,0235 26,7310833 
10,25 1,00010 0,03844 -0,0226 26,0171696 
10,50 1,01370 0,04028 -0,0213 25,1663357 
10,75 1,03290 0,04238 -0,0208 24,3723454 
11,00 1,05150 0,04456 -0,0202 23,5973968 
11,25 1,08560 0,0471 -0,0217 23,0488323 
11,50 1,08830 0,04944 -0,0193 22,0125405 
 
Tabla 2: Coeficientes aerodinámicos del perfil NREL S833 para 𝑅𝑒 = 50000. 
 Fuente: www.airfoiltools.com 
 
 
En el Anexo 2 se muestra la misma tabla extendida a mayor número de valores del ángulo 
de ataque. 
 
Se han representado los coeficientes aerodinámicos según la posición del perfil de cara al 
viento(figuras 17, 18 y 19). En términos de potencia, si se quiere maximizar el rendimiento 
de la máquina será necesario orientar las palas y proporcionarles la torsión adecuada, 
tratando de conseguir que a lo largo de toda su envergadura el viento incida sobre los 
perfiles de la manera adecuada, esto es buscar el ángulo de ataque que haga máximo el 
cociente 𝐶𝐿/𝐶𝐷. 
 
42 
 
 
 
Figura 17: Variación del coeficiente de sustentación con el ángulo de ataque para 
𝑅𝑒 = 50000. 
 
 
 
Figura 18: Variación del coeficiente de arrastre con el ángulo de ataque para 𝑅𝑒 = 50000. 
 
 
-1,00000
-0,50000
0,00000
0,50000
1,00000
1,50000
-8
,5
0
-7
,7
5
-7
,0
0
-6
,2
5
-5
,5
0
-4
,7
5
-4
,0
0
-3
,2
5
-2
,5
0
-1
,7
5
-1
,0
0
-0
,2
5
0
,5
0
1
,2
5
2
,0
0
2
,7
5
3
,5
0
4
,2
5
5
,0
0
5
,7
5
6
,5
0
7
,2
5
8
,0
0
8
,7
5
9
,5
0
1
0
,2
5
1
1
,0
0
1
1
,7
5
1
2
,5
0
1
3
,2
5
1
4
,0
0
C
o
ef
ic
ie
n
te
 d
e 
su
st
en
ta
ci
ó
n
Ángulo de ataque
CL-α
0
0,02
0,04
0,06
0,08
0,1
0,12
-8
,5
0
-7
,7
5
-7
,0
0
-6
,2
5
-5
,5
0
-4
,7
5
-4
,0
0
-3
,2
5
-2
,5
0
-1
,7
5
-1
,0
0
-0
,2
5
0
,5
0
1
,2
5
2
,0
0
2
,7
5
3
,5
0
4
,2
5
5
,0
0
5
,7
5
6
,5
0
7
,2
5
8
,0
0
8
,7
5
9
,5
0
1
0
,2
5
1
1
,0
0
1
1
,7
5
1
2
,5
0
1
3
,2
5
1
4
,0
0
C
o
ef
ic
ie
n
te
 d
e 
ar
ra
st
re
Ángulo de ataque
CD - α
43 
 
 
 
Figura 19: Variación del cociente 
𝐶𝐿
𝐶𝐷
 con el ángulo de ataque para 𝑅𝑒 = 50000. 
 
 
 
5.2 Cálculo de la pala y resultados 
 
Conocidos los criterios de diseño y la forma y características del perfil aerodinámico (tabla 
3) se tienen todas las variables de entrada que requiere el código implementado. La 
ejecución del programa permite determinar la forma de la pala, y calcular sus coeficientes 
aerodinámicos en condiciones nominales de funcionamiento. 
 
N λ Ω R α CL CD 
3 6 1500 0,5 9,5 0,9404 0,03414 
Tabla 3: Criterios de diseño del rotor 
 
Si se ejecuta el código con las variables de entrada de la tabla 3, se obtienen los 
coeficientes de velocidades inducidas, la cuerda, el ángulo de calado y el coeficiente de 
potencia de los diez perfiles (tabla 4). Como se ha dicho, el programa calcula la cuerda y el 
ángulo de calado que proporcionan el mayor coeficiente de potencia. 
 
 
-20
-15
-10
-5
0
5
10
15
20
25
30
-8
,5
0
-7
,7
5
-7
,0
0
-6
,2
5
-5
,5
0
-4
,7
5
-4
,0
0
-3
,2
5
-2
,5
0
-1
,7
5
-1
,0
0
-0
,2
5
0
,5
0
1
,2
5
2
,0
0
2
,7
5
3
,5
0
4
,2
5
5
,0
0
5
,7
5
6
,5
0
7
,2
5
8
,0
0
8
,7
5
9
,5
0
1
0
,2
5
1
1
,0
0
1
1
,7
5
1
2
,5
0
1
3
,2
5
1
4
,0
0
C
L/
C
D
Ángulo de ataque
CL /CD - α
44 
 
r(m) a a' θ (º) c(m) Cp 
0,1 0,374433 0,117706 15,504685 0,2336 0,424127 
0,14 0,393209 0,070011 9,152241 0,1424 0,479608 
0,18 0,400293 0,044919 5,380069 0,0938 0,502728 
0,22 0,400675 0,03044 2,924410 0,0654 0,5086 
0,26 0,397949 0,021543 1,196884 0,0477 0,50502 
0,3 0,393202 0,015771 -0,078297 0,036 0,496089 
0,34 0,387797 0,011874 -1,065135 0,0279 0,484044 
0,38 0,381323 0,009137 -1,842708 0,0219 0,470166 
0,42 0,372863 0,007144 -2,456835 0,0169 0,455224 
0,46 0,365921 0,005689 -2,983939 0,0118 0,439655 
 
Tabla 4: Características geométricas y aerodinámicas de los diez elementos de pala. 
 
 
5.2.1 Geometría 
 
Se sabe que el comportamiento de la turbina depende en gran medida de la forma de sus 
perfiles. Puesto que las condiciones aerodinámicas varían en función del radio, si se quiere 
maximizar la eficiencia del perfil, su forma y posición deberá ser distinta según la distancia 
a la que se encuentren del eje de giro. 
 
Ángulo de calado 
 
La dirección de la componente real de la velocidad del viento será siempre perpendicular al 
plano de rotación del rotor, pero existe una componente tangencial provocada por el giro 
del rotor cuya magnitud aumenta con el radio 𝑣 = 𝜔𝑟 , y que por tanto hace distinta la 
velocidad del viento relativa a cada perfil (figura 20). 
 
Se pretende que los diez perfiles sobre los que se va a calcular la pala, estén orientados de 
tal forma que la componente relativa de la velocidad del viento, incida sobre ellos con el 
mismo ángulo de ataque, a fin de que ese ángulo sea el que proporcione el mayor cociente 
𝐶𝐿/𝐶𝐷. 
 
45 
 
 
Figura 20: Componentes de la velocidad del viento 
 
Con tal objeto se proporciona a la pala la torsión necesaria para que el ángulo de calado de 
los perfiles próximos al eje sea mayor que el de los perfiles situados en la punta, donde 
puede incluso llegar a ser negativo. En la figura 21 se muestra la ley de torsión de la pala 
calculada. 
 
 
 
Figura 21: Ángulo de calado de los perfiles en función del radio. 
 
 
-5
0
5
10
15
20
0,1 0,14 0,18 0,22 0,26 0,3 0,34 0,38 0,42 0,46
Á
n
gu
lo
 d
e 
ca
la
d
o
 α
(º
)
Radio (m)
Ley de torsión
46 
 
Cuerda 
 
El programa determina la cuerda que proporciona mayor coeficiente de potencia en cada 
elemento como resultado de un proceso iterativo. Por norma general y atendiendo a 
consideraciones estructurales, la longitud de cuerda de los perfiles situados en la punta de 
pala es menor que en la raíz. En la figura 22 se muestra la distribución de cuerdas a lo largo 
de la pala. 
 
 
Figura 22: Cuerda de los perfiles en función del radio. 
 
La figura 23 muestra la forma de los perfiles calculada según sus cuerdas. 
 
 
Figura 23: Geometría de los diez perfiles que componen la pala. 
 
0
0,05
0,1
0,15
0,2
0,25
0,1 0,14 0,18 0,22 0,26 0,3 0,34 0,38 0,42 0,46
C
u
er
d
a 
(m
)
Radio (m)
Distribución de cuerdas
47 
 
5.2.2 Condiciones nominales de trabajo 
 
En base al criterio de diseño, si se trabaja en torno a los valores teóricos de la tabla 5 se 
alcanzaría la situación ideal de funcionamiento en la que el aerogenerador entregaría la 
potencia nominal. 
 
Ω (rpm) Un (m/s) α (º) Cl Cd 
1500 10.47 9.5 0.9404 0.03414 
 
Tabla 5: Condiciones nominales de trabajo 
 
En condiciones nominales y dado que la energía se transmite a través del giro, el par que 
ejerce el viento sobre el eje será máximo, de tal manera que la fracción de energía que se 
extrae del viento alcanzará su valor más elevado. El coeficiente de potencia se situará 
cercano al límite de Betz y, en definitiva, aumentará el rendimiento de la máquina en la 
generación de energía. 
 
Mediante métodos de integración numérica es posible determinar los valores teóricos de 
empuje, par, potencia y coeficiente de potencia (tabla 6). Para estimar los esfuerzos que 
deberá soportar la máquina cuando esté funcionando se recurre a las magnitudes de fuerza 
normal y par. Estos valores determinan, respectivamente, el empuje axial sobre el rotor y 
momento flector que sufrirán las palas. Así pues se debe calcular la estructura del molino 
para que pueda actuar contra la aparición de dichas fuerzas. 
 
 
Fn (N) M (Nm) P (W) Cp 
31.202 1,915127 208.92 0,386 
 
Tabla 6: Empuje, par, potencia y coeficiente de potencia en condiciones nominales. 
 
Aunque muy probablemente los valores calculados sean muy distintos a la realidad, puesto 
que el código no es perfecto y se comenten multitud de errores cuando se pretende 
modelizar el funcionamiento de un rotor eólico, los datos obtenidos pueden servir de 
referencia para que a la hora de realizar los ensayos sea más sencillo encontrar el 
verdadero punto nominal de trabajo. 
 
 
48 
 
5.2.3 Curvas de funcionamiento 
 
A fin de obtener una ligera idea de cuál será la respuesta de la máquina a distinta carga se 
han representado varios tipos de curvas. Puesto que es complicado determinar la evolución 
de un aerogenerador, bien cuando aumenta la velocidad del viento o bien cuando lo hace 
el régimen de giro, las curvas se representan por medio de parámetros adimensionales, de 
manera que sin conocer la situación

Continuar navegando