Logo Studenta

U4 pp 86 números primos

¡Este material tiene más páginas!

Vista previa del material en texto

Número primo
 
En matemáticas, un número primo es un número natural mayor que 1 que tiene únicamente
dos divisores distintos: él mismo y el 1.1 2 Por el contrario, los números compuestos son los
números naturales que tienen algún divisor natural aparte de sí mismos y del 1, y, por lo
tanto, pueden factorizarse. El número 1, por convenio, no se considera ni primo ni
compuesto.
Los 168 números primos menores que 1000 son: 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853,
857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991 y 997 (sucesión A000040 (https://oeis.org/A000040) en OEIS).
El primer número primo a partir del número mil es el 1009, luego de diez mil es el 10 007, a partir de cien mil es el 100 003, inmediatamente después de un millón es el 1 000
003.
La propiedad de ser número primo se denomina primalidad.
En la teoría algebraica de números, a los números primos se les conoce como números racionales primos para distinguirlos de los números gaussianos primos.3 . La primalidad
no depende del sistema de numeración, pero sí del anillo donde se estudia la primalidad. Dos es primo racional; sin embargo tiene factores como entero gaussiano: 2 = (1+i)+
(1-i).
El estudio de los números primos es una parte importante de la teoría de números, rama de las matemáticas que trata las propiedades, básicamente aritméticas,4 de los números
enteros. Los números primos están presentes en algunas conjeturas centenarias tales como la hipótesis de Riemann y la conjetura de Goldbach, resuelta por Harald Helfgott en
su forma débil.
La distribución de los números primos es un asunto reiterativo de investigación en la teoría de números: si se consideran números aisladamente, los primos parecieran estar
distribuidos de modo probabilístico, pero la distribución «global» de los números primos se ajusta a leyes bien definidas.
Historia de los números primos
El Oriente prehelénico
Antigua Grecia
Desde la época del Renacimiento
El número 1 no se considera primo
Propiedades de los números primos
Teorema fundamental de la aritmética
Otras propiedades
Números primos y funciones aritméticas
Características del conjunto de los números primos
Infinitud de los números primos
Otros enunciados que implican la infinitud de los números primos
Frecuencia de los números primos
Diferencia entre dos primos consecutivos
Conclusión
Encontrar números primos
Tests de primalidad
Algoritmos de factorización
Fórmulas que solo generasen números primos
Algoritmo de primalidad no probabilístico
Clases de números primos
Primos primoriales y primos factoriales
Números primos de Fermat
Números primos de Mersenne
Otras clases de números primos
Conjeturas
Hipótesis de Riemann
Otras conjeturas
Infinitud de ciertos tipos de números primos
Distribución de los números primos
La distribución de los números primos (línea azul) hasta el 400.
Índice
https://es.wikipedia.org/wiki/Matem%C3%A1ticas
https://es.wikipedia.org/wiki/N%C3%BAmero_natural
https://es.wikipedia.org/wiki/Divisibilidad
https://es.wikipedia.org/wiki/Uno
https://es.wikipedia.org/wiki/N%C3%BAmero_compuesto
https://es.wikipedia.org/wiki/Factorizaci%C3%B3n_de_enteros
https://es.wikipedia.org/wiki/Uno
https://es.wikipedia.org/wiki/Mil
https://es.wikipedia.org/wiki/Dos
https://es.wikipedia.org/wiki/Tres
https://es.wikipedia.org/wiki/Cinco
https://es.wikipedia.org/wiki/Siete
https://es.wikipedia.org/wiki/Once
https://es.wikipedia.org/wiki/Trece
https://es.wikipedia.org/wiki/Diecisiete
https://es.wikipedia.org/wiki/Diecinueve
https://es.wikipedia.org/wiki/Veintitr%C3%A9s
https://es.wikipedia.org/wiki/Veintinueve
https://es.wikipedia.org/wiki/Treinta_y_uno
https://es.wikipedia.org/wiki/Treinta_y_siete
https://es.wikipedia.org/wiki/Cuarenta_y_uno
https://es.wikipedia.org/wiki/Cuarenta_y_tres
https://es.wikipedia.org/wiki/Cuarenta_y_siete
https://es.wikipedia.org/wiki/Cincuenta_y_tres
https://es.wikipedia.org/wiki/Cincuenta_y_nueve
https://es.wikipedia.org/wiki/Sesenta_y_uno
https://es.wikipedia.org/wiki/Sesenta_y_siete
https://es.wikipedia.org/wiki/Setenta_y_uno
https://es.wikipedia.org/wiki/Setenta_y_tres
https://es.wikipedia.org/wiki/Setenta_y_nueve
https://es.wikipedia.org/wiki/Ochenta_y_tres
https://es.wikipedia.org/wiki/Ochenta_y_nueve
https://es.wikipedia.org/wiki/Noventa_y_siete
https://es.wikipedia.org/wiki/Ciento_uno
https://es.wikipedia.org/wiki/Ciento_tres
https://es.wikipedia.org/wiki/Ciento_siete
https://es.wikipedia.org/wiki/Ciento_nueve
https://es.wikipedia.org/wiki/Ciento_trece
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros
https://oeis.org/A000040
https://es.wikipedia.org/wiki/OEIS
https://es.wikipedia.org/wiki/Mil
https://es.wikipedia.org/wiki/Diez_mil
https://es.wikipedia.org/wiki/Cien_mil
https://es.wikipedia.org/wiki/Mill%C3%B3n
https://es.wikipedia.org/wiki/Teor%C3%ADa_de_n%C3%BAmeros
https://es.wikipedia.org/wiki/Conjetura_matem%C3%A1tica
https://es.wikipedia.org/wiki/Hip%C3%B3tesis_de_Riemann
https://es.wikipedia.org/wiki/Conjetura_de_Goldbach
https://es.wikipedia.org/wiki/Harald_Helfgott
https://es.wikipedia.org/wiki/Conjetura_d%C3%A9bil_de_Goldbach
https://es.wikipedia.org/wiki/Archivo:Prime_num_le_400.png
Teoría aditiva de números
Los cuatro problemas de Landau
Generalización del concepto de número primo
Elementos primos en un anillo
Ideales primos
Primos en teoría de la valoración
Nudos primos
Aplicaciones en la matemática
Aplicaciones en la computación
Números primos en el arte y la literatura
Véase también
Referencias
Enlaces externos
Las muescas presentes en el hueso de Ishango, que data de hace más de 20 000 años (anterior por tanto a la aparición de la escritura) y que
fue hallado por el arqueólogo Jean de Heinzelin de Braucourt,5 parecen aislar cuatro números primos: 11, 13, 17 y 19. Algunos arqueólogos
interpretan este hecho como la prueba del conocimiento de los números primos. Con todo, existen muy pocos hallazgos que permitan
discernir los conocimientos que tenía realmente el hombre de aquella época.6 
Numerosas tablillas de arcilla seca atribuidas a las civilizaciones que se fueron sucediendo en Mesopotamia a lo largo del II milenio a.C.
muestran la resolución de problemas aritméticos y atestiguan los conocimientos de la época. Los cálculos requerían conocer los inversos de
los naturales, que también se han hallado en tablillas.7 En el sistema sexagesimal que empleaban los babilonios para escribir los números,
los inversos de los divisores de potencias de 60 (números regulares) se calculan fácilmente; por ejemplo, dividir entre 24 equivale a
multiplicar por 150 (2·60+30) y correr la coma sexagesimal dos lugares.El conocimiento matemático de los babilonios necesitaba una
sólida comprensión de la multiplicación, la división y la factorización de los naturales.
En las matemáticas egipcias, el cálculo de fracciones requería conocimientos sobre las operaciones, la división de naturales y la
factorización. Los egipcios sólo operaban con las llamadas fracciones egipcias, suma de fracciones unitarias, es decir, aquellas cuyo
numerador es 1, como , por lo que las fracciones de numerador distinto de 1 se escribían como suma de inversos de
naturales, a ser posible sin repetición en lugar de .8 Es por ello que, en cierta manera, tenían que conocer o intuir los
números primos.9 
La primera prueba indiscutible del conocimiento de los números primos se remonta a alrededor del año 300 a. C. y se
encuentra en los Elementos de Euclides (tomos VII a IX). Euclides define los números primos, demuestra que hay infinitos
de ellos, define el máximo común divisor y el mínimo común múltiplo y proporciona un método para determinarlos que hoy
en día se conoce como el algoritmo de Euclides. Los Elementos contienen asimismo el teorema fundamental de la aritmética
y la manera de construir un número perfecto a partir de un número primo de Mersenne.
La criba de Eratóstenes, atribuida a Eratóstenes de Cirene, es un método sencillo que permite encontrar números primos.
Hoy en día, empero, los mayores números primos que se encuentran con la ayuda de ordenadores emplean otros algoritmos
más rápidos y complejos.
Después de las matemáticas griegas hubo pocos avances en el estudio de los números primos hasta el siglo XVII. En 1640 Pierre de Fermat estableció (aunque sin
demostración) el pequeño teorema de Fermat, posteriormente demostrado por Leibniz y Euler. Es posible que mucho antes se conociera un caso especial de dicho teorema en
China.
Fermat conjeturó que todos los números de la forma 22n
+1 eran primos (debido a lo cual se los conoce como números de Fermat) y verificó esta propiedad hasta n = 4 (es decir,
216 + 1). Sin embargo, el número de Fermat 232 + 1 es compuesto (uno de sus factores primos es 641), como demostró Euler. De hecho, hasta nuestros días no se conoce
ningún número de Fermat que sea primo aparte de los que ya conocía el propio Fermat.
El monje francés Marin Mersenne investigó los números primos de la forma 2p − 1, con p primo. En su honor, se los conoce como números de Mersenne.
En el trabajo de Euler en teoría de números se encuentran muchos resultados que conciernen a los números primos. Demostró la divergencia de la serie 
, y en 1747 demostró que todos los números perfectos pares son de la forma 2p-1(2p - 1), donde el segundo factor es un número primo de Mersenne. Se cree que no existen
números perfectos impares, pero todavía es una cuestión abierta.
Historia de los números primos
El Oriente prehelénico
Imagen del hueso de
Ishango expuesto en el
Real Instituto Belga de
Ciencias Naturales.
Antigua Grecia
Un fragmento de los Elementos de
Euclides encontrado en Oxirrinco.
Desde la época del Renacimiento
https://es.wikipedia.org/wiki/Hueso_de_Ishango
https://es.wikipedia.org/wiki/Escritura
https://es.wikipedia.org/wiki/Jean_de_Heinzelin_de_Braucourt
https://es.wikipedia.org/wiki/Civilizaciones
https://es.wikipedia.org/wiki/Mesopotamia
https://es.wikipedia.org/wiki/Inverso_multiplicativo
https://es.wikipedia.org/wiki/Sistema_sexagesimal
https://es.wikipedia.org/wiki/Historia_de_Babilonia
https://es.wikipedia.org/wiki/Factorizaci%C3%B3n
https://es.wikipedia.org/wiki/Matem%C3%A1ticas_en_el_Antiguo_Egipto
https://es.wikipedia.org/wiki/Fracci%C3%B3n
https://es.wikipedia.org/wiki/Fracci%C3%B3n_egipcia
https://es.wikipedia.org/wiki/Fracci%C3%B3n_unitaria
https://es.wikipedia.org/wiki/Elementos_de_Euclides
https://es.wikipedia.org/wiki/Euclides
https://es.wikipedia.org/wiki/M%C3%A1ximo_com%C3%BAn_divisor
https://es.wikipedia.org/wiki/M%C3%ADnimo_com%C3%BAn_m%C3%BAltiplo
https://es.wikipedia.org/wiki/Algoritmo_de_Euclides
https://es.wikipedia.org/wiki/Teorema_fundamental_de_la_aritm%C3%A9tica
https://es.wikipedia.org/wiki/N%C3%BAmero_perfecto
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Mersenne
https://es.wikipedia.org/wiki/Criba_de_Erat%C3%B3stenes
https://es.wikipedia.org/wiki/Erat%C3%B3stenes_de_Cirene
https://es.wikipedia.org/wiki/1640
https://es.wikipedia.org/wiki/Pierre_de_Fermat
https://es.wikipedia.org/wiki/Peque%C3%B1o_teorema_de_Fermat
https://es.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://es.wikipedia.org/wiki/Leonhard_Euler
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Fermat
https://es.wikipedia.org/wiki/Marin_Mersenne
https://es.wikipedia.org/wiki/N%C3%BAmero_de_Mersenne
https://es.wikipedia.org/wiki/Divergencia_de_la_suma_de_los_inversos_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Suma_infinita
https://es.wikipedia.org/wiki/N%C3%BAmero_perfecto
https://es.wikipedia.org/wiki/Archivo:Os_d%27Ishango_IRSNB.JPG
https://es.wikipedia.org/wiki/Hueso_de_Ishango
https://es.wikipedia.org/wiki/Real_Instituto_Belga_de_Ciencias_Naturales
https://es.wikipedia.org/wiki/Archivo:P._Oxy._I_29.jpg
https://es.wikipedia.org/wiki/Oxirrinco
A comienzos del siglo XIX, Legendre y Gauss conjeturaron de forma independiente que, cuando n tiende a infinito, el
número de primos menores o iguales que n es asintótico a , donde ln(n) es el logaritmo natural de n. Las ideas que
Bernhard Riemann plasmó en un trabajo de 1859 sobre la función zeta describieron el camino que conduciría a la
demostración del teorema de los números primos. Hadamard y De la Vallée-Poussin, cada uno por separado, dieron forma a
este esquema y consiguieron demostrar el teorema en 1896.
Actualmente no se comprueba la primalidad de un número por divisiones sucesivas, al menos no si el número es
relativamente grande.
Durante el siglo XIX se desarrollaron algoritmos para saber si un número es primo o no factorizando completamente el
número siguiente (p+1) o el anterior (p-1). Dentro del primer caso se encuentra el test de Lucas-Lehmer, desarrollado a partir
de 1856. Dentro del segundo caso se encuentra el test de Pépin para los números de Fermat (1877). El caso general de test de
primalidad cuando el número inmediatamente anterior se encuentra completamente factorizado se denomina test de Lucas.
Posteriormente se encontraron algoritmos de primalidad con solo obtener una factorización parcial de p+1 o p-1. Ejemplos
de estos algoritmos son el test de Proth (desarrollado alrededor de 1878) y el test de Pocklington (1914). En estos algoritmos
se requiere que el producto de los factores primos conocidos de p-1 sea mayor que la raíz cuadrada de p. Más recientemente,
en 1975, Brillhart, Lehmer y Selfridge desarrollaron el test BLS de primalidad que solo requiere que dicho producto sea
mayor que la raíz cúbica de p. El mejor método conocido de esta clase es el test de Konyagin y Pomerance del año 1997, que
requiere que dicho producto sea mayor que p3/10.10 11 
A partir de la década de 1970 varios investigadores descubrieron algoritmos para determinar si cualquier número es primo o no con complejidad subexponencial, lo que permite
realizar tests en números de miles de dígitos, aunque son mucho más lentos que los métodos anteriores. Ejemplos de estos algoritmos son el test APRT-CL (desarrollado en
1979 por Adleman, Pomerance y Rumely, con mejoras introducidas por Cohen y Lenstra en 1984), donde se usan los factores de pm-1, donde el exponente m depende del
tamaño del número cuya primalidad se desea verificar, el test de primalidad por curvas elípticas (desarrollado en 1986 por S. Goldwasser, J. Kilian y mejorado por A. O. L.
Atkin), que entrega un certificado consistente en una serie de números que permite después confirmar rápidamente si el número es primo o no. El desarrollo más reciente es el
test de primalidad AKS (2002), que si bien su complejidad es polinómica, para los números que puede manejar la tecnología actual es el más lento de los tres.
Durante mucho tiempo, se pensaba que la aplicación de los números primosera muy limitada fuera de la matemática pura.12 13 Esto cambió en los años 1970 con el desarrollo
de la criptografía de clave pública, en la que los números primos formaban la base de los primeros algoritmos, tales como el algoritmo RSA.
Desde 1951, el mayor número primo conocido siempre ha sido descubierto con la ayuda de ordenadores. La búsqueda de números primos cada vez mayores ha suscitado
interés incluso fuera de la comunidad matemática. En los últimos años han ganado popularidad proyectos de computación distribuida tales como el GIMPS, mientras los
matemáticos siguen investigando las propiedades de los números primos.
La cuestión acerca de si el número 1 debe o no considerarse primo está basada en la convención. Ambas posturas tienen sus ventajas y sus inconvenientes. De hecho, hasta el
siglo XIX, los matemáticos en su mayoría lo consideraban primo. Muchos trabajos matemáticos siguen siendo válidos a pesar de considerar el 1 como un número primo, como,
por ejemplo, el de Stern y Zeisel. La lista de Derrick Norman Lehmer de números primos hasta el 10.006.721, reimpresa hasta el año 195614 empezaba con el 1 como primer
número primo.15 
Actualmente, la comunidad matemática se inclina por no considerar al 1 en la lista de los números primos. Esta convención, por ejemplo, permite una formulación muy
económica del teorema fundamental de la aritmética: «todo número natural tiene una representación única como producto de factores primos, salvo el orden».16 17 Además,
los números primos tienen numerosas propiedades de las que carece el 1, tales como la relación del número con el valor correspondiente de la función φ de Euler o la función
divisor.18 Cabe también la igualdad para todo entero positivo, , lo que permitiría decir que tiene factores. 19 
El teorema fundamental de la aritmética establece que todo número natural tiene una representación única como producto de
factores primos, salvo el orden. Un mismo factor primo puede aparecer varias veces. El 1 se representa entonces como un
producto vacío.
Se puede considerar que los números primos son los «ladrillos» con los que se construye cualquier número natural. Por
ejemplo, se puede escribir el número 23.244 como producto de 22·3·13·149, y cualquier otra factorización del 23.244 como
producto de números primos será idéntica excepto por el orden de los factores.
La importancia de este teorema es una de las razones para excluir el 1 del conjunto de los números primos. Si se admitiera el 1
como número primo, el enunciado del teorema requeriría aclaraciones adicionales.
A partir de esta unicidad en la factorización en factores primos se desarrollan otros conceptos muy utilizados en matemáticas,
tales como el mínimo común múltiplo, el máximo común divisor y la coprimalidad de dos o más números. Así,
El mínimo común múltiplo de dos o más números es el menor de los múltiplos comunes de todos ellos. Para
calcularlo, se descomponen los números en factores primos y se toman los factores comunes y no comunes
con su máximo exponente. Por ejemplo, el mínimo común múltiplo de 10=2·5 y 12=22·3 es 60=22·3·5.
Pierre de Fermat.
El número 1 no se considera primo
Propiedades de los números primos
Teorema fundamental de la aritmética
Esta ilustración muestra que el 11 es
un número primo, pero el 12 no lo
es.
https://es.wikipedia.org/wiki/Logaritmo_natural
https://es.wikipedia.org/wiki/Bernhard_Riemann
https://es.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann
https://es.wikipedia.org/wiki/Teorema_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Jacques_Hadamard
https://es.wikipedia.org/wiki/Charles-Jean_de_la_Vall%C3%A9e_Poussin
https://es.wikipedia.org/wiki/Divisi%C3%B3n_por_tentativa
https://es.wikipedia.org/wiki/Test_de_Lucas-Lehmer
https://es.wikipedia.org/wiki/Test_de_P%C3%A9pin
https://es.wikipedia.org/wiki/Test_de_Lucas
https://es.wikipedia.org/wiki/Teorema_de_Proth
https://es.wikipedia.org/wiki/Test_de_Pocklington
https://es.wikipedia.org/w/index.php?title=Test_BLS_de_primalidad&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Test_de_Konyagin_y_Pomerance&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Test_de_Adleman-Pomerance-Rumely&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Test_de_primalidad_por_curvas_el%C3%ADpticas&action=edit&redlink=1
https://es.wikipedia.org/wiki/Test_de_primalidad_AKS
https://es.wikipedia.org/wiki/Matem%C3%A1tica_pura
https://es.wikipedia.org/wiki/A%C3%B1os_1970
https://es.wikipedia.org/wiki/Criptograf%C3%ADa_de_clave_p%C3%BAblica
https://es.wikipedia.org/wiki/RSA
https://es.wikipedia.org/wiki/Computadora_electr%C3%B3nica
https://es.wikipedia.org/wiki/Computaci%C3%B3n_distribuida
https://es.wikipedia.org/wiki/GIMPS
https://es.wikipedia.org/w/index.php?title=Moritz_Abraham_Stern&action=edit&redlink=1
https://es.wikipedia.org/wiki/Derrick_Norman_Lehmer
https://es.wikipedia.org/wiki/Teorema_fundamental_de_la_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%86_de_Euler
https://es.wikipedia.org/wiki/Funci%C3%B3n_divisor
https://es.wikipedia.org/wiki/Teorema_fundamental_de_la_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Producto_vac%C3%ADo
https://es.wikipedia.org/wiki/M%C3%ADnimo_com%C3%BAn_m%C3%BAltiplo
https://es.wikipedia.org/wiki/M%C3%A1ximo_com%C3%BAn_divisor
https://es.wikipedia.org/wiki/Coprimalidad
https://es.wikipedia.org/wiki/M%C3%ADnimo_com%C3%BAn_m%C3%BAltiplo
https://es.wikipedia.org/wiki/Archivo:Pierre_de_Fermat.jpg
https://es.wikipedia.org/wiki/Pierre_de_Fermat
https://es.wikipedia.org/wiki/Archivo:Prime_rectangles.png
El máximo común divisor de dos o más números es el mayor de los divisores comunes de todos ellos. Es igual al producto de los factores comunes con
su mínimo exponente. En el ejemplo anterior, el máximo común divisor de 10 y 12 es 2.
Finalmente, dos o más números son coprimos, o primos entre sí, si no tienen ningún factor primo común; es decir, si su máximo común divisor es 1. Un
número primo es, así, coprimo con cualquier número natural que no sea múltiplo de él mismo.
En su escritura en el sistema de numeración decimal, todos los números primos, salvo el 2 y el 5, tiene como el guarismo de las unidades uno de estos: 1,
3, 7 o 9. En general, en cualquier sistema de numeración, todos los números primos salvo un número finito acaban en una cifra que es coprima con la
base.
De lo anterior se deduce que todos los números primos salvo el 2 son de la forma 4n + 1 o bien 4n + 3. Igualmente, todos los números primos salvo el 2 y
el 3 son de la forma 6n + 1 o 6n - 1.
En la progresión aritmética 3, 7, 11, 15, 19, 23, 27, 31,... hay una cantidad infinita de números primos de la forma 4n-1, n entero. 20 
En la progresión aritmética 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67,... hay una cantidad infinita de números primos de la forma 6k+1, k entero 21 
Lema de Euclides: Si p es un número primo y divisor del producto de números enteros ab, entonces p es divisor de a o de b.
Pequeño teorema de Fermat: Si p es primo y a es algún número natural diferente de 1, entonces ap - a es divisible por p.
Si un número p no divide al número m, entonces (p; m) =1 22 
Si p es primo distinto de 2 y 5, siempre es un número periódico en su representación decimal, de periodo p − 1 o un divisor de p − 1. Esto se puede
deducir directamente a partir del pequeño teorema de Fermat. expresado en base q (en lugar de en base 10) tiene propiedades similares, siempre que
p no sea un factor primo de q.
Teorema de Wilson: Un número natural n > 1 es primo si y solo si el factorial (n - 1)! + 1 es divisible por n. Asimismo, un número natural n > 4 es
compuesto si y solo si (n - 1)! es divisible por n.
La característica de todo cuerpo es, o bien cero, o bien un número primo.
Primer teorema de Sylow: Si G es un grupo finito, p primo y pn es la mayor potencia de p que divide el orden de G. Entonces, existe un subgrupo de G de
orden pn.
Teorema de Cauchy: Si G es un grupo finito y p es un número primo que divide al orden de G, entonces G contieneun elemento de orden p.
La constante de Copeland-Erdős 0,235711131719232931374143…, obtenida por concatenación de los números primos en el sistema decimal, es un
número irracional.
El valor de la función zeta de Riemann en cada punto del plano complejo se da como una continuación meromorfa de una función definida por un
producto sobre el conjunto de todos los primos para Re(s) > 1:
En la región donde es convergente, este producto indexado por los números primos se puede calcular, obteniéndose
diversos valores, algunos de ellos importantes en teoría de números. Los dos primeros son:
 (Correspondiente a la serie armónica, relacionado con la infinitud de números primos).
 (Correspondiente al problema de Basilea).
En general es un número racional cuando n es un número entero positivo par.
El anillo es un cuerpo si y solo si p es primo. Equivalentemente: p es primo si y solo si φ(p) = p − 1.
Si p > 1, el polinomio x p-1+x p-2+ ··· + 1 es irreducible sobre si y solo si p es primo.
Un número natural n es primo si y solo si el n-ésimo polinomio de Chebyshov de la primera especie Tn(x), dividido entre x, es irreducible en 
. Además, Tn(x) ≡ xn si y solo si n es primo.
No todo número primo es un número gaussiano primo; tal el caso de 2, que como entero gaussiano admite la descomposición don de la
norma de es 2, por lo tanto no es unidad en Z[i].
Los números primos de la forma son igual a la suma de dos cuadrados perfectos; por lo que no son números gaussianos primos. En tanto que los
números primos de la forma sí son números gaussianos primos.
Todo número racional primo es un número gaussiano entero, sin ser necesariamente número gaussiano primo. 23 
Las funciones aritméticas, es decir, funciones reales o complejas, definidas sobre un conjunto de números naturales, desempeñan un papel crucial en la teoría de números. Las
más importantes son las funciones multiplicativas, que son aquellas funciones f en las cuales, para cada par de números coprimos (a,b) se tiene
.
Algunos ejemplos de funciones multiplicativas son la función φ de Euler, que a cada n asocia el número de enteros positivos menores y coprimos con n, y las funciones τ y σ,
que a cada n asocian respectivamente el número de divisores de n y la suma de todos ellos. El valor de estas funciones en las potencias de números primos es
,
,
.
Otras propiedades
Números primos y funciones aritméticas
https://es.wikipedia.org/wiki/M%C3%A1ximo_com%C3%BAn_divisor
https://es.wikipedia.org/wiki/Primos_entre_s%C3%AD
https://es.wikipedia.org/wiki/Sistema_de_numeraci%C3%B3n_decimal
https://es.wikipedia.org/wiki/N%C3%BAmeros_primos_entre_s%C3%AD
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_pitag%C3%B3rico
https://es.wikipedia.org/wiki/Lema_de_Euclides
https://es.wikipedia.org/wiki/Divisibilidad
https://es.wikipedia.org/wiki/N%C3%BAmero_entero
https://es.wikipedia.org/wiki/Peque%C3%B1o_teorema_de_Fermat
https://es.wikipedia.org/wiki/N%C3%BAmero_peri%C3%B3dico
https://es.wikipedia.org/wiki/Teorema_de_Wilson
https://es.wikipedia.org/wiki/Si_y_solo_si
https://es.wikipedia.org/wiki/Factorial
https://es.wikipedia.org/wiki/Caracter%C3%ADstica_(%C3%A1lgebra)
https://es.wikipedia.org/wiki/Teorema_de_Sylow
https://es.wikipedia.org/wiki/Grupo_(matem%C3%A1tica)
https://es.wikipedia.org/w/index.php?title=Orden_p-%C3%A1dico&action=edit&redlink=1
https://es.wikipedia.org/wiki/Teorema_de_Cauchy_(teor%C3%ADa_de_grupos)
https://es.wikipedia.org/wiki/Constante_de_Copeland-Erd%C5%91s
https://es.wikipedia.org/wiki/Concatenaci%C3%B3n
https://es.wikipedia.org/wiki/N%C3%BAmero_irracional
https://es.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann
https://es.wikipedia.org/wiki/Plano_complejo
https://es.wikipedia.org/wiki/Serie_arm%C3%B3nica_(matem%C3%A1tica)
https://es.wikipedia.org/wiki/Serie_de_los_inversos_de_los_n%C3%BAmeros_primos#Primera_prueba_(Prueba_original_de_Euler)
https://es.wikipedia.org/wiki/Problema_de_Basilea
https://es.wikipedia.org/wiki/Anillo_(matem%C3%A1tica)
https://es.wikipedia.org/wiki/Cuerpo_(matem%C3%A1tica)
https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%86_de_Euler
https://es.wikipedia.org/wiki/Polinomio
https://es.wikipedia.org/wiki/Polinomio_irreducible
https://es.wikipedia.org/wiki/Polinomio_de_Chebyshov
https://es.wikipedia.org/wiki/Funci%C3%B3n_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Funci%C3%B3n_matem%C3%A1tica
https://es.wikipedia.org/wiki/N%C3%BAmero_real
https://es.wikipedia.org/wiki/N%C3%BAmero_complejo
https://es.wikipedia.org/wiki/Teor%C3%ADa_de_n%C3%BAmeros
https://es.wikipedia.org/wiki/Funci%C3%B3n_multiplicativa
https://es.wikipedia.org/wiki/Coprimos
https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%86_de_Euler
https://es.wikipedia.org/wiki/Funci%C3%B3n_divisor
https://es.wikipedia.org/wiki/Funci%C3%B3n_divisor
https://es.wikipedia.org/wiki/Potencia_(matem%C3%A1tica)
Gracias a la propiedad que las define, las funciones aritméticas pueden calcularse fácilmente a partir del valor que toman en las potencias de números primos. De hecho, dado
un número natural n de factorización
se tiene que
con lo que se ha reconducido el problema de calcular f(n) al de calcular f sobre las potencias de los números primos que dividen n, valores que son generalmente más fáciles de
obtener mediante una fórmula general. Por ejemplo, para conocer el valor de la función φ sobre n=450=2·32·52 basta con calcular
.
Véase también: Infinitud de los números primos
Existen infinitos números primos. Euclides realizó la primera demostración alrededor del año 300 a. C. en el libro IX de su obra Elementos24 Una adaptación común de esta
demostración original sigue así: Se toma un conjunto arbitrario pero finito de números primos p1, p2, p3, ···, pn, y se considera el producto de todos ellos más uno, 
. Este número es obviamente mayor que 1 y distinto de todos los primos pi de la lista. El número q puede ser primo o compuesto. Si es primo
tendremos un número primo que no está en el conjunto original. Si, por el contrario, es compuesto, entonces existirá algún factor p que divida a q. Suponiendo que p es alguno
de los pi, se deduce entonces que p divide a la diferencia , pero ningún número primo divide a 1, es decir, se ha llegado a un absurdo por
suponer que p está en el conjunto original. La consecuencia es que el conjunto que se escogió no es exhaustivo, ya que existen números primos que no pertenecen a él, y esto es
independiente del conjunto finito que se tome.
Por tanto, el conjunto de los números primos es infinito.
Si se toma como conjunto el de los n primeros números primos, entonces , donde pn# es lo que se llama primorial de pn. Un
número primo de la forma pn# +1 se denomina número primo de Euclides en honor al matemático griego. También se puede elaborar una demostración similar a la de Euclides
tomando el producto de un número dado de números primos menos uno, el lugar del producto de esos números primos más uno. En ese sentido, se denomina número primo
primorial a un número primo de la forma pn# ± 1.
No todos los números de la forma pn# +1 son primos. En este caso, como se sigue de la demostración anterior, todos los factores primos deberán ser mayores que n. Por
ejemplo: 2·3·5·7·11·13+1=30031=59·509
Otros matemáticos han demostrado la infinitud de los números primos con diversos métodos procedentes de áreas de las matemáticas tales como al álgebra conmutativa y la
topología.25 Algunas de estas demostraciones se basan en el uso de sucesiones infinitas con la propiedad de que cada uno de sus términos es coprimo con todos los demás, por
lo que se crea una biyección entre los términos de la sucesión y un subconjunto (infinito) del conjunto de los primos.
Una sucesión que cumple dicha propiedad es la sucesión de Euclides-Mullin, que deriva de la demostración euclídea de la infinitud de los números primos, ya que cada uno de
sus términos se define como el factor primo más pequeño de uno más el producto de todos los términos anteriores. La sucesión de Sylvester se define de forma similar, puesto
que cada uno de sus términos es iguala uno más el producto de todos los anteriores. Aunque los términos de esta última sucesión no son necesariamente todos primos, cada uno
de ellos es coprimo con todos los demás, por lo que se puede escoger cualquiera de sus factores primos, por ejemplo, el menor de ellos, y el conjunto resultante será un
conjunto infinito cuyos términos son todos primos.
Un resultado aún más fuerte, y que implica directamente la infinitud de los números primos, fue descubierto por Euler en el siglo XVIII. Establece que la serie 
 es divergente. Uno de los teoremas de Mertens concreta más, estableciendo que
26 
donde la expresión O(1) indica que ese término está acotado entre -C y C para n mayor que n0, donde los valores de C y n0 no están especificados.27 
Otro resultado es el teorema de Dirichlet, que dice así:
En toda progresión aritmética an = a + n·q, donde los enteros positivos a, q ≥ 1 son primos entre sí, existen
infinitos términos que son primos.
El postulado de Bertrand enuncia así:
Características del conjunto de los números primos
Infinitud de los números primos
Otros enunciados que implican la infinitud de los números primos
https://es.wikipedia.org/wiki/Infinitud_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Segundo_teorema_de_Euclides
https://es.wikipedia.org/wiki/300_a._C.
https://es.wikipedia.org/wiki/Elementos
https://es.wikipedia.org/wiki/Primorial
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Euclides
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_primorial&action=edit&redlink=1
https://es.wikipedia.org/wiki/Infinitud_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/%C3%81lgebra_conmutativa
https://es.wikipedia.org/wiki/Topolog%C3%ADa
https://es.wikipedia.org/wiki/Sucesi%C3%B3n_matem%C3%A1tica
https://es.wikipedia.org/wiki/Biyecci%C3%B3n
https://es.wikipedia.org/wiki/Sucesi%C3%B3n_de_Euclides-Mullin
https://es.wikipedia.org/wiki/Sucesi%C3%B3n_de_Sylvester
https://es.wikipedia.org/wiki/Suma_de_los_inversos_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Serie_divergente
https://es.wikipedia.org/wiki/Teoremas_de_Mertens
https://es.wikipedia.org/wiki/Teorema_de_Dirichlet_sobre_progresiones_aritm%C3%A9ticas
https://es.wikipedia.org/wiki/Progresi%C3%B3n_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Primos_entre_s%C3%AD
https://es.wikipedia.org/wiki/Postulado_de_Bertrand
10 4 −0,3 2,2 2,500
102 25 3,3 5,1 4,000
103 168 23 10 5,952
104 1.229 143 17 8,137
105 9.592 906 38 10,425
106 78.498 6.116 130 12,740
107 664.579 44.158 339 15,047
108 5.761.455 332.774 754 17,357
109 50.847.534 2.592.592 1.701 19,667
1010 455.052.511 20.758.029 3.104 21,975
1011 4.118.054.813 169.923.159 11.586 24,283
... ... ... ... ...
Si n es un número natural mayor que 3, entonces siempre existe un número primo p tal que n < p < 2n- 2.
Una manera más débil pero elegante de formularlo es que, si n es un número natural mayor que 1, entonces siempre existe un número primo p tal que n < p < 2n. Esto supone
que, en una progresión geométrica de primer término entero mayor que 3 y razón igual a 2, entre cada término de la progresión y el siguiente, se tiene al menos un número
primo.
Véase también: Teorema de los números primos
Una vez demostrado la infinitud de los números primos, cabe preguntarse cómo se distribuyen los
primos entre los números naturales, es decir, cuán frecuentes son y dónde se espera encontrar el n-
ésimo número primo. Este estudio lo iniciaron Gauss y Legendre de forma independiente a finales
del siglo XVIII, para el cual introdujeron la función enumerativa de los números primos π(n), y
conjeturaron que su valor fuese aproximadamente
.28 
El empeño de demostrar esta conjetura abarcó todo el siglo XIX. Los primeros resultados fueron
obtenidos entre 1848 y 1859 por Chebyshov, quien demostró utilizando métodos puramente
aritméticos la existencia de dos constantes A y B tales que
para n suficientemente grande. Consiguió demostrar que, si existía el límite del cociente de aquellas
expresiones, este debía ser 1.
Hadamard y De la Vallée-Poussin elaboraron una demostración en 1896, independientemente el uno
del otro, usando métodos similares, basados en el uso de la función zeta de Riemann, que había sido
introducida por Bernhard Riemann en 1859. Hubo que esperar hasta 1949 para encontrar una demostración que
usara solo métodos elementales (es decir, sin usar el análisis complejo). Esta demostración fue ideada por
Selberg y Erdős. Actualmente, se conoce el teorema como teorema de los números primos.
El mismo Gauss introdujo una estimación más precisa, utilizando la función logaritmo integral:
.
En 1899 De la Vallée-Poussin demostró que el error que se comete aproximando de esta forma es
para una constante positiva a y para cada entero m. Este resultado fue ligeramente mejorado a lo largo de los
años. Por otra parte, en 1901 Von Koch mostró que si la hipótesis de Riemann era cierta, se tenía la siguiente
estimación, más precisa:29 
Una forma equivalente al teorema de los números primos es que pn, el n-ésimo número primo, queda bien aproximado por nln(n). En efecto, pn es estrictamente mayor que este
valor.
Ligado a la distribución de los números primos se encuentra el estudio de los intervalos entre dos primos consecutivos. Este intervalo, con la única salvedad del que hay entre el
2 y el 3, debe ser siempre igual o mayor que 2, ya que entre dos números primos consecutivos al menos hay un número par y por tanto compuesto. Si dos números primos
tienen por diferencia 2, se dice que son gemelos, y con la salvedad del "triplete" formado por los números 3, 5 y 7, los números gemelos se presentan siempre de dos en dos.
Esto también es fácil de demostrar: entre tres números impares consecutivos mayores que 3 siempre hay uno que es múltiplo de 3, y por tanto compuesto. Los primeros pares
de números primos gemelos son (3,5), (5,7), (11, 13), (17, 19) y (29, 31).
Por otra parte, la diferencia entre primos consecutivos puede ser tan grande como se quiera: dado un número natural n, se denota por n! su factorial, es decir, el producto de
todos los números naturales comprendidos entre 1 y n. Los números
Frecuencia de los números primos
Comparación entre las funciones π(n) (azul), n / ln
n (verde) y Li(n) (rojo); se puede ver que la
aproximación de π(n) con Li(n) es mejor que la que
hay con 
Diferencia entre dos primos consecutivos
https://es.wikipedia.org/wiki/Progresi%C3%B3n_geom%C3%A9trica
https://es.wikipedia.org/wiki/Teorema_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://es.wikipedia.org/wiki/Legendre
https://es.wikipedia.org/wiki/Siglo_XVIII
https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%80
https://es.wikipedia.org/wiki/Pafnuti_Chebyshov
https://es.wikipedia.org/wiki/Aritm%C3%A9tica
https://es.wikipedia.org/wiki/Jacques_Hadamard
https://es.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin
https://es.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann
https://es.wikipedia.org/wiki/Bernhard_Riemann
https://es.wikipedia.org/wiki/1859
https://es.wikipedia.org/wiki/An%C3%A1lisis_complejo
https://es.wikipedia.org/wiki/Atle_Selberg
https://es.wikipedia.org/wiki/Paul_Erd%C5%91s
https://es.wikipedia.org/wiki/Teorema_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://es.wikipedia.org/wiki/Logaritmo_integral
https://es.wikipedia.org/wiki/Helge_von_Koch
https://es.wikipedia.org/wiki/Hip%C3%B3tesis_de_Riemann
https://es.wikipedia.org/wiki/Distancia_entre_dos_n%C3%BAmeros_primos_consecutivos
https://es.wikipedia.org/wiki/N%C3%BAmeros_primos_gemelos
https://es.wikipedia.org/wiki/Factorial
https://es.wikipedia.org/wiki/Archivo:PrimeNumberTheorem.png
https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%80
son todos compuestos: si 2 ≤ i ≤ n+1, entonces (n+1)!+i es divisible entre i, por tanto, es compuesto. La sucesión, que comprende n enteros consecutivos, no contiene ningún
número primo. Por ejemplo, si n=5, estos valores corresponden a:
El siguiente valor, 6!+7=727, es primo.30De todas formas, el menor número primo que dista del siguiente en n es generalmente mucho menor que el factorial, por ejemplo, el
caso más pequeño de dos primos consecutivos separados de ocho unidades es (89, 97), mientras que 8! es igual a 40.320.
La sucesión de las diferencias entre primos consecutivos31 ha sido profusamente estudiada en matemáticas, y alrededor de este concepto se han establecido muchas conjeturas
que permanecen sin resolver.
El modelado de la distribución de los números primos es un tema de investigación recurrente entre los teóricos de números. La
primalidad de un número concreto es (hasta ahora) impredecible a pesar de que existen leyes, como el teorema de los números
primos y el postulado de Bertrand, que gobiernan su distribución a gran escala. Leonhard Euler comentó:
Hasta el día de hoy, los matemáticos han intentado en vano encontrar algún orden en la sucesión de los números
primos, y tenemos motivos para creer que es un misterio en el que la mente jamás penetrará.32 
En una conferencia de 1975, Don Zagier comentó:
Hay dos hechos sobre la distribución de los números primos de los que espero convencerles de forma tan
incontestable que quedarán permanentemente grabados en sus corazones. El primero es que, a pesar de su
definición simple y del papel que desempeñan como ladrillos con los que se construyen los números naturales,
los números primos crecen como malas hierbas entre los números naturales, y no parecen obedecer ninguna otra
ley que la del azar, y nadie puede predecir dónde brotará el siguiente. El segundo hecho es aún más asombroso,
ya que dice justo lo contrario: que los números primos muestran una regularidad pasmosa, que hay leyes que
gobiernan su comportamiento, y que obedecen estas leyes con precisión casi militar.33 
La criba de Eratóstenes es una manera sencilla de hallar todos los números primos menores o iguales que un número dado. Se
basa en confeccionar una lista de todos los números naturales desde el 2 hasta ese número y tachar repetidamente los múltiplos
de los números primos ya descubiertos. La criba de Atkin, más moderna, tiene una mayor complejidad, pero si se optimiza
apropiadamente también es más rápida. También existe una reciente criba de Sundaram que genera únicamente números
compuestos, siendo los primos los números faltantes.
En la práctica, lo que se desea es determinar si un número dado es primo sin tener que confeccionar una lista de números
primos. Un método para determinar la primalidad de un número es la división por tentativa, que consiste en dividir
sucesivamente ese número entre los números primos menores o iguales a su raíz cuadrada. Si alguna de las divisiones es
exacta, entonces el número no es primo; en caso contrario, es primo. Por ejemplo, dado n menor o igual que 120, para
determinar su primalidad basta comprobar si es divisible entre 2, 3, 5 y 7, ya que el siguiente número primo, 11, ya es mayor
que √120. Es el test de primalidad más sencillo, y rápidamente pierde su utilidad a la hora de comprobar la primalidad de
números grandes, ya que el número de factores posibles crece demasiado rápido a medida que crece el número potencialmente primo.
En efecto, el número de números primos menores que n es aproximadamente
.
De esta forma, para determinar la primalidad de n, el mayor factor primo que se necesita no es mayor que √n, dejando el número de candidatos a factor primo en cerca de
.
Esta expresión crece cada vez más lentamente en función de n, pero, como los n grandes son de interés, el número de candidatos también se hace grande: por ejemplo, para n =
1020 se tienen 450 millones de candidatos.
Conclusión
La distribución de todos los números
primos comprendidos entre 1 y
76.800, de izquierda a derecha y de
arriba abajo. Cada pixel representa
un número. Los píxeles negros
representan números primos; los
blancos representan números no
primos.
Imagen con 2310 columnas que
conserva múltiplos de 2, 3, 5, 7 y 11
en las columnas respectivas. Como
cabe esperar, los números primos
caerán en columnas concretas si los
números están ordenados de
izquierda a derecha y el ancho es un
múltiplo de un número primo. Sin
embargo, los números primos
también quedan distribuidos de
manera ordenada en construcciones
espirales como la espiral de Ulam,
ya que tienden a concentrarse en
algunas diagonales concretas y no
en otras.
Encontrar números primos
Tests de primalidad
https://es.wikipedia.org/wiki/Teorema_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Postulado_de_Bertrand
https://es.wikipedia.org/wiki/Leonhard_Euler
https://es.wikipedia.org/w/index.php?title=Don_Zagier&action=edit&redlink=1
https://es.wikipedia.org/wiki/Criba_de_Erat%C3%B3stenes
https://es.wikipedia.org/wiki/Criba_de_Atkin
https://es.wikipedia.org/wiki/Criba_de_Sundaram
https://es.wikipedia.org/wiki/Divisi%C3%B3n_por_tentativa
https://es.wikipedia.org/wiki/Archivo:PrimeNumbersSmall.png
https://es.wikipedia.org/wiki/Archivo:Primenumbers2310inv.png
https://es.wikipedia.org/wiki/Espiral_de_Ulam
Asimismo, existen otros muchos tests de primalidad deterministas que se basan en propiedades que caracterizan
a los números primos, pero su utilidad computacional depende mucho del test usado. Por ejemplo, se podría
emplear el teorema de Wilson para calcular la primalidad de un número, pero tiene el inconveniente de requerir
el cálculo de un factorial, una operación computacionalmente prohibitiva cuando se manejan números grandes.
Aquí entre en juego el tiempo de ejecución del algoritmo empleado, que se expresa en la notación de Landau.
Para poder determinar la primalidad de números cada vez más grandes (de miles de cifras) se buscan aquellos
algoritmos cuyo tiempo de ejecución crezca lo más lentamente posible, a ser posible, que se pueda expresar
como un polinomio. Si bien el test de primalidad AKS cumple con esta condición, para el rango de números
que se usa en la práctica este algoritmo es extremadamente lento.
Por otra parte, a menudo basta con tener una respuesta más rápida con una alta probabilidad (aunque no segura)
de ser cierta. Se puede comprobar rápidamente la primalidad de un número relativamente grande mediante tests
de primalidad probabilísticos. Estos tests suelen tomar un número aleatorio llamado "testigo" e introducirlo en
una fórmula junto con el número potencialmente primo n. Después de varias iteraciones, se resuelve que n es
"definitivamente compuesto" o bien "probablemente primo". Estos últimos números pueden ser primos o bien
pseudoprimos (números compuestos que pasan el test de primalidad). Algunos de estos tests no son perfectos:
puede haber números compuestos que el test considere "probablemente primos" independientemente del testigo
utilizado. Esos números reciben el nombre de pseudoprimos absolutos para ese test. Por ejemplo, los números
de Carmichael son números compuestos, pero el test de Fermat los evalúa como probablemente primos. Sin
embargo, los tests probabilísticos más utilizados, como el test de Miller-Rabin o el obsoleto test de Solovay-Strassen, superado por el anterior, no tienen este inconveniente, aun
siendo igualmente tests probabilísticos.
Algunos tests probabilísticos podrían pasar a ser determinísticos y algunos tests pueden mejorar su tiempo de ejecución si se verifican algunas hipótesis matemáticas. Por
ejemplo, si se verifica la hipótesis generalizada de Riemann, se puede emplear una versión determinística del test de Miller-Rabin, y el test de primalidad por curvas elípticas
podría mejorar notablemente su tiempo de ejecución si se verificaran algunas hipótesis de teoría analítica de números.
Un algoritmo de factorización es un algoritmo que separa uno a uno los factores primos de un número. Los algoritmos de factorización pueden funcionar también a modo de
tests de primalidad, pero en general tienen un tiempo de ejecución menos ventajoso. Por ejemplo, se puede modificar el algoritmo de división por tentativa de forma que no se
detenga cuando se obtenga una división exacta, sino que siga realizando nuevasdivisiones, y no sobre el número original, sino sobre el cociente obtenido. Después de la
división por tentativa, los métodos más antiguos que se conocen son el método de Fermat, que se basa en las diferencias entre cuadrados y que es especialmente eficaz cuando
n es el producto de dos números primos próximos entre sí, y el método de Euler, que se basa en la representación de n como suma de dos cuadrados de dos formas distintas.
Más recientemente, se han elaborado algoritmos basados en una gran variedad de técnicas, como las fracciones continuas o las curvas elípticas, aunque algunos son mejoras de
métodos anteriores (la criba cuadrática, por ejemplo, se basa en una mejora del método de Fermat y posee complejidad computacional subexponencial sobre el número de cifras
de n). Otros, como el método rho de Pollard, son probabilísticos, y no garantizan hallar los divisores de un número compuesto.
Hoy por hoy, el algoritmo determinístico más rápido de uso general es el general number field sieve, que también posee complejidad computacional subexponencial sobre el
número de cifras de n.34 Se ha propuesto un algoritmo cuyo tiempo de ejecución es polinómico sobre el número de cifras de n (el algoritmo de Shor), pero requiere ser
ejecutado en un ordenador cuántico, ya que su simulación en un ordenador normal requiere un tiempo exponencial. No se conocen algoritmos para factorizar en una
computadora tradicional en tiempo polinómico y tampoco se demostró que esto sea imposible.
Véase también: Fórmula de los números primos
A lo largo de la historia, se han buscado numerosas fórmulas para generar los números primos. El nivel más alto de exigencia para una fórmula así sería que asociara a cada
número natural n el n-ésimo número primo. De forma más indulgente, se puede pedir una función f inyectiva que asocie a cada número natural n un número primo de tal forma
que cada uno de los valores tomados aparezca solo una vez.
Además, se exige que la función se pueda aplicar, efectiva y eficazmente, en la práctica.35 Por ejemplo, el teorema de Wilson asegura que p es un número primo si y solo si (p-
1)!≡-1 (mod p). Otro ejemplo: la función f(n) = 2 + ( 2(n!) mod (n+1)) genera todos los números primos, solo los números primos, y solo el valor 2 se toma más de una vez. Sin
embargo, ambas fórmulas se basan en el cálculo de un factorial, lo que las hace computacionalmente inviables.
En la búsqueda de estas funciones, se han investigado, notablemente, las funciones polinómicas. Cabe subrayar que ningún polinomio, aun en varias variables, devuelve solo
valores primos.36 Por ejemplo, el polinomio en una variable f(n) = n² + n + 41, estudiada por Leonardo Euler, devuelve valores primos para n = 0,…, 39, sin embargo para n=
40, resulta un número compuesto.37 Si el término constante vale cero, entonces el polinomio es múltiplo de n, por lo que el polinomio es compuesto
para valores compuestos de n. En caso contrario, si c es el término constante, entonces f(cn) es múltiplo de c, por lo que si el polinomio no es constante, necesariamente deberá
incluir valores compuestos.
Sin embargo, hay polinomios en varias variables cuyos valores positivos (cuando las variables recorren números naturales) son precisamente números primos. Un ejemplo, es
este polinomio descubierto por Jones, Sato, Wada y Wiens en 1976:36 
La criba de Eratóstenes fue concebida por
Eratóstenes de Cirene, un matemático griego del
siglo III a. C. Es un algoritmo sencillo que permite
encontrar todos los números primos menores o
iguales que un número dado.
Algoritmos de factorización
Fórmulas que solo generasen números primos
https://es.wikipedia.org/wiki/Teorema_de_Wilson
https://es.wikipedia.org/wiki/Factorial
https://es.wikipedia.org/wiki/Tiempo_de_ejecuci%C3%B3n
https://es.wikipedia.org/wiki/Notaci%C3%B3n_de_Landau
https://es.wikipedia.org/wiki/Tiempo_polin%C3%B3mico
https://es.wikipedia.org/wiki/Test_de_primalidad_AKS
https://es.wikipedia.org/wiki/Probabilidad
https://es.wikipedia.org/wiki/Test_de_primalidad
https://es.wikipedia.org/wiki/Pseudoprimo
https://es.wikipedia.org/wiki/N%C3%BAmeros_de_Carmichael
https://es.wikipedia.org/wiki/Test_de_primalidad_de_Fermat
https://es.wikipedia.org/wiki/Test_de_primalidad_de_Miller-Rabin
https://es.wikipedia.org/w/index.php?title=Test_de_primalidad_de_Solovay-Strassen&action=edit&redlink=1
https://es.wikipedia.org/wiki/Hip%C3%B3tesis_generalizada_de_Riemann
https://es.wikipedia.org/w/index.php?title=Test_de_primalidad_por_curvas_el%C3%ADpticas&action=edit&redlink=1
https://es.wikipedia.org/wiki/Algoritmo
https://es.wikipedia.org/wiki/M%C3%A9todo_de_factorizaci%C3%B3n_de_Fermat
https://es.wikipedia.org/wiki/Cuadrado_(aritm%C3%A9tica)
https://es.wikipedia.org/wiki/M%C3%A9todo_de_factorizaci%C3%B3n_de_Euler
https://es.wikipedia.org/wiki/Suma_de_dos_cuadrados
https://es.wikipedia.org/wiki/Fracci%C3%B3n_continua
https://es.wikipedia.org/wiki/Curva_el%C3%ADptica
https://es.wikipedia.org/wiki/Criba_cuadr%C3%A1tica
https://es.wikipedia.org/wiki/M%C3%A9todo_rho_de_Pollard
https://es.wikipedia.org/w/index.php?title=General_number_field_sieve&action=edit&redlink=1
https://es.wikipedia.org/wiki/Algoritmo_de_Shor
https://es.wikipedia.org/wiki/Ordenador_cu%C3%A1ntico
https://es.wikipedia.org/wiki/F%C3%B3rmula_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/F%C3%B3rmula_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/wiki/Teorema_de_Wilson
https://es.wikipedia.org/wiki/Archivo:Sieve_of_Eratosthenes_animation.gif
https://es.wikipedia.org/wiki/Criba_de_Erat%C3%B3stenes
https://es.wikipedia.org/wiki/Erat%C3%B3stenes_de_Cirene
https://es.wikipedia.org/wiki/Matem%C3%A1tico
https://es.wikipedia.org/wiki/Antigua_Grecia
https://es.wikipedia.org/wiki/Siglo_III_a._C.
https://es.wikipedia.org/wiki/Algoritmo
Al igual que ocurre con las fórmulas con factoriales, este polinomio no es práctico de calcular, ya que, aunque los valores positivos que toma son todos primos, prácticamente
no devuelve otra cosa que valores negativos cuando se hacen variar las variables a a z de 0 a infinito.
Otro enfoque al problema de encontrar una función que solo genere números primos viene dado a partir del teorema de Mills, que indica que existe una constante θ tal que
es siempre un número primo, donde es la función piso.38 Todavía no se conoce ninguna fórmula para calcular la constante de Mills, y las aproximaciones que se emplean en
la actualidad se basa en la sucesión de los así llamados números primos de Mills (los números primos generados mediante esta fórmula), que no pueden ser obtenidos
rigurosamente, sino solo de manera probabilística, suponiendo cierta la hipótesis de Riemann.
A continuación mencionaremos la propiedad algebraica y aritmética que permite expresar dicho algoritmo: expresa el conjunto de todos los números naturales no
divisibles por 2 y 3, o sea en un conjunto que incluiye a los números primos mayores que 3. La explicación de esto radica en que tal que n y m
pertenecen a los naturales y p pertenece al conjunto de los números primos, esto significa que si un número natural es de la forma solo basta recorrer(e ir dividiendo)
por los números primos que son de su misma forma para tener la certeza de que es o no es un número primo, ahorrándonos mucho tiempo en el algoritmo de
búsqueda(no necesito dividirlo por los números primos de la forma ).
El autor de este descubrimiento es un estudiante argentino llamado Esteban Gadacz39 en el año 2009 inspirado en teoría de números al leer un libro40 recomendado por un
profesor de matemática discreta llamado Martin Maulhardt41 en la UTN(Universidad Tecnológica Nacional - Facultad Regional de Buenos Aires) en el año 2009.
De mayor interés son otras fórmulas que, aunque no solo generen números primos, son más rápidas de implementar, sobre todo si existe un algoritmo especializado que permita
calcular rápidamente la primalidad de los valores que van tomando. A partir de estas fórmulas se obtienen subconjuntos relativamente pequeños del conjunto de los números
primos,que suelen recibir un nombre colectivo.
Véanse también: Número primo primorial y Número primo factorial.
Los números primos primoriales, directamente relacionados con la demostración euclidiana de la infinitud de los números primos, son los de la forma p = n# ± 1 para algún
número natural n, donde n# es igual al producto 2 · 3 · 5 · 7 · 11 · … de todos los primos ≤ n. Asimismo, un número primo se dice primo factorial si es de la forma n! ± 1. Los
primeros primos factoriales son:
n! − 1 es primo para n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, …42 
n! + 1 es primo para n = 0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, …43 
Véase también: Número de Fermat
Los números de Fermat, ligados a la construcción de polígonos regulares con regla y compás, son los números de la forma 
, con n natural. Los únicos números primos de Fermat que se conocen hasta la fecha son los cinco que ya conocía el
propio Fermat, correspondientes a n = 0, 1, 2, 3 y 4, mientras que para valores de n entre 5 y 32 estos números son compuestos.44 
Para determinar su primalidad, existe un test especializado cuyo tiempo de ejecución es polinómico: el test de Pépin. Sin embargo, los
propios números de Fermat crecen tan rápidamente que solo se lo ha podido aplicar para valores de n pequeños. En 1999 se lo aplicó
para n = 24. Para determinar el carácter de otros números de Fermat mayores se utiliza el método de divisiones sucesivas y de esa
manera a fecha de junio de 2009 se conocen 241 números de Fermat compuestos, aunque en la mayoría de los casos se desconozca su
factorización completa.44 
Véase también: Número primo de Mersenne
Los números de Mersenne son los de forma Mp = 2p – 1, donde p es primo.45 Los mayores números primos conocidos son
generalmente de esta forma, ya que existe un test de primalidad muy eficaz, el test de Lucas-Lehmer, para determinar si un número de Mersenne es primo o no.
Actualmente, el mayor número primo que se conoce es M82 589 933 = 282 589 933 - 1, que tiene 24 862 048 cifras en el sistema decimal. Se trata cronológicamente del 51º
número primo de Mersenne conocido y su descubrimiento se anunció el 7 de diciembre de 201846 gracias al proyecto de computación distribuida «Great Internet Mersenne
Prime Search» (GIMPS).
Algoritmo de primalidad no probabilístico
Clases de números primos
Primos primoriales y primos factoriales
Números primos de Fermat
Construcción de un
pentágono regular. 5 es un
número primo de Fermat.
Números primos de Mersenne
https://es.wikipedia.org/wiki/Teorema_de_Mills
https://es.wikipedia.org/wiki/Funci%C3%B3n_parte_entera
https://es.wikipedia.org/wiki/Hip%C3%B3tesis_de_Riemann
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_primorial&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_factorial&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_primorial&action=edit&redlink=1
https://es.wikipedia.org/wiki/Primorial
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_factorial&action=edit&redlink=1
https://es.wikipedia.org/wiki/Factorial
https://es.wikipedia.org/wiki/N%C3%BAmero_de_Fermat
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Fermat
https://es.wikipedia.org/wiki/Pol%C3%ADgono_regular
https://es.wikipedia.org/wiki/Regla_y_comp%C3%A1s
https://es.wikipedia.org/wiki/Tiempo_de_ejecuci%C3%B3n_polin%C3%B3mico
https://es.wikipedia.org/wiki/Test_de_P%C3%A9pin
https://es.wikipedia.org/wiki/Divisi%C3%B3n_por_tentativa
https://es.wikipedia.org/wiki/Junio_de_2009
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Mersenne
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Mersenne
https://es.wikipedia.org/wiki/Test_de_primalidad_de_Lucas-Lehmer
https://es.wikipedia.org/wiki/Computaci%C3%B3n_distribuida
https://es.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://es.wikipedia.org/wiki/Archivo:Pentagon_construct.gif
https://es.wikipedia.org/wiki/Pent%C3%A1gono
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Fermat
Existen literalmente decenas de apellidos que se pueden añadir al concepto de número primo para referirse a un subconjunto que cumple alguna propiedad concreta. Por
ejemplo, los números primos pitagóricos son los que se pueden expresar en la forma 4n+1. Dicho de otra forma, se trata de los números primos cuyo resto al dividirlos entre 4
es 1. Otro ejemplo es el de los números primos de Wieferich, que son aquellos números primos p tales que p2 divide a 2p-1 - 1.
Algunas de estas propiedades se refieren a una relación concreta con otro número primo:
Números primos gemelos: p y p+2 lo son si son los dos primos.
Número primo de Sophie Germain: dado p primo, es de Sophie Germain si 2p + 1 también es primo. Una sucesión de números p1,p2,p3,··· ,pn todos ellos
primos, tales que pi+1=2pi+1 para todo i ∈ {1,2,···,n-1 }, se denomina cadena (completa) de Cunningham de primera especie, y cumple por definición que
cada uno de los términos, salvo el último, es un número primo de Sophie Germain. Se cree que para todo n natural existen infinitas cadenas de
Cunningham de longitud n,47 aunque hasta la fecha nadie ha proporcionado prueba de que dicha afirmación sea cierta.
Número primo de Wagstaff: p lo es si , donde q es otro número primo.48 49 
También se les da nombres especiales a algunas clases de primos que dependen de la base de numeración empleada o de la forma de escribir los dígitos, y no de una fórmula
matemática. Es el caso de los números somirp (primos al revés), que son aquellos números primos tales que el número obtenido al invertir el orden de sus cifras también es
primo. También es el caso de los números primos repunit, que son aquellos números primos que son concatenación de unos. Si, en lugar de considerarse el sistema de
numeración decimal se considera el binario, se obtiene otro conjunto distinto de números primos repunit que, además, coincide con el de los números primos de Mersenne.
Finalmente, los números primos triádicos son aquellos números que son primos, capicúas y simétricos respecto de una recta horizontal.
El que se le dé un nombre a una clase de números primos con una definición precisa no significa que se conozca algún número primo que sea de esa clase. Por ejemplo, no se
conoce hasta el momento ningún número primo de Wall-Sun-Sun, pero su relevancia radica en que en 1992, antes de la demostración de Wiles del último teorema de Fermat, se
descubrió que la falsedad del teorema para un número primo p dado implicaba que p era un número primo de Wall-Sun-Sun. Esto hizo que, durante un tiempo, la búsqueda de
números primos de esta clase fuera también la búsqueda de un contraejemplo del último teorema de Fermat.50 
Existen numerosas preguntas abiertas acerca de los números primos. Muchas de ellas son problemas bien antiguos, y una de las más significativas es la hipótesis de Riemann,
varias veces mencionada en este artículo como una conjetura que, de ser cierta, permitiría conocer numerosos resultados relevantes en diversos campos de las matemáticas.
Véase también: Hipótesis de Riemann
Para entender la hipótesis de Riemann, una conjetura enunciada en 1859 pero que, hasta la fecha (2019), sigue sin resolverse, es necesario entender la función zeta de Riemann.
Sea un número complejo con parte real mayor que 1. Entonces,
La segunda igualdad es una consecuencia del teorema fundamental de la aritmética, y muestra que la función zeta está íntimamente relacionada con los números primos.
Existen dos tipos de ceros de la función zeta, es decir, valores s para los cuales ζ(s) = 0: los triviales, que son s=-2, s=-4, s=-6, etc. (los enteros pares negativos) y los no
triviales, que son aquellos ceros que no se encuentran en el eje real. Lo que indica la hipótesis de Riemann es que la parte real de todos los ceros no triviales es igual a 1/2.
La veracidad de la hipótesis implica una profunda conexión con los números primos, en esencia, en el caso de verificarse, dice que los números primos están distribuidos de la
forma másregular posible. Desde un punto de vista «físico», dice grosso modo que las irregularidades en la distribución de los números primos solo proceden de ruido
aleatorio. Desde un punto de vista matemático, dice que la distribución asintótica de los números primos (según el teorema de los números primos, la proporción de primos
menores que n es ) también es cierta para intervalos mucho menores, con un error de aproximadamente la raíz cuadrada de n (para intervalos próximos a n). Está
ampliamente extendido en la comunidad matemática que la hipótesis sea cierta. En concreto, la presunción más simple es que los números primos no deberían tener
irregularidades significativas en su distribución sin una buena razón.51 
Muchas conjeturas tratan sobre si hay infinitos números primos de una determinada forma. Así, se conjetura que hay infinitos números primos de Fibonacci52 e infinitos
primos de Mersenne, pero solo un número finito de primos de Fermat.53 No se sabe si hay infinitos números primos de Euclides.
También hay numerosas conjeturas que se ocupan de determinadas propiedades de la distribución de los números primos. Así, la conjetura de los números primos gemelos
enuncia que hay infinitos números primos gemelos, que son pares de primos cuya diferencia es de 2. La conjetura de Polignac es una versión más general y más fuerte de la
anterior, ya que enuncia que, para cada entero positivo n, hay infinitos pares de primos consecutivos que difieren en 2n. A su vez, una versión más débil de la conjetura de
Polignac dice que todo número par es la diferencia de dos números primos.
Otras clases de números primos
Conjeturas
Hipótesis de Riemann
Otras conjeturas
Infinitud de ciertos tipos de números primos
Distribución de los números primos
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_pitag%C3%B3rico
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Wieferich
https://es.wikipedia.org/wiki/N%C3%BAmeros_primos_gemelos
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Sophie_Germain
https://es.wikipedia.org/wiki/Cadena_de_Cunningham
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Wagstaff
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_omirp&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_repunit&action=edit&redlink=1
https://es.wikipedia.org/wiki/Sistema_de_numeraci%C3%B3n_decimal
https://es.wikipedia.org/wiki/Sistema_de_numeraci%C3%B3n_binario
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_tri%C3%A1dico
https://es.wikipedia.org/wiki/N%C3%BAmero_capic%C3%BAa
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Wall-Sun-Sun
https://es.wikipedia.org/wiki/%C3%9Altimo_teorema_de_Fermat
https://es.wikipedia.org/wiki/Hip%C3%B3tesis_de_Riemann
https://es.wikipedia.org/wiki/1859
https://es.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann
https://es.wikipedia.org/wiki/N%C3%BAmero_complejo
https://es.wikipedia.org/wiki/Parte_real
https://es.wikipedia.org/wiki/Teorema_fundamental_de_la_aritm%C3%A9tica
https://es.wikipedia.org/wiki/Teorema_de_los_n%C3%BAmeros_primos
https://es.wikipedia.org/w/index.php?title=N%C3%BAmero_primo_de_Fibonacci&action=edit&redlink=1
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Mersenne
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Fermat
https://es.wikipedia.org/wiki/N%C3%BAmero_primo_de_Euclides
https://es.wikipedia.org/wiki/Conjetura_de_los_n%C3%BAmeros_primos_gemelos
https://es.wikipedia.org/wiki/N%C3%BAmeros_primos_gemelos
https://es.wikipedia.org/w/index.php?title=Conjetura_de_Polignac&action=edit&redlink=1
https://es.wikipedia.org/wiki/N%C3%BAmero_par
Asimismo, se conjetura la infinidad de los primos de la forma n2 + 1. Según la conjetura de Brocard, entre los cuadrados de primos consecutivos mayores que 2 existen siempre
al menos cuatro números primos. La conjetura de Legendre establece que, para cada n natural, existe un número primo entre n2 y (n+1)2. Finalmente, la conjetura de Cramér,
cuya veracidad implicaría la de Legendre, dice que:
Otras conjeturas relacionan algunas propiedades aditivas de los números con los números primos. Así, la conjetura de Goldbach dice que todo número par mayor que 2 se
puede escribir como suma de dos números primos, aunque también existe una versión más débil de la misma conjetura según la cual todo número impar mayor que 5 se puede
escribir como suma de tres números primos. El matemático chino Chen Jingrun demostró, en 1966, que en efecto, todo número par suficientemente grande puede expresarse
como suma de dos primos o como la suma de un primo y de un número que es el producto de dos primos. ("semi-primo").54 
En 1912, Landau estableció en el Quinto Congreso Internacional de Matemáticos de Cambridge una lista de cuatro de los problemas ya mencionados sobre números primos,
que se conocen como los problemas de Landau. Ninguno de ellos está resuelto hasta la fecha. Se trata de la conjetura de Goldbach, la de los números primos gemelos, la de
Legendre y la de los primos de la forma n2 + 1.55 
El concepto de número primo es tan importante que se ha visto generalizado de varias maneras en diversas ramas de las matemáticas.
Se pueden definir los elementos primos y los elementos irreducibles en cualquier dominio de integridad.56 En cualquier
dominio de factorización única, como por ejemplo, el anillo de los enteros, el conjunto de elementos primos equivale
al conjunto de los elementos irreducibles, que en es {…, −11, −7, −5, −3, −2, 2, 3, 5, 7, 11, …}.
Considérense por ejemplo los enteros gaussianos , es decir, los números complejos de la forma a+bi con a, b ∈ .
Este es un dominio de integridad, y sus elementos primos son los primos gaussianos. Cabe destacar que el 2 no es un
primo gaussiano, porque admite factorización como producto de los primos gaussianos (1+i) y (1-i). Sin embargo, el
elemento 3 sí es primo en los enteros gaussianos, pero no lo es en otro dominio entero. En general, los primos racionales
(es decir, los elementos primos del anillo ) de la forma 4k+3 son primos gaussianos, pero no lo son aquellos de la forma
4k+1.
En teoría de anillos, un ideal I es un subconjunto de un anillo A tal que
si i, j ∈ I, entonces la suma i + j pertenece a I
y si x ∈ A, i ∈ I, entonces los productos a × i, i × a pertenecen a I.
Un ideal primo se define entonces como un ideal que cumple también que:
para cualquier par de elementos a, b del anillo A tales que su producto a × b pertenece a I, entonces, al menos uno de los dos elementos, a o b, está en I.
I no es el anillo A entero.
Los ideales primos son una herramienta relevante en álgebra conmutativa, teoría algebraica de números y geometría algebraica. Los ideales primos del anillo de enteros son los
ideales (0), (2), (3), (5), (7), (11), …
Un problema central en teoría algebraica de números es la manera en que se factorizan los ideales primos cuando se ven sometidos a una extensión de cuerpos. En el ejemplo
de los enteros gaussianos, (2) se ramifica en potencia de un primo (ya que y generan el mismo ideal primo), los ideales primos de la forma son inertes
(mantienen su primalidad) y los de la forma pasan a ser producto de dos ideales primos distintos.
En teoría algebraica de números surge otra generalización más. Dado un cuerpo , reciben el nombre de valoraciones sobre determinadas funciones de en . Cada una de
estas valoraciones genera una topología sobre , y se dice que dos valoraciones son equivalentes si generan la misma topología. Un primo de es una clase de equivalencia
de valoraciones. Con esta definición, los primos del cuerpo de los números racionales quedan representados por la función valor absoluto así como por las valoraciones p-
ádicas sobre para cada número primo p.
En teoría de nudos, un nudo primo es un nudo no trivial que no se puede descomponer en dos nudos más pequeños. De forma más precisa, se trata de un nudo que no se puede
escribir como suma conexa de dos nudos no triviales.
Teoría aditiva de números
Los cuatro problemas de Landau
Generalización del concepto de número primo
Elementos primosen un anillo
Representación de los primos gaussianos
de norma menor o igual a 500. Los primos
gaussianos son, por definición, los enteros
gaussianos que son primos.
Ideales primos
Primos en teoría de la valoración
Nudos primos
https://es.wikipedia.org/wiki/Conjetura_de_Brocard
https://es.wikipedia.org/wiki/Conjetura_de_Legendre
https://es.wikipedia.org/wiki/Conjetura_de_Cram%C3%A9r
https://es.wikipedia.org/w/index.php?title=Teor%C3%ADa_aditiva_de_n%C3%BAmeros&action=edit&redlink=1
https://es.wikipedia.org/wiki/Conjetura_de_Goldbach
https://es.wikipedia.org/wiki/Conjetura_d%C3%A9bil_de_Goldbach
https://es.wikipedia.org/wiki/China
https://es.wikipedia.org/wiki/Chen_Jingrun
https://es.wikipedia.org/wiki/N%C3%BAmero_semiprimo
https://es.wikipedia.org/wiki/Edmund_Landau
https://es.wikipedia.org/wiki/Congreso_Internacional_de_Matem%C3%A1ticos
https://es.wikipedia.org/wiki/Problemas_de_Landau
https://es.wikipedia.org/wiki/Elemento_primo
https://es.wikipedia.org/wiki/Elemento_irreducible
https://es.wikipedia.org/wiki/Dominio_de_integridad
https://es.wikipedia.org/wiki/Dominio_de_factorizaci%C3%B3n_%C3%BAnica
https://es.wikipedia.org/wiki/Entero_gaussiano
https://es.wikipedia.org/wiki/N%C3%BAmero_complejo
https://es.wikipedia.org/w/index.php?title=Primo_gaussiano&action=edit&redlink=1
https://es.wikipedia.org/wiki/Teor%C3%ADa_de_anillos
https://es.wikipedia.org/wiki/Ideal_(teor%C3%ADa_de_anillos)
https://es.wikipedia.org/wiki/Anillo_(matem%C3%A1tica)
https://es.wikipedia.org/wiki/Ideal_primo
https://es.wikipedia.org/wiki/%C3%81lgebra_conmutativa
https://es.wikipedia.org/wiki/Teor%C3%ADa_algebraica_de_n%C3%BAmeros
https://es.wikipedia.org/wiki/Geometr%C3%ADa_algebraica
https://es.wikipedia.org/wiki/Cuerpo_(matem%C3%A1ticas)
https://es.wikipedia.org/w/index.php?title=Valoraci%C3%B3n_(%C3%A1lgebra)&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Cuerpo_topol%C3%B3gico&action=edit&redlink=1
https://es.wikipedia.org/wiki/Clase_de_equivalencia
https://es.wikipedia.org/wiki/N%C3%BAmero_racional
https://es.wikipedia.org/wiki/Valor_absoluto
https://es.wikipedia.org/wiki/N%C3%BAmero_p-%C3%A1dico
https://es.wikipedia.org/wiki/Teor%C3%ADa_de_nudos
https://es.wikipedia.org/w/index.php?title=Nudo_primo&action=edit&redlink=1
https://es.wikipedia.org/wiki/Nudo_(matem%C3%A1ticas)
https://es.wikipedia.org/wiki/Suma_conexa
https://es.wikipedia.org/wiki/Archivo:Gaussian_primes.png
https://es.wikipedia.org/wiki/Entero_gaussiano
Algunos nudos primos.
En 1949 Horst Schubert demostró un teorema de factorización análogo al teorema fundamental de la aritmética, que
asegura que cada nudo se puede obtener de forma única como suma conexa de nudos primos.57 Por este motivo, los
nudos primos desempeñan un papel central en la teoría de nudos: una clasificación de los nudos ha sido desde
finales del siglo XIX el tema central de la teoría.
En el estudio de los números complejos, se acude al concepto de "primos relativos" para definir raíces primitivas de la unidad .58 Si n es un número primo
todas las raíces enésimas de 1 son raíces primitivas, salvo la raíz 1.
En la definición de un cuerpo finito, se exige que el número de elementos de un anillo sea entero primo. En tal caso, eliminando el cero, cada elemento
tiene inverso multiplicativo y se obtiene la estructura de un cuerpo. 59 
En la definición de un polígono estrellado de n lados, para tomar los puntos de m en m, se exige que m sea menor que n/2 y primo con n. 60 
Al definir el representante canónico de un número racional, usando clases de equivalencia de pares ordenados de números enteros, necesariamente, el
par ordenado definente tiene que involucrar dos enteros primos relativos. A fortiori, por lo menos uno de ellos, un primo absoluto. 61 
El algoritmo RSA se basa en la obtención de la clave pública mediante la multiplicación de dos números grandes (mayores que 10100) que sean primos. La seguridad de este
algoritmo radica en que no se conocen maneras rápidas de factorizar un número grande en sus factores primos utilizando computadoras tradicionales.
Los números primos han influido en numerosos artistas y escritores. El compositor francés Olivier Messiaen se valió de ellos para crear música no métrica. En obras tales como
La Nativité du Seigneur (1935) o Quatre études de rythme (1949-50) emplea simultáneamente motivos cuya duración es un número primo para crear ritmos impredecibles.
Según Messiaen, esta forma de componer fue «inspirada por los movimientos de la naturaleza, movimientos de duraciones libres y desiguales».62 
En la novela escrita en 1968 2001: Una Odisea Espacial, Arthur C. Clarke menciona que el monolito de origen extraterrestre tiene la proporción del cuadrado de los primeros
tres números primos: 1,4,9.
En su novela de ciencia ficción Contact, posteriormente adaptada al cine, Carl Sagan sugiere que los números primos podrían ser empleados para comunicarse con inteligencias
extraterrestres, una idea que había desarrollado de manera informal con el astrónomo estadounidense Frank Drake en 1975.63 
El curioso incidente del perro a medianoche, de Mark Haddon, que describe en primera persona la vida de un joven autista muy dotado en matemáticas y cálculo mental, utiliza
únicamente los números primos para numerar los capítulos.
En la novela PopCo de Scarlett Thomas, la abuela de Alice Butler trabaja en la demostración de la hipótesis de Riemann. El libro ilustra una tabla de los mil primeros números
primos.64 
La soledad de los números primos, novela escrita por Paolo Giordano, ganó el premio Strega en 2008.
También son muchas las películas que reflejan la fascinación popular hacia los misterios de los números primos y la criptografía, por ejemplo, Cube, Sneakers, El amor tiene
dos caras y Una mente maravillosa. Esta última se basa en la biografía del matemático y premio Nobel John Forbes Nash, escrita por Sylvia Nasar.65 
El escritor Griego Apostolos Doxiadis, escribió El tío Petros y la conjetura de Goldbach, que narra cómo un ficticio matemático prodigio de principios de siglo XX se sumerge
en el mundo de las matemáticas de una forma apasionante. Tratando de resolver uno de los problemas más difíciles y aún no resueltos de la matemática "La Conjetura de
Goldbach". La cual reza: "Todo número par puede expresarse como la suma de dos números primos".
 Portal:Matemática. Contenido relacionado con Matemática.
Criptografía
Espiral de Ulam
Entero gaussiano
Test de primalidad
Anexo:Números primos
Anexo:Tabla de factores primos
Primo de Solinas
Mayor número primo conocido
Elemento primo
Elemento irreducible
Anillo factorial
Clasificación de números
Complejos Reales Racionales Enteros Naturales uno: 1
Aplicaciones en la matemática
Aplicaciones en la computación
Números primos en el arte y la literatura
Véase también
https://es.wikipedia.org/wiki/Archivo:TrefoilKnot-01.png
https://es.wikipedia.org/wiki/Archivo:PrimeKnot-4-1.png
https://es.wikipedia.org/wiki/Archivo:Knot-cinquefoil-sm.png
https://es.wikipedia.org/wiki/Archivo:PrimeKnot-5-2.png
https://es.wikipedia.org/wiki/1949
https://es.wikipedia.org/w/index.php?title=Horst_Schubert&action=edit&redlink=1
https://es.wikipedia.org/wiki/Cuerpo_finito
https://es.wikipedia.org/wiki/RSA
https://es.wikipedia.org/wiki/Criptograf%C3%ADa_de_clave_p%C3%BAblica
https://es.wikipedia.org/wiki/Algoritmo
https://es.wikipedia.org/wiki/Computadora_electr%C3%B3nica
https://es.wikipedia.org/wiki/Olivier_Messiaen
https://es.wikipedia.org/w/index.php?title=Quatre_%C3%A9tudes_de_rythme&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=2001:_Una_Odisea_Espacial&action=edit&redlink=1
https://es.wikipedia.org/wiki/Arthur_C._Clarke
https://es.wikipedia.org/wiki/Contact_(novela)
https://es.wikipedia.org/wiki/Contact_(pel%C3%ADcula)
https://es.wikipedia.org/wiki/Carl_Sagan
https://es.wikipedia.org/wiki/Frank_Drake
https://es.wikipedia.org/wiki/El_curioso_incidente_del_perro_a_medianoche
https://es.wikipedia.org/wiki/Autismo
https://es.wikipedia.org/wiki/C%C3%A1lculo_mental
https://es.wikipedia.org/w/index.php?title=PopCo&action=edit&redlink=1

Continuar navegando