Logo Studenta

MANUAL DE ELECTRÓNICA - CIRCUITOS ELECTROTÉCNICOS BÁSICOS-256A

¡Este material tiene más páginas!

Vista previa del material en texto

ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
I
ELECTRÓNICA BÁSICA..................................................................................01
·CORRIENTE ELÉCTRICA ...............................................................................02
·ELEMENTOS PASIVOS SIMPLES.....................................................................02
·DIFERENCIA DE POTENCIAL ENTRE DOS PUNTOS......................................... 04
·GENERADOR DE TENSIÓN CONTINUA (DC) .................................................. 05
·ASOCIACIÓN DE RESISTENCIAS ................................................................. 05
·LEMAS DE KIRCHOFF................................................................................ 08
·TENSIÓN DE ENTRADA Y TENSIÓN DE SALIDA............................................. 09
·ESTUDIO DE SEÑALES ELÉCTRICAS ........................................................... 10
·ANÁLISIS DE UNA RED SIMPLE.................................................................. 14
·COMPONENTES PASIVOS DENTRO DE UN CIRCUITO ELÉCTRICO .................... 15
·TEORÍA DE SEMICONDUCTORES ................................................................ 18
DIODOS SEMICONDUCTORES..................................................................... 20
·TERMINALES Y SIMBOLOGÍA ...................................................................... 20
·FUNCIONAMIENTO ................................................................................... 21
·CURVA CARACTERÍSTICA .......................................................................... 23
·LÍMITES DE RUPTURA............................................................................... 24
·ANÁLISIS EN UN CIRCUITO ....................................................................... 24
·TIPOS DE DIODOS SEGÚN SU FUNCIÓN...................................................... 25
·RECTIFICADORES .................................................................................... 25
·RECORTADORES ...................................................................................... 34
·ESTABILIZADORES DE TENSIÓN ...................................................................40
·DIODO ZENER ......................................................................................... 40
·MÓDULOS COMERCIALES ..........................................................................44
TRANSISTORES BIPOLARES ......................................................................... 45
·TERMINALES Y SIMBOLOGÍA ..................................................................... 45
·CRITERIO DE CORRIENTES Y TENSIONES ................................................... 46
·TIPO N-P-N ............................................................................................. 46
·TIPO P-N-P.............................................................................................. 47
·CURVAS CARACTERÍSTICAS ...................................................................... 48
·RECTA DE CARGA..................................................................................... 50
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
II
·ZONAS DE FUNCIONAMIENTO ......................................................................54
·FUNCIONAMIENTO EN ACTIVA ................................................................... 54
·FUNCIONAMIENTO EN CORTE.......................................................................55
·FUNCIONAMIENTO EN SATURACIÓN..............................................................55
·LÍMITES DE RUPTURA............................................................................... 56
·MONTAJE DARLINGTON ............................................................................ 57
·MÓDULOS COMERCIALES ..........................................................................57
TRANSISTORES UNIPOLARES ..................................................................... 58
·TRANSISTORES JFET ................................................................................ 58
·SIMBOLOGÍA Y TERMINALES ..................................................................... 59
·CRITERIO DE CORRIENTES Y TENSIONES ................................................... 60
·CURVAS CARACTERÍSTICAS ...................................................................... 61
·ZONAS DE FUNCIONAMIENTO ......................................................................63
·ZONA DE CORTE.........................................................................................63
·ZONA OHMICA ...........................................................................................63
·ZONA DE SATURACIÓN................................................................................64
·ZONA DE RUPTURA .....................................................................................64
·CIRCUITO AUTOPOLARIZADO .................................................................... 65
·TRANSISTORES MOSFET........................................................................... 66
·SIMBOLOGÍA Y TERMINALES ..................................................................... 67
·CRITERIO DE CORRIENTES Y TENSIONES ................................................... 68
·CURVAS CARACTERÍSTICAS ...................................................................... 69
·ZONAS DE FUNCIONAMIENTO.................................................................... 70
·ZONA DE CORTE.........................................................................................70
·ZONA OHMICA ...........................................................................................70
·ZONA DE SATURACIÓN................................................................................70
·ZONA DE RUPTURA .....................................................................................71
·EJEMPLO DE CIRCUITO POLARIZADOR DE UN MOSFET.................................. 71
·LÍMITES DE RUPTURA ...............................................................................72
TIRISTORES............................................................................................. 73
·TERMINALES Y SIMBOLOGÍA ..................................................................... 73
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
III
CRITERIO DE CORRIENTES Y TENSIONES ....................................................74
·CURVAS CARACTERÍSTICAS ...................................................................... 75
·RECTA DE CARGA..................................................................................... 77
·ZONAS DE FUNCIONAMIENTO.................................................................... 79
·LÍMITES DE RUPTURA............................................................................... 84
·CIRCUITO DE APLICACIÓN ........................................................................ 85
·MÓDULOS COMERCIALES.............................................................................88
APLICACIONES DE ELECTRÓNICA ANALÓGICA................................................ 89
·AVISADOR ACÚSTICO DE FRENO DE MANO ................................................. 89
·ETAPA DE ACTUACIÓN SOBRE LOS ELECTROINYECTORES ............................. 90
·ENCENDIDO POR CARGA DE CONDENSADOR CON TRANSISTOR UNIPOLAR ..... 91
·ENCENDIDO POR CARGA DE CONDENSADOR CON UN TIRISTOR .................... 92
PRINCIPIOS DE ELECTRÓNICA DIGITAL ......................................................... 93
·SISTEMAS DE NUMERACIÓN...................................................................... 94
·SISTEMA BINARIO ................................................................................... 95
·SISTEMA HEXADECIMAL ........................................................................... 97
·ALGEBRA DE BOOLE.................................................................................98
·PUERTAS LÓGICAS................................................................................... 99
·PUERTA OR ..............................................................................................100
·PUERTA AND.......................................................................................... 100
·PUERTA NOT.......................................................................................... 101
·PUERTA NOR ......................................................................................... 101
·PUERTA NAND ....................................................................................... 102
·PUERTA XOR.......................................................................................... 103
·PUERTA XNOR........................................................................................ 103
·FAMILIAS LÓGICAS ................................................................................ 104
·MÓDULOS COMERCIALES ........................................................................109
CIRCUITOS COMBINACIONALES...................................................................110
·DECODIFICADORES................................................................................. 110
·DECODIFICADORES “2 A 4” Y “3 A 8” ..........................................................111
DECODIFICADOR “3 A 8” ........................................................................... 114
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
IV
·DECODIFICADOR DECIMAL ....................................................................... 115
·DECODIFICADOR HEXADECIMAL .............................................................. 116
·CONVERSORES DE CÓDIGO..................................................................... 118
·CODIFICADORES.................................................................................... 122
·MULTIPLEXORES ...................................................................................... 125
·MULTIPLEXORES DIGITALES .................................................................... 125
·MULTIPLEXOR DE DOS CANALES .............................................................. 126
·MULTIPLEXOR DE CUATRO CANALES......................................................... 128
·MULTIPLEXOR DE OCHO CANALES............................................................ 128
·MULTIPLEXOR DE DIECISEIS CANALES ..................................................... 129
·MULTIPLEXORES ANALÓGICOS................................................................. 130
·DEMULTIPLEXORES ................................................................................ 132
·COMPARADORES.................................................................................... 134
·SUMADORES ......................................................................................... 135
·SEMISUMADOR...................................................................................... 136
·SUMADOR TOTAL ................................................................................... 137
·CUADRUPLE SUMADOR TOTAL.................................................................. 139
·MÓDULOS COMERCIALES ........................................................................ 141
CIRCUITOS SECUENCIALES .........................................................................142
·BIESTABLES .......................................................................................... 143
·BIESTABLES SÍNCRONOS ........................................................................ 145
·BIESTABLE “D” ACTIVO POR NIVEL (LATCH) .................................................147
·BIESTABLE SÍNCRONO J-K ACTIVO POR FLANCO (M/S) ................................. 151
·CONTADORES........................................................................................ 154
·REGISTROS DE DESPLAZAMIENTO ..............................................................157
·MÓDULOS COMERCIALES ........................................................................160
MEMORIAS............................................................................................... 161
·CLASIFICACIÓN DE LAS MEMORIAS............................................................ 162
·LECTURA Y ESCRITURA ...........................................................................162
·SÓLO LECTURA...................................................................................... 163
·CARACTERÍSTICAS GENERALES DE LAS MEMORIAS.................................... 163
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
V
·MEMORIAS MÁS UTILIZADAS................................................................... 164
·RAM ESTÁTICA ...................................................................................... 164
·PATILLAJE Y TERMINALES........................................................................ 165
·MODOS DE FUNCIONAMIENTO................................................................. 168
·EPROM 168 .......................................................................................... 168
·PATILLAJE Y TERMINALES........................................................................ 169
·MODOS DE FUNCIONAMIENTO................................................................. 170
·MANEJO DE MEMORIAS EPROM................................................................ 170
APLICACIONES DE ELECTRÓNICA DIGITAL ................................................. 171
·CONTROL DE LUCES CON UN DECODIFICADOR 2 A 4.................................. 171
·CONTROL DE TECLADO CON UN CODIFICADOR 8 A 3.................................. 172
·AVISADOR LUMINOSO DE PUERTAS ABIERTAS ........................................... 173
·TRANSMISIÓN DE DATOS ENTRE UNA CENTRALITA Y EL EXAMINER............... 174
·BLOQUE DECODIFICADOR Y VISUALIZADOR DE UN TECLADO...................... 175
·CONTROL DE TRÁFICO EN UN GARAJE ......................................................176
MICROCONTROLADORES........................................................................... 177
·CARACTERÍSTICAS TÉCNICAS.................................................................. 178
·UNIDAD CENTRAL DE PROCESOS (CPU) .................................................... 178
·MEMORIA INTERNA DE PROGRAMA (ROM)................................................. 178
·MEMORIA INTERNA (RAM)....................................................................... 178
·MEMORIA DE REGISTROS ESPECIALES (SFR)............................................. 179
·PUERTOS DE ENTRADA/SALIDA (PORTS)................................................... 179
·TEMPORIZADORES (TIMERS)................................................................... 180
·PUERTO SERIE (UART) ............................................................................ 180
·INTERRUPCIONES (INT).......................................................................... 181
·OSCILADOR EXTERNO DE FRECUENCIA 12 MHZ (CLK) ................................ 182
·BUS DE DATOS Y BUS DE DIRECCIONES ................................................... 183
·PATILLAJE Y DESCRIPCIÓN DE TERMINALES .............................................. 185
·MÓDULOS COMERCIALES ........................................................................ 188
CIRCUITOS OPERACIONALES.................................................................... 189
·OPERACIONALES.................................................................................... 189
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
VI
·OPERACIONALES CON REALIMENTACIÓN NEGATIVA ................................... 192
·AMPLIFICADOR NO INVERSOR DE TENSIÓN............................................... 192
·AMPLIFICADOR INVERSOR DE TENSIÓN....................................................194
·SUMADOR............................................................................................. 195
·INTEGRADOR......................................................................................... 197
·DIFERENCIADOR.................................................................................... 198
·CONVERTIDOR CORRIENTE/TENSIÓN ....................................................... 199
·CONVERTIDOR TENSIÓN/CORRIENTE ....................................................... 200
·DIFERENCIAL ........................................................................................ 201
·SEGUIDOR ............................................................................................ 203
·OPERACIONALES CON REALIMENTACIÓN POSITIVA .................................... 204
·COMPARADOR NO INVERSOR................................................................... 205
·COMPARADOR INVERSOR........................................................................ 207
·BÁSCULA NO INVERSORA........................................................................ 209
·BÁSCULA INVERSORA............................................................................. 212
·MÓDULOS COMERCIALES ........................................................................216
TEMPORIZADOR ANALÓGICO-DIGITAL (LM555) .............................................217
·TERMINALES DEL TEMPORIZADOR 555 ........................................................217
·FUNCIONAMIENTO COMO MONOESTABLE .................................................. 218
·FUNCIONAMIENTO COMO AESTABLE......................................................... 222
PUENTE DE WHEASTSTONE ...................................................................... 224
·TERMINALES Y CONEXIÓN....................................................................... 225
AMPLIFICADORES DE INSTRUMENTACIÓN.....................................................228
·TERMINALES Y CONEXIÓN....................................................................... 228
SENSORES............................................................................................. 230
·SENSOR INDUCTIVO............................................................................... 230
·SENSOR PIEZOELÉCTRICO ...................................................................... 233
·SENSOR EFECTO HALL ............................................................................ 237
·SONDA LAMBDA..................................................................................... 241
·SENSOR DE PRESIÓN (GALGA EXTENSIOMÉTRICA) ................................... 247
APLICACIONES DE INSTRUMENTACIÓN ELECTRÓNICA ................................. 249
ZOOM ZOOMNDICEÍIMPRIMIR
ÍNDICE
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
VII
·TERMÓMETRO DIGITAL ........................................................................... 249
·AVISADOR LUMINOSO DE RESERVA DE COMBUSTIBLE................................ 251
·CONTROL DE TEMPERATURAS EN UN RECINTO (CLIMATIZADOR) .................. 252
MOTORES PASO A PASO........................................................................... 253
·PRINCIPIOS DE FUNCIONAMIENTO........................................................... 253
·CONTROL DE MOTORES PASO A PASO ...................................................... 255
·FORMAS DE ACCIONAMIENTO.................................................................. 256
·DRIVERS............................................................................................... 263
·CIRCUITOS SECUENCIADORES ................................................................ 264
·MÓDULOS COMERCIALES........................................................................ 264
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
01
ELECTRÓNICA BASICA
La electrónica es la ciencia y la técnica que trabaja con la tensión y la intensidad 
(movimiento de los electrones) en los semiconductores y conductores bajo ciertas 
condiciones.
La mayoría de los circuitos electrónicos toman como elemento esencial a los componentes 
formados a base de semiconductores. Estos elementos son:
- Diodos.
- Transistores.
- Tiristores.
- Triacs.
En los circuitos electrónicos también existen otros componentes llamados elementos 
pasivos que son:
- Resistencias.
- Condensadores.
- Bobinas.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
02
CORRIENTE ELECTRICA
La corriente eléctrica es el desplazamiento de cargas de electrones a lo largo de un 
conductor por efecto de la fuerza que ejerce sobre ellas un campo eléctrico.
La intensidad de corriente es la cantidad de carga que atraviesa la sección de hilo 
conductor por unidad de tiempo.
 La intensidad circula por un hilo conductor cuyos terminales deben estar unidos, 
formando un recinto cerrado. 
Vcc: pila de tensión continua de valor Vcc voltios
EJEMPLO DE MALLA ELÉCTRICA
Red eléctrica o malla eléctrica se define como un conjunto de circuitos o recintos formados 
por la interconexión de elementos tales como resistencias, bobinas, condensadores, 
generadores de tensión, etc., mediante un hilo conductor, gracias a los cuales la energía 
puede ser transferida de un circuito a otro.
ELEMENTOS PASIVOS SIMPLES
Los elementos pasivos por sí solos no pueden modificar valores de tensión o de corriente. 
Van a ser elementos por los cuales la corriente eléctrica, al atravesarlos, genera una 
caída de tensión entre sus terminales. 
Hay tres tipos de elementos pasivos:
- Resistencias
- Bobinas
- Condensadores
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
03
RESISTENCIAS
El comportamiento de estos elementos no depende del tipo de tensión aplicada. Su 
relación entre la tensión entre sus terminales y la corriente que fluye de un terminal a 
otro viene dada por la ley de Ohm (VAB = I x R):
R: resistencia.
VAB : caída de tensión entre los terminales de la resistencia.
I: intensidad que circula por la resistencia.
Caída de tensión en una resistencia
BOBINAS O AUTOINDUCCIÓNES
El comportamiento de una bobina frente a una corriente continua de valor constante 
es similar a un cortocircuito. El comportamiento frente a una señal variable, ya sea una 
señal senoidal, triangular, etc., es diferente al comportamiento frente a una señal 
continua constante. 
L: inductancia de la bobina.
VAB : tensión entre los terminales de la bobina.
I: corriente que circula por la bobina
Caída de tensión en una bobina
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
04
CONDENSADORES
El comportamiento de un condensador frente a una corriente continua de valor constante 
es similar a un circuito abierto. El comportamiento frente a una señal variable, ya sea 
una señal senoidal, triangular, etc., es diferente al comportamiento frente a una señal 
continua constante.
C: capacidad del condensador.
VAB : caída de tensión entre los terminales del condensador.
I: corriente que circula por el condensador
Caída de tensión en un condensador
DIFERENCIA DE POTENCIAL ENTRE DOS PUNTOS
La diferencia de potencial o caída de tensión entre dos puntos es la diferencia de tensiones 
existente entre ellos.
Diferencia de potencial entre los terminales de una resistencia
El punto situado a mayor potencial eléctrico (con mayor tensión) se marca con un signo 
positivo, de la misma manera que el punto situado a menor potencial eléctrico se marca 
con un signo negativo. La corriente eléctrica va a circular del punto con mayor potencial 
eléctrico al punto con menor tensión eléctrica. Por lo tanto, el punto por donde entra 
la corriente es el punto positivo, mientras que el punto por donde sale es el punto 
negativo.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
05
GENERADOR DE TENSION CONTINUA (DC)
Un generador de tensión es un elemento eléctrico que mantiene una diferencia de 
potencialeléctrico (tensión) constante entre sus terminales, de valor E, independientemente 
de la corriente que circule por él. Una pila de tensión o la batería de un automóvil 
equivale a un generador de tensión de continua.
E: tensión continua del generador.
V: voltímetro.
Tensión proporcionada por un generador de continua
ASOCIACIÓN DE RESISTENCIAS
Dependiendo de cómo estén situadas las resistencias en una determinada red eléctrica, 
se puede simplificar su estudio al agruparlas en una sola resistencia de valor equivalente 
al conjunto de todas ellas.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
06
RESISTENCIAS EN SERIE
Asociación de resistencias en serie
El análisis eléctrico de la red, calculando las diferencias de potencial, lleva a las siguientes 
ecuaciones:
VAB = VAM + VMN + VNB
VAB = I x ( R1 + R2 + R3 )
RAB = VAB / I = R1 + R2 + R3
La resistencia equivalente entre los puntos A y B es la suma de las resistencias puestas 
en serie. La intensidad que circula por las resistencias es la misma, pero la caída de 
tensión en cada una de ellas es distinta.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
07
RESISTENCIAS EN PARALELO
Asociación de resistencias en paralelo
De manera análoga a como se calcula la resistencia equivalente con resistencias en 
serie, se obtiene:
I = I1 + I2 + I3 = VAB / R1 + VAB / R2 + VAB / R3
Sacando factor común a VAB:
I = VAB x ( 1 / R1 + 1 / R2 + 1 / R3 )
Como RAB = VAB / I se deduce que:
1 / RAB = 1 / R1 + 1 / R2 + 1 /R3
La inversa de la resistencia equivalente entre los puntos A y B es la suma de las inversas 
de las resistencias. La intensidad que circula por las resistencias es distinta, pero la 
caída de tensión en ellas es la misma.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
08
LEMAS DE KIRCHOFF
La aplicación de los principios de continuidad de corriente establece ciertas restricciones, 
estas restricciones son conocidas como los lemas de Kirchoff.
LEMA DE LOS NUDOS
Nudo en el que confluyen diversas intensidades
En un instante cualquiera, la suma de las intensidades que entran en un punto son 
iguales a la suma de las corrientes que salen del punto.
I1 + I4 = I2 + I3
LEMA DE LAS MALLAS
Caídas de tensión a lo largo de una malla eléctrica
En todo contorno cerrado o malla, la suma de las caídas de potencial a lo largo de todos 
los elementos del contorno siempre es nula.
Para aplicar el lema se parte de un punto cualquiera de la malla y se recorre todo el 
contorno sumando las caídas de potencial a través de todos los elementos que existen 
hasta volver al punto inicial. El sentido para recorrer la malla es indiferente. Por ejemplo, 
partiendo del punto A :
0 = I x R1 + I x R2 + Vbb + I x R3 - VCC
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
09
TENSION DE ENTRADA Y TENSION DE SALIDA
Tensión de entrada es la tensión que proporciona una determinada fuente de alimentación, 
alterna o continua, a un circuito cualquiera para obtener una tensión determinada en 
la carga, a esta tensión en la carga se la denomina tensión de salida.
La carga es el elemento o componente sobre el que se aplica la tensión de salida.
Tensión de entrada y salida en un circuito eléctrico
En el circuito de la figura la tensión de entrada es el valor de tensión proporcionado por 
la batería Vcc. RL es la resistencia de la lámpara, que en este caso va a ser la carga. 
La tensión de salida es la tensión medida por el voltímetro en los terminales de la 
resistencia RL de la lámpara.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
10
ESTUDIO DE SEÑALES ELECTRICAS
Las señales eléctricas referencian de forma gráfica la relación existente entre la tensión 
(o intensidad) y el tiempo; es decir, indican la variación del valor de la tensión (o la 
intensidad) con el paso del tiempo.
Un circuito eléctrico puede funcionar con señales alternas senoidales, con señales 
continuas, señales continuas pulsadas, señales triangulares, etc. La diferencia más 
notable entre las diferentes señales radica en la variación de tensión, o intensidad, 
respecto al tiempo.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
11
SEÑAL ALTERNA SENOIDAL
Una señal alterna senoidal es aquella señal que sigue la forma matemática de una 
función senoidal:
V (t ) = A x SEN ( wt ) 
Es una señal que dependiendo de la fase y de la amplitud tiene un valor de tensión o 
de corriente distinto.
Parámetros de una señal de tensión alterna.
Los términos representados en la gráfica se definen como:
- Amplitud de señal (A): la amplitud es el valor máximo que puede tomar la señal 
con respecto al punto de referencia cero. La unidad puede ser de tensión o de 
corriente, es decir, voltios o amperios.
- Periodo de señal (T): es el tiempo que transcurre hasta que la señal vuelve a 
pasar por un punto. Coloquialmente hablando, el periodo es el tramo de señal, 
referido a valores temporales, que repetido indefinidamente da lugar a la totalidad 
de la señal. Su unidad de medida es el segundo.
- Frecuencia de señal (f): es la magnitud inversa al periodo de la señal ( f = 1 / 
T ). Su unidad de medida es el hertzio.
- Pulsación de señal (w): está relacionada directamente con la frecuencia. ( w = 
2 x x f ). Su unidad el radián / segundo.
- Fase de una señal (wt): es el ángulo respecto al punto de referencia que tiene 
la señal. Donde w es la pulsación de la señal y t es el tiempo en segundos. La unidad 
de la fase es el radián. 2 radianes equivalen a 360º. Tomando esta referencia se 
puede pasar de radianes a grados.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
12
Una manera de ver la variación de señal con la fase y amplitud es:
Valores de tensión dependiendo de la fase de la señal.
V ( t ) = A x SEN ( wt )
- Para un valor de amplitud (A) de 12 voltios y una fase (wt) de cero grados, el valor 
de tensión en ese instante es cero debido a que el seno de cero grados es cero.
- Para un valor de amplitud (A) de 12 voltios y una fase (wt) de 90º, el valor de 
tensión en ese instante es 12 voltios debido a que el seno de 90º es uno.
SEÑAL CONTINUA
La señal continua no varía con el tiempo, sólo depende del nivel de tensión o corriente, 
es decir, mantiene, aproximadamente, el mismo valor de tensión (o corriente) durante 
todo el tiempo.
Señal de tensión continua
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
13
SEÑAL CONTINUA PULSANTE
Es una señal que varía con el tiempo. La variación se produce de un nivel de continua 
a otro nivel diferente de continua. 
Señal de tensión continua pulsante
Hay dos posibles valores de tensión o de corriente que puede tomar la señal dependiendo 
del instante en el que se encuentre. El periodo y la frecuencia de esta señal se definen 
de igual manera que en señales alternas senoidales.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
14
ANALISIS DE UNA RED SIMPLE
En el análisis de cualquier red eléctrica se deben tener en cuenta los lemas de Kirchoff. 
El estudio realizado para una red de una malla es igual que el de una red con varias 
mallas eléctricas.
 Malla eléctrica
El cálculo de la diferencia de potencial entre A y B, o caída de tensión entre A y B, o 
tensión entre A y B, conlleva el cálculo de la corriente que circula a lo largo de la malla. 
Para calcular la corriente I hay que aplicar el segundo lema de Kirchoff. Una vez analizadas 
todas las caídas de tensión en la malla, se despeja el valor de corriente I en la ecuación 
de la malla:
I = (Vcc - Vbb ) / ( R1 + R2 + R3 ) 
La tensión existente entre A y B es:
VAB = I x R1
VAB = ( (Vcc - Vbb ) / ( R1 + R2 + R3 ) ) X R1
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
15
COMPONENTES PASIVOS DENTRO DE UN CIRCUITO ELECTRICO
Los componentespasivos son aquellos componentes que, conectados en un circuito 
eléctrico, no modifican por si solos valores de tensión o corriente. La corriente eléctrica 
al atravesarlos provoca una caída de tensión entre los terminales del componente. Los 
componentes pasivos más comunes son:
- Resistencias. 
- Bobinas.
- Condensadores.
RESISTENCIA
Es un elemento que al ser atravesado por una corriente eléctrica en sus terminales se 
crea una caída de tensión ( VR = I x R ).
Circuito consumidor
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
16
BOBINA
Una bobina es un arrollamiento de hilo conductor que al ser atravesado por una corriente 
crea un campo magnético. 
Circuito de carga de una bobina
Señal exponencial de carga de una bobina
Una bobina en un circuito con señales continuas, almacena la corriente eléctrica en 
función de una señal exponencial de carga. En el momento en que se carga, su 
comportamiento en la red equivale a un cortocircuito.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
17
CONDENSADOR
Es un elemento que se comporta como un almacenador de energía cuando a través de 
él circula una intensidad. Un condensador está formado por dos placas conductoras 
separadas entre sí, una distancia determinada, por un dieléctrico o material aislante.
Circuito de carga de un condensador
Señal exponencial de carga de un condensador
Un condensador situado en un circuito con señales continuas, almacena energía eléctrica 
hasta que se carga completamente; en ese instante se comporta como un circuito abierto 
y no permite el paso de corriente entre sus placas conductoras. La carga de un 
condensador se realiza de forma ex-ponencial.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
18
TEORIA DE SEMICONDUCTORES
Un semiconductor es un elemento que se puede comportar como un conductor o como 
un aislante. Normalmente el material de fabricación suele ser Silicio (Si) o Germanio 
(Ge). Los semiconductores aumentan su conductividad si a su estructura se le añaden 
átomos de otros materiales. A la adición de átomos (impurezas) a un semiconductor 
se le denomina dopaje de un semiconductor. Hay dos tipos de materiales semiconductores:
- Semiconductores tipo N.
- Semiconductores tipo P.
TIPO N
Estructura atómica de un semiconductor tipo N.
Se forman mediante la unión de Silicio (Si) o Germanio (Ge), con cuatro electrones en 
su última capa denominada de valencia, con impurezas de Arsénico (As), que posee en 
su última capa cinco electrones. Al crearse los enlaces entre átomos de Silicio (Si) y 
Arsénico (As) queda un electrón libre (carga negativa), que va a ser el que moviéndose 
por la red atómica genere una circulación de electrones, es decir, genere una corriente 
eléctrica.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
19
TIPO P
Estructura atómica de un semiconductor tipo P.
Se forman mediante la unión de Silicio (Si) o Germanio (Ge), con cuatro electrones en 
su última capa denominada de valencia, con impurezas de Indio (In), que posee en 
su última capa tres electrones. Al crearse los enlaces entre átomos de Silicio (Si) 
e Indio (In) queda un hueco libre (carga positiva), que va a ser el que moviéndose por 
la red atómica genere una circulación de huecos o cargas positivas. 
La combinación de capas de semiconductores tipo N y tipo P, da lugar a componentes 
utilizados en electrónica tales como diodos, transistores, etc. Estos componentes tienen 
distintas propiedades y modos de funcionamiento debido a sus diversas técnicas de 
fabricación, y a las distintas formas de combinar los materiales semiconductores.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
20
DIODOS SEMICONDUCTORES
Un diodo semiconductor es un componente electrónico (fabricado a partir de un material 
semiconductor), de dos terminales, que posee una estructura interna caracterizada por 
la existencia de una unión P-N. Una unión P-N es la asociación de dos tipos de 
semiconductores, uno de tipo N (carga negativa) y otro de tipo P (carga positiva) con 
el fin de conseguir componentes electrónicos que puedan funcionar como conductores 
o como aislantes.
TERMINALES (CONEXIONES) Y SIMBOLOGIA
Los dos terminales de un diodo se denominan ánodo y cátodo. Anodo es la zona 
correspondiente al semiconductor de tipo P y cátodo la zona correspondiente al 
semiconductor de tipo N.
Unión semiconductora y terminales de un diodo
El pequeño triángulo del símbolo en forma de flecha indica el sentido convencional de 
corriente, de ánodo a cátodo.
Id: intensidad que circula de ánodo a cátodo.
Vd: caída de tensión entre al ánodo y el cátodo.
A: ánodo.
K: cátodo.
Símbolo electrónico del diodo y nomenclatura utilizada
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
21
FUNCIONAMIENTO
El comportamiento de un diodo es similar a una válvula unidireccional. El diodo sólo 
permite el paso de corriente en el sentido de ánodo a cátodo.
Si la corriente que atraviesa el diodo va en sentido ánodo a cátodo, el diodo está en 
directo, y se comporta como una pila de tensión de valor tensión umbral (Vu)
Diodo polarizado en directo
Circuito equivalente de un diodo polarizado en directo
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
22
Cuando la corriente generada intenta circular en sentido contrario, el diodo no permite 
su paso, luego está en inverso. Su comportamiento equivale a un circuito abierto 
(interrumpido).
Diodo polarizado en inverso
Circuito equivalente de un diodo polarizado en inverso
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
23
CURVA CARACTERÍSTICA
Curva característica de un diodo es la gráfica que relaciona la tensión entre el ánodo y 
el cátodo (Vd) con la corriente que lo atraviesa (Id). Para un determinado valor de 
tensión (Vd) existe un valor de corriente (Id) y viceversa.
-Id: intensidad por el diodo 
 (de ánodo a cátodo).
-Vd: tensión del diodo 
 (caída de tensión entre sus terminales).
-Vu: tensión umbral.
Curva característica del comportamiento de un diodo
En la zona de polarización en inverso (corte) la corriente Id es igual a cero dentro de 
sus límites, puesto que el diodo estaría cortado, y la tensión Vd puede tomar un valor 
cualquiera. En la zona de conducción o zona en directo, la tensión Vd tiene un valor de 
tensión constante en toda su extensión denominado tensión umbral (Vu) y la corriente 
que atraviesa el diodo puede tomar cualquier valor de corriente que permitan los límites 
del diodo.
Zonas de funcionamiento de un diodo
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
24
LIMITES DE RUPTURA
Los límites de ruptura son los valores máximos permitidos, de corriente y de tensión, 
en un diodo. Estos valores vienen representados sobre la curva característica del diodo.
Ifmax: intensidad en directo máxima.
Vrmax: tensión en inverso máxima.
Representación de los límites de ruptura sobre la gráfica
En la curva característica del diodo hay dos limitaciones: una por corriente y otra por 
tensión. Si cualquiera de estos dos límites se superan, el diodo se destruye. La corriente 
máxima que puede atravesar el diodo en directo se denomina Ifmax; la tensión en 
inverso máxima entre ánodo y cátodo que puede soportar el diodo es llamada Vrmax.
ANALISIS EN UN CIRCUITO
En este circuito, si la tensión de entrada es positiva el diodo está en directo, por lo que 
la tensión de salida será igual a la tensión que cae en el diodo, es decir, Vu. Mientras 
que si cambiamos la polaridad del diodo, se encontraría en inverso (circuito abierto), 
y la tensión de salida sería igual a la tensión de entrada.
Eg: fuente de alimentación.
V: voltímetro.
Ejemplo de un circuito polarizador de un diodo
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
25TIPOS DE DIODOS SEGUN SU FUNCION
Los diodos están clasificados dependiendo de la función que realicen dentro de un 
circuito. Los distintos tipos de diodos son:
- Diodo rectificador:
- Rectificador de media onda.
- Rectificador de onda completa.
- Rectificador trifásico.
- Diodo recortador:
- Recortador de un nivel de tensión.
- Recortador de dos niveles de tensión.
- Diodo estabilizador de tensión (diodo Zener).
RECTIFICADORES.
Se denomina así al diodo cuya función dentro de un circuito es la de convertir tensión 
alterna (AC) a continua (DC). Por ejemplo, en el automóvil la tensión alterna es generada 
por el alternador y a través de un rectificador se convierte en tensión continua para 
alimentar los diversos circuitos eléctricos.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
26
RECTIFICADOR DE MEDIA ONDA
Este rectificador mantiene el semiciclo positivo de la onda alterna, mientras que el 
semiciclo negativo no es aprovechado.
Ve: tensión de entrada.
A: amplitud máxima de la señal de entrada
Señal de la tensión de entrada generada por un alternador
Eg: fuente de alimentación que proporciona la señal de entrada.
V: voltímetro.
Circuito rectificador de media onda
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
27
Vcc: valor de la amplitud máxima (A) en voltios.
Fase: eje de referencia escalado en grados.
Gráfico del proceso que se realiza sobre la señal de entrada por tramos
Estudiando el circuito por tramos:
- En el intervalo comprendido entre 0 y 180º la tensión de entrada es positiva, 
por lo que el diodo está en directo. Al estar en directo permite el paso de la corriente, 
con lo que tendremos tensión en la salida.
- En el siguiente intervalo comprendido entre 180º y 360º la tensión de entrada es 
negativa, por lo que el diodo está en inverso. Al estar en inverso no permite el paso 
de corriente, se comporta como un interruptor abierto, con lo que no habrá tensión 
en la salida.
- Como la señal de entrada es periódica, el estudio realizado para estos dos intervalos 
se repite sucesivamente.
Vs: tensión de salida.
Señal conseguida a la salida del circuito rectificador de media onda
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
28
RECTIFICADOR DE ONDA COMPLETA
Este rectificador mantiene el semiciclo positivo de la señal de entrada e invierte el 
semiciclo negativo convirtiéndolo en positivo.
Señal de la tensión a la entrada del circuito
Circuito rectificador de onda completa para un alternador monofásico
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
29
Gráfico del proceso que realiza el circuito rectificador
Cuando la tensión de entrada es positiva, los diodos D1 y D2 están en directo, mientras 
que D3 y D4 están en inverso, por lo que a la salida del circuito hay la misma tensión 
que a la entrada. 
Con tensión de entrada positiva conducen D1 y D2
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
30
En cambio, cuando la tensión de entrada es negativa, los diodos que están en directo 
son D3 y D4, y los que están en inverso son D1 y D2, con lo que a la salida se obtiene 
la entrada pero cambiada de signo, es decir, se convierte a positiva la tensión de entrada 
negativa.
Con tensión de entrada negativa conducen D3 y D4
Señal de salida que se obtiene con el rectificador de onda completa
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
31
RECTIFICADOR TRIFÁSICO
Este rectificador es el mismo que el rectificador de onda completa, pero la señal de 
entrada es generada por un alternador trifásico, por lo que en la entrada hay tres señales 
superpuestas.
Señal de tensión generada por un alternador trifásico
Circuito rectificador en un alternador trifásico
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
32
La corriente trifásica generada en el devanado del estator de un alternador, ha de ser 
rectificada para su utilización por los diferentes aparatos consumidores. Esta función 
se realiza mediante diodos dispuestos de manera apropiada formando un grupo rectificador. 
De este modo se obtiene una corriente continua en bornes del alternador, partiendo de 
la alterna que se induce en sus fases.
Para aprovechar tanto las semiondas positivas como las negativas de cada fase
(rectificación de onda completa), se disponen dos diodos para cada fase, uno en el lado
positivo y otro en el negativo, siendo necesarios en total seis diodos en el alternador
trifásico.
Gráfico que ilustra el proceso de rectificación de una señal trifásica 
Tensiones de fase a la salida del circuito rectificador trifásico
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
33
La conducción de los diodos en cada instante de tiempo provoca en la s a l i d a u n a
tensión compuesta, formada por la diferencia entre la fase más positiva y la fase más
negativa. Así por ejemplo, en el intervalo de tiempo A, la fase más positiva es la W y
la más negativa es la fase V, por lo que en la salida se tiene una tensión de fase de W-
V. La diferencia entre tensiones de fase se denomina tensión de línea, que es la tensión
real de salida del circuito de valor máximo Vl.
Para el resto de los instantes (B, C, D, E, F) el proceso es el mismo, pero con la resta 
de las distintas tensiones de fase que generan las respectivas tensiones de línea en la
salida.
Tensiones de línea en la entrada. 
Tensión de salida para cualquier circuito consumidor
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
34
RECORTADORES
La función básica de un recortador es limitar la tensión en la carga.
RECORTADOR DE UN NIVEL DE TENSIÓN
Limita la tensión a un valor máximo o mínimo determinado
Señal de tensión a la entrada del circuito
Ve = tensión de entrada al circuito.
Vs = tensión de salida del circuito.
Vref = fuente de tensión en continua.
Circuito recortador de un nivel por abajo
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
35
Gráfico del proceso del recortador
La tensión de entrada es una señal senoidal. En el semiciclo positivo la fuente de 
alimentación Ve intenta polarizar al diodo en inversa y la pila Vref (DC) en directo; en 
el instante en que Ve sea mayor que Vref el diodo estará polarizado en inversa y equivale 
a un circuito abierto; al estar en circuito abierto la corriente que atraviesa el diodo Id 
es cero, por lo que la tensión de salida es la misma que la entrada.
Señal a la salida del circuito recortador
Variando la posición del diodo, se consigue recortar la señal por la zona contraria; es 
decir, en vez de permitir el paso de señal por arriba, lo permite por abajo.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
36
Señal de tensión de entrada al circuito
Circuito recortador de un nivel de tensión por arriba
Gráfico del proceso que se lleva a cabo sobre la señal de entrada.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
37
El recortador de la figura es similar al recortador de un nivel por abajo, simplemente 
la pila Vref va a intentar polarizar al diodo en inversa. Por esta razón, cuando la tensión 
de entrada sea negativa, el diodo está en inverso y la señal de salida es igual que la 
de entrada, mientras que cuando la tensión de entrada sea positiva el diodo está en 
directo, por lo que en la salida se fija la tensión de la pila Vref, recortando así la señal 
de entrada.
Señal a la salida del circuito recortador
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
38
RECORTADOR DE DOS NIVELES 
Recorta la señal de entrada entre dos límites, uno superior y otro inferior.
Señal de entrada al circuito recortador de dos niveles
Eg: generador que proporciona la tensión de entrada.
Vref1: pila de tensión continua que limita porabajo.
Vef2: pila de tensión continua que limita por arriba.
Circuito recortador de dos niveles de tensión
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
39
Gráfico del proceso del recortador de dos niveles
- La forma de funcionamiento del recortador de dos niveles es idéntica que la del 
recortador de un nivel, con la diferencia de que los dos diodos se van a turnar en 
sus estados de directo e inverso: 
(Siendo ON diodo en directo y OFF diodo en inverso).
D1 ON => D2 OFF (semiciclo negativo de Ve).
D2 ON => D1 OFF (semiciclo positivo de Ve).
Señal que se obtiene a la salida de un circuito recortador de dos niveles
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
40
ESTABILIZADORES DE TENSIÓN
Para realizar esta función se utiliza un nuevo tipo de diodo denominado diodo Zener. 
DIODO ZENER
Es un diodo que permite la conducción de corriente en determinadas condiciones tanto 
en un sentido como en el otro. El diodo zener se puede comportar como un diodo normal 
si hacemos que trabaje fuera de su zona zener. 
Zona zener es la parte de la curva característica en la cual el diodo está polarizado en 
inverso pero permitiendo el paso de corriente de cátodo a ánodo. En esta zona la tensión 
entre ánodo y cátodo toma un valor negativo constante, esta tensión es la denominada 
tensión zener (Vz).
A: ánodo. K: cátodo.
Id: intensidad en directo. Iz: intensidad en inverso.
Vd: tensión en directo. Vz: tensión en inverso.
Símbolos electrónicos del diodo Zener
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
41
La curva característica de este diodo es similar a la de un diodo normal, pero con el 
añadido de que permite la conducción de corriente en la zona inversa.
Vz: tensión tener.
Vu: tensión umbral.
Zonas de funcionamiento en la curva característica de un diodo Zener
El diodo Zener conduce tanto en directo como en inverso. En directo continúa fijando 
una tensión Vu, mientras que en inverso fija una tensión mayor denominada tensión 
Zener (Vz).
Ifmax: intensidad en directo máxima.
Izmax: intensidad en inverso máxima.
Límites de ruptura en la curva característica de un diodo Zener
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
42
Ahora el límite de ruptura en inverso viene determinado por intensidad, ya que no puede 
superar el valor de intensidad zener máxima (Izmax), en vez de por tensión como los 
diodos normales.
El circuito estabilizador de tensión se realiza mediante un diodo zener, el cual se polariza 
en inverso, de manera que fije siempre la tensión zener (Vz).
Señal de tensión de entrada al circuito
Circuito estabilizador de tensión
Vcc: tensión proporcionada a la entrada.
Vz: tensión zener del diodo.
Gráfico del proceso de estabilización de la tensión
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
43
Una tensión está estabilizada en la carga cuando no sufre variaciones ante cambios en 
la intensidad (dentro de un determinado rango).
En el circuito del estabilizador, la tensión de entrada sufre variaciones con el tiempo, 
pero siempre es positiva; por lo que el diodo Zener está en inverso y fija la tensión de 
la carga al valor de Vz.
Señal a la salida del circuito estabilizador de tensión
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
44
MODULOS COMERCIALES
DIODOS ZENER
CODIFICACION
BZ03 / C9V1
BZ03 / C12
BZ03 / C20
BZ03 / C62
VU (voltios)
1,2
1,2
1,2
1,2
VZ (voltios)
9
12
20
62
IR MAX (voltios)
10
10
5
2
DIODOS RECTIFICADORES
CODIFICACION
1N4448
1N4447
1N4449
1N5624
1N5625
VU (voltios)
0,8
1
1
1
1
IF MAX (amperios)
2
2
2
80
80
VR MAX (voltios)
75
75
75
200
400
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
45
TRANSISTORES BIPOLARES
Un transistor bipolar consiste en tres semiconductores de tipo P o N, alternados 
consecutivamente formando así dos uniones P-N.
Las dos uniones de un transistor dan lugar a tres regiones denominadas emisor, base 
y colector. A efectos de comportamiento, un transistor se puede comparar con un 
interruptor controlado electrónicamente
TERMINALES (CONEXIONES) Y SIMBOLOGÍA 
Un transistor se compone de tres zonas semiconductoras (existen dos uniones P-N). 
Estas zonas semiconductoras pueden ser de tipo N o de tipo P, y nunca pueden ir dos 
zonas del mismo tipo seguidas. Hay dos tipos de transistores bipolares: tipo P-N-P y 
tipo N-P-N.
E: emisor.
B: base.
C: colector.
Regiones semiconductoras y símbolo de un transistor bipolar tipo N-P-N
E: emisor.
B: base.
C: colector.
Regiones semiconductoras y símbolo de un transistor bipolar tipo P-N-P
Cada zona lleva conectado un terminal. Estos terminales se denominan emisor, base y 
colector. La base se corresponde con el semiconductor central, ya sea un transistor P-
N-P como uno N-P-N.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
46
CRITERIO DE CORRIENTES Y TENSIONES
Los términos y la nomenclatura utilizada en el estudio de las tensiones e intensidades 
de los transistores bipolares son:
Intensidades:
 (Para un transistor NPN):
- Ib : intensidad que entra por la base. 
- Ic : intensidad entra en el colector.
 - Ie : intensidad que sale por el emisor.
Tensiones:
- Vce : tensión entre el colector y el emisor
- Vbe : tensión entre la base y el emisor
- Vbc : tensión entre la base y el colector
TIPO N-P-N
E: emisor
B: base
C: colector
Símbolo y criterio de signos en un transistor bipolar N-P-N
En el tipo de transistor NPN se cumplen unas condiciones de funcionamiento a nivel de 
tensiones y a nivel de corrientes que son:
Ib + Ic = Ie 
Vce = Vbe - Vbc
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
47
La suma de las corrientes que entran a un nudo son iguales a la suma de las corrientes 
que salen del nudo. La suma de caídas de tensión a lo largo de una red es cero.
Vce + Vbe + Vbc = 0
Se puede realizar una aproximación a nivel de corrientes debido a que la intensidad 
de base máxima (Ibmax) es aproximadamente 100 veces menor que la intensidad de 
colector (Ic), por tanto se toma como buena la siguiente deducción:
Ic = Ie
TIPO P-N-P
E: emisor.
B: base.
C: colector.
Símbolo y criterio de signos en un transistor bipolar P-N-P
Este tipo de transistor trabaja exactamente igual que el de tipo N-P-N, pero con la 
diferencia de que cambian todos los sentidos, tanto de las tensiones como de las 
intensidades.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
48
CURVAS CARACTERÍSTICAS
Las curvas características son curvas que referencian el comportamiento del componente. 
En el caso de los transistores bipolares hay que analizar dos tipos de curvas.
La primera es la curva característica de entrada, y relaciona la corriente de base (Ib) 
con la corriente de colector (Ic).
Icsat: intensidad de colector de saturación.
Ibsat: intensidad de base de saturación.
: factor amplificador de corriente en activa.
Curva característica de entrada en un transistor bipolar
La corriente de colector es directamente proporcional a la corriente que entra por la 
base del transistor en la zona marcada en rojo ( ). En el resto de la gráfica la 
corriente de colector no depende de la corriente de base puesto que Ic valdrá como 
máximo Icsat y como mínimo cero. 
La segunda, se denomina curva característica de salida, y en ella se relaciona la intensidad 
de colector (Ic) con la tensión entre el colector y el emisor (Vce), todo ello, dependiendo 
del valor de la intensidad de base (Ib)
Curva característica de salida para Ib1
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
49
Estas gráficas referencian la característica de salida con respecto a un único valor de 
intensidad de base (Ib). La unión de varias gráficaspara distintos valores de intensidad 
de base genera la curva característica de salida de un transistor bipolar.
Curva característica de salida para Ib2.
Relacionando la curva característica de salida para todos los posibles valores de corriente 
por la base, la curva característica general para un transistor bipolar es:
Curva característica de salida de un transistor bipolar
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
50
RECTA DE CARGA
El punto de trabajo es el punto que indica la tensión colector-emisor (Vce) y la corriente 
de colector (Ic) del transistor bipolar.
Curva de salida con referencia en Ib1
Recta de carga es la línea sobre la que se van a situar los posibles puntos de trabajo 
del transistor. Sobre la recta de carga tendremos varios puntos de trabajo dependiendo 
del valor de la corriente de base (Ib). Para un valor de Ib igual a Ib1 el punto de trabajo 
será el Q1.
Para calcular la recta de carga se deben hallar los puntos de corte con los ejes de la 
gráfica. Observando el circuito de la figura y su curva característica de salida, la recta 
de carga se calculará de la siguiente forma:
Circuito de polarización de un transistor bipolar
* En el circuito existen dos redes eléctricas, la red de entrada y la de salid.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
51
Mallas de entrada y salida de un circuito de polarización
En la red de entrada la tensión para polarizar el transistor proviene de una fuente de 
tensión continua Vbb que va a generar una corriente por la base (Ib),de tal manera 
que las caídas de tensión que aparecen en esta red son:
- Caída de tensión entre la base y el emisor (Vbe).
- Caída de tensión en la resistencia Rb.
Vbb = Vbe + Rb x Ib
De manera análoga las caídas de tensión en la red de salida son:
- Caída de tensión en la resistencia de colector Rc.
- Caída de tensión entre el colector y el emisor (Vce). 
Vcc = Vce + Rc x Ic.
Vce = Vcc - Rc x Ic.
* Para hallar el punto de corte con el eje de Ic, supondremos que la Vce es igual a cero. 
En este supuesto, en el circuito la Ic tiene un valor igual a Vcc / Rc.
* Para hallar el punto de corte con el eje de Vce, se supone que la Ic es igual a 
cero. Por lo tanto, la Vce tiene un valor igual a Vcc. 
* Se colocan los dos puntos de corte sobre la gráfica, y al unirlos mediante una línea, 
se obtiene la recta de carga del transistor.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
52
Recta de carga en la curva de salida
Los posibles puntos de trabajo del transistor estarán situados en las intersecciones entre 
la recta de carga y la curva característica de salida del transistor bipolar, dependiendo 
del valor de la intensidad de base (Ib).
Posibles puntos de trabajo del transistor bipolar
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
53
La corriente que atraviesa la base (Ib) del transistor se obtiene analizando la red de 
entrada:
Ib = (Vbb - Vbe) / Rb.
Por ejemplo, Ib = Ib1.
Con la Ib1 calculada marcaremos en la característica de salida la horizontal de corriente 
de base sobre la que podrá trabajar el transistor.
Vcesat: tensión colector-emisor de saturación. 
Vcc: punto de corte de la recta de carga.
Vcc/Rc: punto de corte con la recta de carga.
Q1: punto de trabajo.
Vce1: tensión colector-emisor en el punto de trabajo.
Ic1: intensidad de colector en el punto de trabajo.
Cálculo gráfico del punto de trabajo de un transistor bipolar
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
54
ZONAS DE FUNCIONAMIENTO
El transistor puede estar polarizado en distintas zonas de funcionamiento. Estas posibles 
zonas de funcionamiento son tres: activa, corte y saturación.
Zonas de funcionamiento de un transistor bipolar
FUNCIONAMIENTO EN ACTIVA
En la zona activa el transistor tiene una corriente de colector (Ic) mayor que cero y 
una Vce mayor que un límite de tensión que separa las zonas de activa y saturación 
llamada Vcesat. En este caso el transistor se comporta como un amplificador de corriente, 
ya que en la salida del circuito circulará una Ic que será la intensidad de entrada (Ib) 
multiplicada por un valor constante denominado .
Este valor constante depende del transistor, y su valor viene dado por el fabricante en 
las hojas de características.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
55
 FUNCIONAMIENTO EN CORTE
En la zona de corte, se puede observar que el transistor tiene una Ic y una Ib nulas, 
es decir, sus valores son iguales a cero. En este caso el transistor se comporta como 
un circuito abierto.
Circuito equivalente del transistor en zona de corte
 FUNCIONAMIENTO EN SATURACIÓN
El punto característico de la zona de saturación es que la Vce tiene un valor igual a la 
Vcesat. Este valor también viene determinado por el fabricante del transistor y suele 
aproximarse a 0.2 Voltios. En este caso, el transistor se comporta como un cortocircuito, 
es decir, es un interruptor cerrado.
Circuito equivalente de un transistor en zona de saturación
En la mayoría de los casos, en la electrónica del automóvil, los transistores bipolares 
se comportan como un relé o como un interruptor. La ventaja que se obtiene con su 
uso es la disminución de arcos voltaicos en el paso de conducción a corte; además el 
transistor se controla con señales que son más fáciles de obtener. 
Este sólamente trabajará en las zonas de corte (circuito cerrado) y saturación (circuito 
abierto) si queremos que se comporte como un relé.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
56
 LIMITES DE RUPTURA
El transistor bipolar debe trabajar dentro de unos márgenes de tensión, corriente y 
potencia.
 Gráfica de curva de salida con límites de ruptura
Vcesat: tensión colector-emisor de saturación. 
Icmax: intensidad de colector máxima.
Vcemax: tensión colector-emisor máxima.
Pmax: máxima potencia eléctrica que puede soportar el transistor.
Un transistor bipolar se puede destruir por varias causas:
- Por sobrepasar el valor de Icmax.
- Por sobrepasar el valor de Vcemax.
- Se puede destruir un semiconductor si la potencia que soporta sobrepasa el valor 
de potencia máxima (Pmax). A mayor potencia eléctrica soportada mayor cantidad 
de calor existirá en el componente. La zona de ruptura por potencia se puede 
apreciar en la gráfica.
Todos los valores límite de intensidad máxima, tensión máxima y potencia máxima 
dependen de la fabricación del transistor. Sus valores vienen proporcionados por las 
hojas de características que suministra el fabricante en los DATA-BOOKS (libro de datos).
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
57
MONTAJE DARLINGTON
Este montaje consiste en la unión de dos transistores bipolares en cascada dentro de 
un circuito. La unión en cascada implica que la salida del primer transistor (Ie1) es la 
entrada (Ib2) del segundo transistor.
Circuito electrónico con montaje Darlington
La función de este tipo de circuitos es básicamente, la de amplificar la señal de entrada. 
A efectos de análisis del montaje, se considera el bloque como un único transistor bipolar 
con un factor de amplificación constante de valor 1 x 2 (siendo 1 y 2 los respectivos 
factores de amplificación de cada transistor).
MODULOS COMERCIALES
CODIFICACIÓN
BFY50
BFY51
BFY52
2N3903
2N3904
VCE MAX (V)
35
30
20
40
40
IC MAX (A)
1
1
1
0,2
0,2
VCE SAT 
0,7
1
1
0,2
0,3
VBE SAT (V)
1,5
1,5
1,5
0,85
0,95
IB SAT (mA)
50
50
50
50
50
TRANSISTORES BIPOLARES NPN
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
58
TRANSISTORES UNIPOLARES
Los transistores unipolares, al igual que los bipolares, son componentes semiconductores 
de dos uniones P-N, pero que se realizan con distinta tecnología de fabricación. Este 
tipode transistores tiene otra nominación que es la de transistores de campo, debido 
a que en su fabricación se ha conseguido que la corriente se controle por la acción del 
campo eléctrico existente en la unión P-N.
Mientras que los transistores bipolares dan un buen rendimiento a baja frecuencia, los 
unipolares funcionan mejor en frecuencias altas.
Dentro de los transistores unipolares existen dos tipos: los JFET (denominados simplemente 
FET) y los MOSFET (denominados de forma abreviada como MOS).
TRANSISTORES JFET
Las siglas JFET vienen de Junction Field Effect Transistor, que traducido quiere decir 
Transistor de Efecto de Campo.
Este tipo de transistores unipolares se utiliza mucho más que los MOSFET ya que su 
fabricación es mucho más barata.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
59
SIMBOLOGIA Y TERMINALES 
Un transistor unipolar se compone de tres partes semiconductoras: la parte principal 
es una barra de semiconductor a la que se le hacen dos hendiduras en su superficie 
dándole forma de ‘H’, las otras dos partes son dos capas de material semiconducor que 
van colocadas en las hendiduras de la parte principal. La parte semiconductora principal 
puede ser de tipo P o N, mientras que las otras dos capas son del tipo contrario al de 
la barra principal.
Esquema de terminales y partes semiconductoras de un JFET
El JFET tiene tres terminales o conexiones que se denominan: puerta (G), surtidor (S), 
y drenador (D). Dependiendo de si la barra central es de tipo P o de tipo N, los transistores 
JFET pueden ser de canal P o canal N respectivamente. La diferencia entre un tipo u 
otro se distingue en el sentido que marca la flecha situada en el terminal de puerta de 
su símbolo.
G: puerta.
D: drenador.
S: surtidor o fuente.
Símbolos electrónicos de los transistores unipolares JFET
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
60
CRITERIO DE CORRIENTES Y TENSIONES
Los sentidos de las diversas intensidades y tensiones en los terminales de un transistor 
unipolar JFET de canal N son los mostrados en el siguiente gráfico:
Criterio de signos de corrientes y tensiones en un JFET de tipo N
G: puerta. Ig: intensidad por la puerta.
D: drenador. Id: intensidad por el drenador.
S: surtidor. Is: intensidad por el surtidor (negativa).
Vgs: tensión puerta-surtidor. Vds: tensión drenador-surtidor.
A nivel de funcionamiento dentro de un circuito se suponen las siguientes aproximaciones:
Ig = 0.
Id = -Is.
Es decir, la corriente que circula por la puerta se supone aproximadamente cero, y se 
supone que la corriente que circula por el drenador es la misma que la que circula por 
el surtidor pero en sentido contrario.
Debido a la escasa utilización de los JFET de tipo P, sólamente se explicará el criterio 
de signos en el símbolo de los JFET de tipo N. La diferencia a nivel de signos entre los 
dos tipos, es que todos los sentidos de intensidades y tensiones de los de tipo P son 
contrarios a los asignados en los de tipo N.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
61
CURVAS CARACTERÍSTICAS
En el caso de los transistores unipolares, al igual que en los bipolares, también se utilizan 
dos tipos de curvas características: la de entrada y la de salida.
La curva característica de entrada, relaciona la corriente por el drenador (Id) con la 
tensión existente entre los terminales de puerta y surtidor (Vgs).
Id: intensidad de drenador. 
Idss: intensidad de drenador máxima aprovechable.
Vgs: tensión puerta-surtidor. 
Vp: tensión de pinch-off.
Curva característica de entrada de un transistor JFET
El punto que determina que un JFET pase de corte a conducción es el valor de la tensión 
entre puerta y surtidor. Existe un valor, proporcionado por el fabricante, y llamado 
tensión de pinch-off (Vp), que es el que determina el cambio de funcionamiento. Si Vgs 
es menor que el valor de Vp, el transistor no conduce; mientras que si el valor de Vgs 
es mayor que Vp, el JFET se encuentra conduciendo.
La otra curva característica es la de salida, y en ella se relaciona la corriente por el 
drenador (Id) con la tensión entre los terminales de drenador y surtidor (Vds), pero 
dependiendo del valor de la tensión entre la puerta y el surtidor (Vgs).
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
62
Id: intensidad de drenador. Idss: intensidad de drenador máxima aprovechable.
Vds: tensión drenador-surtidor. Vgs: tensión puerta-surtidor.
Vp: tensión de pinch-off . BVds: tensión drenador-surtidor máxima 
aprovechable.
Curva característica de salida de un JFET
Cada línea es representada para un valor determinado de Vgs, así la unión de dichas 
líneas referencia la curva característica de salida global, esto es, para distintos valores 
de tensión entre la puerta y el surtidor (Vgs1, Vgs2, Vgs3, etc.).
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
63
ZONAS DE FUNCIONAMIENTO
Este tipo de transistores puede estar polarizado en diversas zonas de funcionamiento: 
corte, óhmica, saturación y ruptura.
Zonas de funcionamiento reflejadas sobre la curva de salida
ZONA DE CORTE
En este estado de funcionamiento el transitor JFET equivale eléctricamente a un circuito 
abierto entre sus terminales de drenador y surtidor. Por lo tanto, no circula corriente 
por él.
 ZONA OHMICA
Eléctricamente, el JFET se comporta como si hubiera un potenciómetro entre el drenador 
y el surtidor. La peculiaridad de este potenciómetro o resistor variable es que su 
resistencia no varía manualmente o mecánicamente, sino que su variación es controlada 
por la tensión entre puerta y surtidor (Vgs). Es decir, la resistencia entre drenador y 
surtidor (Rds) toma diferentes valores para distintos valores de Vgs.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
64
ZONA DE SATURACION
En esta zona, el transistor unipolar equivale a un generador de corriente continua, cuyo 
valor depende de la Vgs aplicada. Esto es debido a que el valor de la intensidad que 
circula por el drenador (Id), permanece constante e invariante aunque se cambie el 
valor de la tensión entre el drenador y el surtidor (Vds).
El JFET entra en esta zona de funcionamiento cuando la tensión drenador-surtidor (Vds) 
supera el valor de tensión de pinch-off (Vp).
ZONA DE RUPTURA
Es una zona en la que, por diversas causas, tiene lugar un rápido crecimiento de la 
corriente por el drenador, lo que lleva a la ruptura de la unión semiconductora P-N 
situada en la parte del drenador. Esta zona también marca un límite en la tensión entre 
el drenador y el surtidor (Vds) que no se puede superar, este valor máximo de tensión 
se denomina BVds. Esta zona apenas se utiliza, ya que el componente pierde sus 
propiedades semiconductoras. Trabajar en esta zona supone hacer funcionar al transistor 
con corrientes y tensiones elevadas, lo que puede hacer que el componente se rompa.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
65
CIRCUITO AUTOPOLARIZADO
Circuito autopolarizador de un transistor unipolar JFET
A este circuito se le llama así porque mediante la disposición de resistencias y la fuente 
de alimentación continua Vdd, se consigue que el transistor JFET nunca esté funcionando 
en la zona de corte. Esto se debe a que el valor de tensión entre la puerta y el surtidor 
(Vgs) nunca va a ser inferior al valor de la tensión de pinch-off (Vp). Luego el circuito 
autopolarizado sólo puede estar funcionando en la zona de saturación o en la zona 
óhmica.
Cuando se encuentra en saturación, equivale a un generador de corriente continua de 
valor Id:
D: terminal de drenador.
S: terminal de surtidor.
Id: generador de corriente constante de valor Id.
Circuito equivalente de un transistor JFET en saturación
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICACIRCUITOS
ELECTROTÉCNICOS BÁSICOS
66
En cambio, cuando se encuentra en zona óhmica, equivale a una resistencia variable 
de valor Rds:
D: terminal de drenador.
S: terminal de surtidor.
Rds: resistencia entre los terminales 
del drenador y el surtidor.
Circuito equivalente de un transistor JFET en zona óhmica
TRANSISTORES MOSFET
Las siglas MOSFET vienen de Metal Oxide Semiconductor Field Effect Transitor, que 
significa Transistor Semiconductor de Efecto de Campo con Oxido de Metal.
En la actualidad se ha conseguido abaratar la fabricación de este tipo de transistores 
unipolares, por lo que están siendo utilizados para sustituir a los tiristores. La razón 
fundamental de este cambio es que se controlan por tensión y no hacen falta los circuitos 
de bloqueo adicionales que utilizan los tiristores, estos circuitos se verán en el próximo 
capítulo dedicado a los tiristores.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
67
SIMBOLOGIA Y TERMINALES (CONEXIONES)
Este tipo de transitores unipolares está fabricado con una barra principal semiconductora 
de tipo P o N, y dos zonas transversales de semiconductor de tipo contrario al de la barra 
principal. Pero con la diferencia con respecto a los JFET de que la capa superior es de 
material dieléctrico (aislante) y aisla el terminal de puerta (G) del resto del componente. 
G: terminal de puerta.
D: terminal de drenador.
S: terminal de surtidor o fuente.
Terminales y partes semiconductoras de un transistor unipolar MOSFET
Con esta peculiar forma de fabricación se consigue crear un campo eléctrico entre el 
terminal de puerta y el material dieléctrico; esto, eléctricamente, equivale a que haya 
un condensador entre estas dos partes, lo que provoca que la corriente por el terminal 
de puerta sea cero.
G: terminal de puerta.
D: terminal de drenador.
S: terminal de surtidor.
Símbolos electrónicos de los transistores MOSFET.
Al igual que los JFET, tienen tres terminales: puerta, drenador y surtidor. Dependiendo 
de si la barra central del componente es de un tipo u otro de semiconductor, existen 
dos tipos de transistores MOSFET: de canal P o de canal N. 
Sus respectivos símbolos se diferencian entre ellos en que la flecha pintada sobre el 
terminal del surtidor tiene sentido contrario.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
68
 CRITERIO DE CORRIENTES Y TENSIONES
Como siempre, estos dos tipos se diferencian en que todos los sentidos de corriente y 
tensión definidos en un MOSFET de tipo N, son de sentido contrario en uno de tipo P.
Ig: intensidad por la puerta. Vgs: tensión puerta-surtidor.
Id: intensidad por el drenador. Vds: tensión drenador-surtidor.
Is: intensidad por el surtidor o fuente.
Criterio de signos de tensiones y corrientes de un MOSFET
de canal N
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
69
CURVAS CARACTERÍSTICAS
Se util izan dos curvas características: la de entrada y la de salida.
La curva característica de entrada relaciona la corriente que circula por el drenador (Id)
con la tensión entre la puerta y el surtidor (Vgs).
Id: intensidad por el drenador.
Vgs: tensión puerta-surtidor.
Vt: tensión umbral.
Curva característica de entrada de un transistor MOSFET.
En este caso el valor de tensión que identifica el límite en el cual se pasa de conducción
a corte se llama tensión umbral (Vt). Si Vgs es mayor que este valor, el transistor 
MOSFET está conduciendo; mientras que si es menor no conduce.
La curva característica de salida relaciona la intensidad por el drenador (Id) con la
tensión existente entre los terminales del drenador y el surtidor (Vds).
Id: intensidad de drenador. 
Vds: tensión drenador-surtidor. 
Idss: intensidad de drenador máxima aprovechable. 
gs: tensión puerta-surtidor.
Vt: tensión umbral. 
BVds: tensión drenador-surtidor máxima aprovechable.
Curva característica de salida de un transistor MOSFET 
En esta curva, cada línea continua referencia un valor de tensión entre la puerta y el
surtidor (Vgs) distinto.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
70
ZONAS DE FUNCIONAMIENTO
Al igual que en los transitores JFET, los MOSFET tienen las mismas cuatro zonas de 
funcionamiento.
Zonas de funcionamiento de un transistor unipolar MOSFET
ZONA DE CORTE
El transistor MOSFET equivale eléctricamente a un circuito abierto entre los terminales 
del drenador y el surtidor. Se comporta como un interruptor desconectado, situado entre 
los dos terminales.
ZONA OHMICA
El MOSFET equivale a una resistencia variable conectada entre el drenador y el surtidor. 
El valor de esta resistencia varía dependiendo del valor que tenga la tensión entre la 
puerta y el surtidor (Vgs).
ZONA DE SATURACION
El transistor entra en esta zona de funcionamiento cuando la tensión entre el drenador 
y el surtidor (Vds) supera un valor fijo denominado tensión drenador-surtidor de 
saturación (Vdssat); este valor viene determinado en las hojas características 
proporcionadas por el fabricante.
En esta zona el MOSFET mantiene constante su corriente por el drenador (Id), 
independientemente del valor de tensión que halla entre el drenador y el surtidor (Vds). 
Por lo tanto, el transistor equivale a un generador de corriente continua de valor Id.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
71
ZONA DE RUPTURA
Esta zona apenas se utiliza porque el transistor MOSFET pierde sus propiedades 
semiconductoras y se puede llegar a romper el componente físico. La palabra ruptura 
hace referencia a que se rompe la unión semiconductora de la parte del terminal del 
drenador.
EJEMPLO DE CIRCUITO POLARIZADOR DE UN MOSFET
Circuito de polarización de un transistor MOSFET.
En este circuito se sabe que la fuente de alimentación de continua Vdd tiene un valor 
en voltios superior al valor de tensión umbral del MOSFET (Vt). Esto implica que el 
MOSFET está en zona de conducción, porque Vgs > Vt.
Como la tensión entre la puerta y el surtidor (Vgs) tiene el mismo valor que la tensión 
existente entre el drenador y el surtidor (Vds), el transistor unipolar se encuentra 
funcionando en zona de saturación. Esto implica que el MOSFET equivale, eléctricamente, 
a un generador de corriente continua y constante de valor Id:
Circuito equivalente de un transistor MOSFET en saturación.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
72
LIMITES DE RUPTURA
La utilización de transistores unipolares en circuitos electrónicos, tanto JFET como 
MOSFET, exige, como en cualquier otro componente, conocer sus limitaciones de trabajo.
Idmax: intensidad drenador máxima.
BVgs: tensión puerta-surtidor máxima.
Curva de entrada referenciada con límites de ruptura.
Los transistores unipolares están limitados en tres magnitudes eléctricas:
- En tensión: no se puede superar el valor máximo de tensión entre la puerta y el 
surtidor. Este valor se denomina BVgs. Tampoco se puede superar un valor máximo 
de tensión entre el drenador y el surtidor denominado BVds.
- En corriente: no se puede superar un valor de corriente por el drenador, conocido 
como Idmax.
- En potencia: este límite viene marcado por Pdmax, y es la máxima potencia que 
puede disipar el componente.
Idmax: intensidad de drenador máxima.
BVds: tensión drenador-surtidor máxima.
Pdmax: potencia eléctrica máxima.
Curva de salida referenciada con límites de ruptura.
Todos estos valores que marcan los límites de ruptura del transistor unipolar vienen 
referenciados en las hojas de características (DATA-BOOK) proporcionadas por el 
fabricante.
ZOOM ZOOMNDICEÍIMPRIMIR
MANUAL DE ELECTRÓNICA
CIRCUITOS
ELECTROTÉCNICOS BÁSICOS
73
TIRISTORES
Un tiristor es un componente electrónico formado mediante la unión de cuatro capas 
semiconductoras, dos de tipo P y dos de tipo N alternadas. Un tiristor se puede definir 
como un diodo controlado

Continuar navegando