Logo Studenta

estabilizacion-de-su-14610-downloadable-5838963

¡Este material tiene más páginas!

Vista previa del material en texto

Accede a apuntes, guías, libros y más de tu carrera
Estabilización De Suelos
32 pag.
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 85
4.1.- ESTABILIZACION DE SUELOS. 
 
4.1.1.- Consideraciones Generales.- 
Los suelos, mezcla de arena y arcilla, cualquiera que sea la proporción de sus 
elementos, cuando tienen una cantidad adecuada de humedad, son estables y pueden 
resistir perfectamente un trafico relativamente intensos sobre la arena, material 
incoherente. 
 
Sin embargo el terreno natural tiene graves inconvenientes; solamente en momentos 
determinados es un firme estable; se convierte en polvo o barro en cuanto la proporción 
de humedad varía de la que exige, en cada caso, su naturaleza. 
La observación de los hechos indicados y el estudio científico de las propiedades de los 
suelos, ha creado una técnica de gran interés, para su estabilización, con un doble fin: 
construir caminos de costo reducido, perfectamente aceptables para ciertos limites de 
trafico, y cimientos capaces de soportar con la debida permanencia de sus 
características, las cargas que transmiten las capas de rodadura de alta calidad. Por 
ambos conceptos la trascendencia de esta técnica es grande. 
 
La economía moderna obliga a llegar hasta los más recónditos lugares para poder 
utilizar los recursos del país. La red de caminos rurales necesita extenderse cada día mas 
y mas; el trafico en mucho de ellos es reducido, pero deben ser transitables en todo 
momento; no seria posible, dentro del problema económico en conjunto, dotar a estos 
caminos de firmes de calidad, de costo elevado; los de bajo precio, utilizando los 
materiales existentes al pie de la obra, son, en muchos casos, una solución excelente. 
 
Por otra parte, mantener la calidad del suelo sobre el que se asientan las capas del 
pavimento con unas características aceptables en todo tiempo, es fundamental para el 
resultado del firme; por ello , en los últimos años se ha dedicado una preferente 
atención al estudio de la estabilización del suelo, cimiento de pavimento de alta calidad; 
su empleo permite llegar en muchos casos a espesores mucho mas reducido de las capas 
del firme con completa garantía; el conjunto del pavimento resulta mucho mas 
económico. 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 86
TABLA Nº 11: TIPO DE ESTABILIZACIÓN PARA CADA SUELO. 
 TIPO DE SUELO 
 
TIPO DE ESTABILIZACION 
 
Materia Orgánica 
 
Estabilización mecánica. Los demás métodos no son 
efectivos. 
 
 
Arenoso 
 
 
 
 
Mecánica, cuando la granulometría es uniforme. Las 
arenas limpias pueden mejorar sus características con 
cemento o asfalto. 
 
 
Limoso con algo de arcilla 
 
En general, el único tratamiento al que son susceptibles 
es a la compactación. 
 
Limosos poca o ninguna arcilla 
 
 
 
No existen tratamientos económicos. 
Debe evitarse su uso en superficies expuestas por el 
polvo cuando secan. 
Arcillosos plásticos 
 
Responden a la estabilización con cal. 
 
Arcillosos de textura abierta 
 
Responden muy bien a la compactación. 
 
Arcillas suaves 
 
Susceptibles a la estabilización con cal. 
 
Caolín 
 
Estabilización mecánica con arena, cemento o cal. 
 
Montmorillonita 
 
Con cal. 
 
Illita 
 
Con cemento o cal. 
 
 
 
 
 
4.1.2.- Conceptos Fundamentales de la Estabilización.- 
 El suelo se deforma bajo la acción de las cargas directas, o a las transmitidas por las 
capas del firme de alta calidad, si no tiene la debida resistencia; esta debe tener valores 
que no desciendan en ninguna circunstancia de los que exigen las cargas que ha de 
soportar. Es sabido que, especialmente en ciertos tipos de suelo, su resistencia varía 
ampliamente al cambiar la proporción del agua que contiene. Con la estabilización se 
pretende, en primer término lograr, que dentro de unas condiciones normales, el agua 
que el suelo pueda contener solamente varié entre límites muy pequeños; Se tendrá así 
una resistencia conocida y estable. Para ello se añaden y mezclan con el suelo diferentes 
productos hidrófobos, que transmiten esta propiedad al suelo, estabilizando sus 
características. Así sucede con los suelos predominantemente arcillosos y con los 
limosos, capaces de absorber y retener por absorción proporciones elevadas de agua; 
cuando están secos se disgregan y presentan una apreciable resistencia; pero cuando 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 87
tienen una cierta cantidad de agua se hacen plásticos y deformables llegando incluso a 
fluidificarse; el cemento, los productos bituminosos y las diferentes clases de resinas y 
plásticos que se emplean en la estabilización, limitan la cantidad de agua que el suelo 
pueda contener , estabilizándolo. 
Los suelos cohesivos y suelos del tipo granular, que solamente tienen resistencia con un 
acierta cantidad de agua, que varía entre límites muy próximos, presentan cohesión 
aparente; si se quiere que tengan una cierta resistencia cuando estén secos, hay que 
mezclarlos con productos capaces de aglomerarlos, función que pueden cumplir los 
productos cohesivos; el material estabilizador tiene una doble función, dar al conjunto 
una determinada rigidez y mantener esta característica evitando que la posible absorción 
de agua exceda los límites convenientes; pero si la composición granulométrica del 
suelo granular no es adecuada, la proporción precisa del producto estabilizado resulta 
muy alta y puede resultar antieconómica; por ello, en muchos casos es corriente corregir 
el suelo, añadiendo al material granular, si económicamente es posible, el suelo 
cohesivo necesario y al conjunto, el producto preciso para cumplir la misión de darle la 
debida resistencia y mantener la debida proporción de humedad. Análogamente un suelo 
excesivamente plástico puede ser económicamente conveniente corregirlo añadiéndole 
una determinada proporción de material granular, previamente al empleo del producto 
estabilizador. La estabilización exige el cumplimiento de un aserie de condiciones 
comunes, que son las siguientes: 
1. El suelo estabilizado deberá tener la resistencia precisa para soportar las cargas a 
que ha de estar sometido, bien sean transmitidas por las capas superiores del 
pavimento olas directas del tráfico, cuando constituya la capa de rodadura, esta 
resistencia mínima habrá de lograrse en las condiciones extremas, de humedad y 
acción del hielo, que se han de prever, según las características meteorológicas y de 
drenaje. 
2. El cumplimiento del la condición anterior obligará a corregir el suelo natural, bien 
por la aportación de otros apropiados o por la adición de cemento, betún o diferentes 
productos químicos. La conveniencia del empleo de uno u otros, es cuestión 
económica. 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 88
4.1.3.- Tipos de Estabilización.- 
Existen diversos tipos de estabilización y mejoramientos de suelos para carreteras, en 
donde es importante tener conocimiento de conceptos teóricos, prácticos y 
experimentales sobre características y propiedades de los suelos en especial el 
comportamiento de los suelos finos, con la finalidad de obtener el método apropiado de 
estabilización que puede ser mecánica o química, para un tipo de suelo en especial 
teniendo en cuenta consideraciones climatológicas, regionales, criterios técnicos de 
resistencia-durabilidad y aspectos económicos. 
A. Método Granulométrico o de mezclas.- 
Para estabilizar un suelo grueso o fino debemos tener en cuenta la distribución en 
tamaño de sus partículas, forma, textura, peso volumétrico, fricción interna y cohesión. 
Los suelos utilizables para la construcción de carreteras comúnmente son: 
Suelos que proceden de bancos naturales; como depósitos de arena del mar como 
arenas uniformes, o depósitosde ríos como gravas, arenas, limos y arcillas. 
Suelos procesados; Son aquellos suelos que se requiere procesarlos, ya que los suelos 
procedentes de bancos naturales son indeseables para la construcción de carreteras, por 
lo tanto necesitamos procesarlos de tal manera de mejorar su granulometría, 
proporcionar una alta densidad, buena distribución de tamaños de partículas, forma, 
textura para una buena separación de tamaños de partículas y redosificación, con el 
objetivo de conseguir buenas compacidades y un mejor efecto de consistencia. 
Suelos que proceden de bancos de préstamos; Son suelos utilizables y adecuados para 
construcción de carreteras, se extraen de excavaciones cercanas de la obra vial. 
Suelos del tipo especial; Son suelos que han sido modificados en sus propiedades 
físicas, químicas para obtener resultados adecuados y utilizables para carreteras, por 
ejemplo las escorias de altos hornos, cuando ocurre la fundición del fierro. 
La resistencia es una característica importante que deben tener los suelos para poder 
seleccionarlos, y está influenciada en proporciones de materiales que contengan finos o 
agregados gruesos. 
Los suelos que contengan pocos finos o sin finos y una buena distribución de tamaños 
presentan una importante estabilidad, permeabilidad y no son susceptibles a la acción de 
las heladas. 
El suelo que contiene suficiente cantidad de finos para llenar todos los vacíos entre 
partículas, incrementara su resistencia producto del contacto entre las partículas, donde 
la presencia de los finos permitirá una mejor distribución de los esfuerzos que en el 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 89
caso de suelos que no presenten finos, se obtendrá alto peso volumétrico, baja 
permeabilidad y puede ser susceptible a la acción de heladas, este tipo de material 
presenta problemas de compactación, pero desde el punto de vista de la estabilidad se 
tiene un esfuerzo cortante importante, ya sea para material sin confinar, así como 
material confinado. 
El suelo que contiene gran cantidad de finos, no tendrá trasmisión de esfuerzos, ya que 
no efectuará contacto entre las partículas gruesas, por la que flotaran en el suelo fino, 
teniendo como comportamiento un bajo peso volumétrico, es impermeable, disminución 
de resistencia y es susceptible a la acción de las heladas. 
Estabilización granulométrica con Escoria; La reutilización de residuos en la 
ingeniería civil presenta ventajas como la disminución del impacto ambiental del 
residuo, los ahorros energéticos como de materias primas así como beneficios 
económicos. Por ejemplo las escorias derivadas de las fundiciones, un residuo industrial 
que aparece en la refinación de minerales en hornos de alta temperatura. Hasta hace 
poco se consideraba un residuo cuyo destino era el vertedero, pero la tendencia actual es 
su utilización en las obras civiles y en la construcción. 
DEFINICION; La estabilización con escoria es la mezcla homogénea en este caso de 
áridos, escoria granulada de alto horno, cal y agua que, convenientemente compactada 
se mejora sus parámetros de resistencia y uno de sus mayores usos es en la construcción 
de bases y sub. Bases de carreteras. 
Condiciones generales; Los áridos procederán del machaqueo y trituración de piedra de 
cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, 
exentos de polvo, suciedad, arcilla u otros materiales extraños. 
 Composición granulométrica; La curva granulométrica estará comprendida, en 
general, dentro de los límites indicados en la tabla Nº 12. Cabe resaltar que las medidas 
de mallas mencionadas en este cuadro están regidos por las Normas Españolas. 
 
 
 
 
 
 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 90
TABLA Nº 12: COMPOSICIÓN GRANULOMÉTRICA. 
TAMI CES 
UNE (mm. ) 
 ACUMULADO QUE PASA (%) 
GEG 1 GEG 2 
25 100 100 
20 85-100 85-100 
10 40-70 35-65 
5 22-46 18-42 
2, 5 12-32 10-30 
1, 25 8-24 7-22 
0, 40 2-13 2-13 
0, 16 0-8 0-8 
0, 080 0-4 0-4 
 
Los usos GEG 1 y GEG 2 se utilizarán con porcentajes de escoria granulada, respecto al 
peso total de los materiales secos, del quince por ciento (15 %) y del veinte por ciento 
(20 %) respectivamente. 
 Caras de fractura; Los áridos a emplear en grava-escoria, para bases de tráfico pesado 
o medio, deberán contener al menos un cincuenta por ciento (50 %) en peso, de la 
fracción retenida por el tamiz 5 mm, de elementos machacados que presenten dos (2) 
caras o más de fractura. 
Calidad; El coeficiente de desgaste, medido por el ensayo de Los Ángeles, será inferior 
a treinta (30%) en áridos para bases de tráfico pesado o medio, e inferior a treinta y 
cinco (35%) en los restantes casos. 
Plasticidad; Los áridos serán no plásticos y su equivalente de arena será superior a 
treinta (30%). 
Contenido de materia orgánica y otras materias perjudiciales; No se utilizarán aquellos 
materiales que presenten una proporción de materia orgánica, expresada en ácido tánico, 
superior al cinco por diez mil (0,05 %), de acuerdo con la Norma UNE 7082.( Una 
Norma Española) 
La proporción de terrones de arcilla no excederá del dos por ciento (2 %) en peso, según 
la Norma UNE (Una Norma Española) 7133. 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 91
 Escoria granulada 
 Definición; Se define como escoria granulada el producto obtenido por enfriamiento 
brusco y controlado de la escoria de horno alto, a la salida del mismo. 
Procedencia; El Pliego de Prescripciones Técnicas Particulares o, en su defecto, el 
supervisor de las obras, fijará la procedencia de la escoria granulada, proscribiéndose el 
empleo de escorias que procedan de acopios siderúrgicos. 
 Reactividad; El coeficiente de reactividad a, definido por la expresión  = (s·f)/1000 
deberá ser superior a veinte (20%), siendo: s, la superficie especifica Blaine, y f, el tanto 
por ciento (%) en peso de los elementos que pasan por el tamiz 0,080 UNE, obtenidos 
en molienda normalizada de la escoria. 
Contenido de agua; Los valores máximos del contenido de agua h, respecto al peso seco 
de la escoria, en función del correspondiente coeficiente  de la escoria serán: 
20 <  < 40 h < 15 % 
40 <  < 60 h < 20 % 
60 <  h < 25 % 
Granulometría; La curva granulométrica estará comprendida. En general dentro de los 
límites indicados en la Tabla Nº 13. Cabe resaltar que las medidas de mallas 
mencionadas en este cuadro están regidos por las Normas Españolas. 
TABLA Nº 13: ESTABILIZACIÓN GRANULOMÉTRICA. 
TAMI Z UNE 
(mm. ) 
CERNI DO PONDERAL ACUMULADO (%) 
5 95-100 
2, 5 75-100 
1, 25 40-85 
0, 40 13-35 
0, 16 3-14 
0, 080 1-10 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 92
 
 Cal; "Cal aérea", para el tipo I, deberá reunir las características que se indican a 
continuación: 
Cal apagada; La finura Blaine del material que pasa por el tamiz 0.080 UNE será 
superior a siete mil centímetros cuadrados por gramo (7.000 cm2/g), según la Norma 
UNE 7144. 
El porcentaje de cal libre será superior al cincuenta por ciento (50 %). 
Cal viva; Sólo podrá utilizarse en casos excepcionales, con la aprobación del Supervisor 
y siempre que se adopten las medidas de seguridad necesarias. 
El porcentaje de cal libre deberá ser superior al setenta por ciento (70 %). 
Agua; Cumplirá lo especificado en las normas que regulan la calidad de agua para obras 
de ingeniería civil. 
 
Tipo y Composición de la Mezcla 
El tipo y composición de la mezcla serán los definidos en el Pliego de Prescripciones 
Técnicas Particulares. 
En general, el porcentaje de escoria granulada será del veinte por ciento (20 %) en peso 
de la mezcla total seca. Este porcentaje se reducirá al quince por ciento (15 %)cuando 
se empleen áridos calizos de machaqueo. 
Cuando el porcentaje de escorias sea del quince por ciento (15 %) la granulometría de 
los áridos estará comprendida en el huso GEG 1. Si el porcentaje de escorias es del 
veinte por ciento (20 %) la curva granulométrica del árido estará comprendida en el 
huso GEG 2. 
El contenido de cal será del uno por ciento (1 %) en peso de la mezcla total seca. 
El Pliego de Prescripciones Técnicas Particulares podrá especificar la resistencia 
mínima a compresión a los siete días (7 d) de las probetas de grava-escoria, precisando 
el método de fabricación y curado de las mismas. 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 93
 Aplicaciones en Ejecución de las Obras 
Estudio de la mezcla y obtención de la fórmula de trabajo; La ejecución de la mezcla 
no deberá iniciarse hasta que no se haya estudiado y aprobado su correspondiente 
fórmula de trabajo. 
Dicha fórmula señalará: 
 Las granulometrías de los áridos y de la escoria por los tamices 25, 20, 10, 5, 
2.5, 1.25, 0,4, 0.16 y 0.080 UNE (Una Norma Española). 
 La proporción de escoria granulada. 
 La proporción de cal. 
 El contenido de agua. 
 El valor mínimo de la densidad a obtener. 
Las tolerancias admisibles respecto a la fórmula de trabajo serán las siguientes: 
 Cernido por tamices superiores al 2,5 UNE: ± 6% 
 Cernido por tamices comprendidos entre el 2,5 y 0,16 UNE: ± 3% 
 Cernido por el tamiz 0,080 UNE: ± 1,5 % 
 Escoria granulada: ± 1% 
 Cal: ± 0,2 % 
 
Estos porcentajes se refieren al peso total de la mezcla seca. 
Durante el transcurso de la obra el Supervisor podrá corregir la fórmula de trabajo con 
objeto de mejorar la calidad de la grava-escoria, justificándolo debidamente mediante 
un nuevo estudio y los ensayos oportunos. 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 94
B. Estabilización con Cemento.- 
El suelo cemento es una mezcla de suelo pulverizado, con cemento Pórtland y 
contenido de agua, que compactado a una humedad óptima y densidad máxima, produce 
luego de la hidratación del cemento un material resistente, durable y de bajo costo. 
 Tiene aplicaciones de gran importancia en el diseño de pavimentos, las cuales podemos 
mencionar: 
 
a) Como capa de base para: 
Caminos y calles de tránsito liviano. 
Superficie de tránsito secundario en aeropuertos. 
Playas de estacionamiento. 
b) Como capa de sub-base para: 
Pavimentos de concreto. 
Pavimentos suelo cemento. 
Pavimentos flexibles. 
c) Como sub rasante tratada. 
La estabilización suelo cemento es recomendable para suelos medianamente plásticos, 
por permitir lograr mas resistencia. 
La estabilización de suelos predominantemente finos con cemento no puede resistir 
tensiones horizontales por falta de fricción interna, por lo tanto no es recomendable para 
este tipo de suelos. 
 
Este método de Estabilización Suelo-Cemento, es un proceso químico que se utiliza 
estabilizar y mejorar suelos, consiste en añadirle al suelo, cemento en seco y para 
proporciones de agua, con la finalidad de dar un buen fraguado y una compactación 
adecuada esto nos ayuda sobre todo a tener una buena disgregación de suelos finos, 
como son los suelos arcillosos fundamentalmente. 
 
Como cada tipo de suelo requiere una cantidad adecuada de cemento para su 
estabilización, por lo tanto es importante tener en consideración las características, el 
comportamiento, así como las condiciones del terreno. Para suelos arenosos, se requiere 
una cantidad del 7 al 10% en volumen de cemento, mientras que, para suelos arcillosos, 
se requiere una cantidad de cemento en proporciones del 12 al 16% y aún mas en 
algunos casos, los suelos arcillosos requieren mucho mas cemento, que en los suelos 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 95
arenosos, por lo tanto estabilizar con cemento a un suelo muy arcilloso, es bastante 
costoso, sobre todo cuando el material de préstamo se encuentre en distancias muy 
grandes del lugar de la obra. 
 
Con respecto a las proporciones de agua, se necesita la cantidad suficiente para hidratar 
al cemento y para lograr la compactación adecuada, como cierta parte del agua agregada 
al suelo se evapora y se pierde durante las operaciones de mezclado, es necesario 
incorporar al suelo una cantidad adicional de alrededor del 3% de agua, para que 
durante su compactación se encuentre con el óptimo contenido de humedad. El 
cemento, al hidratarse obtiene una mezcla muy dura y de mayor resistencia que la de un 
material sin estabilizar. Si en estas condiciones, le añadimos proporciones del 2% al 3% 
de cemento, probablemente modifiquen sus propiedades índices del suelo, pero sí las 
proporciones fuesen del 5% al 8%, pueden alterar con mayor facilidad sus propiedades. 
 
El cemento al estar en contacto con el agua, produce el hidrato de calcio, donde se libera 
los iones de calcio muy ávidos de agua que están pegados a las laminas arcillosas, y 
como resultado de este proceso es la disminución de la porosidad, y de la plasticidad, 
por lo tanto se origina el aumento de la resistencia y de su durabilidad. 
 
La acción del cemento en los suelos arcillosos resulta complicada, pues produce dos 
efectos, en principio ocurre un efecto primario, donde la hidratación del cemento 
produce silicatos y aluminatos de calcio hidratados, hidróxido de calcio e iones de 
calcio que elevan la concentración de electrolitos del agua intersticial. Luego en 
segundo termino, se produce el efecto secundario, el cuál se divide en dos fases. La 
primera fase, se produce un intercambio iónico entre los iones de calcio y otros que son 
absorbidos por los minerales de la arcilla, proceso que tiende a flocular a la propia 
arcilla. En la segunda fase, se da lugar a las reacciones químicas puzolánicas entre la cal 
y los elementos que componen los cristales de la arcilla. Los elementos compuestos por 
materiales silicosos y alumínicos reaccionan con los compuestos cálcicos para 
conformar elementos resistentes y durables. En esta misma segunda fase, el hidróxido 
de calcio que se va consumiendo puede reponerse por la cal que se libera durante el 
proceso primario de hidratación del cemento. 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 96
Es importante tener conocimiento de las partículas mineralógicas que contiene un tipo 
de suelo arcilloso, porque poseen modificaciones en sus características y propiedades 
propias, tal es el caso de los minerales arcillosos que van del orden de la 
montmorillonita, a la caolinita y la ilita. 
 
La estabilización de suelos arcillosos, mediante la adición de cemento presenta 
dificultad para estabilizarse por lo que son difíciles de pulverizar, puesto que en estado 
seco son bastantes duros, y cuando se presenta excesos de humedad se hacen más 
pegajosos, de aquí que estos materiales deben humedecerse o dejarse secar para que 
posean el grado de humedad que facilite su pulverización, es por ello que muchas veces 
se ha pensado en añadirle proporciones del 2% de cal, para dar un mejor fraguado a la 
mezcla, trabajabilidad y reducción de los componentes cohesivos de la arcilla cuando se 
encuentre en estado seco. Para suelos arcillosos de alto contenido de humedad, es 
necesario que contengan un gran porcentaje de cemento para lograr el mejoramiento 
deseado del suelo, porque caso contrario, provocaría problemas de pulverización y de 
mezclado. 
 
En base, al estudio de montmorillonitas, caolinitas e ilitas, se encontró que en periodo 
de curados de hasta siete días, se desarrollan resistencias más altas utilizando cemento 
Pórtland tipo 1 que las obtenidas utilizando cemento tipo II, debido probablemente al 
mayor contenido en aluminato tricálcico en el Cemento tipo 1. Para laestabilización de 
los suelos arenosos, según análisis realizado y obtenido, se ha encontrado que el 
cemento tipo III, es el más recomendable ya que generan mayores resistencias al 
intemperísmo y a la compresión simple. 
 
En suelos no plásticos o de baja plasticidad, la estabilización con cemento es un método 
muy eficaz, porque su rápido fraguado, trabajabilidad y su buena compactación, 
incrementa su resistencia y durabilidad a lo largo del tiempo. 
 
En suelos inertes, no habría inconvenientes, en cuanto a tener que estabilizarlos con 
adición de cemento, pero tendríamos que tener en cuenta ciertas limitaciones, que 
pueden generar problemas de agrietamiento, tal es el caso de las rocas trituradas o 
gravas graduadas, es por ello que estabilizarlo con cemento sería innecesario. 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 97
La Estabilización con Cemento, para suelos orgánicos o con presencia de sales como los 
sulfatos, es desfavorable, porque estos tipos de suelos retardan y hasta evitan la 
hidratación del suelo con el cemento, esto se debe a que estos tipos de suelos como 
sulfatos llegan a absorber iones de calcio, es por ello que se le añade cloruro de calcio o 
sal hidratada, con el propósito de satisfacer la necesidad de iones de calcio, y de esta 
manera se puede mejorar sus características; este punto lo analizaremos con mas 
profundidad y detalle en el acápite del Método de Estabilización con Sales. 
Un caso poco común es la presencia de sulfatos de calcio o de magnesio en los suelos, 
pero se han encontrado en estos tipos de suelo que al adicionar cemento, se obtiene un 
material poco durable y con alto contenido de humedad después del mezclado, esto se 
debe a las reacciones de materiales arcillosos del suelo, a la presencia de iones sulfatos 
en la cal y exceso de agua, por lo tanto no es el método adecuado de estabilizar con 
cemento a los suelos con presencia de sulfatos de calcio o de magnesio, en consecuencia 
es importante saber que al estabilizar un suelo con cemento, se debe tener conocimiento 
que el suelo de la presencia o ausencia de sulfatos en el suelo, para no tener dificultades 
en el momento de la estabilización. 
 
Es importante que a un suelo que se va a estabilizar con cemento se determine 
previamente la presencia o ausencia de sulfatos, mediante procedimientos químicos. 
Debido a que el efecto de los sulfatos se debe a la presencia de sulfato y arcilla en el 
suelo, bajo la adición de iones de calcio y agua en exceso, resulta poco valor el empleo 
de cemento Pórtland tipo V o sea los resistentes al ataque de los sulfatos. 
 
Las estabilizaciones de los suelos con cemento tienen como característica aumentar la 
resistencia con el tiempo del mezclado, efectos de curado, homogeneidad en la mezcla, 
etc., por lo tanto es muy importante tener criterios y fundamentos en la elaboración ideal 
de las proporciones del mezclado y de su compactación, con el propósito de obtener 
éxito y calidad en la estabilización. 
 
En la Tabla Nº 14, se aprecia la resistencia a la compresión a los 7 y 28 días para 
diversos tipos de suelos estabilizados con cemento. 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 98
TABLA NO 14: AUMENTO EN LA RESISTENCIA A LA COMPRESION 
PARA VARIOS TIPOS DE SUELOS 
 
Tipo de suelo 
Resistencia a la Compresión (kg/cm2) 
7 Días 28 Días 
Suelos Arenosos y Gravosos 
Grupos A-1, A-2, A-3 (AASHTO) 
21 - 42 28 - 70 
Suelos Limosos 
Grupos a-4, A-5 
17 - 35 21 - 63 
Suelos Arcillosos 
Grupos A-6 y A-7 
14 - 28 18 - 42 
 
La construcción del suelo cemento para bases de carreteras puede hacerse mediante 
varios métodos obteniendo resultados similares. Las diversas operaciones y su 
secuencia son las mismas y la diferencia está en el equipo que se utiliza. El proceso para 
construir una base o sub-base de suelo cemento por medio de este equipo puede 
resumirse en las siguientes operaciones: 
 
Preparación inicial del suelo que se va a estabilizar, pulverización, aplicación del 
cemento, mezclado en seco del cemento y el suelo, aplicación del agua y continuación 
del mezclado con humedad, compactación, perfilado según los planos, escarificación 
superficial, alisado con rodillos lisos de hierro. 
 
Las limitaciones que existen para estabilizar un suelo con adición de cemento: 
 
a) Razones técnicas, tales como dificultades para la pulverización, mezclado y 
compactación. 
b) Por factores de construcción, como la durabilidad y resistencia que pueden obtenerse 
c) Consideraciones económicas, tales como costos de extracción, mezclado, 
compactación, transporte, contenido de cemento requerido, costo de aditivos, etc. 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 99
C. Estabilización con Cal.- 
Consiste en mezclar el suelo con cal en un porcentaje de peso, es recomendable su 
aplicación a suelos finos arcillosos por reaccionar mejor con este material debido a la 
reducción de sus propiedades plásticas. 
Las arcillas frecuentemente requieren estabilización con el objeto de incrementar su 
resistencia y disminuir su sensibilidad a cambios volumétricos a consecuencia de 
cambios en el contenido de agua. 
Mediante el tratamiento de suelos arcillosos con cal se logra cambios en las propiedades 
Del suelo, obteniéndose así efectos como: 
 Reducir el índice plástico en forma considerable, esto es debido a un pequeño 
incremento en el límite plástico y una considerable reducción en el límite 
líquido. 
 El agua y la cal colaboran para acelerar la disgregación de los granos de arcilla 
durante la operación de pulverizado, lo cual facilita la trabajabilidad. 
 Se reduce los efectos aglomerantes. 
 En lugares donde el suelo tiene un alto contenido de humedad, la aplicación de 
la cal facilita el disgregado del suelo del suelo, lo que a su vez propicia el secado 
más rápido. 
 Las contracciones debido al cambio de humedad se reduce considerablemente. 
 La resistencia del suelo a la compresión se incrementa, así mismo el valor 
relativo de soporte. 
 La capa estabilizada proporciona una excelente plataforma de trabajo para la 
construcción de las capas superiores de la sección estructural de un camino. 
 
La forma más usual de la cal empleada en las estabilizaciones es la hidratada, óxidos o 
hidróxidos de calcio. El efecto básico de la cal es la constitución de silicatos de calcio 
que se forman por acción química de la cal sobre los minerales de arcilla, para formar 
compuestos cementadores. 
La cal se prepara generalmente calentando carbonatos de calcio, muchas veces bajo 
formas de calizas naturales, hasta que pierden su bióxido de carbono y deriven en 
óxidos de calcio; el resultante es la cal viva, muy inestable y ávida de agua, lo que hace 
difícil su manejo y almacenamiento, por lo que suele de hidratarse de inmediato. 
Para formar la cal estabilizante no es preciso partir de calizas puras, sino que pueden 
tolerarse algunas impurezas. 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 100 
La cal tiene poco efecto en suelos muy orgánicos o en suelos sin arcillas. Tiene su 
máximo efecto en gravas arcillosas, en las que puede producir mezclas inclusive más 
resistentes que las que se obtendrían con cemento. Ha obtenido su utilización mas 
frecuente en arcillas plásticas, a las que hace mas trabajables y fáciles de compactar 
razón por la cual se usa frecuentemente como pre-tratamiento a una estabilización con 
cemento, además de los muchos casos que se utiliza como estabilizante definitivo. 
 
D. Estabilización Bituminosa.- 
Es aplicable en los suelos medianamente plásticos, consiste en incorporar materiales 
bituminososen suelo o mezcla granular para formar bases flexibles, las cuales pueden 
soportar cargas de tránsito bajo condiciones normales de humedad y de circulación. 
El bitumen es incorporado a los suelos como agente repulsivo al agua, a fin de mantener 
un bajo contenido de humedad y un adecuado valor de soporte en dichos suelos. 
Los materiales bituminosos son adicionados en suelos granulares para actuar como 
medio ligante o cementante, además de darle cohesión, permite desarrollar la fricción 
interna para resistir la acción de desplazamiento lateral por las cargas de tránsito. 
 
 
 
 
 
 
 
 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 101
4.2.- COMBINACIÓN DE LAS ESCORIA CON FINOS. 
 
 
En la presente tesis se plateó como objetivo de la investigación de las propiedades 
físicas y mecánicas de las escorias del proceso de la elaboración de acero de la planta 
de Aceros Arequipa en Pisco, así como el mejoramiento de dichas propiedades 
mediante su combinación con polvo de Baghouse subproducto también de la 
elaboración del Acero de la planta en mención. 
 
Para lograr tan fin se procedió a analizar muestras de Escorias determinando las 
características de dicho materia en su estado original y luego con porcentajes de 
polvo de Baghouse en proporciones de 10%, 15%, y 20% tratando de mejorar 
algunas de sus propiedades a fin de emplearlas en el uso de pavimentos como base o 
subbase o con fines de cimentación de estructuras. Asiendo ensayos de Proctor, 
CBR, Granulometrías, Limites de Attemberg, Corte Directo entre otros que nos 
pueda dar a conocer el comportamiento de este material para los fines antes 
mencionados. 
 
En los siguientes acápites presentaremos los resultados de los ensayos realizados 
indicando las combinaciones antes mencionadas y además el estado original de las 
Escorias (0%) 
 
4.2.1.- Límites de Consistencia.- 
En los siguientes cuadros y gráficos se muestran los porcentajes de escoria utilizados 
y sus respectivos valores de Límite Líquido, Límite Plástico e Índice de Plasticidad. 
 
 
TABLA Nº 15: 
 
% de Esc oria LL LP IP 
10.00% 14.25% 13.91% 0.34% 
15.00% 15.30% 13.91% 1.39% 
20.00% 15.51% 13.60% 1.91% 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 102
GRÁFICO Nº 3: LÍMITE LÍQUIDO VS % DE POLVO. 
 
 
Limite Liquido Vs % de Polvo
14.0%
14.3%
14.5%
14.8%
15.0%
15.3%
15.5%
15.8%
9.5% 11.5% 13.5% 15.5% 17.5% 19.5% 21.5%
% de Polvo
L
im
it
e 
L
iq
u
id
o
 
 
 
 
 
GRÁFICO Nº 4: LÍMITE PLÁSTICO VS % DE POLVO. 
 
 
 
 
 
 
 
 
Limite Plástico Vs % de Polvo 
13.5% 
13.6% 
13.7% 
13.8% 
13.9% 
14.0% 
8.5% 10.5% 12.5% 14.5% 16.5% 18.5% 20.5% 
% de Polvo 
L
im
it
e 
P
lá
st
ic
o
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 103
GRÁFICO Nº 5: ÍNDICE DE PLASTICIDAD VS % DE POLVO. 
 
 
 
 
 
 
 Cabe mencionar que en su estado original las Escorias no presentan limites de 
consistencia, además podemos observar que la combinación de escorias y 
polvo de baghouse va ganando plasticidad a medida que aumenta el 
porcentaje de polvo en la mezcla 
 
 
 
 
 
 
4.2.2.- Granulometría.- 
En los siguientes cuadros y gráficos se muestran las diferentes granulometrías de la 
Escoria, polvo de Baghouse con las diferentes combinaciones de 10%, 15%, 20% 
 
 
 
 
 
 
 
 
Índice de Plasticidad Vs % de Polvo
14.0%
14.3%
14.5%
14.8%
15.0%
15.3%
15.5%
15.8%
9.0% 11.0% 13.0% 15.0% 17.0% 19.0% 21.0%
% de Polvo
Ín
d
ic
e 
d
e 
P
la
st
ic
id
ad
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 104
 
 
GRÁFICO Nº 6: GRANULOMÉTRIA DE LOS PORCENTAJES QUE 
PASAN, ESCORIA POLVO DE BAGHOUSE Y COMBINACIONES 
 
 
 
TAMIZES % Que Pasa 
ASTM (mm) Escoria Polvo Baghouse Combinación 10% Combinación 15% Combinación 20% 
6" 152.4 100.00 100.00 100.00 100.00 100.00 
4" 101.6 100.00 100.00 100.00 100.00 100.00 
3" 76.20 100.00 100.00 100.00 100.00 100.00 
2" 50.80 100.00 100.00 100.00 100.00 100.00 
1 1/2" 38.10 98.77 100.00 99.14 99.24 99.32 
1" 25.40 92.33 100.00 93.35 94.07 94.74 
3/4" 19.05 84.78 100.00 86.76 88.19 89.54 
1/2" 12.70 71.06 100.00 76.01 78.60 81.04 
3/8" 9.50 62.61 100.00 69.29 72.60 75.73 
1/4" 6.35 49.26 100.00 59.04 63.47 67.64 
Nro, 4 4.76 43.99 100.00 54.47 59.38 64.02 
Nro, 8 2.38 33.86 99.99 42.54 46.78 50.89 
Nro, 10 2.000 30.84 99.98 39.01 43.05 47.00 
Nro, 20 0.850 20.07 99.90 26.22 29.53 32.90 
Nro, 30 0.590 16.55 99.80 22.02 25.09 28.27 
Nro, 40 0.425 14.44 99.64 19.50 22.42 25.48 
Nro, 50 0.270 11.55 99.05 16.14 18.85 21.76 
Nro, 60 0.250 10.57 98.73 14.90 17.54 20.38 
Nro 80 0.180 8.50 97.93 12.66 15.15 17.88 
Nro, 100 0.145 7.83 97.60 11.84 14.29 16.97 
Nro, 200 0.074 4.83 94.23 8.28 10.46 12.91 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 105
Escoria con Polvo de Baghouse
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00
0.01 0.10 1.00 10.00 100.00
Diametro de las Particulas (mm)
%
 A
cu
m
u
la
d
o
 Q
u
e
 P
as
a 0% P o lv o B g
10 % P o lv o B g
15 % P o lv o B g
20% P o lvo B g
 
 
 
TABLA Nº 16: %s EN PESO DEL ESCORIA EN FORMA ORIGINAL Y DE 
COMBINACIÓN CON POLVO. 
 
 
% de 
Combinación 
0% Polvo Bg 10% 15% 20% 
% de Ag. 
Fino 43.99 100.00 54.47 59.38 64.02 
% de Ag. 
Grueso 
56.01 0.00 45.53 40.62 35.98 
% Fracción 4.83 94.23 8.28 10.46 12.91 
Fina 
% Fracción 
95.17 5.77 91.72 89.54 87.09 
Gruesa 
 
 
 
4.2.3.- Clasificación de suelos.- 
En los cuadros y gráficos siguientes observamos que tipo de clasificación AASHTO 
y SUCS obtenidos de las diferentes combinaciones analizadas con porcentajes de 
polvo de Baghouse en la escoria de 10%, 15%, 20% También se hizo la clasificación 
para el material sin combinar. Es decir la Escoria y el polvo de Baghouse en sus 
estados originales. 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 106
TABLA Nº 17: CLASIFICACIÓN AASHTO. 
 
 
% Polvo de 
Baghouse 
Clasificación 
AASHTO 
Comportamiento General como 
Subrasante 
Tipo de Materiales 
Constituyentes 
0% 
A - 1a Excelente a Bueno 
Fragmentos de piedras, gravas y 
arenas 
10% 
A - 1a Excelente a Bueno Fragmentos de piedras, gravas y 
arenas 
15% A - 1a Excelente a Bueno 
Fragmentos de piedras, gravas y 
arenas 
20% A - 1a Excelente a Bueno Fragmentos de piedras, gravas y 
arenas 
Polvo de 
Baghouse 
A - 4 Malo 
 
 
 
 
 Observamos del gráfico anterior que para todos los porcentajes de 
combinación nos dan una óptima clasificación ASSTHO. 
 
 
TABLA Nº 18: CLASIFICACIÓN SUCS. 
 
 
% Polvo de 
Baghouse 
Clasificación 
SUCS 
Tipo de Materiales Constituyentes 
0% 
GW Gravas y arenas bien gradadas 
10% 
GW 
Gravas y arenas pobremente gradadas con 
presencia de limos 
15% GW Gravas y arenas pobremente gradadas con 
presencia de limos 
20% GW Gravas y arenas pobremente gradadas con 
presencia de limos 
Polvo de 
Baghouse 
ML Limos de Baja Plasticidad 
 
 
 
 Observamos del gráfico anterior que los diferentes tipos de combinación de 
Polvo y Escoria nos dan óptimos resultados de clasificación SUCS. 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 107
 
4.2.4.- Peso Específico relativo de sólidos (Ss).- 
Para la realización de éste ensayo utilizamos material que pasa la malla Nº 4 
(agregado fino). En el siguiente numeral mostramos los cuadros y gráficos de los 
porcentajes de combinación de polvo de Baghouse con escoria y los valores de Ss 
que cada una de estas combinaciones arroja, para cada una de las canteras. 
 
 
TABLA Nº 19: VALORES DE Gs QUE ARROJA CADA % DE 
COMBINACIÓN CON POLVO 
 
Porcentaje de Combinación 10% 15% 20% 0% 
Nº de Frasco Nº 1 2 34 
W frasco w gr. 659.56 352.1 673.14 352.1 
W frasco sw gr. 741.49 406.6 731.49 414.87 
Nº Recipiente 118 17 230 238 
W Recipiente gr. 185.19 179.93 176.77 174.86 
W Recipiente seco gr. 299.96 255.63 256.85 277.91 
Ws: 7 - 6 gr. 114.77 75.70 80.08 103.05 
Gs : 8 / (3-4+8) 3.49 3.57 3.69 2.56 
 
 
GRÁFICO Nº 7: Gs VS % DE POLVO. 
 
 
Gravedad Especifica Vs % Polvo
2.50
2.70
2.90
3.10
3.30
3.50
3.70
3.90
0% 5% 10% 15% 20% 25%
% de Polvo
G
ra
ve
d
ad
 E
sp
ec
if
ic
a 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 108
 Del gráfico anterior observamos que el peso específico relativo de sólidos va 
aumentando a medida que aumentamos los porcentajes de polvo de Baghouse 
en las escorias. 
 
 
 
4.2.5.- Ensayo de Equivalente de Arena.- 
De la misma manera que en el ensayo anterior utilizamos material que pasa la malla 
Nº 4 para la realización del siguiente ensayo, en los siguientes cuadros y gráficos 
mostramos los valores de Equivalente de Arena que arroja las diferentes 
combinaciones de escorias y polvo de baghouse 
 
 
TABLA Nº 20: VALORES DE E.A. QUE ARROJA CADA COMBINACIÓN 
 
 
% Polvo Equivalente 
0.00% 69.00% 
10.00% 25.00% 
15.00% 18.00% 
20.00% 16.00% 
 
 
GRÁFICO Nº 8: E.A. VS POLVO. 
 
 
 
 Del gráfico anterior observamos que al combinar las escorias con polvo de 
baghouse los valores del equivalente de arena disminuyen a tal punto que ya 
Equivalente de Arena Vs % de Polvo
14%
24%
34%
44%
54%
64%
0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22%
% de Polvo
E
q
u
iv
al
en
te
 d
e 
A
re
n
a 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 109
no cumplen con los valores mínimos requeridos para base y subbase según las 
normas del MTC 
 También observamos que los valores limites de el Equivalente de Arena se 
dan con una combinación del 20% de polvo en la escoria aproximadamente 
 
4.2.6.- Ensayo de Proctor Modificado y CBR.- 
En las tablas y gráficos siguientes mostramos los porcentajes de escoria utilizados y 
los valores de Máxima Densidad seca y O.C.H. (óptimo contenido de humedad) que 
arroja cada uno de éstos porcentajes, además de los valores de CBR para una 
penetración de 1” y con densidades al 95%, 98% y 100% de la Máxima Densidad 
Seca. 
De acuerdo a las normas ASTM determinamos por la granulometría del suelo que el 
ensayo de Proctor modificado es de tipo C, para las respectivas combinaciones de 
escoria y polvo 
TABLA Nº 21 
 
% Polvo CBR al 100% CBR al 98% CBR al 95% OCH Densidad 
0% 88.6 85.12 80.56 5.64 2.17 
10% 344.00 312.00 259.00 6.80 2.545 
15% 199.00 170.00 122.00 7.40 2.633 
20% 205.00 183.00 142.00 7.10 2.595 
 
 
GRÁFICO Nº 9: CBR AL 100% VS % DE POLVO. 
 
CBR al 100% Vs % Polvo
150
175
200
225
250
275
300
325
350
375
400
9% 11% 13% 15% 17% 19% 21%
% de Polvo
C
B
R
 a
l 1
00
%
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 110
GRÁFICO Nº 10: CBR AL 98% VS % DE POLVO 
 
CBR al 98% Vs % Polvo
150
170
190
210
230
250
270
290
310
330
350
9% 11% 13% 15% 17% 19% 21%
% de Polvo
C
B
R
 a
l 
98
%
 
 
 
GRÁFICO Nº 10: CBR AL 95% VS % DE POLVO 
 
 
 
 
 Del Gráfico anterior observamos que a medida que aumentamos porcentajes 
de polvo de baghouse en la escoria en suelo presenta valores de CBR cada 
vez menores, pero siendo incluso estos valores aceptables para ser usados en 
bases o subbases. 
 
 
CBR al 95% Vs % Polvo
100
120
140
160
180
200
220
240
260
280
300
9% 11% 13% 15% 17% 19% 21% 
% de Polvo
C
B
R
 a
l 9
5%
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 111
 
GRÁFICO Nº 11: OCH VS % DE POLVO 
 
 
OCH Vs % Polvo
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
0% 5% 10% 15% 20%
% de Polvo
O
C
H
 
 
 
 
 
GRÁFICO Nº 12: MÁXIMA DENSIDAD SECA VS % DE POLVO 
 
Densidad Seca Vs % Polvo
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
0% 5% 10% 15% 20%
% de Polvo
D
en
si
d
ad
 g
r/
cm
3
 
 
 
 
 
 Del Gráfico anterior observamos que a medida que aumentamos porcentajes 
de polvo de baghouse en la escoria aumentan los OCH, y Densidades secas de 
las combinaciones hasta un porcentaje aproximado de 17% de polvo de 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 112
baghouse. Valores que coinciden con los puntos mas bajos en la curva CBR 
vs. % de Polvo en Escoria 
 
 
GRÁFICO Nº 13: MÁXIMA DENSIDAD SECA VS OCH 
 
Densidad Seca Vs %OCH
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50
OCH
D
en
si
d
ad
 g
r/
cm
3
 
 
 
 Del Gráfico anterior observamos que en la medida que aumentan los óptimos 
contenidos de humedad en cada combinación, aumenta la máxima densidad 
seca. 
 
 
 
4.2.7.- Ensayo de Corte Directo.- 
Los suelos normalmente consolidados se encuentran a una densidad de 80% a 85% 
de la máxima densidad seca del proctor modificado. En nuestro caso tomamos 
conservadoramente el valor de 80%. 
Mostramos a continuación en las tablas y gráficos los porcentajes de combinación 
con escoria con polvo de baghouse y los valores de fricción, cohesión que arroja 
cada uno de estos porcentajes. 
 
 
 
 
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 113
TABLA Nº 22 
 
 Parámetro de Resistencia Parámetro Residuales 
% de Polvo C (kg/cm
2
) غ C (kg/cm
2
) غ 
0% 0.20 38.92 0.20 38.44 
10% 0.20 39.78 0.20 38.44 
15% 0.18 38.83 0.18 38.62 
20% 0.17 39.95 0.17 40.20 
 
 
GRÁFICO Nº 14: FRICCIÓN VS % DE POLVO. 
 
 
 
 
 Verificamos del gráfico del gráfico que la fricción tienen valores semejantes 
tanto en las diferentes combinaciones por lo que para este tipo de material 
podríamos tomar una fricción promedio de 39.5°. 
 
 
 
 
 
 
 
 
Fricción Vs % Polvo
38.50
38.75
39.00
39.25
39.50
39.75
40.00
40.25
40.50
40.75
41.00
0% 5% 10% 15% 20%
% de Escoria
F
ri
cc
ió
n
 Φ
 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 114
GRÁFICO Nº 15: COHESIÓN VS % POLVO. 
 
 
 
 Del gráfico observamos una caída en la cohesión a medida que aumenta el 
contenido de polvo de baghouse en la combinación por lo que podríamos 
deducir que el aporte del polvo no aumenta la cohesión del material 
 Siendo el aporte del polvo de baghouse en negativo en cohesión y 
despreciable en fricción podemos concluir que para fines de cimentación 
seria conveniente trabajar solo con las escoriasen su estado original 
 
 
4.2.8.- Capacidad Portante de Los suelos.- 
Los parámetros de corte (fricción y cohesión), se aplican para determinar la 
capacidad portante de los suelos. 
Como aplicación se tomará el método de Terzaghi para falla localizada donde los 
parámetros de resistencia del suelo c y Φ se reducen a c’ y Φ’, donde: c’ = 2/3 *c y 
Φ’= Arctg (2/3 tg Φ), de una cimentación corrida. Para los cálculos de qd utilizamos 
la siguiente fórmula: 
qd = C’*N’c + γ*Z*N’q +0.5* γ*B*N’ γ 
Donde: 
qd = Capacidad de carga límite o última en ton/m2. 
C’= Cohesión admisible de los suelos en ton/m2 ó en Kg./m2. 
γ = Densidad natural del suelo en ton/m3 ó en Kg./m3. 
Z= Profundidad de desplante de la cimentación en metros. 
B= Ancho de la cimentación. 
 Cohesion Vs % Polvo 
0.165 
0.170 
0.175 
0.180 
0.185 
0.190 
0.195 
0.200 
0.205 
0.210 
0.215 
0% 5% 10% 15% 20% 
% de Escoria
 
 
 
C
o
h
es
io
n
 k
g
/c
m
2 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 115
N’c, N’q, N’ γ = Factores de carga. 
qa = qd/3 
Donde: 
qa= Carga admisible o de diseño de la cimentación en Kg/cm2 . 
 
Este método se aplicó en cada una de las canteras, para el material al estadonatural 
y para el material con su óptima combinación de escoria. Con la finalidad de hacer 
una comparación con los resultados obtenidos se tomaron los datos siguientes: ancho 
de cimentación B= 1.20 cm, con una profundidad de desplante de la cimentación 
Z=1.50m. 
 
TABLA Nº 23: PARAMETROS DE RESISTENCIA EN LAS DIFERENTES 
COMBINACIONES DE % DE POLVO Y ESCORIA 
 
 Parámetro de Resistencia Parámetro Residuales 
% de Polvo C (kg/cm
2
) غ C (kg/cm
2
) غ 
0% 0.20 38.92 0.20 38.44 
10% 0.20 39.78 0.20 38.44 
15% 0.18 38.83 0.18 38.62 
20% 0.17 39.95 0.17 40.20 
 
TABLA Nº 24.1: CARGA ADMISIBLE PARA DIFERENTES 
COMBINACIONES DE ESCORIA Y POLVO 
 
 
Escorias 
100% 
Escorias 
90% 
Escorias 
85% 
Escorias 
80% Unidades 
C 0.20 0.20 0.18 0.17 kg/cm
2
 
Ø 38.92 39.78 38.83 39.95 ª 
C' 0.13 0.13 0.12 0.11 kg/cm
2
 
Ø' 28.30 29.03 28.22 29.18 ª 
Z 1.50 1.50 1.50 1.50 m 
B 1.20 1.20 1.20 1.20 m 
N’c 26.39 27.93 26.24 28.25 
N’q 15.21 16.50 15.08 16.77 
N ‘γ 17.45 19.42 17.26 19.84 
Sc 1.30 1.30 1.30 1.30 
Sγ 0.80 0.80 0.80 0.80 
γ1 2.67 2.67 2.67 2.67 ton/m
3
 
γ2 2.67 2.67 2.67 2.67 ton/m
3
 
qd 129.01 139.38 123.46 134.21 ton/m
2
 
F.S. 3.00 3.00 3.00 3.00 
qadm 43.00 46.46 41.15 44.74 ton/m
2
 
A zapata 1.44 1.44 1.44 1.44 ton/m
2
 
P 61.92 66.90 59.26 64.42 ton 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com
 116
GRÁFICO Nº 16: ESFUERZO ADMISIBLE VS % ESCORIA 
 
Esfuerzo Admisible Vs % de Escoria
4.00
4.25
4.50
4.75
5.00
5.25
78% 80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100% 102%
% de Escoria
E
sf
u
er
zo
 A
d
m
is
ib
le
 
 
 
TABLA Nº 24.2: VALORES PERMISIBLES Y EXISTENTES DE 
CLORUROS Y SULFATOS EN ESCORIAS 
 
 Existente Permisible 
Cloruros 0.13% 0.10% No Cumple 
Sulfatos 0.10% 0.06% No Cumple 
 
 
 De la tabla Nº 24.1 deducimos que al combinar las escorias con 10% de 
polvo de Baghouse mejoramos las propiedades de las escorias en lo que se 
refiere a la capacidad portante para fines de cimentación elevando esta 
capacidad en 8% respecto de las escorias en su estado original 
 Cabe mencionar también que los valores aceptables de partículas por millón 
tanto de cloruros como de sulfato son excedidos en las escorias por lo que no 
seria recomendable su utilización como material de relleno para 
cimentaciones. 
Descargado por Luz (iglesiasluz83@gmail.com)
Encuentra más documentos en www.udocz.com