Logo Studenta

T5; Figuras Bidimensionales y Tridimensionales

¡Este material tiene más páginas!

Vista previa del material en texto

Geometría 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figuras Bidimensionales y 
Tridimensionales 
4to – 6to 
 
 
 
 
Profesor: Esteban Hernández 
Universidad de P.R. en Bayamón 
 
 
 
 
 
2
Pre-Prueba http://www.geometriadinamica.cl/guias/explorar/#33 
 
1. Determina si cada curva en la siguiente figura es, abierta, cerrada, simple o 
no simple. 
 
Figura Abierta Cerrada Simple No Simple
1 
2 
3 
4 
5 
6 
7 
8 
 
2. Determina cuáles de las siguientes figuras son polígonos. Indica tu respuesta 
en la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
 
 
3
 
3. Clasifica cada ángulo como, agudo, obtuso, recto o llano. Completa la 
tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
4. Identifica cada cuadrilátero por su nombre. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
 
 
 
 
 
 
 
 
4
5. Identifica cada componente ilustrado del círculo. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
 
 
 
6. Clasifica el triángulo como rectángulo, equilátero, isósceles, o escaleno. 
Clasifica el triángulo como obtusángulo, acutángulo, o rectángulo. Completa 
la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
7. Determina el área de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Encuentra el perímetro de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
9. Determina el área de superficie de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
 
 
 
 
10. Encuentra el volumen de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
 
 
 
 
 
 
 
 
7
Objetivos 
1. Entender el concepto de espacios. 
2. Entender los conceptos de punto, línea y plano. 
3. Identificar puntos, líneas, medias líneas, rayos y segmentos. 
4. Definir e identificar curvas abiertas, curvas cerradas, curvas simples y 
curvas no simples. 
5. Definir los conceptos de ángulo y grado. 
6. Identificar ángulos agudos, ángulos rectos y ángulos obtusos. 
7. Definir y encontrar ángulos complementarios y suplementarios. 
8. Identificar polígonos de acuerdo al número de lados e identificar sus 
componentes. 
9. Diferenciar entre polígonos regulares e irregulares. 
10. Definir las unidades de longitud, de área y de volumen. 
11. Determinar el perímetro y el área de un polígono. 
12. Identificar figuras tridimensionales. 
13. Encontrar el área se superficie de una figura tridimensional. 
14. Encontrar el volumen de poliedros simples. 
15. Encontrar el volumen de conos y esferas. 
16. Identificar los vértices, las caras y las aristas de un poliedro.
 
 
 
8
Justificación 
 
 
Elementos geométricos y el concepto de los espacios 
 
Al mirar a nuestro alrededor observamos una infinidad de formas y figuras en los 
objetos que nos rodean. Desde los primeros tiempos el ser humano se vio obligado a 
observar, interpretar y manejar estas figuras pues de ello dependía su sobrevivencia. Por 
ejemplo, el observar alguna figura entre la maleza podría significar que un animal 
peligroso lo podía atacar. De esta forma necesitaba tener cada vez más un mejor 
entendimiento y un mejor control de su medio ambiente. Para tener más conocimientos 
debía clasificar objetos, clasificar formas, establecer relaciones entre las formas y los 
objetos e interpretar el significado de cada uno de estos conceptos geométricos. 
 Sabemos hoy día que el ser humano ha sido la especie más exitosa sobre la faz de 
la tierra por que tiene un atributo que lo hace único, su intelecto. Tenemos la capacidad 
de aprender y de aplicar nuestro conocimiento para interpretar, manejar y transformar 
nuestro medio ambiente. 
 La geometría tiene sus orígenes en cada una de las antiguas civilizaciones, 
egipcios, babilonios, romanos, griegos, etc., los cuales fueron acumulando conocimiento 
de sus antepasados hasta hacer de la Geometría una de las ramas más importantes en la 
matemática. Al principio todo giraba alrededor de la geometría. Las construcciones, la 
ingeniería rudimentaria, la astronomía, e inclusive la alquimia que luego dio lugar a la 
química, basaban su conocimiento en conceptos geométricos. 
 Fueron los griegos los que le dieron rigurosidad a la geometría, estudiaron las 
figuras de forma y tamaño idénticos (figuras congruentes) así como aquellas figuras de 
forma idéntica pero con tamaños diferentes (figuras similares). Los griegos fueron los 
primeros en insistir en que los enunciados de la geometría debían tener una prueba 
rigurosa. 
 
 
 
 
9
La geometría plana 
La geometría plana se basa en tres conceptos fundamentales, el punto, la línea y 
el plano, los que se aceptan sin definirlos y que forman parte de lo que llamamos 
espacios geométricos, o sea el conjunto formado por todos los puntos. El espacio 
geométrico es relativo a los elementos que se están usando. Por ejemplo, el espacio puede 
estar determinado por un punto, una línea o un plano. A cada espacio se acostumbra 
asignarle una dimensión, la cual determina los grados de libertad que se pueden ejecutar 
en dicho espacio. Los grados de libertad se pueden interpretar como los movimientos 
necesarios para ubicar un punto cualquiera en el espacio a partir de un punto de 
referencia. Al punto de referencia se acostumbra llamarle el origen. Un punto tiene 
dimensión cero (es adimensional) pues sobre un punto no podemos ejercer ningún 
movimiento. Una línea se considera un espacio de dimensión 1 pues a partir de un punto 
de referencia podemos movernos sobre la línea en una dirección, para obtener la 
ubicación de cualquier otro punto. El plano tiene dimensión dos, pues tenemos dos 
grados de libertad para movernos, o sea necesitamos dos movimientos para ubicar un 
punto, podemos pensar en los movimientos como largo y ancho. 
Geometría espacial tridimensional 
Se puede de igual manera definir un espacio tridimensional en el cual tenemos 
tres grados de libertad de movimiento. El espacio tridimensional se conoce comúnmente 
como el espacio. Para poder ubicar un punto en el espacio necesitamos tres movimientos 
en tres direcciones con relación a un punto de referencia. Imagina un cuarto de tu casa, si 
te ubicas en una esquina como punto de referencia entonces cualquier forma para llegar 
hasta una lámpara (punto) se puede descomponer en tres movimientos con relación a las 
paredes, un largo, un ancho y una altura. 
El espacio tridimensional es donde existen todos los objetos sólidos que 
conocemos, incluyéndonos a nosotros. 
 
 
 
 
10
Espacios Geométricos 
 
Puntos, líneas y planos 
El punto 
El punto, en geometría, es uno de los entes fundamentales, junto con la recta y el 
plano. Son considerados conceptos primarios, o sea, que sólo es posible describirlos en 
relación con otros elementos similares, no se definen. Se suelen describir apoyándose en 
los postulados característicos, que determinan las relaciones entre los entes geométricos 
fundamentales. El punto es un elemento geométrico adimensional, no tiene ni volumen, 
ni área ni longitud ni otro análogo dimensional; no es un objeto físico, es una idea; se usa 
para describir una posición en el espacio. Los puntos se identifican usando letras 
mayúsculas. A continuación se ilustran varios puntos y su forma de identificarlos. 
Ejemplo. Ilustración de puntos 
 
 
 
 
 
 
La línea 
 
La línea al igual que el punto es un objeto geométrico fundamental. Para efectos 
de visualizar el concepto, se puede decir que una línea (o línea recta) es una sucesión 
continua e infinita de puntos en direcciones opuestas. Entenderemos por el concepto de 
continua que no tiene huecos, ni divisiones y que podemos trazarla en unpapel sin 
levantar el lápiz. Se acostumbra identificar las líneas con una letra minúscula o con dos 
 
 
 
11
Línea , EF
Línea 
Identificación de las l
 m, AB
Línea , 
ínea
 CD
s
 
n
p
puntos con una doble flecha sobre las letras. Las siguientes líneas están identificadas 
usando letras minúsculas y usando los puntos. 
Ejemplo: La siguiente figura ilustra tres líneas (o rectas) y la forma en que se identifican. 
 
 
 
 
 
 
 
 
 
 
Una línea se puede descomponer en varias partes, entre ellas, medias líneas, rayos y 
segmentos. 
A continuación se ilustra la descomposición de una línea en partes y la forma en que la 
nombramos o identificamos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 Un rayo contiene todos los puntos de una línea a partir de un punto fijo, llamado 
el extremo y en una sola dirección. Una media-línea contiene todos los puntos de un 
rayo excepto el punto extremo. Un segmento contiene todos los puntos de una línea entre 
dos puntos fijo llamados los extremos. 
 
El alfabeto griego 
El alfabeto griego es un alfabeto utilizado para escribir solo la lengua griega. 
Desarrollado alrededor del siglo IX a. C. a partir del alfabeto fenicio, continúa en uso 
hasta nuestros días, tanto como alfabeto nativo del griego moderno como a modo de crear 
denominaciones técnicas para las ciencias, en especial la matemática, la física y la 
astronomía. En nuestro caso usaremos letras griegas para identificar planos y ángulos. 
Se cree que el alfabeto griego deriva de una variante del fenicio, introducido en Grecia 
por mercaderes de esa nacionalidad. El fenicio, como los alfabetos semíticos posteriores, 
no empleaba signos para registrar las vocales. Para salvar esta dificultad, que lo hacía 
incompleto para la transcripción de la lengua griega, los griegos adaptaron algunos signos 
utilizados en fenicio para indicar aspiración para representar las vocales. Este aporte 
puede considerarse fundamental; la inmensa mayoría de los alfabetos que incluyen signos 
vocálicos se derivan de la aportación original griega. Además de las vocales, el griego 
añadió tres letras nuevas al final del alfabeto: fi (Φ φ) y ji (Χ χ ) y psi (Ψ ψ), para 
representar sonidos aspirados que no existían en el fenicio. 
Nombre Mayúscula Minúscula Nombre Mayúscula Minúscula 
Alfa Α α Ny Ν ν 
 Beta Β β Xi Ξ ξ 
Gamma Γ γ Ómicron Ο ο 
Delta Δ δ Pi Π π 
Épsilon Ε ε Ro Ρ ρ 
Dseta Ζ ζ Sigma Σ σ 
Eta Η η Tau Τ τ 
Theta Θ θ Ípsilon Υ υ 
Iota Ι ι Fi Φ φ 
Kappa Κ κ Ji Χ χ 
Lambda Λ λ Psi Ψ ψ 
My Μ μ Omega Ω ω 
 
 
 
 
 
 
 
 
13
El plano 
El concepto de un plano es más fácil de visualizar pues existen muchos objetos 
que ilustran en cierto grado el concepto del un plano. Por ejemplo una pizarra en el salón 
de clase, una pared de su casa, una pantalla de televisión, etc. Euclides definió un plano 
como una sucesión continua de rectas paralelas. 
Los planos de identifican o nombran usando letras griegas minúsculas como α, β, θ, ρ o 
con tres letras mayúsculas correspondientes a tres puntos sobre el plano. Para indicar que 
el plano continúa infinitamente, se acostumbra trazar los bordes entrecortados. 
 
Ejemplo: Ilustración de un plano 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
Líneas que se intersecan en un plano 
Decimos que dos líneas se intersecan si tienen un punto en común. El punto 
común se conoce como el punto de intersección. Las siguientes líneas se intersecan en el 
punto P 
 Ejemplo 
Ejemplo: Ilustración de línea que se cortan en un punto. 
 
 
 
 
 
 
 
 
 
 
 
Líneas paralelas 
Dos líneas en un plano son paralelas si no se intersecan, esto es tienen la misma 
dirección. 
Ilustración: Ilustración de líneas son paralelas. 
 
 
 
 
 
 
 
β
α
 
 
 
15
P l ano s para le l o s 
Dos planos se dice que son paralelos si no se intersecan, esto es, no tiene puntos 
en común. 
Ejemplo: Ilustración de dos planos paralelos, α y β. 
 
 
 
 
 
 
 
 
 
 
 
 
 
P l ano s que se inter secan 
Dos planos que se intersecan contienen toda una línea como su intersección. En la 
siguiente ilustración la línea de intersección es AB. 
Ejemplo: Ilustración de dos planos que 
 
 
 
 
 
 
 
 
 
β
 
 
 
16
I. Ejercicios de planos, puntos y líneas 
1. Determina los segmentos, las líneas, rayos no contenidos en alguna línea y las 
medias líneas sobre el plano α. 
 
 
Líneas Rayos Medialínea Segmentos 
 
 
 
 
 
 
 
 
 
 
 
 
17
El espacio tridimensional 
El espacio tridimensional es el más obvio y observable para nosotros pues 
vivimos en el y somos parte integral de dicho espacio. Todo lo que nos rodea está en un 
espacio de tres dimensiones. En cada uno de los espacios que hemos mencionado existen 
formas, objetos y figuras que determinan las características de los elementos que existen 
en dicho espacio. A cualquier objeto tridimensional se le pueden asignar medidas que 
describen y determinan su ubicación y su tamaño en el espacio. Imagina que te vas de 
compras y entras a una tienda de ropa, lo primero que el vendedor necesita saber son tus 
medidas. Necesita saber el alto (altura), y el grosor que incluye tus medidas de largo y de 
ancho. De esta misma forma le asignamos medidas a todos los objetos que nos rodean. 
De aquí que podamos diferenciar entre el tamaño, las formas y la posición de los objetos 
y las figuras. Hay objetos grandes, objetos pequeños, objetos pesados, objetos livianos, 
personas gordas o flacas, etc. Hay figuras cuadradas, redondas, cilíndricas y otras con 
infinidad de formas y tamaños. A continuación ilustramos algunos objetos y figuras 
tridimensionales y más adelante trabajaremos con figuras tridimensionales. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
Forma de un plano 
Borde con forma de línea 
Formas y figuras 
Las construcciones son una fuente muy rica del 
uso de figuras geométricas y del uso de los 
conceptos de los espacios. Podemos observar estas 
ideas geométricas en las construcciones de casas, 
puentes, edificios, pirámides, barcos, aviones y en 
cualquier otra construcción de la actividad 
humana. 
 
 
 
19
Figuras planas 
 
En el plano se puede distinguir entre una infinidad de figuras que tienen formas, 
tamaños y posiciones particulares sobre un plano. Podemos diferenciar entre las figuras 
de una sola dimensión llamadas curvas y las de dos dimensiones. El término curva no se 
define y se usa para describir figuras en el plano. 
En las curvas podemos distinguir entre las curvas abiertas, las curvas cerradas, las 
curvas cerradas simples y las curvas cerradas no simples. Una curva es abierta si se 
traza de forma continua y su punto inicial es distinto de su punto final. Las curvas 
cerradas son aquellas que se trazan de forma continua y su punto inicial es igual a su 
punto final. 
Una curva simple abierta es aquella que su trazado es continuo, no tiene puntos de 
intersección y sus puntos inicial y final son diferentes. Si una curva tiene al menos un 
punto de intersección decimos que es una curva no simple. 
 
Ejemplos de curvas abiertas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Curvas abiertas 
simples en el plano α
α
 
 
 
20
Curvas abiertas no simples 
 
 
 
 
 
 
 
 
 
 
 
 
Curvas simples cerradas y curvas no simples cerradas 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
II. 
Curvas abiertas 
 no simples 
Curvas simples 
cerradas 
Curvas no 
simples cerradas
 
 
 
21
Ejercicios de curvas 
1. Determina si cada una de las siguientes curvas abiertas o cerradas. 
 
 
 
 
 
 
 
 
2. Determina si cada una de las siguientes curvas son simples o no son simples. 
 
 
 
 
 
 
 
22
Circunferencias y círculos 
Una circunferencia se define como el conjunto de puntos en el plano para los 
cuales la distancia de un punto de la circunferencia a un puntofijo llamado el centro es 
una constante, llamada el radio 
 
 
 
 
 
Un radio de una circunferencia es un segmento con un extremo en el centro y el 
otro extremo en la circunferencia. Una cuerda es un segmento cuyos extremos están sobre 
la circunferencia. Un diámetro es una cuerda que pasa por el centro de la circunferencia. 
Un círculo, en geometría, es la figura que contiene todos los puntos del plano 
cuya distancia al centro de una circunferencia es menor o igual a la medida del radio. 
La figura 20 ilustra un círculo y los elementos que lo forman. 
 
 
 
 
 
 
 
 
 
 
 
23
Observe además que un círculo tiene muchos radios, en esencia cualquier 
segmento desde el centro hasta la circunferencia es un radio del círculo. También un 
círculo contiene muchas cuerdas pues cualquier segmento cuyos extremos están sobre la 
circunferencia es una cuerda. Las cuerdas que pasan por el centro se llaman diámetros. 
Cualquier parte de una circunferencia delimitada por dos de sus puntos, se conoce como 
un arco de la circunferencia. La parte del área de un círculo delimitada por dos radios y 
un arco del círculo se conoce como el área de un sector del círculo. 
 
 
Ángulos 
Un ángulo es la unión de dos rayos con su punto extremo en común. Los rayos 
que forman un ángulo se llaman lados y al punto común se le llama vértice. Las figuras a 
continuación ilustran varios ángulos y sus componentes. 
 
 
 
 
 
 
 
 
El símbolo que representa un ángulo es, . En lugar de escribir ángulo BAC en 
la siguiente figura, escribimos BAC o escribimos A, donde A representa el vértice 
del ángulo. En la figura el ángulo, BAC también se denota usando la letra griega α y 
el ángulo NMP, se identifica con la letra griega, β ο como M. 
A cada ángulo se le asigna una medida, la cual se interpreta como la cantidad de 
rotación que se genera al mover un rayo, llamado lado inicial hasta terminal en otro rayo, 
llamado lado final. En la figura se ilustra el A, con la rotación desde el lado inicial 
hasta el lado final en contra de las manecillas del reloj y elM con rotación a favor de 
las manecillas del reloj. Si la rotación es en contra de las manecillas del reloj se dice que 
 
 
 
 
24
el ángulo es positivo y si es a favor de las manecillas del reloj se dice que el ángulo es 
negativo. 
 
 
 
 
 
 
 
A la rotación del ángulo se le asigna una medida por medio de un sistema que se 
remonta hasta los babilonios del siglo II aC. Los astrónomos babilonios escogieron el 
número 360 para representar la rotación de un rayo que rota y regresa sobre si mismo. Se 
define entonces un grado como 
1
360
 parte de la circunferencia. La figura ilustra un 
ángulo de 360o. 
 
 
 
 
 
 
 
 
Tipos de ángulos 
 
Los ángulos se clasifican y denominan de acuerdo con su medida en grados. 
Un ángulo que mide entre 0o
 y 90o se llama ángulo agudo. 
Un ángulo cuya medida es de 90o se llama ángulo recto. 
Los ángulos que miden entre 90o y 180o se llaman ángulos obtusos. 
Un ángulo cuya medida es de 180o se llama ángulo llano. 
 
 
 
25
Las siguientes figuras ilustran cada uno de los casos anteriores. 
 
 
 
 
 
 
 
 
Si la suma de dos ángulos es 90o de dice que los ángulos son complementarios y 
cada uno es el complemento del otro. 
 
 
 
 
 
 
 
 
 
 
Ejemplo: Ángulos complementarios 
1. 60 30 90° + ° = ° por lo tanto 60° y 30° son ángulos complementarios. 
2. 75 15 90° + ° = ° por lo tanto 75° y 15° son ángulos complementarios. 
3. 46 44 90° + ° = ° por lo tanto 46° y 44° son ángulos complementarios. 
 
Ejemplo: Determina si el par de ángulos son complementarios. 
30° y 50° 50° y 40° 15° y 60° 0° y 90° 89° y 1° 
No Si No Si Si 
 
 
 
 
26
Si la suma de dos ángulos es 180o de dice que los ángulos son suplementarios y 
cada uno es el suplemento del otro. 
 
 
 
 
Ejemplo: Ángulos suplementarios 
1. 150 30 180° + ° = ° por lo tanto 150° y 30° son ángulos suplementarios. 
2. 75 105 180° + ° = ° por lo tanto 75° y 105° son ángulos suplementarios. 
3. 120 60 180° + ° = ° por lo tanto 120° y 60° son ángulos suplementarios. 
 
 
Ejemplo: Determina si el par de ángulos son suplementarios 
 
130° y 50° 50° y 40° 115° y 60° 100° y 90° 179° y 1°
Si No No No Si 
 
 
 
 
 
 
 
 
27
Clasificación de ángulos por su posición 
 
 
 
 
 
 
 
 
 
 
 
 
Los ángulos opuestos por el vértice tienen la misma medida. Usaremos la 
notación m∠A para la medida del ángulo con vértice A, o m∠1, para la 
medida del ángulo 1. 
 
Ángulos entre líneas paralelas y una línea secante 
 
 
 
 
 
 
 
 
 
 
 
 
28
4. Ángulos conjugados externos: Tienen medidas iguales. 
 m ∠1 + m ∠7 = m ∠2 + m ∠8 = 180° 
5. Ángulos correspondientes: Tienen medidas iguales. 
 m ∠1 = m ∠5; m ∠4 = m ∠8 
 m ∠2 = m ∠6; m ∠3 = m ∠7 
1. Ángulos internos alternos: Tienen medidas iguales. 
 m ∠3 = m ∠6; m ∠4 = m ∠5
2. Ángulos externos alternos: Tienen medidas iguales. 
 m ∠1 = m ∠8; m ∠2 = m ∠7 
3. Ángulos conjugados internos: La suma es igual a 180o. 
 m ∠3 + m ∠5 = m ∠4 + m ∠6 = 180° 
 
La siguiente figura ilustra las equivalencias de los ángulos entre dos 
líneas paralelas y una secante 
 
 
 
 
 
 
 
 
 
 
 
 
 
Resumen de las relaciones entre dos líneas paralelas y una línea 
secante. 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
III. Ejercicios de ángulos 
1. Clasifica los ángulos como obtuso, agudo o recto. 
 
 
 
 
 
 
 
 
 
 
 
Respuestas: 
α β μ λ κ η Θ 
 
 
2. Encuentra la medida del ángulo complementario. 
 a. 075 b. 060 
 c. 050 d. 045 
 e. 035 f. 078 
 g. 036 h. 043 
 i. 048 j. 055 
 
3. Encuentra la medida del ángulo suplementario. 
 a. 0150 b. 042 
 c. 0120 d. 045 
 e. 0125 f. 0165 
 g. 0170 h. 010 
 i. 0108 j. 08 9 
 
 
 
30
Líneas perpendiculares 
Dos líneas son perpendiculares si se intersecan (cortan) formando un ángulo de 90o. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ejemplo: Determina que pares de líneas que son paralelas o perpendiculares. 
 
 
 
 
 
 
 
 
 
 
Paralelas j , k 
Perpendiculares j , n o , m k , n 
 
 
 
31
 
Polígonos 
 
En muchas ocasiones habrás escuchado hablar sobre figuras geométricas como 
cuadrado, rectángulo, triángulo, pentágono, etc. Estos nombres están relacionados con 
una familia de figuras planas llamados polígonos. 
Un polígono es una curva simple cerrada compuesta por segmentos consecutivos 
de líneas rectas. Los segmentos de línea se llaman lados y los puntos de intersección de 
los segmentos se llaman vértices. Los nombres de los polígonos se asignan de acuerdo al 
número de lados de la figura. Un polígono de n lados se llama n-ágono. 
Ejemplos: La siguiente figura ilustra algunos ilustra algunos polígonos y sus respectivos 
nombres. 
 
 
 
 
 Los vértices de los polígonos se identifican con letras mayúsculas y los lados con 
letras minúsculas. Los polígonos se agrupan o clasifican por familias, los polígonos de 
tres lados se llaman trígonos y se conocen comúnmente como triángulos. Los polígonos 
 
 
 
32
de cuatro lados se llamancuadriláteros, los de cinco lados pentágonos, los de seis lados 
hexágonos y así sucesivamente. 
La familia de los triángulos 
Los triángulos se clasifican por medio de las medidas de los ángulos interiores o 
por el número de lados iguales. En las siguientes figuras se ilustran los tipos de triángulos 
y la forma de nombrarlos. 
Si todos los ángulos de un triángulo son agudos se le llama triángulo acutángulo, si el 
triángulo tiene un ángulo recto se llama triángulo rectángulo y si tiene un ángulo obtuso 
se llama triangulo obtusángulo. Si todos los lados de un triángulo son iguales se llama 
triángulo equilátero, si tiene dos lados iguales se llama triángulo isósceles y si todos 
los lados son diferentes se llama triángulo escaleno. 
 
Clasificación de los triángulos de acuerdo al número de lados iguales. 
 
 
 
 
 
 
 
 
Clasificación de los triángulos de acuerdo a los ángulos. 
 
 
 
 
 
 
 
 
 
33
 
 
Elementos de un triángulo 
Los elementos más importantes de un triángulo son los vértices, los lados y las alturas. 
Una altura es un segmento que se extiende desde un vértice del triángulo y que corta 
perpendicularmente una línea que contiene los otros dos vértices. 
 
 
 
 
 
 
 
Alturas de un triángulo 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
Suma de los ángulos internos de un triángulo 
La suma de los ángulos internos de un triángulo es 180o. 
 
Ilustración: 
 
 
 
 
 
 
 
 
Ejemplo: Determina la medida que falta. 
 
Ángulo Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
Medida 50o 45o 77o 32o 33o 
 
 
 
 
 
35
La familia de los cuadriláteros 
Los cuadriláteros al igual que los triángulos son de los polígonos más conocidos. 
Un cuadrilátero es un polígono de cuatro lados ( tetrágono). Los cuadriláteros se nombran 
usando las relaciones entre sus lados, como las relaciones entre los ángulos. Las 
relaciones entre los lados puede ser la de sus medidas o puede ser la condición de que los 
lados sean paralelos. Por ejemplo un paralelogramo es un cuadrilátero que tiene sus lados 
opuestos paralelos. 
 En el caso de los ángulos se refiere a la existencia de ángulos rectos. Por ejemplo el 
rectángulo es el cuadrilátero que tiene todos sus ángulos rectos. 
 
Ejemplo: La figura ilustra la familia de los cuadriláteros y sus nombres. 
 
 
 
 
 
 
 
 
 
 
 
Las definiciones de los cuadriláteros en las figuras anteriores son las siguientes; 
Cuadrado: es un cuadrilátero que tiene todos los lados iguales y todos los ángulos 
rectos. 
Rectángulo: es un cuadrilátero con los cuatro ángulos rectos. 
Paralelogramo: es un cuadrilátero con los pares de lados opuestos paralelos. 
Rombo: es un paralelogramo con todos sus lados iguales. 
Trapecio: es un cuadrilátero con un par de lados paralelos. 
Trapezoide: es un cuadrilátero que no tiene lados paralelos ni ángulos iguales 
 
 
 
36
Polígonos regulares e irregulares 
Los polígonos que tienen todos su lados iguales se llaman polígonos regulares y 
si tienen algún lado diferente se llaman polígonos irregulares. 
 
Ejemplos de polígonos regulares. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
Elementos de polígonos 
Para un polígono se pueden definir los siguientes conceptos; vértices, lados, diagonales, 
ángulos internos y ángulos externos. 
 
Las diagonales son segmentos que unen dos vértices no consecutivos de un polígono. 
 
 
 
 
 
 
Los ángulos internos de un polígono contienen dos lados consecutivos, el vértice 
común es el vértice del ángulo y el ángulo está contenido dentro del polígono. 
Un ángulo exterior de un polígono contiene dos lados del polígono, el vértice común 
y no está contenido en el polígono. 
 
 
 
38
La suma de los ángulos interiores de un polígono convexo (con ángulos menores de 
180o) es (n - 2)180o donde n es el número de lados del polígono. Ángulos polígono 
regular 
Ejemplo: 
 
 
 
 
 
 
 
 
Ejemplo: Determina la suma de los ángulos interiores de un polígono convexo. 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 
180 o 720 o 360 o 720 o 360o 540o 
 
 
 
 
39
 
La tabla 1 ilustra los nombres de algunos polígonos de acuerdo con el 
número de lados. 
 
Tabla 1 
Clasificación de polígonos 
según el número de lados 
Nombre lados Número de lados 
trígono, triángulo 3 Polígono de 3 lados 
tetrágono, cuadrángulo, cuadrilátero 4 Polígono de 4 lados 
pentágono 5 Polígono de 5 lados 
hexágono 6 Polígono de 6 lados 
heptágono 7 Polígono de 7 lados 
octágono 8 Polígono de 8 lados 
eneágono 9 Polígono de 9 lados 
decágono 10 Polígono de 10 lados 
 
 
 
 
40
La tabla 2 ilustra los nombres de algunos polígonos de acuerdo con el 
número de lados. 
 
Tabla 2: Clasificación de los polígonos de acuerdo con el número de lados 
11 endecágono Polígono de 11 lados 
12 dodecágono Polígono de 12 lados 
13 tridecágono Polígono de 13 lados 
14 tetra decágono Polígono de 14 lados 
15 pentadecágono Polígono de 15 lados 
16 hexadecágono Polígono de 16 lados 
17 heptadecágono Polígono de 17 lados 
18 octodecágono Polígono de 18 lados 
19 eneadecágono Polígono de 19 lados 
20 isodecágono 
icoságono 
Polígono de 20 lados 
30 triacontágono Polígono de 30 lados 
40 tretracontágono Polígono de 40 lados 
50 pentacontágono Polígono de 50 lados 
60 hexacontágono Polígono de 60 lados 
70 heptacontágono Polígono de 70 lados 
80 octacontágono Polígono de 80 lados 
90 eneacontágono Polígono de 90 lados 
100 hectagóno Polígono de 100 lados 
1000 chiliágono Polígono de 1000 lados 
10000 miriágono Polígono de 10000 lados 
 
 
 
 
 
 
 
 
41
IV. Ejercicios 
1. Determina el número de vértices y de lados de cada polígono. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Identifica la figura de acuerdo al número de lados. 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 Figura 7 Figura 8 
 
 
 
 
42
Los conceptos de área y perímetro en los polígonos 
Perímetro de un polígono 
Cada polígono en un plano está compuesto por segmentos de línea a los cuales le 
llamamos lados. A cada lado se le puede asignar una medida de largo en alguna unidad 
de medida como lo puede ser la medida en pulgadas, en pies, en metros, en centímetros, 
en yardas, etc. 
El perímetro de un polígono es la suma de las medidas de sus lados. 
 Ejemplo: Observe la siguiente figura. Identifique la unidad de medida en los ejes. 
Contesta las siguientes preguntas. Módulo de perímetro 
 
 
 
 
 
 
 
 
 
 
 
El largo mide 5 cm y el ancho mide 2 cm. 
El perímetro mide, 5cm + 2cm + 5cm +2cm = 14cm 
 
 
 
 
 
 
 
 
 
 
 
 
43
V. Ejercicio: Encuentra el perímetro de cada una de las siguientes 
figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
 
 
 
 
 
44
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
El área de un polígono 
 
El concepto del área de un polígono es una medida de la cantidad del espacio que 
encierra el polígono. Las unidades para medir el área se definen en base al área que 
encierra un cuadrado cuya medida de los lados es una unidad. Decimos entonces que el 
área del cuadrado cuyos lados miden uno es de una unidad cuadrada. De esta maneara 
podemos medir el área en base a la cantidad de unidades cuadradas contenidas dentro del 
polígono. E la figura 18 se ilustra el concepto de unidad cuadrada. La unidad puede ser 
cualquiera de las unidades de medida que usted conoce, como por ejemplo, pulgadas 
(in.), metros (m), yardas (yd.), centímetros (cm), milímetros (mm), etc. En muchos casos 
hallar el área de un polígono simple se reduce a contar cuadritos, pero para otros 
polígonos la cantidad de cuadritos (unidades cuadradas) que caben dentro de la figura no 
es un número entero. En tal caso debemos desarrollarestrategias más sofisticadas para 
medir el área. 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
VI. Ejercicios de área 
1. Determina el área de cada una de las siguientes figuras. Use la cuadrícula para 
identificar las unidades. Módulos Áreas 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
 
2. Determina el área de cada una de las siguientes figuras. Use la cuadrícula para 
identificar las unidades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
 
 
 
 
 
 
 
 
48
Área de figuras planas 
 
Área de un cuadrado 
 
El área de un cuadrado es igual al producto de la medida de dos de sus lados. 
2
.
 = 
A s s
s
=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
Área de un rectángulo 
 
El área de un rectángulo se obtiene multiplicando el lado más largo por el lado más 
corto, o sea el área es igual al largo por el ancho. 
Ejemplos: Resuelve los ejercicios. 
1. Encuentra el área de un cuadrado con medida de 9 cm por cada lado. 
 A = 81 cm2 
2. Encuentra el área de un rectángulo con medida de 9 cm de ancho por 10 cm 
de largo. 
 A = 90 cm2 
3. Encuentra el área de un rectángulo con medida de 8 cm de ancho por 12 cm 
de largo. 
 A = 96 cm2 
 
 
 
 
 
 
 
50
El área de un triángulo 
El área de un triángulo se puede deducir del área del rectángulo. Si dividimos un 
usando una de sus diagonales obtenemos dos triángulos iguales. El área de cada 
triángulo será la mitad del área del rectángulo. 
 
 
El área de un triángulo es la mitad la base por la altura. 
 
.
2
b hA = 
Ejemplos: Determina el área de cada triángulo. 
 
 
 
 
51
 
Área de un trapecio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
 
 
 
 
 
 
 
 
 
 
 
El área del trapecio es igual a la mitad del producto de la suma de las bases 
multiplicada por la altura. 
 
 
( )1 2
2
h b b
A
+
=
 
 
 
53
Ejemplo: Determina el área del trapecio. 
 
Área de un paralelogramo 
El área de un paralelogramo es igual al producto de la base por la altura. 
 
 
 
 
 
 
.A b h=
 
 
 
54
Ejemplo: Determina el área del paralelogramo. 
 
 
Área y circunferencia de un círculo 
El área de un circulo es pi (π ) multiplicado por el radio al cuadrado. 
2A rπ= 
La medida de la circunferencia de un círculo es 2 oC r C dπ π= = . 
La medida de la circunferencia es el equivalente al perímetro de una figura 
poligonal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
Ejercicio VII: Resuelve el ejercicio 
1. Determina la medida de la circunferencia y el área del círculo. 
 
 
 
 
 
 
 
 
 
 Figura 1 Figura 2 Figura 3 Figura 4 
Área 
Circunferencia 
 
2. Encuentra el área de un círculo con radio de 10 cm. 
3. Encuentra el área de un círculo con radio de 20 cm. 
4. Encuentra el área de un círculo con radio de 8 cm. 
5. Encuentra la medida de una circunferencia con radio de 10 cm. 
6. Encuentra la medida de una circunferencia con radio de 6 cm. 
 
 
 
 
 
 
 
 
 
 
 
56
Figuras tridimensionales 
Las figuras estudiadas hasta este momento se dibujan sobre un plano (espacio de 
dos dimensiones) o sobre una línea (espacio unidimensional). Para representar el mundo 
que nos rodea donde los objetos son sólidos necesitamos un espacio de tres dimensiones. 
Si miramos una caja (el término en matemáticas es un paralelepípedo rectangular) vemos 
que contiene varios elementos estudiados en el plano. Por ejemplo los lados, que se les 
llama caras de la caja, forman rectángulos, tenemos los bordes de las caras, que 
representan segmentos de línea y se le llaman aristas y las esquinas que representan 
puntos, y se les llama vértices. Las figuras en el espacio cuyas caras son polígonos se 
llaman poliedros. Algunos de los poliedros se asignan nombres comunes, como al cubo, 
caja, pirámide, etc. 
Elementos de un poliedro 
 
 
 
 
 
 
 
 
 
 
 
 
 Pirámide Prisma recto Cilindro 
 
 
 Cono 
 
 
 
57
 
 
 
 
 
 
 
 
 
 
 
 
 
Prismas 
Los prismas son poliedros que se construyen con dos caras paralelas llamadas 
directrices, por las cuales se le da el nombre al prisma, y una serie de paralelogramos, 
tantos como lados tenga la cara directriz. 
 
 
 
 
Pirámides 
Una pirámide es un poliedro limitado por una base, que es un polígono cualquiera; y por 
caras, que son triángulos coincidentes en un punto denominado el ápice. 
 
 
 
 
 
 
 
C a j a ( p r i s m a ) 
r e c t á n g u l a r
Cubo 
(prisma rectangular)
Poliedro Bipirámide
Esfera
Cilindro circular Pirámide rectangular
 
 
 
58
VIII Ejercicio: Figuras tridimensionales 
Determina el número de caras, de aristas y de vértices en cada uno de los siguientes 
poliedros. Completa la tabla con la información. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura Vértices Aristas Caras 
Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 
 
 
 
 
 
 
 
 
 
59
El concepto de volumen 
Al igual que el caso del área, también podemos definir una forma de medir el 
espacio que ocupa una figura tridimensional. Lo hacemos de una forma similar a la del 
área, utilizando como base las unidades de medida en una línea. 
La unidad de medida de volumen se define como el espacio ocupado por un 
paralelepípedo (un cubo) que tiene unidad de media uno en todas sus aristas. 
 
 
 
 
 
 
 
 
 El volumen de una figura tridimensional de define como la cantidad de 
unidades cúbicas que ocupa la figura en el espacio. 
Ejemplo: Determina el volumen de la figura. Suponga que cada cubo representa una 
unidad de volumen. 
 
 
 
 
 
 
 
 
 
 
 
Volumen y 
Volumen = 8 
unidades cúbicas 
Volumen = 16 
unidades cúbicas 
 
 
 
60
Áreas de superficie de figuras geométricas 
 
1. Volumen de un cubo 
El volumen de un cubo se obtiene multiplicando el largo de una de sus aristas 
(lados), tres veces, 3. .V l l l l= = . 
Ejemplo: Determina el volumen de un cubo si una de sus aristas mide 4 cm. 
( )3 34 .4 .4 4 64V cm cm cm cm cm= = = 
 
2. Volumen de una caja (prisma rectangular) 
El volumen de una caja se obtiene multiplicando el largo por el ancho por la altura. 
. .V l a h= 
Ejemplo: Determina el volumen de una caja con largo de 6 mm, ancho de 4 mm y 
altura de 8 mm. 
36 .4 .8 192V mm mm mm mm= = 
 
3. Volumen de una pirámide y de un cono 
El volumen de una pirámide, o de un cono es un tercio del área de la base por la 
altura. 
Área de la base x Áltura .
3 3
bA hV = = 
Ejemplos: 
1. Determina el área de una pirámide cuadrada con altura de 6 cm y un lado de la 
base mide 4 cm. 
( )2
34 .6Área de la base x Áltura
32
3 3
cm cmV cm= = = 
2. Determina el área de un cono con radio de 6 cm y altura de 4 cm. 
( )2
3 36 .4Área de la base x Áltura
48 150.8
3 3
cm cmV cm cmπ π= = = ≅
 
 
 
61
4. Volumen de una esfera 
El volumen de una esfera es igual a cuatro veces pi (π) por el radio al cubo, dividido 
por tres. 
34
3
rV π= 
 
Ejemplo: 
1. Determina el volumen de una esfera de radio 6 mm. 
( )3
3 34 6
288 904.8
3
mmV mm mmπ π= = ≅ 
 
5. Área de superficie de una esfera 
El área de superficie de una esfera es cuatro por pi (π) por el radio al cuadrado. 
24A rπ= 
Ejemplo. Determina el área de superficie de una esfera de radio 8 mm. 
( )2 24 8 804.2A mm mmπ= = 
 
6. Área de superficie de un prisma 
El área de superficie de un prisma se obtiene sumandolas áreas de las caras del 
prisma. 
 
 
 
 
 
 
 
 
 
 
 
62
Ejemplo. Determina el área de superficie del prisma. 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
A = 208 cm2 A = 27 cm2 A = 108 cm2 A = 192 mm2 
 
 
 
 
 
 
 
63
Ejercicio IX: Resuelve el ejercicio 
1. Determina la medida de la circunferencia y el área del círculo. Suponga que la 
unidad de longitud es el metro. 
 
 
 
 
 
 
 
 
 
 Figura 1 Figura 2 Figura 3 Figura 4 
Área 
Circunferencia 
 
2. Encuentra el área de un círculo con radio de 10 cm. 
3. Encuentra el área de un círculo con radio de 20 cm. 
4. Encuentra el área de un círculo con radio de 8 cm. 
5. Encuentra la medida de una circunferencia con radio de 10 cm. 
6. Encuentra la medida de una circunferencia con radio de 6 cm. 
 
 
 
64
X. Ejercicios de volumen 
1. Determina el volumen de cada figura. Suponga que la unidad es el metro cúbico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
 
 
 
 
 
 
 
 
 
 
Figura 3 
 
 
 
65
2. Identifica los siguientes objetos por su nombre. 
 
 
3. Determina el número de caras, aristas y vértices tiene cada figura. 
 
 
 
 
___ caras ___ aristas ___ vértices 
 
 
 ___caras ___ aristas ___vértices 
 
 
 ___ caras ___aristas ___vértices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 4. Identifica cada figura por su nombre. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
Respuestas de los ejercicios propuestos 
Ejercicios: Pagina 16 
I. Ejercicios de planos, puntos y líneas 
1. Determina los segmentos, las líneas, rayos no contenidos en alguna línea y las 
medias líneas sobre el plano α. 
 
 
Líneas Rayos Medialínea segmentos 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
Ejercicios: Página 21 
II. Ejercicios de curvas 
1. Determina si cada una de las siguientes curvas abiertas o cerradas. 
 
Figura 1 Cerrada 
Figura 2 Abierta 
Figura 3 Cerrada 
Figura 4 Abierta 
Figura 5 Abierta 
Figura 6 Cerrada 
Figura 7 Cerrada 
Figura 8 Abierta 
Figura 9 Cerrada 
Figura 10 Cerrada 
 
 
2. Determina si cada una de las siguientes curvas son simples o no son simples. 
Figura 1 Simple 
Figura 2 No simple 
Figura 3 Simple 
Figura 4 No simple 
Figura 5 Simple 
Figura 6 Simple 
Figura 7 No simple 
Figura 8 No simple 
Figura 9 No simple 
Figura 10 Simple 
 
 
 
 
 
 
69
Ejercicios: Página 29 
III. Ejercicios de ángulos 
1. Clasifica los ángulos como obtuso, agudo o recto. 
 
 
 
 
 
 
 
 
 
 
Respuestas: 
α β μ λ κ η θ 
Obtuso Recto Agudo Agudo Obtuso Agudo Recto 
 
2. Encuentra la medida del ángulo complementario. 
Ángulo Ángulo complementario 
a. 075 015 
b. 060 030 
c. 050 040 
d. 045 045 
e. 035 055 
f. 078 012 
g. 036 054 
h. 043 047 
i. 048 042 
 j. 055 035 
 
 
 
 
70
3. Encuentra la medida del ángulo suplementario. 
Ángulo Ángulo suplementario 
a. 0150 030 
b. 042 0138 
c. 0120 060 
d. 045 0135 
e. 0125 055 
f. 0165 015 
g. 0170 010 
h. 010 0170 
i. 0108 072 
 j. 08 9 091 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
Ejercicios: Página 41 
IV. Ejercicios 
1. Determina el número de vértices y de lados de cada polígono. 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 2 3 4 5 6 
vértices 4 3 4 6 5 12 
lados 4 3 4 6 5 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
2. Identifica la figura de acuerdo al número de lados. 
 
Figura 1 Cuadrilátero(cuadrado) 
Figura 2 Triángulo 
Figura 3 Cuadrilátero(trapecio) 
Figura 4 Hexágono 
Figura 5 Pentágono 
Figura 6 triángulo 
Figura 7 octágono 
Figura 8 Cuadrilátero( trapecio) 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
V. Ejercicio V: Página 43 
Encuentra el perímetro de cada una de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
8 cm 10 cm 10 cm 30 cm 10 cm 
 
 
 
 
74
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
140 cm 12 cm 40 cm 27 cm 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
Ejercicios: Página 46 
VI. Ejercicios de área 
1. Encuentra el área de cada una de las siguientes figuras. Use la cuadrícula para 
identificar las unidades. 
 
 
 
76
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
12 m2 4.5 m2 9 m2 4 m2 8 m2 
 
 
 
 
 
 
77
2. Encuentra el área de cada una de las siguientes figuras. Use la cuadrícula para 
identificar las unidades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
10 km2 2 km2 4 km2 5 km2 
 
 
 
 
 
78
Ejercicios: Página 55 
VII Ejercicio: Figura tridimensionales 
Determina el número de caras, de aristas y de vértices en cada uno de los siguientes 
poliedros. Completa la tabla con la información. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura Vértices Aristas Caras 
Fig. 1 8 12 6 
Fig. 2 5 8 5 
Fig. 3 6 9 5 
Fig. 4 6 12 8 
Fig. 5 7 12 7 
Fig. 6 10 15 7 
 
 
 
 
 
79
VIII Ejercicio: Página 58 
 Figuras tridimensionales 
Determina el número de caras, de aristas y de vértices en cada uno de los siguientes 
poliedros. Completa la tabla con la información. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura Vértices Aristas Caras 
Fig. 1 8 12 6 
Fig. 2 5 8 5 
Fig. 3 6 9 5 
Fig. 4 6 12 8 
Fig. 5 7 6 6 
Fig. 6 10 15 7 
 
 
 
80
Ejercicio IX: Página 63 
Resuelve el ejercicio 
1. Determina la medida de la circunferencia y el área del círculo. Suponga que la 
unidad de longitud es el metro. 
 
 
 
 
 
 
 
 
 
 Figura 1 Figura 2 Figura 3 Figura 4 
Área 4π m2 π m2 0.25π m2 0.49π m2 
Circunferencia 4π m 2π m π m 1.4π m 
 
2. Encuentra el área de un círculo con radio de 10 cm. 
A =100 π cm2 
3. Encuentra el área de un círculo con radio de 20 cm. 
A =400 π cm2 
4. Encuentra el área de un círculo con radio de 8 cm. 
A =64 π cm2 
5. Encuentra la medida de una circunferencia con radio de 10 cm. 
C =20 π cm 
6. Encuentra la medida de una circunferencia con radio de 6 cm. 
C =12 π cm 
 
 
 
81
Ejercicios X: Página 64 
1. Determina el volumen de cada figura. Suponga que la unidad es el metro cúbico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
16 m3 18 m3 6 m3 
 
 
 
 
 
 
 
 
 
Figura 3 
 
 
 
82
2. Identifica los siguientes objetos por su nombre. 
 cubo prisma rectangular 
 cilindro cono 
3. Determina el número de caras, aristas y vértices tiene cada figura. 
 
 
 
 
 6 caras 12 aristas 8 vértices 
 
 
 5 caras 8 aristas 5 vértices 
 
 
 5 caras 9 aristas 6 vértices 
 4. Identifica cada figura por su nombre. 
 
Pirámide rectangular 
 
 Prisma triangular 
 
 
 
 
83
 
Pirámide hexagonal 
 
 cilíndro circular 
 
 Pirámide cuadrada 
 
 
 cono 
 
 Prisma rectangular 
 
 
 Prisma hexagonal 
 
 
 
 
 
 
 
84
Pos-Prueba 
 
1. Determina si cada curva en la siguiente figura es, abierta, cerrada, 
simple o no simple. 
 
Figura Abierta Cerrada Simple No Simple
1 
2 
3 
4 
5 
6 
7 
82. Determina cuáles de las siguientes figuras son polígonos. Indica tu 
respuesta en la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
 
 
85
 
3. Clasifica cada ángulo como, agudo, obtuso, recto o llano. Completa la 
tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
4. Identifica cada cuadrilátero por su nombre. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
 
 
 
 
 
 
 
 
 
 
86
5. Identifica cada componente ilustrado del círculo. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
 
 
 
6. Clasifica el triángulo como rectángulo, equilátero, isósceles, o escaleno. 
Clasifica el triángulo como obtusángulo, acutángulo, o rectángulo. 
Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
7. Determina el área de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Encuentra el perímetro de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
9. Determina el área de superficie de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
 
 
 
 
10. Encuentra el volumen de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
 
 
 
 
 
 
 
 
 
 
 
89
Respuestas de la Pre y Pos -Prueba 4to – 6to 
 
1. Determina si cada curva en la siguiente figura es, abierta, cerrada, 
simple o no simple. 
 
Figura Abierta Cerrada Simple No Simple
1 X X 
2 X X 
3 X X 
4 X X 
5 X X 
6 X X 
7 X X 
8 X X 
 
2. Determina cuáles de las siguientes figuras son polígonos. Indica tu 
respuesta en la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
Si No No Si Si No 
 
 
 
90
 
3. Clasifica cada ángulo como, agudo, obtuso, recto o llano. Completa la 
tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
Agudo Recto Obtuso Agudo Agudo Llano 
 
4. Identifica cada cuadrilátero por su nombre. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6
Cuadrado Hexágono Paralelogramo Trapecio Rectángulo Triángulo
 
 
 
 
 
 
 
 
 
91
5. Identifica cada componente ilustrado del círculo. Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 
Radio Diámetro Cuerda Punto Centro 
 
 
6. Clasifica el triángulo como rectángulo, equilátero, isósceles, o escaleno. 
Clasifica el triángulo como obtusángulo, acutángulo, o rectángulo. 
Completa la tabla. 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 Figura 4 
Escaleno Isósceles Rectángulo Equilátero 
Obtusángulo Acutángulo Rectángulo Acutángulo 
 
 
 
 
 
 
 
 
 
 
92
 
7. Determina el área de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Encuentra el perímetro de cada figura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10 2 
5 4 
7.4 cm 6 cm 7.6 cm 
3 cm 8 cm 
 
 
 
93
9. Determina el área de superficie de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
96 cm2 1900 mm2 72 cm2
 
 
 
10. Encuentra el volumen de las siguientes figuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 Figura 2 Figura 3 
64 cm3 5000 mm3 30 cm3

Más contenidos de este tema