Logo Studenta
¡Este material tiene más páginas!

Vista previa del material en texto

1 
Física II: Termodinámica, ondas y fluidos 
Índice 
 
4 – LA SEGUNDA LEY DE LA TERMODINÁMICA....................................................................................2 
4.2 DIRECCIÓN DE LOS PROCESOS TERMODINÁMICOS.....................................................................................2 
4. 3 MAQUINÁS DE CALOR....................................................................................................................................3 
Ejemplo 4.1 motor de gasolina .........................................................................................................................5 
4.4 MOTORES A COMBUSTIÓN.............................................................................................................................6 
4.6 LA SEGUNDA LEY DE LA TERMODINÁMICA................................................................................................ 12 
4.7 EL CICLO DE CARNOT...................................................................................................................................14 
Ejemplo 4.2 Máquina de Carnot .................................................................................................................... 17 
Ejemplo 4.3 Ciclo completo de la máquina de Carnot................................................................................. 17 
Ejemplo 4.4 Ciclo de Carnot como refrigerador .......................................................................................... 20 
4.8 ESCALA DE TEMPERATURA KELVIN........................................................................................................... 22 
4.9 ENTROPÍA....................................................................................................................................................... 23 
Ejemplo 4.5 – Cambio de entropía relacionada con cambio de fase.......................................................... 24 
Ejemplo 4.6 Cambio de entropía calentando agua....................................................................................... 25 
Ejemplo 4.7 – Expansión reversible adiabática de un gas........................................................................... 25 
Ejemplo 4.8 – Expansión libre de un gas ideal ............................................................................................. 26 
Ejemplo 4.9 - Entropía durante el ciclo de Carnot....................................................................................... 27 
Ejemplo 4.10 – Mezcla térmica ...................................................................................................................... 28 
4.10 INTERPRETACIÓN MICROSCÓPICA DE LA ENTROPÍA.............................................................................. 30 
Ejemplo 4.11 – Es tados microscópicos y expansión libre de un gas........................................................... 32 
PROBLEMAS ......................................................................................................................................................... 33 
 2 
 
4 – La segunda ley de la termodinámica 
4.2 Dirección de los procesos termodinámicos 
Los procesos naturales son irreversibles Þ se desarrollan en una dirección pero no el 
inverso 
 
Ej. el calor fluye de un cuerpo caliente a un cuerpo frió – la expansión libre de un gas 
 
Esta dirección sigue la segunda ley de la termodinámica 
 
Procesos reversibles – cerca del equilibrio termodinámico dentro de si y con su entorno 
· Cualquier cambio de estado podrá invertirse solamente con modificación 
infinitesimal a las condiciones del sistema 
 
Si el equilibre estaba perfecto nunca el sistema podrá cambiar de estado 
· Un proceso reversible es una idealización – si hacemos los gradientes de 
temperatura y diferencia de presión en la sustancia muy pequeños el sistema se 
encontrara muy cerca del estado de equilibrio Þ proceso casi reversible 
 
Hay una relación entre la dirección de un proceso y el desorden o aleatoriedad del estado 
resultante – la conversión de energía mecánica en calor implica un aumento de la 
aleatoriedad o desorden 
 
2 clases de dispositivos: 
1. Máquinas de calor – convierten parcialmente calor en trabajo 
2. Refrigeradores – transportan calor de cuerpos fríos a cuerpos calientes pero con 
ayuda de trabajo 
 3 
4. 3 Maquinás de calor 
Una importante fuente de energía = quemar combustibles fósiles (carbón + petróleo + 
reacción nucleares) 
La energía de los alimentos se quema (carbohidratos se combinan con oxígeno para 
producir agua y bióxido de carbono + energía) y se convierte parcialmente en energía 
mecánica 
Un dispositivo que transforma calor parcialmente en trabajo o energía mecánica es una 
maquina de calor 
Sustancia de trabajo = cantidad de materia en una máquina que gaña o pierde calor se 
expende o se compresa o cambia de fase 
Ej. en motores a combustión = mezcla de aire + combustible – en turbina de vapor = agua 
Máquinas más simples = usan proceso cíclico 
Ej. en una turbina a vapor el agua es reciclado uno y otra vez – los motores a combustión 
cambian aire + combustible pero proceso similar a proceso cíclico 
 
Todas las maquinas de calor absorben calor de un depósito caliente a temperatura HT 
realizan un trabajo W y rechazan algo de calor a un depósito frío a temperatura CT 
· El calor rechazado es pura perdida – no se puede usar para hacer trabajo útil 
Ej. Motor interna = gases de escape calientes – turbina a vapor = calor que escape del 
vapor de agua cuando se condensa 
Durante un proceso cíclico 2 1 0U U UD = - = 0Q WÞ - = o sea Q W= 
· El calor neto que fluye hacia la máquina en un proceso cíclico es igual al 
trabajo realizado por la máquina 
 
 4 
Esquema de la máquina de calor 
 
2 cuerpos : 
1. Depósito caliente – fuente de calor que puede ceder una grande cantidad de calor 
a la sustancia de traba jo a temperatura constante HT 
2. Depósito frío – que puede absorber una grande cantidad de calor de la sustancia 
de trabajo a una temperatura constante CT 
· Cantidades de calor transferidos – del depósito caliente HQ y del depósito frío CQ 
o 0Q > calor transferida a la sustancia de trabajo 
o 0Q < calor que sale de la sustancia de trabajo 
o 0HQÞ > y 0CQ < 
 
Calor neto absorbido por ciclo : 
(4.1) H C H CQ Q Q Q Q= + = - 
Producto normal: 
 
(4.2) H C H CW Q Q Q Q Q= = + = - 
La máquina ideal seré una máquina donde 0CQ = , pero esto es físicamente imposible 
porque siempre se desperdicia algo de calor (analogía mecánica = fricción) 
 
Eficiencia térmica: 
(4.3) 1 1 CH C C
H H H H
QQ Q QWe
Q Q Q Q
+= = = + = - 
La eficiencia es siempre más pequeña que 1 
 5 
Ejemplo 4.1 motor de gasolina 
10000JHQ = y 2000JW = 
 
El calor se obtiene quemando gasolina con aire – la gasolina tiene calor de combustión 
4 J5.0 10
gc
L = ´ 
 
La eficiencia térmica del motor: 2000J 0.2
10000JH
W
e
Q
= = = o 20% 
Esto es típico de coche o camión si asumimos W es el trabajo suministrado a las ruedas 
 
El calor que se desecha: 2000J 10000J 8000JC HQ W Q= - = - = - 
 
Este calor sale del motor a cada ciclo 
 
La cantidad de gasolina quemada: si m es la masa de gasolina quemada 
4
10000J
0.20g
5.0 10 J g
H
H c
c
Q
Q mL m
L
= Þ = = =
´
 
 
Si el motor ejecuta 25 ciclos por segundo 
ciclo g g s g g
25 0.20 5.0 3600 5.0 18000
s ciclo s h s h
Þ × = Þ × = 
 
Como la densidad de la gasolina es de 3
g
0.7
cm
la consumación de gasolina esta igual a 
3 3g 1 cm cm18000 25700
h 0.7 g h
× = o 25.7 L/h 
 
A una velocidad de km88
h
se cubrirá solamente 3.4 km
L
 
 
La potencia del motor es: J ciclo2000 25 50000W
ciclo s
P = × = 
 
Como 1hp 746W= por lo tanto la potenciadel motor es 67hp 
 6 
4.4 Motores a combustión 
 
 
4 carreras 
1. Carrera de admisión – mezcla de aire + combustible fluye en el cilindro por 
válvula de admisión abierta, mientras el pistón desciende aumentando el volumen 
del cilindro de V a rV - donde r es la relación de compresión 
 
2. Carrera de compresión – al final de la carrera de admisión la válvula se cierre y 
la mezcla de aire + combustible es comprimida por el pistón que sube – el proceso 
es casi adiabático 
 
3. Carrera de potencia – luego la bujía enciende la mezcla y el gas caliente se 
expande – el proceso de nuevo es casi adiabático – el gas efectúa un trabajo 
empujando el pistón 
 
4. Carrera de expulsión – se abre la válvula de escape y el pistón expulsa el 
producto de combustión fuera del cilindro 
 7 
El ciclo Otto 
 
Modelo idealizado de los procesos termodinámicos para motores a gasolina 
 
 
· Punto a – mezcla de aire + combustible ya entró en el cilindro 
· Tramo a-b: compresión adiabática 
· Tramo b-c: gas se enciende - gasolina agrega calor HQ 
· Tramo c-d: expansión adiabática 
· Tramo d-a: rechazado de calor 
 
En realidad el gas del motor se escape – pero es reemplazado por mezcla equivalente 
Þ similar a proceso cíclico 
 
Eficiencia – los procesos b-c y d-a se hacen a volumen constante – no hay trabajo 
 
(4.4) ( ) ( )0 and 0H V c b C V a dQ nC T T Q nC T T= - > = - < 
(4.5) H C c b a d
H c b
Q Q T T T T
e
Q T T
+ - + -
= =
-
 
Usando la relación entre T yV para proceso de gas ideal adiabático: 
( ) ( ) ( ) ( )1 1 1 1 y a b d cT rV T V T rV T V
g g g g- - - -= = 
 
( ) ( )
( ) ( )
( )( )
( )
1 1 1
1 1 1
1d ad a a d
d ad a
T T rT r T r T T
e
T T rT r T r
g g g
g g g
- - -
- - -
- -- + -
= =
--
 
 
(4.6) 
1
1
1e
r g -
= - 
Ej. para 8r = y 1.4g = tenemos 0.56e = 
La eficiencia puede aumentar aumentando r pero también aumenta la temperatura al final 
de la compresión adiabática de la mezcla aire + combustible – si el aumento de 
temperatura es excesivo la mezcla explota espontáneamente durante la compresión en 
lugar de quemar se homogéneamente = preignición o detonación – si no es controlado 
puede dañar le motor – el octano de la gasolina = medida de calidades ante-detonante 
 8 
La relación de compresión para gasolina de alto octano es cerca de 10 
 
El ciclo Otto ignora fricción + turbulencia + perdida de calor hacia las paredes del cilindro 
y muchos otras más efectos que reducen la eficiencia de un motor real 
 
Otra fuente de ineficiencia = combustión incompleta 
· Mezcla de vapor de gasolina con apenas suficiente aire para quemar por completo 
los hidrocarbonos en agua y bióxido de carbono no se enciende fácilmente 
· La combustión es generalmente incompleta y salen con gas de escape CO + 
hidrocarbonos Þ fuente importante de polución atmosférica 
· También sale calor HQ < que para combustión total Þ otra fuente importante de 
polución 
 
 
Ciclo Diesel 
 
 
Similar a motor de gasolina pero no hay combustible en el cilindro al principio de la 
carrera de compresión 
· Un poco antes del inició de la carrera de potencia los inyectores comienzan a 
inyectar combustible directamente al cilindro con la rapidez justa para mantener la 
presión casi constante 
· A causa de la elevada temperatura desarrollada el combustible se enciende 
espontáneamente Þ no se necesita bujia 
 
 
 
Ciclo Diesel 
· En a – el aire se comprime adiabáticamente hasta b 
· Se caliente a presión constante hasta c – recibe calor de combustión 
· Se expande adiabáticamente hasta d - se hace un trabajo 
· Se enfría a volumen constante hasta a - se rechaza calor 
 
Como no hay combustible en el cilindro durante la compresión no puede haber preignición 
y la relación de compresión r puede ser mayor (15 20)- Þ eficienc ia del motor es mayor 
0.65 0.70e = - 
 
Motor es más pesado – no necesita carburador o bujías pero mecanismo de inyección de 
alta precisión más complicado y cuesta cara 
 9 
Refrigeradores 
 
Nada más que una máquina de calor que funciona al inverso – toma calor de un lugar frío 
y lo ceda a un lugar más caliente Þel refrigerador requiere una fuente neta de trabajo 
mecánico (ej. electricidad) 
 
 
0W < , 0CQ > y 0HQ < 
 
Segunda la primera ley: 0H CQ Q W+ - = o sea 0H CQ Q W- = - = donde H CQ Q> 
 
(4.7) H CQ Q W= + 
Para máquina de calor o refrigerador: 
(4.8) H CQ Q W= + 
El mejor ciclo de refrigeración CQÞ máximo para W mínimo y la relación pertinente 
es C
Q
W
 
 
El coeficiente de rendimiento K 
(4.9) C C
H C
Q Q
K
W Q Q
= =
-
 
 
 10 
 
 
Principio del refrigerador 
· La sustancia de trabajo es fluido refrigerante (antiguamente 2 2CCl F - gas freón) – 
no se usa más porque principal responsable de reducir la capa de ozono del 
atmósfera 
· Espiras de enfriamiento (al interior de l refrigerador) - baja presión y temperatura 
· Espiras de condensación (fuera del refrigerador) - alta temperatura y presión 
· El compresor admite fluido + comprima adiabáticamente y lo subministra al 
condensador a alta presión 
· La temperatura es mayor que de l aire ambiente y se ceda calor HQ - el fluido se 
condensa parcialmente en líquido 
· Luego el fluido se expande adiabáticamente en el evaporador a una razón 
controlada por la válvula de expansión 
· A expandir se el fluido se enfría considerablemente – más frío quel aire en el 
refrigerador acepta calor CQ 
· El fluido pasa de nuevo por compresor y ciclo recomienza 
· El compresor requiere energía constante para realizar un trabajo W sobre el fluido 
 
Las cantidades pertinentes aquí son la razón de eliminación de calor H y la potencia de 
entrada WP
t
= 
 
Si se elimina el calor CQ en un tiempo t
CQH
t
Þ = y C
Q Ht HK
W Pt P
= = = 
Con valor típica 5000H = hasta Btu10000
h
 y potencia eléctrica de 600 a 1200 W 
KÞ del orden de 2.5 
 11 
Si [ ] Btu
h
H = y [ ] WP = la razón H
P
= calificación de rendimiento energético (EER) 
con unidad Btu h
W
y valor típica de 7 a 10 
 
 
El principio de funcionamiento de un aire acondicionado es el mismo que del de uno 
refrigerador 
 
Otra variante = Bomba de calor – con un diseño correcto HQ puede ser mucho mayor 
que W 
 
IMPORTANTE – es imposible hacer un refrigerador que transporte calor de un cuerpo 
más frío a uno más caliente sin agregar trabajo (esto es consecuencia directa de la segunda 
ley de termodinámica) 
 12 
4.6 La segunda ley de la termodinámica 
Establece un límite sobre el cambio de calor en trabajo: 
 
Segunda ley de la termodinámica (primera versión) 
 
Es imposible que un sistema efectúe un proceso en el que se absorba calor de un 
depósito a una temperatura uniforme y lo convierte por completo en trabajo mecánico 
terminando el sistema en el mismo estado en que empezó 
 
 
 
 
Segunda ley de la termodinámica (segunda versión) 
 
Es imposible que una máquina tenga como único resultado la transferencia de calor de 
un cuerpo más frío a un cuerpo más caliente 
 
 
La figura (a) ilustra la segunda forma de la ley de termodinámica – un refrigerador 
perfecto (no necesita trabajo) – violando la segunda forma de la segunda ley de la 
termodinámica - podría ser usado en conjunción con una máquina a calor bombeando el 
calor rechazado por la máquina de nuevo al depósito caliente para reutilizar lo 
 
La figura (b) ilustra la primera forma de la ley de termodinámica – una máquina de calor 
perfecta (no rechaza calor) – viola ndo la primera forma de la segunda ley de 
termodinámica - podría ser usada para hacer funcionar un refrigerador que bombea calor 
del depósito frío al deposito caliente sin necesidad de trabajoCualquier dispositivo que viole una forma de la segunda ley de termodinámica puede ser 
usado para hacer funcionar un dispositivo que viole la otra forma Þestas dos formas son 
equivalentes
 13 
A la base de la segunda ley de la termodinámica tenemos la diferencia entre la naturaleza 
de la energía interna y la de la energía mecánica macroscópica 
· La energía interna es la energía cinética + potencial asociadas al movimiento 
aleatorio de las moléculas 
 
El movimiento organizado puede ser transformado en movimiento aleatorio pero dado que 
no se puede controlar los movimientos aleatorios de las moléculas individualmente no 
podemos convertir este movimiento aleatorio otra vez en movimiento organizado 
 
La segunda ley no se deduce de la primera ley 
· La primera ley niega la posibilidad de crear o destruir energía 
· La segunda ley limita la disponibilidad de la energía y las formas que se puede 
usar la y convertir la 
 
· La conversión en calor por fricción o flujo de fluidos viscosos o el flujo de calor de 
caliente a frío por gradiente de temperatura finita son todos procesos irreversibles 
 
· Los gases se filtran espontáneamente por una apertura de una región de alta 
presión a una de baja presión – nunca el reverso 
 
· Los gases y líquidos miscibles sin ser sometidos a ninguna perturbación siempre 
tienden a mezclar se no a separar se 
 
Todos estos procesos siguen la segunda ley de la termodinámica – la segunda ley es la 
expresión inherente unidireccional de los procesos irreversibles 
 14 
4.7 El ciclo de Carnot 
Sadi Carnot (1796-1832) – ingeniero en el reno de Napoleón primero 
Carnot determino cual es la eficiencia máxima de una máquina de calor con depósitos de 
calor a temperatura HT y CT 
 
La máquina de Carnot = máquina puramente hipotética (no puede existir) 
 
Principios: 
· Conversión de calor en trabajo = proceso irreversible 
· Propósito de máquina de calor = reversión parcial de este proceso 
· Para obtener la eficiencia máxima Þ evitar procesos irreversibles 
 
· Ej. flujo de calor por caída de temperatura finita = proceso irreversible 
o Durante el ciclo de Carnot no hay diferencia de temperatura finita 
§ Cuando la máquina toma calor del depósito caliente a HT la 
sustancia de trabajo debe haber HT 
§ Así mismo cuando la máquina desecha el calor al depósito frío a 
CT la sustancia de trabajo ya debe haber la temperatura CT 
· Todos los procesos de transferencia de calor deben ser isotérmicos 
 
· Del otro lado, en cualquier proceso en el que la temperatura de la sustancia de 
trabajo es intermediar entre HT y CT no debe haber transferencia de calor entre la 
máquina y los depósitos 
· Cualquier proceso donde la sustancia de trabajo cambia de temperatura debe 
ser adiabático 
 
· Además se debe mantener el equilibrio térmico y mecánico a todo momento 
Þ todos los procesos son reversibles 
 
 15 
 
1. a b® : El gas se expande isotermicamente a temperatura HT absorbiendo calor 
HQ 
2. b c® : El gas se expande adiabaticamente hasta que la temperatura baja a CT 
3. c d® : El gas se comprima isotermicamente a la temperatura CT rechazando el 
calor CQ 
4. d a® : El gas se comprime adiabaticamente hasta que la temperatura aumenta a 
HT 
 
Si la sustancia de trabajo es un gas ideal – la eficiencia térmica es: 
 
Para a b® , 0abUD = y H abQ W= 
(4.10) ln bH ab H
a
V
Q W nRT
V
= = 
De forma similar 
(4.11) ln lnd cC cd C C
c d
V V
Q W nRT nRT
V V
= = = - 
Como 0d c CV V Q< Þ < y sale calor del gas durante su compresión isotérmica 
 16 
 
(4.12) 
ln
ln
C C c d
H H b a
Q T V V
Q T V V
æ ö
= -ç ÷
è ø
 
Como el proceso es adiabático: 
1 1 1 1 y H b C c H a C dT V T V T V T V
g g g g- - - -= = 
 
Dividiendo la primera por la segunda 
1 1
1 1 o 
b c b c
a d a d
V V V V
V V V V
g g
g g
- -
- -= = 
(4.13) o CC C C
H H H H
QQ T T
Q T Q T
= - = 
La eficiencia térmica de una máquina de Carnot: 
 
(4.14) 1 C H CCarnot
H H
T T T
e
T T
-
= - = 
Solo depende de las temperaturas de los depósitos 
 
 17 
Ejemplo 4.2 Máquina de Carnot 
 
Con 2000JHQ = , 500KHT = y 350KCT = 
 
La ecuación 4.14 da: 
 
350K
1 1 0.30
500K
C
H
T
e
T
= - = - = o 30% 
 
Ahora determinamos W y CQ 
 
Usando la ecuación 4.13: 
( ) 350K2000J 1400J
500K
C
C H
H
T
Q Q
T
= - = - = - 
 
Usando la primera ley 
 
( )2000J 1400J 600JH CW Q Q= + = + - = 
 
 
Ejemplo 4.3 Ciclo completo de la máquina de Carnot 
 
Con sustancia de trabajo usamos 0.200 mol de un gas diatómico ( )1.40g = en una 
máquina de Carnot con 500KHT = y 300KCT = 
 
La presión en le punta a 510.0 10 Paap = ´ y durante la expansión isotérmica a la 
temperatura superior el volumen se duplica 
 
a) Queremos determinar los valores de p y V en los diferentes puntos a, b, c y d 
 
b) Después queremos Q , W y UD para cada paso y por el ciclo completo 
 
c) También queremos la eficiencia 
 
Primero usando pV nRT= determinamos aV 
( ) ( )
4 3
5
J0.200mol 8.315 500K
mol K 8.31 10 m
10.0 10 Pa
H
a
a
nRTV
p
-
æ ö
ç ÷×è ø= = = ´
´
 
 
Durante la expansión el volumen se duplica 4 32 16.6 10 mb aV V
-= = ´ 
 
 
 
 18 
Como la expansión es isotérmica tenemos la relación valida 
2
a a
a a b b b a
b
V p
p V p V p p
V
= Þ = = 
En el camino b c® la expansión es adiabática 1 1H b C cT V T V
g g- -Þ = 
1
2.51
4 3 4 3500K16.6 10 m 59.6 10 m
300K
H
c b
C
T
V V
T
g -
- -æ ö æ ö= = ´ = ´ç ÷ ç ÷è øè ø
 
 
Usando de nuevo la ecuación de los gases ideales 
 
( ) ( )
5
4 3
J0.200mol 8.315 300K
mol K 0.837 10 Pa
59.6 10 m
C
c
c
nRTp
V -
æ ö
ç ÷×è ø= = = ´
´
 
 
Durante la compresión adiabática de d a® tenemos 1 1C d H aT V T V
g g- -= 
1
2.51
4 3 4 3500K8.31 10 m 29.8 10 m
300K
H
d a
C
T
V V
T
g -
- -æ ö æ ö= = ´ = ´ç ÷ ç ÷è øè ø
 
 
y la presión: 
( ) ( )
5
4 3
J0.200mol 8.315 300K
mol K 1.67 10 Pa
29.8 10 m
C
d
d
nRTp
V -
æ ö
ç ÷×è ø= = = ´
´
 
 
b) 
 
Durante la expansión isotérmica a b® 0abUD = 
El trabajo durante la expansión esta igual a ln 576Jbab H H
a
V
W Q nRT
V
= = = 
 
Durante la expansión adiabática b c® 0bcQ = y por lo tanto bc bcU WD = - 
 
Pero ( )bc V V C HU nC T nC T TD = D = - por lo tanto ( ) 832Jbc bc V H CW U nC T T=-D = - = 
 
 
Durante compresión isotérmica c d® 0cdUD = y el trabajo 
ln 346Jdcd C C
c
V
W Q nRT
V
= = = - 
 
 19 
Finalmente para la compresión adiabática d a® 0daQ = y el trabajo 
( ) 832Jda da V H CW U nC T T=-D = - - = - 
 
Tabulamos los resultados 
Proceso Q(J) W (J) UD (J) 
a b® 576 576 0 
b c® 0 832 -832 
c d® -346 -346 0 
d a® 0 -832 832 
total 230 230 0 
 
Para todo el ciclo 
 
230Jtotal ab cdQ Q Q= - = 
 
576J 832J 346J 832J 230Jtotal ab bc cd daW W W W W= + + + = + - - = 
 
0bc daU U UD = D + D = 
 
Para todo el ciclo tenemos que Q W= y 0UD = 
 
c) 
 
La eficiencia térmica es igual a: 
230J
0.40
576JH
W
e
Q
= = = similar a 
300K
1 1 0.4
500K
C
H
T
e
T
= - = - = 
 20 
Refrigerador de Carnot 
 
Como el ciclo de Carnot es reversible la máquina de calor puede se convertir en un 
refrigerador 
 
Combinando 4.9 con 4.13 
 
1
C C H
H C C H
Q Q Q
K
Q Q Q Q
= =
- -
 
Pero como C H C HQ Q T T= 
 
(4.15) CCarnot
H C
T
K
T T
=
-
 
Si la diferencia de temperatura es pequeña K puede ser mucho mayor que 1 
 
Se bomba mucho calor desde la temperatura inferior a la temperatura superior con muy 
poco gasto de trabajo 
 
Ejemplo 4.4 Ciclo de Carnotcomo refrigerador 
Calculamos el coeficiente de rendimiento para el ciclo de Carnot funcionando al reverse 
como refrigerador 
 
Por la ecuación 4.19 
 346J 1.5
230J
CQK
W
= = = 
También podemos haber usado la ecuación 4.15 C
H C
T
K
T T
=
-
 
En realidad no se necesita determinar Q oW porque e y K solamente depende de T 
Calculo más detallado es necesario cuando ciclo incluye procesos irreversibles 
 21 
Ciclo de Carnot y segunda ley 
Ninguna máquina puede ser más eficiente que la máquina de Carnot operando con las 
mismas temperaturas 
Demostración: 
· Supongamos que tenemos una máquina más eficiente 
· Máquina de Carnot funciona al inverso como refrigerador – el trabajo es negativo 
W- y se toma calor CQ del depósito frío y expulsa calor HQ al depósito caliente 
· La máquina supereficiente expulsa CQ pero para hacer lo debe tomar HQ + Ddel 
depositó caliente – el trabajo es por lo tanto W + D 
· Esto implica que hay una cantidad de calor D que es transformada a 100% en 
trabajo Þviolando la segunda ley de la termodinámica 
 
 
 
Todas las máquinas de Carnot operando entre las mismas dos temperaturas tienen la 
misma eficiencia sin importar la naturaleza de la sustancia de trabajo 
 
Þ Máquina de Carnot establece limita superior para eficiencia de máquina real 
· Alta eficiencia implica H CT T>> 
· Pero HT limitado por resistencia mecánica de caldera – limita de caldera actual 
500 Co y 235 atmp = 
 
También el más alto es CT y el más alto los efectos negativos de las máquinas reales sobre 
su ambiente 
 22 
4.8 Escala de temperatura Kelvin 
Se puede usar la máquina de Carnot para definir la escala de temperatura absoluta o Kelvin 
(no hay dependencia con propiedades de la sustancia de trabajo) 
 
Eficiencia 1H C C
H H
Q Q Q
e
Q Q
+
= = + 
Pero C C
H H
Q T
Q T
= 
 
Si la temperatura esta en Kelvin tenemos: 
(4.16) CC C
H H H
QT Q
T Q Q
= = - 
Por lo tanto, el hecho que la eficiencia es la misma para cualquier máquina de Carnot hace 
que C
H
Q
Q
es el mismo para cualquier máquina de Carnot Þ hace la escala Kelvin una 
escala absoluta Þ independiente de la naturaleza del la sustancia de trabajo, basado en 
máquina de Carnot y segunda ley de termodinámica 
 
Ahora si usamos con punto de referencia la temperatura del punto triple de agua 
Þ temperatura Kelvin consistente con temperatura de termómetro de gas Þ hace la 
escala Kelvin similar a la escala para los gases ideales 
 
Cero absoluto Þ el sistema tiene el mínima de energía interna (potencial + cinemática) 
 
Tercera ley de la termodinámica 
 
Es imposible alcanzar el cero absoluto en un número finito de pasos termodinámicos 
 
Posiblemente, es imposible llegar a cero absoluto de manera experimental ( 710T -= K 
más baja obtenido a la hora) – el más cerca llegue el más difícil bajar más 
 
 23 
4.9 Entropía 
La segunda ley = un enunciado de imposibilidad 
 
Podemos dar una forma cuantitativa usando el concepto de entropía 
 
Entropía µal grado de desorden de un sistema 
· Flujo de calor aumenta el grado de desorden – moléculas inicialmente clasificadas 
en regiones más calientes y frías – a calentar se pierde ordenamiento 
· Aumentación de calor Þaumentación de velocidades molecular = aumentación 
de la aleatoriedad del movimiento molecular 
· Expansión libre Þ aumentación de la aleatoriedad de las posiciones de las 
moléculas 
 
Entropía = medida cuantitativa de desorden 
· Consideramos la expansión isotérmica infinitesimal de un gas ideal 
· Agregamos calor dQ al sistema y dejamos el gas expandir se manteniendo a 
temperatura constante 0dUÞ = 
· nRTdQ dW pdV dV
V
Þ = = = 
· dV dQ
V nRT
Þ = 
· La expansión libre hace que moléculas se mueven en volumen mayor – haciendo 
las posiciones más aleatorias dV
V
Þconsistente con noción de desorden 
· Definimos la entropía S de manera que 
(4.17) dQS
T
= 
· Si agregamos calor a temperatura constante 
(4.18) 2 1
Q
S S S
T
D = - = 
 
La unidad de entropía es [ ] J
K
S = 
 24 
Relación Q T con desorden 
· Si Q sustancial pero T pequeño se aumenta de manera importante el movimiento 
aleatorio 
· Pero si T ya es alto no hay aumento importante de desorden 
· Q T es buena caracterización del movimiento de aleatoria o desorden cuando 
tiene flujo de calor en el sistema 
 
Ejemplo 4.5 – Cambio de entropía relacionada con cambio de fase 
1kg de hielo se funde y se convierte en 1kg de agua a 0 Co 
 
El calor de fusión es 5 J3.34 10
kgf
L = ´ 
Durante el cambio de fase 273KT = es constante 
 
Calor liberada 53.34 10 JfQ mL= = ´ 
 
Por definición la aumentación de entropía corresponde a 
5
3
2 1
3.34 10 J J
1.22 10
273 K K
Q
S S S
T
´
D = - = = = ´ 
 
Tiene un aumento importante de desorden en el sistema – el proceso inverso implica una 
disminución importante de desorden 
 
 25 
Cualquier proceso puede se decomponer con una seria de pasos reversibles infinitesimales 
 
Esto permite generalizar el cambio de entropía a cualquier proceso 
 
(4.19) 
2
1
dQ
S
T
D = ò 
La entropía depende solamente del estado – no depende del camino (historia) Þ entropía 
debe haber valor definida para cualquier estado dado de un sistema 
 
También para cambio irreversible la variación de entropía es igual que el cambio durante 
un proceso reversible 
 
Como U solamente se define SD Þ asumimos un estado de referencia y calculamos la 
diferencia SD entre dos estados 
 
Ejemplo 4.6 Cambio de entropía calentando agua 
Calculamos el cambio de entropía de 1kg de agua a 100 Co 
 
Para usar la ecuación 4.19 necesitamos asumir que la temperatura de agua sube por una 
seria de pasos reversibles infinitesimales dT 
 
El calor para cada paso es: dQ mcdT= 
 
El cambio de entropía es igual a: 
 
( )2
1
2 32
2 1 1
1
J 373K Jln 1.00kg 4190 ln 1.31 10
kg K 273K K
T
T
TdQ dTS S S mc mc
T T T
æ öæ öD = - = = = = = ´ç ÷ç ÷× è øè øò ò
 
En práctica, el calentamiento del agua es irreversible, pero el cambio de entropía es el 
mismo (porque no depende del camino) 
 
 
Ejemplo 4.7 – Expansión reversible adiabática de un gas 
Como no sale o entra calor en el sistema 0SD = Þ todo proceso adiabático reversible 
es de entropía constante - el aumento en el desorden debido a que el gas ocupa un 
volumen mayor es exactamente igual a la disminución del desorden asociada a la 
disminución de temperatura 
 26 
Ejemplo 4.8 – Expansión libre de un gas ideal 
 
La caja en a tiene 2 compartimientos de volumen V - la parte superior es vacía, la parte 
inferior contiene n moles de un gas ideal a temperatura T 
 
Cuando se rompe la membrana el gas se expande en todo el volumen 
 
Durante este proceso 0Q = (adiabático), 0W = (expansión libre) y 0UD = - pero como 
el proceso es irreversible 0SD ¹ 
 
No se puede usar 4.19 porque el proceso es irreversible 
 
Pero podemos imaginar una seria de proceso reversible con el mismo cambio de entropía – 
expansión isotérmica – el volumen pasa de 1 2 2V V V V= ® = 
 
El trabajo 2
1
ln ln2
V
W nRT nRT
V
= = 
Como 0U W QD = Þ = y el cambio de entropía es l n2
Q
S nR
T
D = = 
Para una mole: ( ) J J1mol 8.315 ln2 5.76
mol K K
S æ öD = =ç ÷×è ø
 - es un cambio chico que no 
depende del tipo de la naturaleza de la materia 
 
 27 
Ejemplo 4.9 - Entropía durante el ciclo de Carnot 
Segundo el ejemplo 4.2 2000JHQ = , 1400JCQ = , 500KHT = y 350CT K= 
 
No hay cambio de entropía durante la expansión o compresión adiabática 
 
Durante le expansión isotérmica: 2000J J4.0
500K K
H
H
H
Q
S
T
D = = = 
Durante la compresión isotérmica 1400J J4.0350K K
C
C
C
Q
S
T
-
D = = = - 
 
De manera que el cambio total de entropía 0H CS S SD = D + D = 
 
Esto es porque no hay proceso irreversible durante el ciclo de Carnot 
 
 
El ejemplo muestra que una máquina de Carnot tiene 0SD = - esto es la consecuencia de 
la ecuación 4.13 
(4.20) 0CH
H C
QQ
T T
+ = 
Esto es verdad para cualquier máquina de Carnot 
De manera general – el cambio de entropía durante cualquier proceso reversible cíclico es 
0SD = 
 
En el diagrama pV el ciclo forma un camino cerrado – para cualquier ciclo de procesos 
reversible 
(4.21) 0dQ
T
=òÑ 
Cuando un sistema sufre un proceso reversible que lo lleva de un estado a cualquier otro, 
el cambio de entropía es independiente del camino 
 28 
Entropía en procesos irreversibles 
Todos los procesos irreversibles implican un aumento de la entropía Þ la entropía no es 
una cantidad que se conserva 
En particular, un sistema aislado no puede disminuir de entropía – Ej. expansión libre de 
un gas 
 
Ejemplo 4.10 – Mezcla térmica 
Pongamos junto 1.00kg de agua a 100 Co (373K) con 1.00kg de agua a 0 Co (273K) 
El flujo de calor = proceso irreversible 
 
¿Si la temperatura final de la mezcla es 50 Co (323K) cual es el cambio de entropía? 
 
Un flujo de calor de 4190J que pasa del agua caliente al agua frío enfría el agua caliente a 
99 Co 
 
El cambio de entropía: 4190J 4190J J4.1
373K 273K K
S
-
D = + = 
 
Ocurrirá aumento adicional al acercarse del equilibrio térmico a 50 Co 
 
Asumimos seria de proceso reversible: 
 
Para el agua caliente: 
( )2
1
323K
373K
J J 323 J1.00kg 4190 4190 ln 603
kg K K 373 K
T
cal T
dT dTS mc
T T
æ ö
D = = = = -ç ÷×è øò ò
 
Para el agua fría: 
 
2
1
J 323 J
4190 ln 705
K 273 K
T
fria T
dT
S mc
T
D = = =ò 
 
Por lo tanto, durante el proceso va aumentar la entropía 
J
102
Ktotal
SD = + 
 29 
Entropía y la segunda ley 
 
En el caso especial de un proceso reversible, los 
aumentos y reducciones de entropía son igual 
 
En general, los procesos naturales son irreversibles 
Þ los aumentos de entropía siempre son mayores 
que las reducciones 
 
La mezcla de tinta y agua forma parte de un sistema 
con estado de orden alto (baja entropía) – cada fluido 
esta separado 
 
De manera natural el sistema evolucionara a un 
estado con más bajo orden (alta entropía) – la tinta se 
mezcla por completo con el agua 
 
El fenómeno es irreversible – nunca se observe el 
inverso, la tinta se separa de manera espontánea del 
agua 
 
 
En general: si se incluyen todos los sistemas que participan en un proceso, la entropía se 
mantiene constante o aumenta 
 
Segunda ley en términos de entropía 
 
No puede haber proceso en el que la entropía total disminuya si se incluyen todos los 
sistemas que participan en el proceso 
 
 
Consideramos la mezcla de agua caliente con agua fría – podríamos haber usado el agua 
con depósitos calientes y frío y sacar trabajo del sistema 
 
Pero una vez que el agua llega a la misma temperatura no hay más capacidad de hacer un 
trabajo 
 
No hay disminución de energía – que se pierde es la posibilidad de cambiar calor en 
trabajo 
 
Por lo tanto, cuando la entropía aumenta la energía esta menos disponible y el sistema 
se vuelve más aleatorio o gastado 
 
 30 
4.10 Interpretación microscópica de la entropía 
Calculo microscópico de la energía interna de un sistema Þsumar energías cinéticas + 
potenciales de interacciones de todas las partículas constituyentes del sistema 
 
También se puede evaluar la entropía al nivel microscópico = medida del estado de 
desorden global de un sistema 
 
Estados microscópicos vs estados macroscópicos de un sistema 
· Lanzo de N monedas – la ½ son cruz y la ½ son cara 
· Esto es descripción estado macroscópico del sistema 
· Descripción estado microscópico = estado de cada monedas individual 
 
Puede haber muchos estados microscópicos que corresponden a la misma 
descripción macroscópica (multiplicidad) 
 
 
Para 4N = tiene 5 estados macroscópicos posibles y 16 ( )42 estados microscópicos 
posibles 
 
En general, tiene 2N estados microscópicos posibles Þ aumenta muy rápidamente - para 
100 30100 2 1.27 10N = Þ = ´ 
 31 
El estado macroscópico más probable Þ mayor número de estado microscópico (o más 
alta multiplicidad) 
 
Probabilidad de 2 caras + 2 cruces = 6/16 - probabilidad de 4 caras o 4 cruces = 1/16 
 
El estado macroscópico con 4 caras o 4 cruces tiene más alto nivel de orden que el estado 
con 2 cruces y 2 caras Þsistema con más alta probabilidad tiene más bajo nivel de orden 
o más alta entropía 
 
Estados macroscópicos con más alta entropía tiene más alta multiplicidad Þ más 
probables 
 
Consideramos ahora un gas con 236.02 10AVN = ´ moléculas 
· Estado macroscópico determinado por , ,p V T 
· Estado microscópico determinado por ,r v
r r de todas las moléculas 
· Para , ,p V T dados el sistema puede estar en cualquier de un número 
astronómicamente grande de estados microscópicos 
· Si el gas se expande libremente aumenta gama de posición posibles Þaumento 
los estados microscópico posibles Þ aumenta desorden (entropía) 
· Para cualquier sistema el estado macroscópico más probable es el que tiene el 
mayor número de estados microscópicos correspondiente (multiplicidad) – el 
mayor nivel de desorden o mayor entropía 
 
Si wes el número de estados microscópicos posibles de un sistema, la expresión 
microscópica de la entropía es: 
(4.22) lnS k w= 
Donde Ak R N= es la constante de Boltzmann 
 
En realidad, que importa es SD por lo tanto la definición microscópica formal de la 
entropía es lnS k w C= + donde Ces una constante que cancela cuando se calcula SD 
 
Si definimos 0C = encontramos que el estado de más baja entropía ln1 0S k= = 
 
La entropía nunca puede ser negativa 
 
En práctica es muy difícil evaluar w , pero siempre se puede determinar SD 
(4.23) 22 1 2 1
1
ln ln ln
w
S S S k w k w k
w
D = - = - = 
La ecuación 4.22 sugiere que procesos reversibles conectan los diferentes estados 
 32 
Ejemplo 4.11 – Estados microscópicos y expansión libre de un gas 
En el ejemplo 4.8 ya calculamos el cambio de entropía durante la expansión libre de un 
gas de un volumen V a 2V Þ l n 2S nRD = 
 
Vamos hacer el calculó de nuevo pero del punto de vista de los estados microscópicos 
 
· Sea 1w el número de estados microscópicos cuando el gas ocupa el volumen V 
· Cuando se expande el gas las velocidades de las moléculas no cambia porque no se 
hace trabajo 
· Pero las moléculas tiene 2 veces más espacio para mover se Þ así que el número 
de estados posibles aumenta por un factor 2N donde N es la cantidad de 
moléculas AN nN= 
 
En términos de estados microscópicos tenemos que 2 12
Nw w= 
 
El cambio de entropía: 2
1
ln ln2 ln2 ln2 ln2N A
A
w R
S k k Nk nN nR
w N
D = = = = = 
 
 
Probabilidad de violar la segunda ley 
 
La segunda ley de la termodinámica estipula que la entropía de un sistema cerrado no 
puede disminuir 
 
Ejemplo = aire en una habitación – la probabilidad que todas las moléculas se mueven 
espontáneamente en la ½ de la habitación implica una reducción de entropía por factor 2N 
 
La probabilidad para que este fenómeno acontece es de 1
2
N
p æ ö= ç ÷è ø
; para una habitación 
típica 261000 6.02 10AN N= = ´ , por lo tanto 
2610p -» Þ extremamente baja 
probabilidad 
 
En práctica, la segunda ley de termodinámica nunca se viola 
 33 
 
Problemas 
 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39