Logo Studenta

INTRODUCCION A LA NEUMATICA

¡Este material tiene más páginas!

Vista previa del material en texto

> CURSO 021
> INTRODUCCION 
A LA NEUMATICA
021
MICRO CAPACITACION
<
WWW.MICRO.COM.AR
<
 
Automación Micromecánica s.a.i.c
M. Moreno 6546 B1875BLR
Wilde . Buenos Aires . Argentina
micro@micro.com.ar . www.micro.com.ar
Tel. Ventas: 011 4227 0595 y líneas rotativas . Fax: 011 4206 6281
Conmutador: 0114206 6285 y líneas rotativas . Fax: 011 4206 0228
MICRO4
<
 
5PREFACIO
<
La rápida evolución de la tecnología y del mercado demanda la disponibilidad de una
base amplia y diversificada de conocimientos y aplicaciones. Esto ha llevado a que el
manejo industrial de la automatización en Argentina requiera de un número crecien-
te de adeptos y expertos. La formación de los mismos proviene de los diversos sec-
tores de la ingeniería (Eléctrica, Electrónica, Mecánica, Informática, entre otros). 
En MICRO, a través de los cursos de capacitación, pretendemos crear un espacio de for-
mación y entrenamiento en el área de la automatización industrial, para estudiantes, pro-
fesores, operadores, técnicos e ingenieros que decidan completar la propia formación. 
El diseño del manual está elaborado con criterios eminentemente prácticos, para faci-
litar un estudio ágil y actualizado de cada uno de los temas.
El objetivo de este curso es ofrecer un sistema de aprendizaje dinámico e interactivo
de clases teórico-prácticas, en el cual el alumno avance en la especialidad, ejecutan-
do de una forma práctica los conocimientos desarrollados en las clases teóricas.
Siempre con una visión real y profesional, para poder aplicarlo a las necesidades de
su empresa, tanto en el campo de mantenimiento, como en el de producción.
Comenzando con Introducción a la Neumática, el estudiante es guiado a través de los
conceptos básicos de la física, hasta los componentes operacionales de la neumáti-
ca y su típico sistema de aplicación, incorporando así los nuevos conocimientos como
parte de un proceso continuo.
Esperamos que el curso sea una herramienta que les permita apropiarse significati-
vamente del nuevo saber.
Para contribuir al logro de los objetivos reseñados, sus comentarios al final del curso
serán de inestimable utilidad.
Departamento de Capacitación
capacitacion@micro.com.ar
www.micro.com.ar
 
MICRO6
<
CURSO 021
Introducción a la Neumática
Conceptos básicos
Introducción
Participación de la neumática
Unidades básicas y derivadas. SI. Definición y conceptualización
Sistema internacional
Aire comprimido
Generación y distribución del aire comprimido
Introducción
Tipos de compresores 
Depósito de aire comprimido
Distribución de aire comprimido
Tratamiento del aire comprimido
Introducción
Métodos de tratamiento del aire comprimido
Tratamiento del aire a la salida del compresor
Tratamiento del aire a la salida del depósito
Tratamiento del aire comprimido en el punto de utilización
Cilindros neumáticos
Introducción
Actuadores neumáticos
Tipo de cilindros neumáticos
Amortiguación de fin de carrera
Pistón con imán incorporado
Microcilindros - Normalización ISO
Cilindros reparables
Cilindros de impacto
Actuadores rotantes neumáticos
Actuadores neumáticos a membrana
Ejecuciones especiales
Actuadores en acero inoxidable
Manipuladores y elementos de sujeción de piezas
Montaje de cilindros neumáticos
Velocidades máxima y mínima de cilindros neumáticos
Selección de cilindros neumáticos
Verificación por pandeo
Carrera máxima de un cilindro neumático 
Guías para cilindros
Consumo de aire en cilindros neumáticos
Amortiguadores hidráulicos de choque
Recomendaciones para el montaje de cilindros neumáticos
1
1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
2
2 . 0
2 . 1
2 . 2
2 . 3
3
3 . 0
3 . 1
3 . 2
3 . 3
3 . 4
4
4 . 0
4 . 1
4 . 2
4 . 3
4 . 4
4 . 5
4 . 6
4 . 7
4 . 8
4 . 9
4 . 1 0
4 . 1 1
4 . 1 2
4 . 1 3
4 . 1 4
4 . 1 5
4 . 1 6
4 . 1 7
4 . 1 8
4 . 1 9
4 . 2 0
4 . 2 1
 
7INDICE
<
Válvulas direccionales
Introducción 
Válvulas neumáticas
Configuración del símbolo de una válvula
Válvulas direccionales. Tipos constructivos de válvulas direccionales
Número de vías – número de posiciones (n° de vías / n° de posiciones)
Electroválvulas 
Características de solenoides para electroválvulas 
Selección de las vías internas de comando
Montaje de válvulas 
Características funcionales de válvulas
Dimensionado de válvulas
Recomendaciones para el montaje de válvulas direccionales
Válvulas auxiliares, componentes para vacío y accesorios
Introducción 
Componentes neumáticos auxiliares de circuito
Válvulas de no retorno o de retención 
Válvula “o” o selectora de circuitos 
Válvula de escape rápido 
Válvula “y” o de simultaneidad 
Válvula de secuencia
Vacío
Elementos de conexionado
Dispositivos hidrodinámicos
Introducción
Convertidores neumáticos 
Convertidor ó tanque hidroneumático 
Cilindro freno auxiliar - hidroregulador
Mandos neumáticos
Introducción
El concepto de mando
Las señales de mando
La cadena de mando 
Formas de representación de las fases operativas de una máquina
Esquemas circuitales de mando
Interpretación de esquemas circuitales de mando. Ejercitación
Simbología neumática
Simbología neumática normalizada según normas IRAM 4542 e ISO 1219
5
5 . 0
5 . 1
5 . 2
5 . 3
5 . 4
5 . 5
5 . 6
5 . 7
5 . 8
5 . 9
5 . 1 0
5 . 1 1
6
6 . 0
6 . 1
6 . 2
6 . 3
6 . 4
6 . 5
6 . 6
6 . 7
6 . 8
7
7. 0
7. 1
7. 2
7. 3
8
8 . 0
8 . 1
8 . 2
8 . 3
8 . 4
8 . 5
8 . 6
9
9 . 0
 
8
Conceptos básicos
Introducción
El aire comprimido es una de las formas de energía más antiguas que conoce y utili-
za el hombre para reforzar sus recursos físicos.
Sabemos que el primero que se ocupó de la neumática, es decir, utilizar el aire com-
primido como elemento de trabajo, fue el griego KTESIBIOS. Hace más de dos mil
años, construyó una catapulta de aire comprimido. Uno de los primeros libros acerca
del empleo de este tipo de energía, procede del siglo I de nuestra era, y describe
mecanismos accionados por medio de aire caliente.
De los antiguos griegos procede la expresión Pneuma, que designa lo etéreo, lo puro,
el alma de los cuatro elementos fundamentales: aire, agua, tierra y fuego. Como deri-
vación de la palabra Pneuma surge, entre otras cosas, el concepto neumática que
trata los movimientos y procesos del aire.
Aunque los rasgos básicos de la neumática se cuentan entre los más antiguos cono-
cimientos de la humanidad, no fue sino hasta el siglo pasado cuando empezaron a
investigarse sistemáticamente su comportamiento y sus reglas. A partir de 1950
podemos hablar de una verdadera aplicación industrial de la neumática en los proce-
sos de fabricación. Es cierto que con anterioridad ya existían algunas aplicaciones y
ramos de explotación, como por ejemplo en la minería, en la industria de la construc-
ción y en los ferrocarriles (frenos de aire comprimido)
La irrupción verdadera y generalizada de la neumática en la industria no se inició, sin
embargo, hasta que llegó a hacerse más acuciante la exigencia de automatizar y
racionalizar los procesos de trabajo, para bajar los costos de producción.
En la actualidad, todo desarrollo industrial está concebido con aire comprimido, y en
consecuencia se utilizan equipos neumáticos.
Participación de la neumática 
¿Cuándo debe usarse la Neumática?
El hombre coloca a su servicio la máquina, con el fin de producir una mayor cantidad
de productos, con una mejor calidad y un menor esfuerzo físico, reduciendo los ries-
gos de accidente y los costos de producción.
El nivel de automatización dependerá en gran parte del hombre, que está siempre
presente en el accionamiento inicial y final del proceso. 
Automatización: podemos definirla como un conjunto de elementos tecnológicos
que realizan una serie de funciones y operaciones sin la intervención del hombre, o
con mínima participación.
Para operar el conjunto de recursos tecnológicos que origine una automatización, es
necesaria la energía. Entre las varias formas energéticas esta la neumática, que cons-
tituye el primer paso para transformar la mecanizaciónen automatización. 
Si bien la utilización de la técnica del aire comprimido como fuente energética es
empleada, cada vez más, para la racionalización y automatización, ésta es relativamen-
te cara y podría llegarse a suponer que los costos de producción, acumulación y dis-
tribución del aire involucran gastos elevados.
1
1 . 0
1 . 1
 
9CONCEPTOS BASICOS1
< <
Esto no es exacto, pues en el cálculo de rentabilidad de una instalación, no sólo debe
tomarse en cuenta el costo energético y los gastos de instalación, sino también los
ahorros de mano de obra, los gastos de mantenimiento y el aumento de la produc-
ción logrado. El resultado final es que el costo energético es despreciable y las inver-
siones de instalación fácilmente amortizables. 
El aire comprimido puede utilizarse: a) directamente, como elemento de trabajo; b)
para accionamiento de motores, embragues, cilindros o herramientas; c) regulado por
medio de válvulas y elementos accesorios, para impulsar una gran variedad de movi-
mientos mecánicos; d) en combinación con equipos oleohidráulicos, para obtener con
un coste reducido ciclos de trabajo precisos en bajas velocidades; e) con la electrici-
dad, para accionamientos a larga distancia y para los movimientos rotativos.
¿Cuáles son las propiedades del aire comprimido que han contribuido 
a su popularidad? 
• Generación del aire comprimido sin limitaciones ya que la materia prima 
es sin costo.
• Fácil distribución, no precisa recuperación.
• Fácil de acumular en tanques o depósitos.
• Puede ser utilizado en ambientes explosivos o inflamables. 
• No interfiere con el medio ambiente.
• Los componentes son de costo moderado y de fácil aplicación.
• Admite altas velocidades de trabajo, regulación de fuerzas, no tiene problemas
por bloqueos o detenciones forzadas por sobrecarga.
Para delimitar el campo de utilización de la neumática, es preciso conocer también las
propiedades adversas:
Compresibilidad: esta característica impide obtener velocidades constantes a resis-
tencias variables.
Fuerzas: limitaciones prácticas de aproximadamente 40000 Newton (4000Kg.) en
forma directa.
Unidades Básicas y Derivadas. SI: Definición y conceptualización
El sistema SI es derivado del MKS.
Unidades frecuentemente empleadas en neumática:
1 . 2
Longitud METRO (m) 
Masa MASA (Kg)
Tiempo SEGUNDO (Seg.) 
Temperatura
Fuerza
NEWTON (N)
NEWTON (N)
Presión BAR (bar)
Potencia WATT (W)
 
MICRO10
<
1 . 3 Sistema Internacional 
Fuerza: definiremos una Fuerza F (N) a aquella necesaria para mover un cuerpo de
masa M (Kg) imprimiéndole una aceleración a (m/s2) en la dirección del movimiento.
Puesto que las fuerzas solamente modifican el estado de movimiento de un cuerpo,
para que un cuerpo se mueva no es necesario que actúe sobre él una Fuerza. 
Las fuerzas sólo son necesarias para poner en movimiento un cuerpo que está inmó-
vil o para alterar la velocidad de uno que está en movimiento. 
Un cuerpo en movimiento sobre el que no actúa ninguna fuerza seguirá moviéndose
en línea recta y a velocidad constante indefinidamente.
Unidad de Fuerza: un Newton es la Fuerza que aplicada a un cuerpo de Masa: 1Kg.
le imprime una aceleración de 1m/seg.2
En la práctica puede utilizarse sin mayor error.
Ejemplo
En un cilindro neumático, la fuerza desarrollada equivale a la fuerza resistente ofre-
cida por la carga.
Trabajo (L): producimos Trabajo cuando un cuerpo de masa M es desplazado a través
de una cierta distancia, por efecto de una fuerza F en la dirección del movimiento. 
El trabajo efectuado es el producto de la proyección de F en el sentido del movimien-
to por la distancia recorrida por el cuerpo.
 
11CONCEPTOS BASICOS1
< <
Ejemplo
En un sistema neumático, el trabajo estará dado por la fuerza que ejerce el cilindro
multiplicada por la carrera a recorrer del mismo.
Presión: es una Fuerza actuante sobre una unidad de superficie.
Donde:
Como el Pascal es una unidad pequeña para el uso de la neumática, en la industria
se usa generalmente el bar como unidad derivada, siendo:
Fuerza
Presión
Superficie
 
MICRO12
<
También:
1 bar = 0.981 Kp/cm2 (en la práctica 1bar = 1 Kp/cm2)
1 bar = 14,2 Lb/ Pulg2
Ejemplo
En un sistema neumático, la fuerza se aplica por la presión del aire que actúa sobre
el área de un pistón en movimiento en un cilindro. A medida que el pistón se
mueve, la fuerza neumática actúa a través del largo de la carrera del pistón.
Los sistemas neumáticos tratan con tres clases de presión atmosférica: 
• Presión Atmosférica: al nivel del mar es de 14,7 psi (Lbs/pulg2); la presión 
es más baja arriba del nivel del mar, y más alta debajo del nivel del mar. Esto
también permite que el aire pase a través del filtro de admisión en un compresor,
dentro del cilindro cuando el compresor está en la carrera de admisión, y la 
presión en el cilindro está por debajo de la presión atmosférica.
• Presión Relativa: es la que resulta de tomar como referencia (cero de la escala)
a la presión absoluta atmosférica. Es la presión que indican los manómetros, 
también llamada presión manométrica, que es la empleada para el cálculo de
fuerza de los cilindros o actuadores neumáticos
• Presión absoluta: es la presión resultante de sumar la presión atmosférica
(1.013 Kg/cm2) a la presión manométrica.
Temperatura: es la cantidad de energía calórica en tránsito. La temperatura indica la
intensidad de calor. En el estudio de los gases, la temperatura es expresada en Kelvin,
también conocida como escala de temperatura absoluta.
Temperatura absoluta: es aquella que toma como cero de la escala al cero absoluto
de la temperatura, correspondiente a –273,16°C. Indicaremos con T a la Temperatura
en grados Kelvin o absoluta y con t a la temperatura en grados centígrados o Celsius.
 
13CONCEPTOS BASICOS1
< <
Masa: es la magnitud que define la cantidad de materia que conforma un cuerpo.
Todos los objetos o substancias tienen Masa. 
La Masa representa la cantidad de materia en un objeto y su inercia o resistencia al
ponerse en movimiento. 
La Masa de un objeto determina su peso en la tierra o en cualquier otro campo gra-
vitatorio. 
La inercia de un objeto determina la cantidad de fuerza que se requiere para levantar
o mover un objeto o para cambiar su velocidad o dirección de movimiento. 
En el sistema internacional (SI) la unidad de masa es el Kg.
Velocidad: es el espacio recorrido en la unidad de tiempo.
Ejemplo
Un móvil posee una velocidad de 1m/seg. cuando recorre 1 metro en un tiempo
de 1 segundo
Equivalencias
Aceleración: es la variación (incremento ó disminución) de la velocidad en la unidad
de tiempo.
1 Km./h 0.28 m/s
1 m/s 3.6 Km./h
Unidad: tendremos una aceleración de 1 m/s2 cuando la velocidad (V) aumente a
razón de 1m/s por cada segundo transcurrido.
Caudal: se llama Caudal o gasto de un fluido, al volumen de fluido que pasa por una
sección en la unidad de tiempo.
Esta cantidad de fluido podemos expresarla de dos formas, en masa o en volumen. El
caudal másico y el caudal volumétrico están relacionados a través de la densidad del
fluido, que en el caso de los gases es variable con la presión y la temperatura.
 
MICRO14
<
Leyes Fundamentales de los Gases Perfectos o Ideales 
Es la ecuación que relaciona entre sí la presión, volumen y temperatura de una masa
m de un gas.
Las características esenciales del estado gaseoso son:
• Un gas tiende a repartirse uniformemente por el interior del recinto que lo 
contiene.
• La densidad de un gas depende de su presión y temperatura.
• La masa de un gas presenta una resistencia prácticamente nula a los esfuerzos
de corte.
Ecuación de estado de los gases perfectos o ideales
Leyes usualmente aplicadas en un Sistema Neumático
Las leyes utilizadas en la neumática pueden deducirse de la ecuación general de los
gases perfectos
Ley de BOYLE MARIOTTE
A temperatura constante las presiones ejercidas en una masa gaseosa, son inversa-
mente proporcionalesa los volúmenes ocupados.
Donde: 
 
15CONCEPTOS BASICOS1
< <
Ley de GAY LUSSAC
A presión constante el volumen ocupado por un gas es proporcional a su temperatura
absoluta.
A volumen constante la presión de un gas es proporcional a su temperatura absoluta.
Ley de CHARLES
Considerándose un volumen constante, al aumentar la temperatura, aumenta la presión.
RECUERDE que...
En las leyes de los gases, la de Boyle, la de Charles y la Gay-Lussac, la masa del gas
es fija y una de las tres variables, la temperatura, presión o el volumen, también es
constante. Utilizando una nueva ecuación, no solo podemos variar la masa, sino tam-
bién la temperatura, la presión y el volumen.
Aire libre
Aire Atmosférico: es un gas incoloro, inodoro e insípido, formado por tres gases
principales: 
Nitrógeno = 78 %
Oxígeno = 21 %
Hidrógeno = 1%
También encontramos en el aire:
Monóxido de carbono Argón Neón
Óxido Nitroso Helio Yodo
Metano Radón Dióxido de carbono
Humedad en el aire atmosférico
Es sabido que el aire atmosférico contiene una cierta cantidad de humedad en forma
de vapor de agua, que dependerá de las condiciones climatológicas. La aptitud del
aire atmosférico para retener vapor de agua, está relacionada con la presión y la tem-
peratura ambiente, en especial con esta última, admitiendo más vapor de agua a
medida que aumenta su temperatura o se disminuye su presión, e inversamente
podría retener menor cantidad de agua a medida que desciende su temperatura o
aumenta su presión produciendo condensación.
 
MICRO16
<
Humedad absoluta
Se denomina así al peso de agua (en forma de vapor) existente en 1 Kg de aire seco,
en cualquier condición de presión y temperatura al momento de efectuar la medición.
Humedad relativa
Es la relación entre la humedad absoluta existente en el aire y la humedad absoluta
máxima que podría contener si estuviera saturado.
Una humedad relativa del 100% indica que estamos en presencia de un aire satura-
do, es decir que ya no admite más humedad (X = Xs)
RECUERDE que...
Las cantidades en Nl/min que se dan generalmente en los catálogos para el consu-
mo de aire de las herramientas o equipos neumáticos, se refieren a aire libre por
minuto (aire atmosférico a la presión y temperatura normales). Debemos asegurarnos
que el dato sobre la capacidad del compresor que da el fabricante esté también refe-
rido a aire libre, con el objeto de que exista una correspondencia entre consumo y
capacidad. Normalmente, estas dos especificaciones están dadas en el aire libre, y
por lo tanto no hace falta ninguna conversión. Sin embargo, cuando se trata del con-
sumo de aire de otros equipos, es posible que no este dado en aire libre; debe recu-
rrirse a la formula para la conversión de litros de aire comprimido a una presión deter-
minada en litros de aire libre, siendo:
Donde: 
Donde: 
Ejemplo
El aire que ingresa al compresor es aire libre pero cuando se comprime en el cilin-
dro es aire en grado de presión (comprimido)
 
17CONCEPTOS BASICOS1
< <
Aire comprimido
¿Qué es el Aire Comprimido? 
Entiéndase por aire comprimido al aire compactado por medios mecánicos, confina-
do en un reservorio a una determinada presión.
Distintos a los líquidos que son virtualmente incomprensibles, el aire es fácilmente
compresible y puede almacenarse en grandes cantidades en recipientes relativamen-
te pequeños. Mientras más se comprima el aire, más alta es su presión. Mientras más
alta sea la presión en su recipiente, mayor tiene que ser la resistencia del recipiente.
En los sistemas de aire comprimido, el aire aspirado por el compresor entra a la pre-
sión y temperatura ambiente con su consiguiente humedad relativa. Entonces se lo
comprime a una presión mas elevada lo que produce un calentamiento del aire al grado
que toda su humedad pasará por el compresor al ser aspirado. Este aire, ahora com-
primido, al ir enfriándose en el depósito y tuberías de distribución hasta igualar la tem-
peratura ambiente, condensara parte de su humedad en forma de gotas de agua.
Para determinar la cantidad de condensado en un sistema neumático, puede utilizar-
se el siguiente gráfico, con ayuda de la formula
Donde: 
1 . 4
 
MICRO18
<
Cálculo de la fracción de condensados 
Ejemplo
Calcular la fracción de condensados que se producirá como resultado de la
compresión de aire atmosférico a una temperatura ambiente de 20° C y una
humedad relativa del 80%, siendo el caudal aspirado por el compresor G = 8
Nm3/min. Suponiendo que el compresor funcione con un porcentaje de tiempo
de carga del 75%, lo que implicará que la relación tiempo en carga / tiempo de
maniobra = 0,75 = 75%
Supondremos que después de comprimido, el aire en él deposito y tuberías adquie-
ren nuevamente la temperatura ambiente. La presión de servicio será de 8 bar.
Para presión atmosférica y 20°C se lee Xs = 15 g/Kg. Calculamos el 80% de este
valor, resultando:
Xsi = 12 g/Kg de aire seco. 
Para presión efectiva 8 bar y 20°C se lee:
Xsf = 1,5 g/Kg de aire seco.
 
19CONCEPTOS BASICOS1
< <
Aplicando la formula:
Conclusión
Parte de este condensado podrá ser separado en depósitos o equipos separadores
siendo eliminados por el sistema. Mientras que la otra parte podrá ser arrastrada y
transportada en forma de fase líquida o niebla (micro gota) hacia los puntos de utili-
zación y verificación.
¿Cuáles son las fuentes principales de deterioro de los componentes 
neumáticos? 
La cantidad de separados y arrastres dependerá de la eficiencia de los equipos de
tratamiento de aire incorporados a esa línea. Estas condensaciones juntamente con
los condensados de aceites o degradados provenientes del compresor, partículas
metálicas producto de su desgaste, así como óxidos metálicos desprendidos de cañe-
rías y polvo atmosférico, serán arrastrados por el flujo de aire hacia los puntos de uti-
lización, constituyéndose en la fuente principal de deterioro de los componentes neu-
máticos, tales como:
• Corrosión en tuberías metálicas
• Entorpecimiento de los accionamientos mecánicos
• Errores de medición en equipos de control
• Obturación de boquillas de arena
• Obturación de pistolas de pintura
• Degradación del poder lubricante de los aceites
• Oxidación de los órganos internos en equipos receptores
• Bajo rendimiento de la instalación
• Atascamiento en válvulas
• Prematuro desgaste de órganos móviles, etc.
RECUERDE que... 
El aire comprimido tal como sale del depósito del compresor no es apto para ser uti-
lizado en equipos neumáticos, debiéndose tratar previamente.
 
MICRO20
<
Equivalencia de unidades del sistema SI con el Sistema Técnico
Magnitud física Unidad SI Sistema Técnico Equivalencia 
Fuerza Newton (N) =Kgm/s2 Kilopondio (Kp) 1 Kp = 9,81 N
Trabajo Joule (J) = Nm Kilopondio x metro 1 Kpm = 9,81 J
(Kpm)
Presión Pascal – bar – N/m2 Atmósfera 1 at = 1,013 bar = 
técnica (at.) 101.300 Pa = 1,033 Kg/cm2
Potencia Watt – Kilowatt (Kw) CV = 75 Kpm/s 1 Kw = 1000 W = 1,035 CV
Temperatura °Kelvin Celsius (°C) T (°K) = t (°C) + 273,16
Superficie Metro cuadrado(m2) Metro cuadrado (m2) -------------------
Caudal M3/s M3/s -------------------
Volumen M3 M3 -------------------
Longitud Metro (m) Metro (m) -------------------
 
21
Generación y distribución del aire comprimido
Introducción 
Para producir aire comprimido se utilizan compresores que elevan la presión del aire
al valor de trabajo deseado. Los mecanismos y mandos neumáticos se alimentan
desde una estación central. El aire comprimido proviene del compresor y llega a las
instalaciones (demanda), a través de tuberías.
Los compresores móviles se utilizan en el ramo de la construcción o en máquinas que
se desplazan frecuentemente.
Tipos de compresores
Según las exigencias referentes a la presión de trabajo y al caudal de suministro, se
pueden emplear diversos tipos de construcción.
Se distinguen dos tipos básicos de compresores:
• El primero trabaja según el principio de desplazamiento: la compresión se 
obtienepor la admisión del aire en un recinto hermético, donde se reduce luego
el volumen. Se utiliza en el compresor de émbolo oscilante o rotativo.
• El otro trabaja según el principio de la dinámica de los fluidos: el aire es 
aspirado por un lado y comprimido como consecuencia de la aceleración de la
masa de aire en la turbina.
2
2 . 0
2 . 1
TIPOS DE 
COMPRESORES
DESPLAZAMIENTO FIJO
DESPLAZAMIENTO 
VARIABLE
(TURBOCOMPRESORES)
ALTERNATIVO
ROTATIVOS
A PALETAS
A TORNILLO
ROOTS
RADIAL
AXIAL
A PISTÓN
A MEMBRANA
 
¿Cuáles son los aspectos significativos en la selección de un compresor? 
• Caudal de desplazamiento dado generalmente en m3/min.
• Temperatura de descarga del aire comprimido.
• Nivel de presión de funcionamiento del compresor.
• Elevación de la instalación (altitud)
• Rango de admisión de temperatura / humedad.
• Agua / aire de enfriamiento disponible.
• Tipo de impulsión (eléctrica, turbina, motores)
• Condiciones atmosféricas (corrosivas, polvorientas, húmedas)
• Condiciones de descargas (sin aceite, refrigerada, seca)
• Accesorios - controles de arranques y capacidad, filtros, controles de seguridad.
Clasificación de los compresores más usuales
Según el sistema de compresión, los compresores se agrupan en las siguientes familias:
• Compresores alternativos
- Pistón
- Membrana
• Compresores rotativos
- Tornillo
- Centrífugos
Compresores alternativos
Son aquellos que vinculan movimientos lineales en la trayectoria de un pistón o una
membrana, a los cambios de presión que se produce según lo expuesto en las Leyes
de los Gases. Pertenece a la familia de compresores fijo o positivo.
Compresores a pistón
Son los de uso más difundido, en donde la compresión se efectúa por el movimiento
alternativo de un pistón. En la carrera descendente se abre la válvula de admisión
automática y el cilindro se llena de aire, para luego en la carrera ascendente compri-
mirlo, saliendo así por la válvula de descarga. Una simple etapa de compresión como
la descripta, no permitirá obtener presiones elevadas con un rendimiento aceptable. 
Por lo tanto, es necesario recurrir a dos o más etapas de compresión, en donde el aire
comprimido a baja presión de una primera etapa (3 - 4 bar) llamada de baja, es vuel-
to a comprimir en otro cilindro en una segunda etapa llamada de alta, hasta la presión
final de utilización. Puesto que la compresión produce una cierta cantidad de calor,
será necesario refrigerar el aire entre las etapas para obtener una temperatura final
de compresión más baja y con rendimiento superior. La refrigeración de estos com-
presores se realiza por aire o por agua, dependiendo del tipo de compresor y su pre-
sión de trabajo.
El cilindro de alta es de diámetro más reducido que el de baja, debido a que éste toma
el aire ya comprimido por el de baja, y por lo tanto ocupará menos volumen. Para pre-
siones superiores será necesario recurrir a varias etapas de compresión.
Una buena rentabilidad del equipo compresor se obtendrá trabajando en los siguientes
rangos de presión, de acuerdo al número de etapas, considerando un servicio continuo:
2 . 1 . 1
2 . 1 . 1 . 1
MICRO22
<
 
23GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
RECUERDE que...
Los compresores a pistón se usan ampliamente para los sistemas de fuerza neumá-
tica, como consecuencia de sus ventajas generales de buenas relaciones de compre-
sión, variedad de tamaño, alta eficiencia, bajo costos de operación, altos pies cúbicos
por minuto por caballo de fuerza, y debido al hecho de que pueden pararse o descar-
garse completamente cuando se necesita capacidad.
Compresores a membrana
Consisten en una membrana accionada
por una biela montada sobre un eje motor
excéntrico: de este modo se obtendrá un
movimiento de vaivén de la membrana
con la consiguiente variación del volumen
de la cámara de compresión, en donde se
encuentran alojadas las válvulas de admi-
sión y descarga, accionadas automática-
mente por la acción del aire. Permiten la
producción de aire comprimido absoluta-
mente exento de aceite, puesto que el
mismo no entra en contacto con el meca-
nismo de accionamiento, y en consecuen-
cia el aire presenta gran pureza.
Utilizados en medicina y en ciertos procesos químicos donde se requiera aire sin ves-
tigios de aceite y de gran pureza. En general, no son utilizados por el rubro industrial.
Compresores rotativos
También llamados multialetas o de émbolos rotativos. Constan de una carcasa cilín-
drica en cuyo interior va un rotor montado excéntricamente, de modo de rozar casi por
un lado la pared de la carcasa, formando así del lado opuesto una cámara de trabajo
en forma de medialuna.
Esta cámara queda dividida en secciones, por un conjunto de paletas deslizantes alo-
jadas en ranuras radiales del rotor.
2 . 1 . 1 . 2
2 . 1 . 2
Hasta 3 - 4 bar 1 etapa
Hasta 8 - 10 bar 2 etapas
Más de 10 bar 3 etapas o más
 
Al girar este último, el volumen de las sec-
ciones varía desde un máximo a un míni-
mo, produciéndose la aspiración, compre-
sión y expulsión del aire sin necesidad de
válvula alguna. Este tipo de compresor es
muy adecuado para los casos en que no
es problema la presencia de aceite en el
aire comprimido, fabricándose unidades
de aire hasta 6000 Nm3/h de capacidad
y hasta una presión de 8 bar en una sola
etapa y 30 bar en dos etapas con refrige-
ración intermedia.
Otra forma es sustituir la refrigeración mediante inyección de aceite, que actúa duran-
te todo el proceso de compresión. Dicho aceite absorbe una parte considerable de
calor de compresión, de manera tal que aún para presiones de salida de 8 bar no se
alcanzan temperaturas superiores a los 90°C en la mezcla aire – aceite. Este último
es extraído haciendo pasar la mezcla por separadores especiales y luego de refrige-
rado es inyectado nuevamente.
De requerirse aire exento de aceite, las paletas deben ser hechas de materiales auto-
lubricantes, tipo teflón o de grafito. Alcanzan una vida útil de 35000 a 400000 Hs.
de funcionamiento dado el escaso desgaste de los órganos móviles (paletas) por la
abundante presencia de aceite. Este tipo de compresores suministra un flujo casi sin
pulsaciones y en forma continua utilizan-
do un depósito de dimensiones reduci-
das que actúa de separador de aceite. 
Compresores a tornillo
También llamados compresores helicoida-
les. La compresión en estas máquinas es
efectuada por dos rotores helicoidales,
uno macho y el otro hembra que son
prácticamente dos tornillos engranados
entre si y contenidos en una carcasa den-
tro de la cual giran. El macho es un torni-
llo de 4 entradas y la hembra de 6. El macho cumple prácticamente la misma función
que el pistón en un compresor alternativo y la hembra la del cilindro. En su rotación, los
lóbulos del macho se introducen en los huecos de la hembra, desplazando el aire axial-
mente, disminuyendo su volumen y, por consiguiente, aumentando su presión. Los
lóbulos se llenan de aire por un lado y descargan por el otro en sentido axial.
Los dos rotores no entran en contacto entre si, de modo tal que tanto el desgaste
como la lubricación resultan mínimos. Esto se logra a través de un juego de ruedas
dentadas que mantiene el sincronismo de giro de los rotores y evita que éstos pre-
sionen unos contra otros, asegurándose la estanqueidad necesaria por la estrecha
tolerancia de los juegos que existen entre ellos y la de éstos con la carcasa.
La refrigeración y lubricación (no necesaria en el rotor) y una mejor hermeticidad se
logran por inyección de aceite en la compresión, que luego será separado del aire
comprimido en separadores, al igual que en los compresores de paletas. Se constru-
yen de 1, 2 o más escalones de compresión y entregan un flujo casi continuo, por lo
que las dimensiones del depósito son reducidas, cumpliendo más bien funciones de
colector y separador de aceite que de acumulador.
El campo de aplicación de éstos va desde 600 a 40000 m3/h y se logran presiones
de hasta 25 bar.
2 . 1 . 2 . 1
MICRO24
<
 
25GENERACIÓNY DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
RECUERDE que... 
Los compresores a tornillo se prefieren usualmente cuando son requeridas condicio-
nes de caudal y presión sin mayores fluctuaciones y una mejor calidad de aire en la
salida, por ser su temperatura de salida menor y con menor cantidad de contaminan-
tes sólidos y líquidos.
Compresores Roots
Son también conocidos con el nombre de
lóbulo o soplante. Transportan solamente
el volumen de aire aspirado del lado de
aspiración al de compresión, sin compri-
mirlo en este recorrido. No hay reducción
de volumen y por lo tanto tampoco
aumento de presión. El volumen que
llega a la boca de descarga, todavía con
la presión de aspiración, se mezcla con el
aire ya comprimido de la tubería de descarga y se introduce en la cámara, llegando
ésta a la presión máxima siendo luego expulsado. Un juego de engranajes acciona
los rotores en forma sincrónica y evita que se rocen entre si.
Resultan apropiados cuando se requiere aire comprimido a bajas presiones comple-
tamente libre de rastros de lubricante. Sólo se alcanzan presiones no muy superiores
a los 1,5 bar y por tal razón su uso es restringido en aplicaciones neumáticas.
Compresores a Paleta
El aire penetra en la carcasa del compresor, a través de un deflector acústico y acce-
de al compresor mediante un filtro de aire. El aire es mezclado con aceite de lubrica-
ción antes de entrar en el estator. Dentro de éste, un rotor rasurado simple con seis
paletas gira rozando éstas por el interior del estator, atrapando sucesivas cámaras de
aire, las cuales son progresivamente comprimidas durante el giro debido a la excen-
tricidad entre el rotor y es estator. El aceite es inyectado dentro del estator para
enfriarlo, estanqueizar y lubricar las paletas.
Luego, el aire pasa a través de un deflector mecánico que separa el aceite. Este acei-
te es recogido y enfriado en el cambiador de calor a una temperatura controlada y
luego será filtrado antes de su reinyección dentro del estator para lubricar el rotor, las
paletas y los rodamientos. El aire que sale del separador es enfriado en un cambia-
dor integral antes de salir del compresor.
El caudal de salida de estos compresores es regulado de acuerdo con la demanda,
por medio de una válvula de control de admisión, y una válvula de control reduce la
presión cuando el compresor marcha en vacío.
Turbocompresores
Funcionan según el principio de la dinámica de los fluidos, en donde el aumento de
presión no se obtiene a través del desplazamiento y reducción de volumen, sino por
efectos dinámicos del aire. Son muy apropiados para grandes caudales. Se fabrican
de tipo radial y axial. El aire se pone en circulación por medio de una o varias ruedas
de turbina. Esta energía cinética se convierte en una energía elástica de compresión.
2 . 1 . 2 . 2
2 . 1 . 2 . 3
2 . 1 . 3
 
2 . 1 . 3 . 1
2 . 1 . 3 . 2
2 . 2
MICRO26
<
VÁLVULA LIM ITADORA DE PRESIÓN
COMPUERTA
VÁLVULA DE CIERRE
VÁLVULA DE VACIADO DE AGUA
TERMÓMETRO
MANÓMETRO
Turbocompresores radiales 
Funcionan bajo el principio de la compre-
sión del aire por fuerza centrífuga y cons-
tan de un rotor centrífugo que gira dentro
de una cámara espiral, tomando el aire en
sentido axial y arrojándolo a gran veloci-
dad en sentido radial. La fuerza centrífu-
ga que actúa sobre el aire lo comprime
contra la cámara de compresión. Pueden
ser de una o de varias etapas de compre-
sión consecutivas, alcanzándose presio-
nes de 8 bar y caudales entre 10.000 y 200.000 Nm3/h. Son máquinas de alta velo-
cidad, siendo ésta un factor fundamental en el funcionamiento, ya que está basado
en principios dinámicos, siendo la velocidad de rotación del orden de las 15.000 a
20.000 r.p.m. y aún más.
Turbocompresores axiales
Se basan en el principio de la compresión axial y consisten en una serie de rodetes
consecutivos con alabes que comprimen el aire. Se construyen hasta de 20 etapas
de compresión (20 rodetes) 
El campo de aplicación de este tipo de compresor alcanza caudales desde los 20000’
a 50000 Nm3/h y presiones de 5 bar, raramente utilizados en neumática Industrial.
RECUERDE que...
Debido a su suministro de gran cantidad de m3/min. y baja presión, la mayoría de los
compresores de flujo axial están limitados a aplicaciones para procesar aire. No son
de uso común en la industria.
Depósito de aire comprimido
El acumulador o depósito tiene la función de estabilizar el suministro de aire compri-
mido. Compensa las oscilaciones de presión en la red de tuberías, a medida que se
consume aire comprimido.
Gracias a la gran superficie del acumulador, el aire se refrigera adicionalmente. Por
este motivo, en el acumulador se desprende directamente una parte de la humedad
del aire en forma de agua.
 
27GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
El ábaco siguiente permite 
calcular el volumen del 
depósito, con el dato del ∆
P de regulación, el caudal 
de compresor y el número 
de maniobras horarias 
en un servicio intermitente.
¿Cuáles son las funciones principales del depósito o acumulador? 
• Obtener una considerable acumulación de energía, para afrontar picos de 
consumo que superen la capacidad del compresor.
• Contribuir al enfriamiento del aire comprimido y la disminución de su velocidad,
actuando así como separador de condensado y aceite proveniente del compresor.
• Amortiguar las pulsaciones originadas en los compresores, sobre todo en los
alternativos.
• Permitir la regulación del compresor compensando las diferencias entre el caudal
generado y el consumido, los cuales normalmente son diferentes.
Su capacidad dependerá de...
• Las características de la demanda del aire en la red. Esta puede ser constante,
intermitente o instantánea.
• Del sistema de regulación que tenga el compresor. Esto determina el número
máximo de maniobras horarias “Z”: normalmente 10 cuando es por marcha y
parada, 60 o más cuando es por carga y vacío.
• De la amplitud del rango de presiones, dentro del cual regula el compresor 
(∆p de regulación): normalmente 0,8 - 1 bar con regulación por marcha y parada
y 0,3 – 0,5 bar con regulación por carga y vacío.
 
¿Cómo se utiliza?
Desde el dato del caudal del compresor se intercepta la diagonal del ∆P de regula-
ción, y desde ese punto se levanta una recta auxiliar que intercepte la otra diagonal
del número de maniobras horarias Z.
Ahora desde ese punto, se podrá obtener el dato del volumen del acumulador, para
un servicio de tipo intermitente.
Particularidades constructivas
El depósito debe:
• Ubicarse en un lugar fresco, lo más cerca posible del compresor, preferente-
mente fuera del edificio donde pueda disipar parte del calor producido en la
compresión.
• Ser firmemente anclado al piso, para evitar vibraciones debidas a las pulsaciones
del aire.
Los accesorios mínimos que deberán incluir son:
• Válvulas de seguridad
• Manómetro
• Grifo de purga
Válvulas de seguridad – Manómetro – Grifo o Válvula de purga
La válvula de seguridad debe ser regulada a no más del 10% por encima de la pre-
sión de trabajo y deberá poder descargar el total del caudal generado por el compre-
sor. Deberá contar además, con un dispositivo de accionamiento manual para probar
periódicamente su funcionamiento.
Cuando el tanque se instala en el exterior y existe peligro de temperatura por debajo
de 0°C, el manómetro y la válvula de seguridad, deben conectarse con tuberías para
ubicarlos en el interior. Estas tuberías deben tener pendiente hacia el depósito para
que sean autodrenantes. 
Las cañerías para el control (regulación) deben ser conectadas al depósito en un
punto donde el aire sea lo mas seco posible. Es importante que esté provista de un
filtro con válvula de purga, para permitir drenar el agua y aceite acumulado y asegu-
rar un perfecto funcionamiento del sistema de regulación. Instale un regulador de pre-
sión que permita independizar la presión de trabajo del compresor de aquella con que
operan los sistemas de regulación (normalmente 4 – 6 bar)
En algunas instalacionesel Presostato de regulación y la electroválvula que coman-
da el dispositivo de regulación (abre válvulas), se ubican cerca del depósito, en otros
casos, estos elementos forman parte de un tablero de control general.
Cuando se coloque una válvula de cierre en algunas de estas cañerías, deberá
tenerse especial cuidado de que el compresor esté desconectado mientras la vál-
vula esté cerrada.
Se debe tener presente que el depósito constituye un elemento sometido a presión
y por lo tanto existen regulaciones oficiales respecto a sus características cons-
tructivas. Además, existen normas y códigos que regulan su cálculo, diseño, fabri-
cación y ensayos.
2 . 2 . 1
MICRO28
<
 
Si se desea una elección más conservadora, puede realizarse el cálculo con un coe-
ficiente de demanda del 70%, resultando:
Distribución del aire comprimido
Redes de distribución
Cada máquina y mecanismo necesita una determinada cantidad de aire, siendo abas-
tecido por un compresor, a través de una red de tuberías.
El trazado de ésta se realizará considerando:
• Ubicación de los puntos de consumo.
• Ubicación de las máquinas.
• Configuración del edificio.
• Actividades dentro de la planta industrial.
29GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
RECUERDE que... 
Nunca instale válvulas de bloqueo entre el depósito y la válvula de seguridad, pues lo
prohíben los reglamentos. En los tamaños pequeños la inspección se realizará por
medio de una simple boca bridada de 100 a 150 mm de diámetro, en los tamaños
mayores estas bocas serán del tipo entrada de hombre (460 a 508mm)
Determinación de la capacidad de los compresores
La capacidad de los mismos puede determinarse aplicando el siguiente procedimiento:
1. Determinar el consumo específico de todas las herramientas o equipos de la
planta que consuman aire comprimido en Nm3/min.
2. Multiplicar dichos consumos por el coeficiente de utilización individual, que es el
tiempo del equipo funcionando con relación al tiempo total de un ciclo completo
de trabajo o el porcentaje del tiempo de utilización sobre una hora de trabajo.
3. Sumar dichos resultados.
4. Agregar entre un 5 a un 10% del valor computado en 3), para totalizar las 
pérdidas por fugas en el sistema. 
5. Adicionar un cierto porcentaje para contemplar las futuras ampliaciones, esto es
muy importante, ya que de otra manera las disponibilidades del sistema serían
ampliamente superadas.
El resultado así obtenido (Qn) deberá ser cubierto por la capacidad del o de los com-
presores (Qc), que si bien podrían llegar a funcionar con un coeficiente de demanda
del 100%, esto implicaría la marcha continua del compresor. Por lo tanto, elegiremos
el mismo para un coeficiente de demanda del 80%, obteniendo la capacidad del com-
presor dividiendo el valor de Qn antes hallado por el valor 0,8 (80%), resultando:
2 . 2 . 1 . 2
2 . 3
2 . 3 . 1
 
Y teniendo en cuenta los siguientes principios:
• Trazar la tubería de modo de elegir los recorridos mas cortos y tratando que en
general sea lo más recta posible, evitando los cambios bruscos de dirección, las
reducciones de sección, las curvas, piezas en T, etc., con el objeto de producir
una menor pérdida de carga.
• En lo posible tratar que el montaje de la misma sea aéreo, esto facilita la 
inspección y el mantenimiento. Evitar las tuberías subterráneas, pues no son
prácticas en ningún sentido.
• En el montaje contemplar que puedan desarrollarse variaciones de longitud 
producidas por dilatación térmica, sin deformación ni tensiones.
• Evitar que la tubería se entremezcle con conducciones eléctricas, de vapor, 
gas u otras.
• Dimensionar generosamente las mismas, para atender una futura demanda sin
excesiva pérdida de carga.
• Inclinar las tuberías ligeramente (3%) en el sentido del flujo de aire y colocar en
los extremos bajos ramales de bajada con purga manual o automática. Esto evita
la acumulación de condensado en las líneas.
• Colocar válvulas de paso en los ramales principales y secundarios. Esto facilita 
la reparación y mantenimiento, sin poner fuera de servicio toda la instalación.
• Las tomas de aire de servicio o bajantes nunca deben hacerse desde la parte
inferior de la tubería, sino por la parte superior a fin de evitar que los condensa-
dos puedan ser recogidos por éstas y llevados a los equipos neumáticos 
conectados a la misma.
• Las tomas y conexiones en las bajantes se realizarán lateralmente colocando 
en su parte inferior un grifo de purga o un drenaje automático o semiautomático
según corresponda.
• Atender a las necesidades de tratamiento del aire, viendo si es necesario 
un secado total o sólo parcial del aire.
• Prever la utilización de filtros, reguladores y lubricadores (FRL) en las tomas 
de servicio.
Considerando los puntos antes mencionados, el tendido de la red podrá hacerse
según dos disposiciones diferentes:
• En circuito cerrado, cuando se le haga tratamiento de secado al aire del compresor.
• En circuito abierto, cuando no se haga tal tratamiento.
Debemos tener en cuenta que cuando el circuito es cerrado, la pendiente en los con-
ductos es nula, puesto que es incierto el sentido de circulación, ya que éste depen-
derá de los consumos y por lo tanto la pendiente carece de sentido. Por tal razón, sólo
se utiliza el circuito cerrado cuando se trata el aire a la salida del compresor con equi-
pos secadores, según veremos más adelante.
RECUERDE que... 
El diámetro de las tuberías debe elegirse de manera que si el consumo aumenta, la
pérdida de presión entre el depósito y el punto de demanda no debería superar el 3%
de la presión del depósito. Si la caída de presión excede de este valor, la rentabilidad
del sistema estará amenazada y el rendimiento disminuirá considerablemente. En la
planificación de instalaciones nuevas, debe preverse una futura ampliación de la
demanda de aire, por ende deberán dimensionarse generosamente las tuberías. El
montaje posterior de una red más importante supone costos aún más importantes.
MICRO30
<
 
31GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
Cálculo de las tuberías 
Tubería principal: Es aquella que sale del depósito y conduce la totalidad del caudal
de aire comprimido. Velocidad máxima recomendada = 8 m/seg.
Tubería secundaria: Son aquellas que se derivan de la principal, se distribuyen por
las áreas de trabajo y de la cual se desprenden las tuberías de servicio. Velocidad
máxima recomendada = 10 a 15 m/seg.
Tuberías de servicio: Se desprenden de las secundarias y son las que alimentan a
los equipos neumáticos. Velocidad máxima recomendada = 15 a 20 m/seg.
Para su cálculo será necesario tener en cuenta:
• La presión de servicio.
• El caudal en Nm3/min.
Pérdida de carga: es una pérdida de energía que se va originando en el aire com-
primido, ante los diferentes obstáculos que se presentan en su recorrido hacia los
puntos de utilización.
La pérdida de carga o pérdida de presión se origina de dos maneras: 
• En tramos rectos, producida por el rozamiento del aire comprimido contra las
paredes del tubo.
• En accesorios, originada en curvas, T, válvulas, etc. de la tubería.
La primera puede ser calculada con la siguiente fórmula:
2 . 3 . 2
Donde: 
 
Con la fórmula anterior se puede calcular, si no es conocido, el diámetro de la tube-
ría, definiendo una pérdida de carga admisible.
Dicha fórmula se encuentra resuelta en el siguiente gráfico:
MICRO32
<
La segunda la evaluamos a través del concepto de longitud equivalente. Es decir,
igualamos la pérdida en el accesorio con la pérdida de carga producida en un tramo
de cañería de longitud igual a la longitud equivalente del accesorio. Esta longitud
deberá ser sumada a la longitud original (L) del tramo recto. 
G ββ G ββ G ββ G ββ
10 2.03 100 1.45 1000 1.03 10000 0.73
15 1.92 150 1.36 1500 0.97 15000 0.69
25 1.78 250 1.26 2500 0.90 25000 0.64
40 1.66 400 1.18 4000 0.84 40000 0.595
65 1.54 650 1.10 6500 0.78 65000 0.555
 
Ejemplos
¿Cuáles el diámetro de un tramo recto de cañería de 100m de longitud por el que
circulan 3 Nm3/min. a 7 bar, siendo la pérdida de carga admisible en ese tramo
del 3%?
Cálculo del ∆p
La pérdida de carga por unidad de longitud será
Entrando al gráfico por su parte superior con P1= 7bar, trazamos una vertical hasta
interceptarlo con una horizontal proveniente de la escala de caudales de la dere-
cha con Q = 3 Nm3/min. (punto A en el diagrama)
Por dicho punto trazamos una paralela a las líneas oblicuas hasta interceptarla con
la vertical levantada desde el valor de la pérdida de carga por unidad de longitud
∆p = 0,0021 bar/m (punto B del diagrama)
Proyectando dicho punto hacia la escala de la izquierda obtenemos en ella el diá-
metro de la cañería que será de 1_”.
33GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
La tabla siguiente muestra la longitud equivalente de diversos accesorios de cañerías
en función del diámetro.
Pérdidas de carga por fricción en accesorios de tuberías 
Valores equivalentes en metros de cañería recta
Cálculos de cañerías
2 . 3 . 2 . 1
Elemento intercalado 
en tuberías _” 3/8” _” _” 1” 1 _” 1 _” 2”
Válvula esclusa 0.09 0.09 0.1 0.13 0.17 0.22 0.26 0.33
(Tot. Abierta)
T de paso recto 0.15 0.15 0.21 0.33 0.45 0.54 0.67 0.91
T paso a derivación 0.76 0.76 1 1.26 1.61 2.13 2.46 3.16
Curva de 90° 0.42 0.42 0.52 0.64 0.79 1.06 1.24 1.58
Curva de 45° 0.15 0.15 0.23 0.29 0.37 0.48 0.57 0.73
Válvula globo 4.26 4.26 5.66 7.04 8.96 11.76 13.77 17.67
(Tot. Abierta)
Válvula angular 2.43 2.43 2.83 3.50 4.48 5.88 6.88 8.83
(Tot. Abierta)
 
Supongamos que la misma cañería no fuera recta y tuviera ahora montados acce-
sorios como ser 1válvula esclusa abierta, 7 curvas a 90°, y una T en derivación.
Con el valor del diámetro de la tubería calculamos las longitudes equivalentes de
los accesorios.
Longitud total a considerar ahora
Con lo que la pérdida de carga total resultará:
Como vemos este incremento de pérdida de carga producida en accesorios es
pequeña, cuando se trata de cañerías de gran longitud y el número de los acceso-
rios no es muy grande.
Consideremos ahora el mismo caudal circulante y la misma presión, pero para una
cañería de 10 m con la misma pérdida de carga total, ∆p = 0,21 bar
La pérdida de carga por unidad de longitud será:
Yendo al gráfico vemos que corresponde a una cañería de Ø = 3/4”
Considerando ahora los mismos accesorios:
MICRO34
<
 
Con lo que la pérdida de carga total resultará:
35GENERACIÓN Y DISTRIBUCIÓN DEL AIRE COMPRIMIDO 2
< <
Longitud total a considerar ahora:
2 . 3 . 2 . 2
Como resultado tendremos un aumento de la pérdida de carga del 60% aproxima-
damente, con lo que verificamos que la influencia sobre las pérdidas de carga en
accesorios es realmente notable en cañerías cortas, aún no siendo el número de
éstos excesivamente grande.
Disposición de tuberías en Instalaciones neumáticas con redes de aire 
de conexión instantánea 
Están compuestas de tuberías de aluminio laqueado, para obtener un aire limpio y de
calidad, así como una conexión segura.
En general, no se requiere mano de obra especializada.
Facilita la prevención y ausencia de costos por paradas de máquina, producto de la
degradación de otras tuberías de materiales diferentes. Además, una vez realizado el
tendido no es una instalación rígida, sino de fácil reciclabilidad.
La pérdida de carga es mínima en estas cañerías, siendo esto un factor de importan-
cia que sumado a la ausencia de fugas de la instalación suponen una disminución de
costos importantes, desde el punto de vista de la generación del aire comprimido.
 
Fluidos utilizables: 
• Aire comprimido (seco, húmedo y lubrificado)
• Vacío
• Gases neutros: argón-nitrógeno 
Presión de servicio:
• De 13 mbar (vacío) a 13 bar constante para cualquier temperatura 
Temperatura de utilización:
• De –20ºC. a +60ºC
Seguridad:
• Resistencia a los choques mecánicos: siendo de naturaleza dúctil, el material
constitutivo del tubo (aluminio), su rotura se produce por deformación.
• Resistencia al fuego: los componentes del sistema son autoextinguibles, 
sin propagación de llama.
• Las redes de aire con componentes de montaje instantáneo, desmontables 
e intercambiables, tienen una puesta a presión de la red en forma instantánea 
y no precisa tiempos de secado.
• Las derivaciones en circuito abierto se realizan en forma sencilla y rápida, 
con bridas a cuello de cisne integrado.
MICRO36
<
Principio de funcionamiento: conexión instantánea con arandela de sujeción 
Ø 16,5 mm – 25 mm. – 40mm.
arandela de sujeción introducir el tubo en el racor conexión realizada
 
37
Tratamiento del aire comprimido
Introducción
Humo, polvo, suciedad, borra, humedad, y aún emanaciones de gases químicos pue-
den estar en el aire introducido en el compresor. Además, los sistemas de lubricación
de la mayoría de los compresores permiten que el aire capte aceite lubricante de las
paredes de los cilindros. Este aceite generalmente contiene un número de aditivos
para mejorar sus cualidades lubricantes y para hacer que dure más tiempo. Cuando
estos aditivos se combinan con la suciedad y la humedad, obstruyen los filtros y pasa-
jes pequeños, reduciendo su eficiencia y haciéndolos inoperantes. La humedad tam-
bién causa oxidación y corrosión. Cuando la humedad se mezcla con el aceite a altas
temperaturas, el aceite se deteriora muy rápidamente y forman ácidos corrosivos. La
humedad, el aceite y contaminantes sólidos se acumulan en el equipo y en los con-
ductos de aire comprimido y forman cienos corrosivos.
Métodos de tratamiento del aire comprimido
Si bien el depósito constituye una atenuante para dicho fin, podremos distinguir tres
formas adicionales de realizar dicho tratamiento:
1. A la salida del compresor mediante:
Postenfriadores: 
Aire - Aire
Aire - Agua
2. A la salida del depósito por medio de:
Secadores de partículas:
Por adsorción
Por absorción
Secadores centrífugos
3. En los puntos de utilización mediante:
Filtros
Reguladores
Lubricadores
Tratamiento del aire a la salida del compresor
Post enfriadores Aire - Aire y Aire – Agua
Son los más usados para el tratamiento del aire comprimido. Se instalan inmediata-
mente a la salida del compresor y reducen la temperatura del aire comprimido hasta
unos 25°C, con lo cual se consigue eliminar un gran porcentaje de agua y aceites con-
tenidos en el aire (70 a 80%). Constan, en general, de un serpentín o un haz tubular
por donde circula el aire comprimido, circulando el fluido refrigerante (aire o agua) en
contracorriente por el exterior de los mismos. A la salida del refrigerador se encuentra
un separador colector en el que se acumulan el agua y aceite condensados durante la
refrigeración. Son generalmente suficientes en la mayoría de las aplicaciones del aire
comprimido (talleres metalúrgicos e industrias en general), siempre que la instalación
esté provista de purgadores y equipos de tratamiento de aire en los puntos de utiliza-
ción, que permitan recoger las condensaciones producidas en las redes.
3
3 . 0
3 . 1
3 . 2
 
3 . 3
3 . 3 . 1
3 . 3 . 2
MICRO38
<
Tratamiento del aire a la salida del depósito
Para el tratamiento del aire a la salida del depósito se utilizan distintos tipos de seca-
dores tales como:
• Secadores por absorción
• Secadores por adsorción
• Secadores frigoríficos
Secador por absorción
Responden a esta denominación aque-
llos secadores que efectúan el secado
mediante un adsorbente sólido de eleva-
da porosidad tal como: Silicagel, alúmina,
carbón activado, etc.
Estas sustancias se saturan y deben ser
regeneradas periódicamente a través de
un adecuado proceso de reactivación.
Para ampliar su función estos secadores
están constituidos por dos torres de secado gemelas con la respectiva carga de
absorbente, funcionando cíclicamente una, mientras la otra está siendo regenerada.
Con este tipo de secadores se obtiene aire extremadamente seco, equivalente a un
punto derocío a presión atmosférica de –20 a –40°C.
Secadores por adsorción 
Normalmente este tipo de secador utiliza pastillas desecantes de composición quími-
ca y granulado sólido altamente higroscópico, que se funden y licuan al ir reteniendo
el vapor de agua contenido en el flujo a secar. Son de costo inferior a los secadores
frigoríficos y de adsorción, pero la calidad del aire obtenido es inferior a aquellos.
Debe reponerse periódicamente la carga del producto químico empleado.
Normalmente, reducen la humedad al 60 - 80% respecto al flujo saturado 100% pro-
veniente de un postenfriador aire - aire ó aire - agua. Tiene el inconveniente de la con-
taminación con aceite de las sustancias absorbentes o adsorbentes (caso anterior)
disminuyendo su capacidad de secado. Tal inconveniente no existe en el secado por
refrigeración o frigorífico.
 
39TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
3 . 3 . 3 Secadores frigoríficos - Principio de Funcionamiento - Instalación
El aire comprimido que entra al secador se preenfría en el intercambiador aire/aire y
seguidamente se introduce en el evaporador donde se enfría hasta alcanzar la tem-
peratura del punto de rocío deseado. A continuación entra en el evaporador donde el
agua condensada es separada y evacuada por la purga automática.
Antes de salir del secador el aire comprimido vuelve a entrar al intercambiador aire/
aire donde es recalentado por el aire comprimido caliente de entrada. El funciona-
miento del circuito frigorífico es similar al de un frigorífico doméstico. 
El compresor frigorífico aspira vapor de agua refrigerante a baja presión procedente
del evaporador situado en el acumulador de energía. Seguidamente el gas es bom-
beado por el compresor hacia el condensador donde se enfría mediante el aire
ambiente impulsado por el moto ventilador.
1. Entrada de aire comprimido húmedo 
2. Salida de aire comprimido
3. Intercambiador aire /aire 
4. Acumulador de energía 
5. Separador de condensados
6. Filtro mecánico 
7. Electroválvulas de purga 
8. Compresor frigorífico 
9. Condensador de gas refrigerante
10. Motoventilador
11. Filtro del refrigerante
12. Capilar de expansión 
13. Válvula de control
14. Termostato.
El paso a través el filtro y del capilar, provoca 
la expansión del refrigerante con el consiguiente
enfriamiento del mismo.
 
Este cede sus frigorías en el evaporador al aire comprimido y a la masa térmica vol-
viendo así a su estado gaseoso, para iniciar de nuevo el ciclo. Cuando el frío produ-
cido es superior al calor a evacuar, éste es acumulado en la masa térmica. La tempe-
ratura de la masa térmica es controlada por un termostato que detiene el compresor
cuando alcanza la temperatura prefijada. De forma de que todo el frío producido es
utilizado por el aire comprimido.
Este tipo de montaje se aconseja cuando la utilización es muy variable y los consumos
de aire en un momento dado son mayores o menores que el caudal del compresor.
El depósito debe ser lo suficientemente grande para hacer frente a la demanda
requerida de aire, que es de corta duración y alto valor (fluido impulsado)
RECUERDE que...
Es recomendable esta instalación cuando los compresores trabajan casi constante-
mente y el consumo total en su punto más alto, es equivalente al caudal del compre-
sor. Este tipo de instalación otorga la ventaja de salvaguardar al secador frigorífico de
los efectos pulsantes del compresor, cuando éste sea del tipo de los alternativos.
Separadores centrífugos
Se emplean cuando se persigue una separación de condensados a bajo costo.
Funcionan haciendo pasar el aire comprimido a través de un deflector direccional
centrífugo, que establece en el aire un sentido de rotación dentro del equipo, de modo
de crear una fuerza centrífuga que obliga a las partículas líquidas e impurezas a adhe-
rirse a la pared del separador, decantando en la parte inferior del mismo. Estas impu-
rezas son luego eliminadas por medio de una purga.
Tienen el inconveniente que a bajos consumos la velocidad de separación es muy
baja, siendo también baja la fuerza centrífuga sobre las partículas, lo que disminuye
su eficiencia a caudales reducidos.
3 . 3 . 4
MICRO40
<
A: Secador frigorífico a la salida del depósito 
B: Secador frigorífico antes del depósito
 
41TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
Tratamiento del aire comprimido en el punto de utilización
Filtros 
La utilización de filtros en las bocas de utilización se
hace indispensable, debiendo estar presentes en toda
instalación correctamente concebida, aún cuando se
haya hecho tratamiento del aire a la salida del compre-
sor o del depósito. Éstos no impedirán la llegada a los
puntos de consumo de partículas de oxido, ni de peque-
ñas cantidades de condensado provenientes de las
redes de distribución. Éstos, de no ser retenidos tendrí-
an acceso a los componentes neumáticos con su con-
siguiente deterioro, aumento de los costos de manteni-
miento y en general bajo rendimiento del equipo. Consta
esencialmente de un deflector centrífugo en su parte
superior cuyo objeto es crear dentro del vaso un movi-
miento ciclónico del aire de modo de crear una fuerza
centrífuga que actuando sobre las pequeñas gotas de
condensado y partículas obliguen a éstas a adherirse a
las paredes del vaso, para depositarse luego en su parte
inferior en una zona de calma. Ésta es creada por una
pantalla, que impide la turbulencia del aire por debajo de
ella, evitando a su vez que el movimiento ciclónico superior arrastre parte del conden-
sado. Una segunda pantalla evita que el aire proveniente del deflector centrífugo
tome contacto directo con el elemento filtrante y lo contamine, a la vez que prolonga
el movimiento ciclónico dentro del vaso aumentando la efectividad del equipo. 
RECUERDE que...
La utilización de filtros en las bocas de utilización se hace indispensable, debiendo
estar presentes en toda instalación correctamente concebida, aún cuando se haya
hecho tratamiento del aire a la salida del compresor o del depósito.
Regulador de presión
Normalmente, las presiones de trabajo en los equipos neumáticos son inferiores a las
presiones de línea. Además, resultaría imposible trabajar en los mismos directamente
con esta presión, ya que no podría evitarse que lleguen a los equipos las fluctuacio-
nes de presión entre la máxima de parada o vacío y la mínima de arranque del com-
presor. Al mismo tiempo, si un equipo es capaz de cumplir su función eficientemente
a una presión determinada, el hacerlo a una presión mayor sólo conduce a un incre-
mento de consumo de aire, debido que esto es función de la presión, con la consi-
guiente disminución de la rentabilidad del sistema. 
Por otro lado, ciertos equipos deberán funcionar a baja presión, lo que implicaría
trabajar con presiones de línea también bajas, con el consiguiente y nuevo deterio-
ro de la rentabilidad, puesto que un rendimiento óptimo se logra para presiones
entre 6 y 8 bar.
3 . 4
3 . 4 . 1
3 . 4 . 2
 
MICRO42
<
¿Cuáles son las funciones del regulador? 
• Evitar las pulsaciones y fluctuaciones de presión provenientes del compresor.
• Mantener una presión de trabajo en los equipos sensiblemente constante 
e independiente de la presión de línea y del consumo.
• Evitar un excesivo consumo por utilizar presiones de operación mayores que 
las necesarias en los equipos.
• Independizar los distintos equipos instalados.
En un regulador, la presión de línea, que llamaremos primaria, penetra por la boca de
entrada, siendo impedido su pasaje a la zona secundaria por una válvula de cierre, que
se mantiene cerrada por la acción de un resorte. Actuando ahora sobre la perilla de
regulación, se provocará un ascenso del tornillo que empujará la válvula hacia arriba,
permitiendo al aire pasar a la zona de presión regulada, llamada secundaria.
Esta presión secundaria se comunicará a través de un pequeño orificio con la cara
inferior de la membrana comprimiéndola contra los resortes. Esto provoca el descen-
so del tornillo de regulación y enconsecuencia el cierre de la válvula, manteniendo la
presión secundaria constante.
Luego, la presión secundaria dependerá del grado de pretensión dado a los resortes
a través de la perilla de regulación. Al consumir aire de la zona secundaria, la presión
tenderá a disminuir, el pistón ascenderá junto con el tornillo, abrirá la válvula, permi-
tiendo así el pasaje de aire y restaurar la presión al nivel regulado. 
Cuando se quiera disminuir la presión secundaria a un nivel más bajo, girando la peri-
lla de regulación, se producirá el descenso del tornillo, despegándose del asiento cen-
tral de la válvula de cierre y permitiendo el pasaje del aire excedente, a través del con-
ducto de descarga en la campana hacia la parte superior, venteando por los orificios
de escape situados en la campana superior.
RECUERDE que...
Mantener en buen estado el regulador de presión permite una optimización del pro-
ceso productivo, ya que el aire que escapa por la campana no permitirá sobrepresio-
nes en la cámara secundaria, comportándose también como válvula de seguridad.
 
43TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
3 . 4 . 3
La característica de funcionamiento y el campo de aplicación de estos equipos queda
determinado a través de sus características de caudal.
Lubricador
Para lubricar herramientas y mecanismos neumáticos, el método más lógico, eficien-
te y económico es dosificar lubricante en el aire que acciona el sistema, atomizándo-
lo y formando una micro niebla que es arrastrada por el flujo de aire cubriendo las
superficies internas de los componentes con una fina capa de lubricante. Esta fun-
ción es cubierta por los lubricadores, existiendo diversidad de formas constructivas,
pero siempre basados en el mismo principio.
Funcionamiento
El aire que ingresa al lubricador es obligado a pasar por una válvula situada en el cen-
tro del canal, de modo que ocurrirá una disminución de la presión en la sección que
sigue a la válvula donde está el tubo de dosificación.
Estando el vaso a presión, a través de la válvula de presurización y debido al descen-
so de presión provocado, el aceite ascenderá por el tubo de aspiración que contiene
un filtro para retener partículas, pasando por una válvula de retención a bolilla que
impide su retorno, desembocando luego en una válvula de aguja que regula el goteo
en el canal de dosificación. La gota, al caer en este canal, es llevada al venturi, donde
por efecto de la velocidad del aire se atomiza en forma de niebla y es arrastrada por
la corriente hacia los componentes.
RECUERDE que...
La adecuada lubricación de las herramientas neumáticas, cilindros, válvulas y demás
equipos accionados por aire comprimido, evita el deterioro de los mismos provocado
por la fricción y la corrosión, aumentando notablemente su vida útil, reduciendo los
costos de mantenimiento, tiempos de reparaciones y repuestos.
 
3 . 4 . 4
3 . 4 . 4 . 1
MICRO44
<
Accesorios modulares conjuntos FRL
Los elementos: filtro, regulador de presión y lubricador constituyen una unidad indis-
pensable para el correcto funcionamiento de un sistema neumático. Se instalan en la
línea de alimentación del circuito suministrando aire seco, limpio, lubricado y regula-
do a la presión requerida.
Estos tres elementos, si bien son considerados básicos e indispensables en el
punto de utilización, no son los únicos que deben tenerse en cuenta a la hora de
contar con aire comprimido en buenas condiciones de uso, para ingresar en los
componentes neumáticos.
Por ello, y pensando en integrar soluciones de una forma modular, al clásico FRL
se agregan algunos de los siguientes elementos, generando combinaciones funcio-
nales y de seguridad:
Válvulas de corte y descarga 
Cumplen la función de interrumpir el suministro y descargar el aire del circuito, cuan-
do la presión de línea desciende por debajo de una presión umbral de corte. Además,
la utilización de esta válvula evita la puesta en marcha instantánea de la máquina, en
el momento del restablecimiento de la presión después de su interrupción, acciden-
tal o voluntaria, a menos que no sea habilitada la perilla de mando.
 
45TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
Brida intermedia
Se utilizan entre el FR y el L y tienen la función de deri-
var aire sin lubricar a aquellos elementos que así lo
requirieran. Pueden incorporar como opcional una válvu-
la antiretorno, cuya función es la de impedir que el acei-
te retorne al filtro si este existiese.
Válvulas de control a distancia
Controlan la apertura y cierre de un circuito a distancia, por ejemplo desde un table-
ro de mando o un puesto remoto. El accionamiento puede ser neumático o eléctrico.
En este último caso, una interfase normalizada CNOMO permitirá incorporar solenoides
estándar o por ejemplo diferentes tipos de solenoides de bajo consumo o antiexplosivos.
Incluyen un silenciador de escape, para reducir el nivel sonoro de la descarga de aire
en el momento de la despresurización del circuito. 
3 . 4 . 4 . 2
3 . 4 . 4 . 3
3 . 4 . 4 . 4
Con el objetivo de asegurar aún más la interrupción del
aire, y como opcional, puede incorporarse una válvula de
corte y descarga con candado, que elimina en forma total
la posibilidad de suministro cuando los componentes y
accesorios se encuentren sin presión.
Válvulas de presurización progresiva
Estas válvulas cumplen la función de presurizar los circuitos en forma lenta y progre-
siva, durante la operación de inicio de tarea, garantizando una seguridad total tanto al
personal como a los componentes neumáticos del circuito o a las piezas.
De igual forma, se evita el golpe de los actuadores hacia su posición de inicio de ciclo,
cuando quedan detenidos en posiciones intermedias, debido a interrupciones impre-
vistas de suministro de aire.
 
Microfiltros
En muchas aplicaciones es requerido un aire de mayor calidad que el obtenido a la
salida de un filtro estándar. Industrias como la química, alimentaria o de instrumenta-
ción, exigen aire comprimido cuya calidad está clasificada y, en algunos sectores, nor-
malizada de acuerdo a estándares como la ISO 8573 – 1.
Esta clasificación incluye tres puntos, a saber:
• Clase de la calidad de las impurezas sólidas. 
• Clase de la calidad para el contenido del agua.
• Clase de la calidad para el contenido de aceite.
Filtros submicrónicos
El filtrado eficaz del aire comprimido en estas condiciones es un problema complejo
solucionable, con la utilización de filtros de alta capacidad del tipo submicrónico, que
trabajan aprovechando los efectos de inercia, choque y coalescencia, separando sóli-
dos en una relación > 0,01 _.
3 . 4 . 4 . 5
3 . 4 . 4 . 6
3 . 4 . 5
MICRO46
<
Bloqueo de regulador 
Este mecanismo, que posee una cerradura con llave, se
monta en la parte superior de la perilla de un regulador de
presión, impidiendo levantarla y, por lo tanto, modificar la
regulación establecida.
Drenajes Automáticos
Son utilizados cuando se desea automatizar la acción de drenaje de los condensados
acumulados en los vasos del filtro, existiendo distintos métodos para poder hacerlo: 
• Por flotador: una válvula se abre automáticamente al alcanzarse cierto nivel 
de condensados, elevando un flotador y permitiendo que la corriente de aire
entrante fuerce la evacuación de los condensados. 
• Temporizado eléctrico: una electroválvula temporiza los tiempos de drenaje y
de pausa, es decir, el intervalo entre aperturas. Ambos intervalos son regulables.
• Semiautomático por caída de presión: El drenaje de los condensados se
logra cuando cae la presión de la línea, por ejemplo al fin de la jornada laboral.
 
47TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
Filtro de carbón activado
Aún así el aire comprimido puede contener vapores de hidrocarburos y olores que se
deseen eliminar. 
Además, en estos casos se utilizará un filtro de carbón activado, el cual será incorpo-
rado siempre después de una batería de filtros que comprende filtro de 50 _, filtro de
5 _. y filtro coalescente (submicrónico)Filtro de silicagel
En casos especiales donde se requiera utilizar el aire comprimido exen-
to de humedad, la incorporación de un filtro de silicagel como último ele-
mento del bloque de tratamiento, permite obtener las mejores condicio-
nes de utilización, sin afectar otros elementos de menor tamaño de filtra-
do, como los filtros de malla ó los filtros submicrónicos de 5 _.
RECUERDE que...
El filtro de carbón activado asegura un poder filtrante con una cantidad
de aceite residual menor de 0,001 mg/m3.
Central inteligente de manejo del aire
Son unidades para aplicaciones, donde el parámetro de
alimentación del aire comprimido debe cumplir con
requisitos complejos de seguridad o se necesiten con-
troles y monitoreos permanentes, traducidos en señales
para el operador o para el sistema. También esta infor-
mación puede disponerse como dato de cada una de las
señales, en un cable múltiple de salida, utilizando señal
de 4 a 20 mA.
Las centrales inteligentes del manejo de aire AMS admiten dos posibles configuraciones:
1. Conexión directa, donde las señales del módulo pueden ser enviadas a uno 
o más actuadores (válvulas o disparadores)
2. Conexión indirecta, donde la información es enviada a una computadora, 
a un bus de campo o a un programa de almacenamiento de datos para luego
procesarlo.
Funcionamiento
Controlan la presión a través de un rango de regulación programable. El nivel de con-
densados es controlado por sensores con descarga automática cuando se alcanza el
nivel máximo. En la lubricación, un indicador de nivel mínimo de aceite activa una alar-
ma cuando éste se alcanza y tiene también la posibilidad de dosificación automática.
Por otra parte, un display de tiempo indica la necesidad de reemplazo del filtro.
3 . 4 . 6
 
MICRO48
<
Amplificador de presión
Existen aplicaciones en el campo de los automatismos neumáticos donde se requie-
ren valores de presión mayores que los usuales de línea (por ejemplo, 6 bar). Estas
necesidades obedecen a determinadas secuencias de circuito, que a veces requieren
mayores fuerzas de actuadores en tiempos breves de utilización (por ejemplo, opera-
ciones de prensado) o acumulación de determinados volúmenes de aire, a presiones
mayores que las de línea (por ejemplo, prueba de resistencia de ciertos recipientes,
pruebas de estanqueidad, etc.)
En esas aplicaciones se debe realizar un análisis técnico/ económico: a) generar aire
a mayor presión en toda la línea de suministro, b) utilizar actuadores de mayor diáme-
tro en el puesto de trabajo, c) obtener aire en un reservorio a una presión mayor que
la de línea y suficiente para lograr los objetivos deseados. En muchas aplicaciones,
veremos que la opción c termina siendo la más coherente y es en éstas donde se uti-
lizan los amplificadores de presión neumática.
Funcionamiento
La presión de aire primaria se conecta a la boca de alimentación y dirige el aire a las
cámaras impulsora - amplificadora A y B. Las otras cámaras impulsoras A o B se ali-
mentan alternativamente con el aire proveniente del regulador de presión, a través de
una válvula direccional VS2 de doble comando neumático.
De acuerdo al valor que tome esta presión regulada, será la relación de amplificación.
Si la presión a la salida del regulador es igual a la de entrada, la relación de amplifi-
cación será 2:1. 
Una serie de válvulas no retorno colocadas en el cuerpo principal central del amplifi-
cador permiten el llenado de las cámaras impulsora - amplificadora A y B con presión
primaria y la evacuación del aire de las cámaras impulsora - amplificadora A y B a la
boca de utilización N°2 con presión amplificada.
Cuando los pistones llegan a su punto final de recorrido cercano al cuerpo principal
central del amplificador, dos señales neumáticas alternativamente trabajan sobre el
pilotaje de la válvula direccional VS2, para que al conmutar direccione alternativamen-
te el aire de entrada a las cámaras anteriormente detalladas y a la boca de escape.
Finalmente dos manómetros que completan el conjunto, permiten relevar el valor de
presión de alimentación y de presión amplificada.
 
49TRATAMIENTO DEL AIRE COMPRIMIDO 3
< <
Recomendaciones de instalación de unidades FRL
• Al instalar unidades FRL, asegúrese de que el suministro no supere las condicio-
nes límites de presión y temperatura especificados por el fabricante.
• No instale unidades muy cerca de fuentes intensas de calor (hornos, calderas,
líneas de vapor, canales de colada, etc.), ya que por radiación podría superarse 
la temperatura límite establecida.
• Es recomendable que cada equipo neumático de la planta tenga su unidad 
independiente de entrada, instalada lo más cerca posible del equipo.
• Instale las unidades en lugares a los cuales se pueda acceder fácilmente, 
sin necesidad de escaleras u otros medios. Recuerde que pueden requerirse
periódicos ajustes de regulación y también mantenimiento preventivo de la 
unidad (drenado de vasos, limpieza del elemento filtrante, etc.)
• Las unidades cuando incluyan un componente F y/o L sólo se instalarán sobre
líneas horizontales (vaso en posición vertical) de otro modo no funcionarán
correctamente.
• Al realizar el montaje verifique que el sentido de flujo coincida con el indicado,
por las flechas grabadas sobre los elementos. Si por razones de disposición de
cañerías fuese necesario un sentido inverso, éste puede obtenerse girando las
bridas extremas 180° sobre su posición.
• Las roscas de conexionado son gas, con ángulo de 55° y cilíndricas. A pedido
NPT debe tenerse especial cuidado cuando se utilicen cañerías con rosca cónica
y cinta de sello, ya que un excesivo ajuste puede producir la fisura de las bridas
extremas. Debe ajustarse lo suficiente para evitar fugas. Es recomendable el uso
de accesorios de rosca cilíndrica y sello por asiento frontal.
• Las cañerías deben estar previamente alineadas y la unidad deberá poderse ins-
talar sin necesidad de forzarla. De este modo, se evitarán esfuerzos externos
sobre el equipo, que pueden llegar a producir su rotura o deformarlo fuera de
límites compatibles con el buen funcionamiento.
• Asegúrese que las cañerías estén limpias en su interior y que no queden restos
de senador (pasta o cintas) que puedan penetrar en el equipo y alterar su 
funcionamiento. Sople previamente las cañerías.
• Prevea un espacio debajo del vaso a efectos de drenar con comodidad el 
condensado. Tenga la precaución de no instalar la unidad encima de tableros
eléctricos o electrónicos, ya que cualquier derrame accidental caerá sobre ellos.
• No instale unidades en lugares donde se generan vapores de solventes, tales
como salas, gabinetes de pintura o bateas de limpieza. Los vasos resudarán
deteriorados con el tiempo. Esta precaución debe acentuarse cuando los vapores
sean de tricloretileno o tetracloruro de carbono, acetona, thiner, etc. 
3 . 4 . 7
 
50
Cilíndros neumáticos
Introducción
El aire comprimido es de amplio uso en una instalación industrial. Desde funciones
simples como soplar suciedad y virutas de las máquinas, inflar gomas, pintar con pis-
tola, y hacer funcionar herramientas pequeñas de fuerza, hasta impulsar actuadores
que mueven compuertas direccionales en líneas transportadora, cerrar puertas, o
sujetar piezas de trabajo en un tornillo de banco, entre otras muchas aplicaciones.
La energía de presión del aire comprimido es transformada por medio de actuadores
en movimiento lineal alternativo, y mediante motores neumáticos o actuadores rotan-
tes en movimiento de giro.
Luego, los cilindros neumáticos son las unidades encargadas de transformar la ener-
gía potencial del aire comprimido en energía cinética o en fuerzas prensoras.
Básicamente, consisten en un recipiente cilíndrico provisto de un émbolo o pistón. Al
introducir un determinado caudal de aire comprimido, éste se expande dentro de la
cámara y provoca un desplazamiento lineal. Si se acopla al émbolo un vástago rígido,
este mecanismo es capaz de empujar algún elemento, o simplemente sujetarlo.

Otros materiales