Logo Studenta

Diseno-de-implantes-dentales-a-la-medida-para-el-area-maxilar

¡Este material tiene más páginas!

Vista previa del material en texto

FACULTAD DE INGENIERÍA 
 
 
 
DISEÑO DE IMPLANTES DENTALES A LA MEDIDA PARA EL 
ÁREA MAXILAR 
 
 
TESIS 
QUE PARA OBTENER EL TÍTULO DE 
INGENIERA INDUSTRIAL 
 
 
PRESENTA: 
JAZMIN MONSERRAT BALANDRA ORTIZ 
 
 
 
DIRECTOR DE TESIS: M.I. EDUARDO GARDUÑO 
 
 
MÉXICO D. F., CIUDAD UNIVERSITARIA 2012 
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO 
 
UNAM – Dirección General de Bibliotecas 
Tesis Digitales 
Restricciones de uso 
 
DERECHOS RESERVADOS © 
PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
 
Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 
El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 
 
 
 
Prólogo 
i | P á g i n a 
 
Prólogo 
La falta de uno o más dientes constituye un problema que puede afectar la estética de una 
persona, su función fonética y la de masticación. Una solución probada a largo plazo que 
se ofrece a esta condición es la sustitución dental por medio de prótesis dentales 
implanto-soportadas. En el mercado existe una gran oferta de estos dispositivos. En éste 
sentido se propone una mejora en el tratamiento que actualmente existe mediante el uso 
de tecnología avanzada. 
El objetivo de este trabajo es diseñar un sistema de implantes dentales cuya 
configuración permita su fácil adaptación a los requerimientos funcionales y condiciones 
físicas de cada paciente. 
La cirugía maxilar es traumática. El hueso receptor de un implante suele sufrir gran 
daño durante la fase quirúrgica. Con la utilización de una terapia de sustitución dental por 
medio de 1implantes endoóseos fabricados a la medida del paciente se busca lograr 
cirugías mínimamente invasivas. Al introducir un implante que se adapte perfectamente 
en sus dimensiones a la morfología de cada paciente se evita un potencial trauma en el 
hueso durante la fase quirúrgica y con esto se reduce el tiempo de recuperación del 
paciente. 
El desarrollo de este trabajo parte de la hipótesis de que es posible la obtención de 
un implante para el área maxilar que permita la modificación de algunas de sus 
características respetando un diseño preestablecido, facilitando así su adaptación a las 
necesidades de diferentes pacientes. El principal motivo que impulsó el desarrollo de un 
nuevo sistema de implantes es el proponer un diseño simplificado aprovechando las 
técnicas de manufactura existentes para lograr la obtención de los mismos en el menor 
tiempo. De modo que sea posible brindar una solución particular al problema de 
2edentulismo de un paciente en un tiempo corto. 
Los alcances establecidos son generar el diseño del sistema de implantes 
maxilares. La obtención de un prototipo de estos con la finalidad de contar con una 
referencia física de los diseños. La planeación de la manufactura para los componentes 
del sistema, así como la estimación de los costos de manufactura. 
Este trabajo se desarrolló en el laboratorio de Manufactura Avanzada de la 
Facultad de Ingeniería de la Universidad Nacional Autónoma de México como parte del 
proyecto de diseño y generación de injertos a medida para sustituir huesos del área 
maxilofacial mediante intervenciones quirúrgicas con clave PAPIIT/DGAPA IN115809-3. 
 
1 Tornillo o perno insertado en el hueso maxilar a través del hueso alveolar. 
2 Pérdida de dientes parcial o total. 
Prólogo 
ii | P á g i n a 
 
Por lo que agradezco enormemente a la UNAM, que ha sido mi casa los últimos 10 años y 
lo será siempre, por haberme permitido formar parte de ella por haberme brindado tanto, 
porque no sólo adquirí una formación profesional si no una formación personal también 
así como un sinnúmero de lecciones aprendidas. 
Quiero agradecer en gran manera a las personas que estuvieron involucradas en la 
realización y en las revisiones de este trabajo. A mi asesor de Tesis, el Dr. Eduardo 
Garduño al Ing. Israel Garduño por su ayuda y asesoramiento, a mis sinodales, al Ing. 
Ubaldo Márquez, al Dr. Arturo Barba, la Dra. María Cristina León y al Ing. Fernando Liebig 
por sus aportaciones y valiosas observaciones a este trabajo. 
También quiero agradecerles a mis padres todo el apoyo y amor que me han dado 
en toda mi estancia en la universidad, por sus desveladas ayudándome por todos esos 
momentos, así como durante la realización de este trabajo. Y finalmente y especialmente 
a Agustín, mi gran amor, que me ha apoyado en todo, que me ha ayudado y aconsejado 
tantas veces, porque me haces ser una mejor persona, me ayudas a dar más de mí y has 
estado a mi lado en tantas cosas tan importantes para como lo es esto. Gracias. 
 
 
iii | P á g i n a 
 
Contenido 
 
1. Introducción 1 
1.1 Clasificación de los implantes dentales 5 
1.2 Biomateriales 7 
1.3 Criterios para la selección del paciente 8 
1.4 Planificación y secuencia del tratamiento 10 
1.5 Calidad ósea 13 
1.6 Metodología de diseño 15 
2 Normatividad para productos sanitarios 16 
2.1 Registro sanitario de dispositivos médicos 16 
3 Diseño y manufactura 21 
3.1 Necesidades 21 
3.2 Especificaciones 22 
3.2.1 Apariencia 23 
3.2.2 Materiales 24 
3.2.3 Tamaño 25 
3.2.4 Sistema anti rotacional 26 
3.2.5 Elementos de sujeción 26 
3.2.6 Forma del tornillo de inserción 27 
3.2.7 Revestimientos superficiales 28 
3.2.8 Rugosidad superficial 29 
3.2.9 Vida útil 30 
3.2.10 Esterilización 30 
3.2.11 Documentación31 
3.3 Diseño conceptual 31 
3.3.1 Propuesta del diseño 32 
3.4 Diseño del detalle 32 
3.5 Validación del diseño 37 
3.6 Planificación de la manufactura 46 
 
iv | P á g i n a 
 
4 Determinación del implante a colocar 50 
5 Estimación de costos 57 
5.1 Tarifa por uso y manejo de la máquina 57 
5.2 Costos de manufactura 63 
6 Resultados 75 
7 Conclusiones 79 
Referencias 80 
Anexo 1. Huesos maxilares 82 
Anexo 2. Planos de diseño y programación CNC 86 
Índice de Figuras 99 
Índice de Tablas 101 
 
 
Introducción 
1 | P á g i n a 
 
1. Introducción 
El edentulismo parcial o total se entiende como la pérdida de dientes. Esto afecta 
principalmente las funciones de masticación y estética de las personas, pero también 
tiene importantes repercusiones en la función fonética y un gran impacto psicológico. 
Para tratar este problema existen diferentes soluciones médicas que van desde una 
prótesis dental removible a puentes dentales soportados en piezas dentales adyacentes. 
Una solución permanente para la corrección del edentulismo parcial o total es la 
sustitución dental por medio de prótesis dentales implanto-soportadas. Si bien no 
cualquier persona es candidata para someterse a este tratamiento (por factores que lo 
limitan físicamente, como pobre calidad de hueso, resorción ósea, entre otros, o por su 
condición de salud) la implantología oral constituye una solución funcional y estética a 
largo plazo. 
Los implantes dentales (1) son fijaciones de un biomaterial resistente, como lo son 
el titanio comercialmente puro, las aleaciones de titanio o de acero inoxidable insertadas 
quirúrgicamente en un reborde óseo. Posterior a la cicatrización y remodelación ósea su 
función es soportar una prótesis dental. El tratamiento con implantes dentales requiere 
de proceso minucioso de planeación, una fabricación detallada de todos sus componentes 
y una colocación precisa de los mismos, a fin de lograr un tratamiento perfectamente 
funcional. La implantología contemporánea es una técnica con una sólida base científica y 
antecedentes históricos. En este sentido, los desarrollos más relevantes de la 
implantología oral se han apoyadoen las técnicas de la ingeniería. 
La implantología oral tiene sus raíces en la antigüedad, si bien no existe una 
documentación detallada de ésta, se han hallado distintos materiales insertados en 
cráneos de antiguas civilizaciones. Hace 4000 años en China (1, 2), se tallaban palos de 
bambú de forma cónica para ser introducidos en los huesos maxilares con el fin de 
sustituir piezas dentales. Los restos antropológicos más remotos de implantes colocados 
in vivo se encontraron en la cultura maya. En 1931 (3) se descubrió en Honduras un 
cráneo que presentaba en la mandíbula tres fragmentos de concha marina introducidos 
en los alveolos de los incisivos. Este cráneo data del año 600 d. C., los estudios 
radiológicos determinaron la formación de hueso compacto alrededor de los implantes, lo 
que indica que dichos fragmentos se colocaron en vida. Asimismo en Europa se encontró 
un cráneo con un diente de metal ferroso que databa de los tiempos de Cristo (4). 
A lo largo de la historia la sustitución dentaria ha sido concebida de diferentes 
maneras por distintas culturas. Es así que en la edad medieval los cirujanos realizaban 
trasplantes dentales para los nobles y militares de alto rango utilizando como donantes a 
los plebeyos, sirvientes y soldados (1, 3). Esta práctica cesó hasta el siglo XIX y principios 
del XX, cuando se limitó la técnica de la trasplantación por motivos morales como lo era el 
extraer un diente a una persona pobre para implantarlo en un rico, e higiénicos por la 
posibilidad de transmisión de enfermedades. 
Introducción 
2 | P á g i n a 
 
Los implantes dentales con tal denominación vienen realizándose desde el siglo XII 
(5). El primer material del que se tiene conocimiento que fuera empleado para desarrollar 
implantes fue el oro utilizado por Petronius en 1565 (5) con el fin de cerrar una 3fisura 
palatina. En 1886 (1) Edmund implantó platino con forma de raíz para soportar una 
corona de porcelana. En 1887 (1, 3) Harris implantó una raíz de platino revestida de 
plomo en un alvéolo creado artificialmente. Entre 1880 y 1900 se usaron materiales para 
implantes como la porcelana, el platino y la gutapercha4. En un trabajo publicado en 1913 
(1, 3) se describe una canastilla fabricada en una aleación de alambre compuesta de Iridio-
Platino y soldada con Oro de 24 kt, diseño original de Greenfield. Estas canastillas fueron 
insertadas en 1906 y los implantes soportaron exitosamente la carga de coronas 
conectados a los mismos. Este fue el primer odontólogo que hizo referencia a las normas 
sanitarias de limpieza y esterilidad durante la cirugía maxilar. 
En 1938 (1, 3) se introdujo la aleación de cromo-cobalto-molibdeno para la 
fabricación de implantes conocida como vitalium. En 1946 (1) se diseñó el primer 
implante de titanio, tenía un cuerpo roscado y constaba de dos piezas, el implante y un 
soporte que se conectaba a este. Éste implante funcionó por más de 40 años. 
Durante la década de los sesentas del siglo veinte fueron desarrollados numerosos 
tipos de implantes en forma de tornillo. La mayoría elaborados en vitalium, razón por la 
cual no permitían su 5osteointegración. A finales de esta década y durante tres décadas 
más se usaron implantes de cuchilla, inicialmente fabricados en esta aleación, pero en sus 
últimas versiones elaborados de titanio comercialmente puro (titanio cp). 
En 1967 se utilizó resina acrílica para fabricar implantes en forma de diente y se 
probó su 6biocompatibilidad con monos. Para mejorar su biocompatibilidad se utilizó 
carbono vítreo hecho en un 99.99% de carbono puro con una capa de acero inoxidable. El 
uso de este sistema se basaba en la compatibilidad biológica de este material, poca 
degradación y propiedades elásticas similares a las del hueso. La mayoría de las fallas con 
este tipo de implantes se debieron a un pobre diseño y a la aplicación de cargas 
prematuramente (6). A finales de ésta década se inició la comercialización de distintos 
sistemas de implantes dentales. Odontólogos en su práctica privada experimentaron 
diferentes alternativas sin un protocolo científico que avalara dicha práctica. En éste 
periodo Per-Ingavar Branemark desarrolló un implante de forma roscada similar a otros 
diseños utilizando titanio cp. Éste se dejaba insertado en el hueso de cuatro a seis meses 
con el fin de evitar trauma biológico y mecánico, posteriormente era conectado a una 
prótesis dental. La superficie del implante debía ser adecuadamente preparada y 
esterilizada. Al mismo tiempo la inserción del implante se manejó con un estricto 
protocolo de asepsia. Este sistema fue clínicamente probado durante diecisiete años 
antes de ser comercializado. 
 
3
 Malformación congénita en la cual las dos mitades del paladar no se unen en la línea media. 
4
 Goma similar al caucho con la diferencia de que es menos elástico. Es un polímero isopreno. 
5 Unión directa hueso-implante. 
6 Definida por la European Society for Biomaterials en 1987 como la capacidad de un material de generar 
una respuesta biológica apropiada al ser aplicado sobre un tejido (38). 
Introducción 
3 | P á g i n a 
 
En 1978 en Alemania (2) se desarrolló el implante IMZ (Intra Movil Zylinder). Este 
implante de cuerpo cilíndrico no roscado tenía un recubrimiento de plasma de titanio y 
una serie de muescas en el extremo inferior para evitar la resiliencia del ligamento 
periodontal. En 1979 se comercializó el tornillo de cristal de zafiro conocido como 
bioceram, desarrollado por Kawahara en 1975. En la década de 1980 se desarrolló en 
Suiza el sistema ITI de cilindro y tornillo huecos. Este sistema tenía una superficie de 
plasma de titanio para lograr una mayor traba mecánica en la interfase hueso-implante. 
La implantología oral contemporánea tiene su inicio en los años sesenta del siglo 
veinte con la definición de osteointegración. Es a partir de la aplicación implantológica 
dental realizada por Branemark que se define la osteointegración como (2) la unión 
directa, estructural y funcional, entre hueso vivo y un implante, a nivel de magnificación 
del microscopio óptico. Esto quiere decir que existe una conexión directa entre el hueso y 
el implante sin capas de tejidos blandos interpuestas. La osteointegración requiere la 
formación de hueso nuevo alrededor de la fijación, este es un proceso que resulta de la 
remodelación en el tejido óseo. La remodelación ósea (organización y crecimiento), 
resorción y aposición del hueso ayudan a mantener los niveles de calcio en la sangre y a 
mantener la cantidad de masa ósea (1). 
A través de los primeros trabajos de implantología oral el desarrollo de los 
implantes endoóseos prosiguió con cambios de material y diseño. Desde que comenzó la 
comercialización del sistema Branemark, han surgido otros implantes comercializados 
como sistemas de implantes osteointegrados, algunos de ellos, se mencionan a 
continuación. 
Sistema Core-Vent 
Los implantes Core-Vent y Micro-Vent son fabricados en la aleación de titanio Ti-6Al-4V. 
Las superficies de los implantes core-vent y screw-vent, éste último fabricado con titanio 
comercialmente puro (titanio cp), son bañadas en ácido y recubiertas con 7hidroxiapatita. 
Estos implantes se fabrican con diámetros desde 3.25, 3.5, 3.75, 4.25, 4.5 y 5.5 mm y 
longitudes de 7, 10 y13 mm. 
Figura 1. Implantes a) screw-vent, b) core-vent y c) micro-vent (2). El implante core-vent difiere del modelo roscado 
presentando una serie de perforaciones en el cuerpo tratado con ácido para incrementar su rugosidad.
 
El incremento en la rugosidad del cuerpo del implante aumenta la superficie 
funcional de este, lo que favorece a un mayor anclaje mecánico inicial, esto es durante la 
 
7 Biomaterial cristalino integrado por tres moléculas de fosfato de calcio y una molécula de hidróxido de 
calcio. 
Introducción 
4 | P á g i n afase de 8remodelación ósea. El recubrimiento de hidroxiapatita tiene la ventaja de ser un 
material 9osteoinductivo, sin embargo, puede desprenderse durante la inserción del 
implante. Este recubrimiento no es necesario a menos que sea usado en el tratamiento 
de un hueso débil. En general, la aplicación de recubrimientos incrementa el precio del 
implante. 
Sistema IMZ 
Éste sistema ha sido usado qurúrgicamente desde 1978. El implante no roscado se fabrica 
con titanio cp con un diámetro de 3.3 mm y longitudes de 8, 11, 13 y 15 mm. 
Los implantes de menor anchura son ventajoso en huesos con 10resorción ósea 
severa y poca 11anchura bucolingual. 
Figura 2. Implante IMZ (2). El cuerpo de este implante está gravado con ácido y tiene cuatro aberturas que permiten el 
crecimiento del hueso a través del extremo inferior. 
 
Este sistema puede utilizarse con pacientes edéntulos o parcialmente edéntulos. 
De acuerdo con varios estudios (2), un monitoreo de 8 años en 1,782 implantes IMZ 
demostró un nivel de éxito del 98% en el maxilar superior y del 97% en el maxilar inferior. 
Los fracasos documentados fueron causados por 12complicaciones periodontales y/o un 
pobre mantenimiento de la higiene bucal. 
Sistema Steri-Oss 
El implante se fabrica con titanio cp grado cuatro. Los dos tercios inferiores del implante 
son roscados y cónicos. Este diseño se fabrica con conexión al pilar protésico interna y 
externa como se observa en la Figura 3. 
Figura 3. Implante Steri-Oss. a) con conexión interna y b) con conexión externa. 
 
8
 Proceso de renovación continuo del hueso que evita la acumulación de lesiones de fatiga y hace que se 
adapte a las necesidades mecánicas del momento. 
9 Formación de hueso dentro de un implante o en las cercanías de este. 
10
 Pérdida de masa ósea. 
11
 Distancia que existe entre la cara interior y exterior de los huesos maxilares. 
12
 Infecciones, rechazo biológico. 
Introducción 
5 | P á g i n a 
 
 
Los fabricantes argumentan que después de años de pérdida inevitable de hueso, 
el cuello altamente pulido y largo queda expuesto en la encía en lugar de una superficie 
roscada, que antes estuviera en contacto con el hueso, como ocurre con otros diseños de 
implantes. El implante se encuentra con diámetros de 3.5 y 4 mm y largo de 12, 16 y 20 
mm. 
1.1 Clasificación de los implantes dentales 
Los diferentes tipos de implantes pueden ser clasificados de acuerdo a: 
1. Sitio de localización del implante 
2. Composición del implante 
3. La interfase resultante hueso-implante 
1. Sitio de localización del implante 
a) Endoóseos. Son colocados en el hueso a través de la encía. 
b) Subperiosticos. Son colocados sobre el hueso mandibular, debajo de los tejidos de 
la encía, pero no penetran en el hueso. 
c) Transóseos. Son similares a los implantes endoóseos, pero estos penetran 
totalmente la mandíbula y emergen en el sitio opuesto en la parte inferior del 
mentón. 
2. De acuerdo a la composición del implante 
a) Cerámicos. Fibra de vidrio, alúmina, aluminio cálcico y fosfato tricálcico. 
b) Carbono. Puede ser pirolítico o vítreo. 
c) Polímericos. Incluye Polimetilmetacrilato (PMMA), politetrafluoretileno (teflón) y 
fibras de carbono (proplast). 
d) Metales. Entre los más comunes se encuentran el Ti y sus aleaciones y el vitalium. 
 
 
Introducción 
6 | P á g i n a 
 
3. De acuerdo a la interfase resultante hueso-implante 
a) De interfase directa. 
Existen dos interfases consideradas como interfases directas. La primera es la 
osteointegración. Esta es la integración más deseable ya que el implante funcionará 
efectivamente. Sin embargo, cuando un implante recibe cargas inmediatamente después 
de la inserción (7) puede producirse la encapsulación de tejido conectivo fibroso. Otro 
factor que afecta una osteointegración exitosa es la contaminación de la capa de óxido del 
titanio. El titanio cp posee una capa de óxido que consta de TiO, TiO2, Ti2O3, Ti3O4, ésta 
puede atraer y rodear biomoléculas (1). La capa de óxido se contamina cuando entra en 
contacto con un metal distinto, proteína o lípido a lo que le sigue una reacción 
inflamatoria que tiene como resultado la formación de un tejido de granulación. El mal 
control de la temperatura durante el procedimiento de fresado óseo es otro factor que 
afecta la osteointegración. El hueso es sensible a la temperatura (2). Se ha identificado 
una temperatura crítica de 56 ºC, más allá de ésta el hueso se daña irreversiblemente. De 
igual forma el tejido óseo se daña cuando la temperatura ósea alcanza los 47 ºC durante 1 
a 4 min. 
La segunda es la biointegración (2) donde una capa de hidroxiapatita que recubre el 
implante la separa del hueso. Ésta es considerada de interfase directa debido a la 
capacidad osteoinductiva de la hidroxiapatita. 
b) De interfase indirecta 
Fibrointegración. Tejido fibroso que separa el metal del hueso. 
La Academia Americana de Odontología la define como (2) contacto de tejido a 
implante con tejido de colágeno denso sano entre el implante y el hueso. Esta integración 
hace referencia al tejido conectivo formado por fibras de colágeno bien organizadas 
presentes entre el implante y el hueso. Estas fibras afectan la remodelación ósea. Las 
fuerzas aplicadas no son transmitidas a través de las fibras como ocurre en la dentición 
natural. Esta integración se da cuando un cuerpo extraño presente en el organismo 
genera una organización o reacción de anticuerpos-antígenos. Esta reacción es el proceso 
de formación de anticuerpos en respuesta al cuerpo extraño mediante el cual el 
organismo trata de aislarlo rodeándolo con tejido de granulación y después con tejido 
conectivo. El grado de organización depende del material del implante. Si se utiliza cobre 
como material de éste (2) se forma una capa gruesa de tejido conectivo y el implante se 
pierde rápidamente. Esta reacción es una respuesta a los subproductos corrosivos 
presentes en la base de tejido circundante. Al utilizar acero inoxidable (AISI 316 L) como 
material del implante un tejido conectivo delgado encapsula el material. Esta 
encapsulación se vuelve gradualmente más gruesa y perjudica la función del implante. 
Con el tiempo éste se pierde. Si se utiliza vitalium u oro como material del implante se 
observan algunos ejemplos de interfase indirecta implante-hueso. 
Introducción 
7 | P á g i n a 
 
En general esta interfase es indeseada en la implantología oral, ya que genera un 
mal funcionamiento mecánico del implante, por lo que hay una mala transmisión de 
cargas, resorción de hueso, y finalmente la pérdida del implante. 
1.2 Biomateriales 
La respuesta biológica del paciente a un cuerpo extraño depende de la preparación 
traumática del lecho quirúrgico y del biomaterial utilizado. El material del implante es un 
factor importante para llegar a la osteointegración. 
 Como materiales de implantología se han usado extensamente los metales, por su 
capacidad de soporte de carga para la fijación de fracturas y para su uso como prótesis 
articulares parciales o totales por sus excelentes propiedades mecánicas y 
biocompatibilidad. 
No existen lineamientos precisos sobre la aceptación de biomateriales y su 
interfase, por lo que de acuerdo al consejo de materiales dentales de la Asociación Dental 
Americana para la aceptación de materiales de implantes endoóseos se conoce lo 
siguiente. 
Titanio 
Es uno de los biomateriales más investigados en ortopedia y usado en odontología, ya que 
ha demostrado ser un metal biocompatible y mecánicamente estable a través del tiempo. 
Se conoce como material reactivo capaz de formar una película de óxido de 20 nm estable 
que permite una 13osteogénesis de contacto. Posee un aceptable comportamiento 
biomecánico ya que es capaz de mantener funcional la 14ley de Wolff, al lograr una 
distribución favorable de cargas. 
Hidroxiapatita 
La hidroxiapatita (HAP) (8)es un material cristalino formado por átomos de calcio, fósforo 
e hidrógeno de acuerdo con la fórmula Ca10(PO4)6(OH)2. Éste mineral se encuentra 
presente en huesos y dientes, es lo que les proporciona su dureza. Los principales 
componentes químicos de la HAP son el calcio y el fosfato. 
En la implantología es utilizada como recubrimiento en implantes metálicos con el fin de 
favorecer la osteointegración. Igualmente es utilizada en forma de bloques porosos para 
la corrección de defectos óseos o el aumento de masa ósea. La HAP sintética contiene 
porcentajes mínimos de sodio, cloro y magnesio, los cuales juegan un papel importante en 
 
13
 Capacidad de no reacción que permite el crecimiento óseo hasta su superficie. 
14 Enuncia que todo cambio en la conformación estructural de un hueso es producto de un fenómeno 
dinámico de adaptación a las demandas mecánicas que le impone el medio. 
Introducción 
8 | P á g i n a 
 
su función remodeladora. Éstas son obtenidas a partir de fosfatos dicálcicos y tricálcicos. 
Presentan una pobre resistencia mecánica, además de disolverse fácilmente. Por lo que 
no es deseable para la sustitución ósea. Una solución es usar la HAP que se obtiene del 
hueso bovino. 
Otros materiales 
Son las aleaciones metálicas como vitalium o productos cerámicos no bioactivos como el 
carbono vítreo. En la unión de estos con el tejido óseo se ha visto interpuesta una capa de 
tejido fibroso produciéndose una 15osteogénesis. A esto se le define como 
Fibrooseointegración. 
1.3 Criterios para la selección del paciente 
El tratamiento por medio de implantes osteointegrados es ideal para personas incapaces 
de usar dentaduras completas, que además tienen una cantidad de hueso adecuado para 
inserción de los implantes. La excepción para este tratamiento son las personas con 
enfermedades crónicas e incontrolables y anormalidades de membranas mucosas o de 
maxilares. 
Indicaciones y contraindicaciones para el tratamiento 
Indicaciones 
1. Personas parcial o totalmente edéntulas. 
2. Cambios severos en tejidos que soporten una dentadura completa. 
3. Pobre coordinación muscular oral. 
4. 16Hábitos parafuncionales que comprometen la estabilidad de la prótesis. 
5. Expectativas del paciente no reales sobre la dentadura completa. 
6. Reflejo de náuseas hiperactivo. 
7. Actitud psicológica del paciente contra prótesis removibles. 
8. Pérdida de un solo diente. 17Se evita la preparación de un diente sano para 
soportar un puente. 
9. Posibilidades de rehabilitación incluyendo el grado de apertura bucal (45 mm). 
 
 
15 Formación y desarrollo del tejido óseo. 
16
 Tales como bruxismo (apretar o rechinar los dientes), respiración bucal, hipotonía e hipertonía (mal 
funcionamiento muscular durante la masticación) (39). 
17
 Una práctica común en la odontología es el uso de puentes fijos soportados en piezas dentales 
adyacentes. En este procedimiento se daña un diente sano para soportar el puente. 
Introducción 
9 | P á g i n a 
 
Contraindicaciones relativas 
1. 18Patología de tejidos duros o blandos. 
2. Sitios de extracción reciente. 
3. Pacientes con abuso de drogas, alcohol o tabaco. 
4. Pacientes con dosis bajas de irradiación. 
5. Pacientes niños o adolescentes (a consideración del médico). 
Contraindicaciones absolutas 
1. Pacientes con dosis altas de irradiación. 
2. Pacientes con problemas psiquiátricos como psicosis y 19dismorfofobia. 
3. Trastornos sistémicos hematológicos. 
Evaluación médica 
El estado de salud del paciente es de suma importancia para lograr una sustitución dental 
satisfactoria. La cirugía maxilar es un procedimiento complejo cuyo éxito depende de una 
correcta evaluación médica, de la habilidad quirúrgica del cirujano, del protocolo de 
asepsia y por último de la elección de los implantes a colocar. 
 En el proceso de planeación quirúrgica se deben considerar los factores de riesgo 
biomecánico. 
1. Geométricos. Número de implantes, posición prevista y diseño de la prótesis. 
2. Oclusales. Contactos laterales importantes durante los movimientos excursivos de 
la mandíbula. 
3. Del hueso y los implantes. Soporte sobre tejido óseo recién formado. Implantes 
de dimensiones inferiores a las consideradas idóneas para la sustitución dental. 
Límites anatómicos para la colocación de implantes 
Maxilar superior 
Se entiende como región anterior, la zona donde se sitúan los dientes incisivos. La región 
posterior da cabida a los premolares y molares. 
Región anterior. En muchos pacientes existen limitaciones anatómicas en el 
maxilar superior. La cavidad nasal y los senos maxilares normalmente interfieren en la 
selección de la localización de la fijación, especialmente en pacientes con severa resorción 
 
18
 Lesiones orales debidas a tabaco, calor, radiación, patologías congénitas, enfermedades periodontales, 
infecciones víricas, trastornos del desarrollo y crecimiento, etc. 
19
 Trastorno de la percepción corporal que consiste en una preocupación exagerada por algún defecto 
inexistente en la apariencia física. 
Introducción 
10 | P á g i n a 
 
de hueso. Cuando la resorción del hueso es grande la disponibilidad del mismo puede 
limitarse a áreas caninas. Ésta área puede acomodar fijaciones de hasta de 15 mm. Con 
una cantidad adecuada de hueso pueden colocarse hasta seis fijaciones para soportar una 
prótesis de anclaje óseo completo (2). 
Región posterior. Debido a la acelerada resorción ósea y la calidad del hueso, es 
inusitado colocar implantes en las áreas molares maxilares. El área premolar tiene 
normalmente una altura de hueso adecuado para la colocación de implantes. 
Maxilar inferior 
De igual manera que en el maxilar superior, en la región anterior se encuentran los 
dientes incisivos y en la región posterior los premolares y molares. 
Región anterior. La región mandibular anterior dispone normalmente de hueso 
adecuado para la colocación de seis fijaciones. Para una longitud de fijaciones adecuada 
se necesita un mínimo de 7 mm de longitud desde el borde anterior de la mandíbula hasta 
el borde posterior (2). En la elección de la longitud del implante es de suma importancia 
considerar una tolerancia anatómica de seguridad. El canal mandibular, donde se aloja el 
nervio mentoniano, se extiende hasta 5 mm por delante del 20agujero mentoniano. Si se 
dañase este nervio puede provocarse una parálisis facial. 
Región posterior. En esta región la colocación de fijaciones puede resultar difícil 
debido al nervio alveolar. Para establecer un margen de seguridad, debe haber un espacio 
mínimo de 1 mm entre el implante y el canal alveolar inferior (2). 
1.4 Planificación y secuencia del tratamiento 
El objetivo de la planificación quirúrgica en la cirugía oral y maxilofacial es la optimización 
del resultado quirúrgico en los aspectos funcional y estético. El prerrequisito para ésta es 
la obtención de los datos de imagenología preoperatorios del paciente. Esta información 
constituye una guía anatómica para la planificación del tratamiento. 
La planificación quirúrgica apoyada en la tomografía axial computarizada (TAC) 
permite al cirujano conocer con exactitud las condiciones morfológicas del paciente, la 
cantidad y calidad ósea así como la selección de tamaño y localización más adecuada de 
los implantes. El establecimiento de una planificación y secuencia del tratamiento 
permiten lograr una tasa de éxito elevada haciendo el resultado del proceso más 
predecible. 
Generalmente un tratamiento con implantes sigue la secuencia: 
 
20
 Es la abertura para el nervio alveolar inferior y el grupo de arterias que sale como nervio mentoniano, y 
que se distribuye a través de la barbilla y el labio inferior. 
Introducción 
11 | P á g i n a 
 
1. Examenclínico y diagnóstico 
2. Exploración (examen radiográfico, TAC) 
3. Fabricación de una guía quirúrgica 
4. Fase protésica y quirúrgica 
5. Fase de mantenimiento 
 El alcance de este trabajo se limita a la planeación del proceso de fabricación de 
implantes dentales a la medida. La técnica de exploración sugerida es la tomografía 
computarizada. El diagnóstico de la situación del paciente involucra la identificación de 
las condiciones estructurales del hueso, el número de piezas dentales faltantes, y el 
espacio disponible para la inserción de implantes. Por lo que se abordará únicamente el 
segundo punto. 
Exploración 
Se realiza mediante estudios de imagenología. Se puede realizar mediante radiografía o 
tomografía computarizada. Se observa la anatomía de los maxilares así como las 
características del tejido óseo, que son: 
1. Volumen óseo (2). Cantidad total de hueso en la que teóricamente es posible 
colocar un implante en una determinada región. El volumen de hueso necesario 
para este tipo de restauración es de 8 x 8 x 10 [mm]. 
2. Volumen de hueso útil (2). Cantidad de hueso que puede utilizarse en una 
situación clínica determinada, teniendo en cuenta las condiciones relativas a la 
prótesis (estéticas y funcionales). Si el volumen útil es menor que el volumen 
disponible el plan de tratamiento protésico debe ser reconsiderado. 
3. Densidad ósea. La densidad ósea es un factor crítico en la planificación del 
tratamiento. A partir de esta se toman decisiones tan importantes como lo son: 
a. El diámetro de los implantes 
b. Frecuencia óptima de fresado 
c. Capacidad de carga del hueso 
d. Duración del periodo de cicatrización 
e. La capacidad de carga oclusal de los diferentes implantes. 
Técnicas de diagnóstico por imagen 
Radiografía 
La evaluación radiográfica es la técnica más simple y económica, pero presenta algunas 
desventajas frente a la TAC. En la Tabla 1 se enlistan las ventajas y desventajas del uso de 
la radiografía como técnica de exploración. 
Introducción 
12 | P á g i n a 
 
Figura 4. Radiografía de hueso maxilar (1). Las radiografías muestran la mayor distancia bucolingual A, pero no en el 
mismo plano. Con la radiografía es posible observar el ancho del hueso B en la región anterior (flecha verde). 
 
Tabla 1. Ventajas y desventajas de la radiografía. 
Ventajas Desventajas 
 Simplicidad de la técnica. 
 Fiabilidad suficiente para 
densidades medias. 
 Excelente visualización de los 
tejidos blandos. 
 Libre elección de los planos de 
las imágenes. 
 Bajo costo. 
 
 Fallas inherentes a la manipulación de las placas 
radiográficas mediante el proceso de revelado. 
 Visualización bidimensional de una estructura 
tridimensional. 
 La distorsión inducida por dispositivos específicos o por 
el paciente. 
 Superposición de estructuras. 
 Resolución y nitidez reducidas. 
Tomografía computarizada 
Este método de exploración proporciona imágenes en cortes axiales. El tomógrafo mide 
la absorción de rayos X conforme pasan a través de una sección del cuerpo desde ángulos 
diferentes, posteriormente con los datos de estas medidas es posible reconstruir la 
imagen del corte en la computadora (9). Las imágenes así obtenidas nunca sufren 
distorsiones ni magnificación, por lo que las medidas que se obtienen son reales. 
Figura 5. Plano de corte de una imagen tomográfica. Las tomografías convencionales resultan en una imágen de sección 
transversal (1). 
 
 Las imágenes de una tomografía son imágenes en 3D, típicamente de 512 x 512 
pixeles con un espesor definido por la separación de los cortes. Esto es importante 
porque a partir de la saturación de pixeles de la imagen es posible identificar los 
Introducción 
13 | P á g i n a 
 
diferentes tipos de tejidos y en concreto, el tipo de hueso que hay en los maxilares. Éste 
método de exploración responde a todas las exigencias de un estudio de implantología. 
Sin embargo posee algunas desventajas comparado con el examen radiográfico, como se 
enlistan en la Tabla 2. 
Tabla 2. Ventajas y desventajas de la TAC 
Ventajas Desventajas 
 Reducción de las dosis de radiación. 
 Permite la determinación de la densidad 
ósea en cualquiera de los posibles sentidos 
de colocación del implante. 
 Reconstruye imágenes de los maxilares 
desde cualquier punto de partida. 
 Permite realizar una réplica anatómica 
exacta para el diseño de implantes. 
 Presentación local reproducible y precisa. 
 Representación de alto contraste de las 
estructuras óseas. 
 Técnica sensible. 
 Requiere una computadora con un 
software adecuado. 
 Gran tamaño de la máquina. 
 Incrementa el costo total del tratamiento. 
 Necesidad de múltiples imágenes. 
 
1.5 Calidad ósea 
Existen múltiples clasificaciones de la calidad y la cantidad de hueso remanente en zonas 
edéntulas del maxilar y la mandíbula. Las más utilizadas son la de Lekholm y Zarb en 1984 
(10) y la de Mish en 1990 (1). 
 La consideración de una u otra clasificación concierne al cirujano maxilofacial y al 
ingeniero de diseño. El presente trabajo considera la clasificación de Mish para la 
evaluación anatómica de un determinado caso clínico. 
Clasificación de Mish para la densidad ósea 
El hueso se compone de material orgánico e inorgánico, el primero es el colágeno, que 
representa aproximadamente el 90% del contenido orgánico del hueso y es responsable 
de darle al hueso su elasticidad. El segundo de ellos es la hidroxiapatita. Éste material le 
confiere su rigidez y es un importante aporte de minerales para el organismo, como lo son 
el calcio, fosforo, sodio y magnesio. 
 El hueso cortical denso o poroso se encuentra en las superficies externas del hueso 
e incluye la cresta de un alveolo edéntulo. Las trabéculas gruesas y finas se encuentran en 
la cortical externa ósea. 
 En la Figura 6 se muestran estas cuatro densidades óseas localizadas en las áreas 
edéntulas del maxilar y la mandíbula. Aparecen de la menor D1 a la mayor D4. 
Introducción 
14 | P á g i n a 
 
Figura 6. Tipos de hueso de acuerdo a la clasificación de Mish (1). 
 
 El hueso D1 es el hueso cortical principalmente denso. El hueso D2 presenta hueso 
cortical denso a poroso, espeso en la cresta y trabecular denso. El hueso D3 tiene una 
cortical fina porosa y un hueso trabecular fino. Por último, el hueso D4 casi no presenta 
hueso cortical, la mayor parte de volumen óseo se compone de hueso trabecular poroso. 
 La densidad del hueso es un factor de gran relevancia para el diseño un plan de 
tratamiento. Los huesos de tipo D1 y D2 son en general los huesos más aptos para recibir 
implantes puesto que son los más resistentes. En la Tabla 3 se presenta una comparación 
de los cuatro tipos de hueso con otros materiales, así como su localización típica en los 
maxilares. 
Tabla 3. Esquema de la clasificación de Mish de la densidad ósea (1) 
Densidad 
ósea 
Descripción Similitud táctil Localización anatómica 
típica 
D1 Cortical densa Madera roble o 
arce 
Zona anterior mandibular 
D2 Cortical porosa y trabéculas gruesas Pino blanco o 
abeto 
Zona anterior mandibular 
Zona posterior mandibular 
Zona anterior maxilar 
D3 Cortical porosa (delgada) y trabéculas 
finas 
Madera de balsa Zona anterior maxilar 
Zona posterior maxilar 
Zona posterior mandibular 
D4 Trabéculas finas Poliestireno Zona posterior mandibular 
Determinación de la densidad ósea 
La determinación de la densidad ósea por medio de una tomografía computarizada TAC se 
realiza asignando una Unidad Hounsfield (UH) a cada uno de los 260,000 pixeles que se 
obtienen en una tomografía. Esta UH está relacionada con la densidad de los tejidos en el 
pixel. En general cuanto más alto es la UH más denso es el tejido (1). 
La densidad ósea según la clasificación de Mish puede evaluarse con la TAC mediante la 
correlación de un rango de UH, como se muestra en la Tabla 4. 
Introducción 
15 | P á g i n a 
 
Tabla 4. Determinación de densidades óseasmediante TAC (1). 
Tipo de hueso Unidades Hounsfield 
(UH) 
D1 >1,250 
D2 850 a 1,250 
D3 850 a 350 
D4 150 a 350 
D5 <150 
1.6 Metodología de diseño 
El diseño se realizó basado en la metodología de diseño total propuesta por Stuart Pugh 
(11). El diseño total es la actividad sistemática que se lleva a cabo para identificar el 
mercado y sus necesidades, con el fin de asegurar un producto exitoso que satisfaga tales 
necesidades. 
 La fase de diseño toma en cuenta diversos factores como lo son el producto, el 
proceso de fabricación, la mano de obra y la organización necesarios para la obtención del 
producto. La metodología del diseño total propuesta por Pugh consta de seis etapas. 
1. Identificación de la necesidad 
2. Planteamiento de las especificaciones del dispositivo 
3. Diseño conceptual 
4. Diseño del detalle 
5. Manufactura 
6. Ventas 
El alcance establecido para éste trabajo de tesis llega hasta el proceso de manufactura. 
 
Normatividad para productos sanitarios 
16 | P á g i n a 
 
2 Normatividad para productos sanitarios 
Las normas son regulaciones técnicas de cumplimiento obligatorio que establecen reglas, 
especificaciones y características aplicables a un producto, actividad o servicio, métodos 
de producción u operación. Estas regulaciones técnicas garantizan que los servicios o 
productos que se comercializan cumplan con parámetros determinados. De igual forma le 
brindan la seguridad al consumidor de que lo que adquiere cumple con lo que declara en 
el empaque. 
 En México la Ley Federal sobre Metrología y Normalización se encarga de regular y 
sistematizar el cumplimiento de las Normas Oficiales Mexicanas (NOMs) y las Normas 
Mexicanas (NMXs). Estas últimas establecen los requisitos mínimos de calidad, pero no 
son de carácter obligatorio. 
 En éste trabajo no se intenta llevar a cabo un proceso de certificación, ni un 
registro sanitario para los productos diseñados. No obstante, es importante que se 
conozcan los requisitos que debe cumplir un dispositivo sanitario y de uso médico para 
garantizar la seguridad y calidad del producto (12). El registro de trámite sanitario es un 
trámite que se debe llevar a cabo en el futuro. Es por esto que se detallan los requisitos 
normativos, en México, relativos a la manufactura y embalaje de dispositivos de uso 
médico, con el fin de asegurar una buena práctica de fabricación y documentación 
relativas al producto. 
2.1 Registro sanitario de dispositivos médicos 
La ley General de Salud (LGS) establece los lineamientos que debe seguir un insumo para 
la salud para obtener un registro sanitario. Los dispositivos médicos requieren contar con 
este registro para poder ser fabricados, distribuidos, comercializados o usados en nuestro 
país. Este registro es la autorización que el Gobierno Federal otorga una vez que el 
fabricante ha demostrado ante evidencias documentadas que el producto es seguro y de 
calidad. 
Fundamento legal 
El artículo 194-BIS de la LGS (13) establece como insumos para la salud los medicamentos, 
sustancias psicotrópicas, estupefacientes y las materias primas y aditivos que intervengan 
para su elaboración, así como los equipos médicos, prótesis, ortesis, ayudas funcionales, 
agentes de diagnóstico, insumos de uso odontológico, material quirúrgico, de curación y 
productos higiénicos. Asimismo el artículo 376 de la LGS (13) establece que el registro 
sanitario debe realizarse para cualquier insumo para la salud. 
Normatividad para productos sanitarios 
17 | P á g i n a 
 
 Prótesis, ortesis y ayudas funcionales. 
De acuerdo a la LGS, estos son todos los dispositivos destinados a sustituir o 
complementar una función, órgano, o un tejido del cuerpo humano. Los implantes 
endoóseos se encuentran en esta clasificación. 
Clasificación de Dispositivos Médicos 
El Comité Técnico de Insumos para la Salud clasifica los dispositivos médicos en tres 
categorías de acuerdo a su nivel de riesgos a la salud. Los dispositivos médicos son 
clasificados de la siguiente forma: 
 Equipo médico. Aparatos, accesorios e instrumental destinados específicamente 
para la atención médica, quirúrgica o procedimientos de exploración, diagnóstico, 
tratamiento y rehabilitación de pacientes. Así como aquellos para efectuar 
actividades de investigación biomédica. 
 Prótesis, ortesis y ayudas funcionales. La prótesis sustituye una función, órgano o 
tejido, mientras que la ortesis solamente complementa la función carente 
 Agentes de diagnóstico. Todos los insumos incluyendo antígenos, anticuerpos 
calibradores, verificadores o controles, reactivos, equipos de reactivos, medios de 
cultivo y de contraste y cualquier otro similar que pueda utilizarse como auxiliar de 
otros procedimientos clínicos o paraclínicos. 
 Insumos de uso odontológico. Son todas las sustancias o materiales empleados 
para la atención de la salud dental. 
 Materiales quirúrgicos y de curación. Dispositivos o materiales que adicionados o 
no de antisépticos se utilizan en la práctica quirúrgica o en el tratamiento de las 
soluciones de continuidad, lesiones de la piel o sus anexos. 
 Productos higiénicos. Materiales y sustancias que se apliquen en la superficie de la 
piel o cavidades corporales y que tengan acción farmacológica o preventiva. 
Asimismo, los dispositivos médicos se clasifican de acuerdo con el riesgo que implica su 
uso. 
Clase I. Son aquellos insumos conocidos en la práctica médica y que su seguridad eficacia 
están comprobadas. No suelen introducirse al organismo. 
Clase II. Son los insumos conocidos en la práctica médica y que pueden tener variaciones 
en el material con el que están elaborados o en su concentración. Generalmente se 
introducen al organismo permaneciendo ahí menos de treinta días. 
Normatividad para productos sanitarios 
18 | P á g i n a 
 
Clase III. Son insumos recientemente aceptados en la práctica médica, o bien que se 
introducen al organismo permaneciendo en él por más de treinta días. 
 De acuerdo con esta clasificación (13, 14), los tornillos o alambres de fijación 
intraósea se ubican en la clase III. 
Requisitos 
Para realizar el registro de trámite sanitario existe una serie de requisitos a desarrollar. Se 
detallan a continuación los requisitos para realizar el registro de trámite sanitario que se 
relacionan directamente con el método de fabricación, esterilización y embalaje del 
producto, puesto que el alcance previsto de este trabajo incluye estos rubros. 
1. Buenas prácticas de fabricación 
2. Formato y Solicitud de pago 
2.1 Aviso de funcionamiento del establecimiento y de Aviso del responsable sanitario 
3. Información científica y técnica 
3.1 Información general 
3.2 Listado de accesorios 
3.3 Etiqueta 
3.4 Instructivo de uso 
3.5 Manual de operación 
3.6 Descripción o diagrama de los componentes principales y estructura 
3.6.1 Lista de materiales usados en el dispositivo 
3.7 Declaración de fórmula cuali-cuantitativa por unidad de medida, dosis o 
porcentual 
3.8 Materias primas 
3.9 Información técnica y científica que soporte las características de atoxicidad, 
seguridad y eficacia, del dispositivo. 
3.9.1 Información del proceso de fabricación 
3.9.2 Información sobre el proceso de esterilización 
3.9.3 Información sobre el envase 
3.9.4 Información sobre el control del producto terminado 
3.10 Certificado de análisis 
3.11 Métodos analíticos 
3.11.1 Estudios de estabilidad 
3.11.2 Estudios de tecno vigilancia 
3.11.3 Reportes de estudios aplicables a productos implantables 
3.12 Estudios preclínicos y de biocompatibilidad 
3.13 Resumen y conclusiones de estudios clínicos 
4. Documentos legales 
4.1 Certificado de libre venta o equivalente 
4.2 Certificado de buenas prácticas de fabricación 
4.3 Carta de representación 
Normatividad para productos sanitarios 
19 | P á g i n a 
 
5. Cuando el producto sea maquilado 
5.1 Convenio o contrato de maquila 
5.2 Certificado de buenas prácticas de fabricación 
Los puntosa desarrollar en la fase de fabricación de un implante se detallan a 
continuación. 
Información General 
 Incluye al menos el nombre genérico del producto, nombre comercial y forma 
física o farmacéutica, finalidad de uso y presentaciones. Se debe incluir el listado de 
presentaciones del producto que incluya su descripción. 
Listado de accesorios 
Para el registro de equipos se puede incluir el listado de accesorios que se suministren con 
el mismo para que sean incluidos en el oficio de registro. 
Instructivo de Uso 
Para los dispositivos médicos que requieran de instrucciones detalladas para su buen uso 
o funcionamiento y que no requieran de un manual de operación, el instructivo debe 
contener la siguiente información. 
Descripción del producto. 
Listado de componentes. 
Finalidad de uso. 
Condiciones de conservación y almacenamiento, cuando aplique. 
Precauciones. 
Advertencias y leyendas alusivas correspondientes. 
Eventos adversos, cuando aplique. 
Descripción o diagrama de los componentes funcionales, partes y estructura 
Para equipo médico, prótesis, ortesis o ayudas funcionales se debe presentar descripción 
o diagrama de los componentes funcionales, partes y estructura. Esta información se 
puede presentar con un diagrama, esquema o imagen que represente al dispositivo 
médico. Para los productos que permanecen en el organismo como lo son los implantes 
se debe incorporar la lista de materiales utilizados para su manufactura indicando el 
nombre, composición y la función que desempeñan. 
Información técnica y científica 
Se debe presentar el expediente con la información científica y técnica que describa las 
características del dispositivo médico y que demuestre la seguridad y eficacia del mismo. 
Así como la documentación legal correspondiente conforme a los lineamientos siguientes: 
Normatividad para productos sanitarios 
20 | P á g i n a 
 
1. Información que soporte las características de biocompatibilidad, seguridad y 
eficacia del dispositivo médico, para aquellos productos que por sus 
condiciones de uso, función o permanencia en el organismo así lo requieran. 
Además de lo anterior se debe cumplir con: 
a. Información del proceso de fabricación. Para todos los dispositivos 
médicos se debe incluir una descripción o diagrama de flujo del proceso de 
fabricación. 
b. Información sobre el proceso de esterilización. Para productos estériles se 
debe proporcionar la información siguiente: 
i. Tipo de proceso de esterilización. 
ii. Resumen de la validación del proceso de esterilización. 
c. Información sobre el envase. Para todos los dispositivos médicos excepto 
equipo médico, se debe incluir la siguiente información: 
i. Descripción breve del envase primario y en su caso el secundario. 
Descripción de los materiales que lo componen y que garantizan su 
estabilidad, hermeticidad y esterilidad. 
ii. Pruebas de hermeticidad en los empaques para productos estériles 
que se administran o estén en contacto directo con el paciente. 
En general, esta información debe ser indicada en el momento de presentar un dispositivo 
como producto terminado y no solo para realizar el registro sanitario de éste. 
 
Diseño y manufactura 
21 | P á g i n a 
 
3 Diseño y manufactura 
En éste capítulo se incluye el proceso de diseño de un implante dental con características 
base, a partir de las cuales es posible modificar las dimensiones de éste, respetando el 
diseño establecido. Se realizó un análisis por medio de elemento finito para verificar la 
seguridad del diseño. Igualmente se presenta el método de manufactura. Este desarrollo 
se realizó mediante el uso de tecnologías de Diseño Asistido por Computadora (por sus 
siglas en inglés CAD) y Manufactura Asistida por Computadora (por su siglas en inglés 
CAM). 
3.1 Necesidades 
El estudio de las necesidades del usuario respecto a un producto es un factor 
determinante del éxito de este. Para conocer las necesidades del paciente es necesario 
realizar una investigación de estas. Se requiere entonces, plantear ¿qué es lo que se 
busca? y ¿cómo se puede obtener esta información? 
 El planteamiento de estas interrogantes condujo al establecimiento de criterios de 
búsqueda para la documentación de este proyecto con palabras clave en el campo de la 
implantología maxilar como lo son: osteointegración, aplicaciones biomédicas del titanio y 
sus aleaciones, evaluación biomecánica de implantes de titanio, entre otras relacionadas. 
 Las fuentes de información consultadas han sido patentes sobre el diseño de 
algunos modelos de implantes dentales roscados, artículos científicos que avalan el 
desarrollo tecnológico en materia de implantología oral, libros de texto, además de 
realizar un benchmarking para conocer qué empresas actualmente desarrollan estos 
productos. 
 En la actualidad en el mercado se encuentran disponibles una gran variedad de 
marcas y modelos de implantes orales. Todos estos son producidos con un limitado 
número de opciones dimensionales, tanto en longitud como en diámetro, por lo que el 
usuario o profesional de la implantología debe elegir entre los implantes existentes. Es 
indudable que las necesidades implantológicas son muy específicas para cada paciente. Si 
bien el objetivo siempre es la sustitución dental, cada caso clínico es diferente debido que 
las características antropométricas y estado de salud son específicas de cada persona. Por 
lo que un implante con ciertas dimensiones sólo puede aproximarse a satisfacer una 
necesidad que es muy específica. 
 Es posible resumir la necesidad de generar un implante a la medida de cada 
paciente como: minimizar el trauma durante la cirugía, optimizar el uso de hueso 
Diseño y manufactura 
22 | P á g i n a 
 
disponible, asegurar la estabilidad mecánica del implante y lograr una distribución de 
carga uniforme sobre el hueso. 
3.2 Especificaciones 
La función de los implantes dentales es transferir las cargas de la masticación a los tejidos 
biológicos contiguos. Por lo tanto el objetivo funcional principal del diseño es controlar 
(disipar y distribuir) las cargas biomecánicas para optimizar la función de la prótesis 
implanto-soportada (1). 
 Las mayores fuerzas naturales que se ejercen sobre la dentadura y por 
consiguiente sobre una prótesis dental implanto-soportada ocurren durante la 
masticación. La fuerza de mordida máxima que puede aplicarse en los dientes varía de un 
individuo a otro. Existen estudios que han medido estas fuerzas de masticación (15). En 
general se observa que los hombres muerden con más fuerza que las mujeres. La carga de 
mordida máxima de una mujer oscila entre 38.5 y 44.9 kg, mientras que la del hombre se 
encuentra entre 53.6 y 64.4 kg. Cabe señalar que la fuerza que puede llegar a aplicarse 
sobre un molar puede ser varias veces la que puede aplicarse a un incisivo. Las cargas 
máximas aplicadas a los molares pueden ser de 41.3 a 89.8 kg, mientras que las aplicada a 
los incisivos centrales varían entre 13.2 a 23.1 kg. En general un implante osteointegrado 
deberá soportar cargas de masticación de hasta 1000 N (1). 
 La forma de un implante es muy importante para determinar la respuesta ósea. El 
hueso en crecimiento se concentra preferentemente en los elementos salientes de la 
superficie del implante como lo son los rebordes de la rosca, las crestas o los dientes 
adyacentes (1). Asimismo, la forma del implante determina la superficie disponible para 
transferir la carga cuando se controla la fijación primaria del implante, esto es, durante la 
fase de cicatrización y remodelación ósea inicial. 
 En el mercado se encuentran dos diseños de implantes principalmente abundantes 
cuya forma primaria es cilíndrica, estos son lisos y roscados. La elección del tipo de 
implante a emplear en el tratamiento de un paciente depende principalmente del hueso 
receptor. Se ha encontrado que (1) si el cuerpo del implante tiene una superficie lisa 
existe el riesgo de sufrir una pérdidaósea debido a una inadecuada transferencia de 
cargas. La colocación quirúrgica de este tipo de implante es más sencilla que la de un 
implante roscado. Una desventaja importante de éste diseño es que la interfase hueso-
implante se somete a grandes condiciones de cizallamiento, lo que genera una resorción 
del hueso adyacente a la superficie lisa del implante, que dará como resultado la 
movilidad o deseada del mismo. A pesar de que pueden aplicarse recubrimientos 
superficiales al implante para aumentar la superficie funcional y fomentar la remodelación 
del hueso en la periferia del mismo éste tipo de diseño no es recomendable para una larga 
vida útil, ni para pacientes totalmente edéntulos. 
Diseño y manufactura 
23 | P á g i n a 
 
 Por el contrario, los implantes roscados son fáciles de colocar quirúrgicamente y 
permiten una mayor optimización de la superficie funcional para transmitir cargas de 
compresión al hueso. Además tienen una mayor estabilidad primaria al limitar los 21micro 
movimientos durante el proceso de cicatrización con lo que se acorta el tiempo de la 
misma. 
 El ancho del implante también repercute en la optimización del espacio. Al 
aumentar adecuadamente el ancho se aumenta el área sobre la cual pueden disiparse las 
fuerzas oclusales (1). La mayoría de los dientes naturales tienen un ancho entre 6 y 12 
mm. Un implante de titanio es de 5 a 10 veces más rígido que un diente natural. Según 
Mish (1) la anchura de un implante no debe ser mayor que 6 mm, ya que esto produciría 
una acumulación de tensiones y las fuerzas no se transmitirían de manera adecuada al 
hueso, con lo que se produciría una resorción ósea mayor. 
 Tomando como partida para el diseño de un implante se ha recurrido a la consulta 
de diseños y estudios previamente realizados para la selección de las características 
principales de este. Partiendo de una rigurosa selección de los parámetros se eligieron las 
especificaciones a considerar. En los siguientes puntos se presentan los criterios de 
selección de las características físicas del implante, así como su justificación funcional. 
3.2.1 Apariencia 
El implante tiene una geometría cilíndrica roscada. Consta de tres partes funcionales 1) el 
ápice donde se encuentra una serie de muescas que permiten la inserción del mismo en el 
hueso y la descompresión de las cargas durante la cicatrización, 2) el cuerpo y 3) el cuello 
donde se encuentra el sistema de conexión al soporte protésico. En la Figura 7 se señalan 
los elementos del diseño del implante. 
Figura 7. Partes funcionales del implante. 
 
 
21
 Durante la fase de remodelación ósea es importante que el implante permanezca estático, el movimiento 
del implante o la aplicación de cargas prematuramente puede afectar el proceso de osteointegración, 
retardándolo o impidiéndolo. 
Diseño y manufactura 
24 | P á g i n a 
 
 El cuerpo tiene una superficie ya sea lisa, obtenida por el proceso de maquinado, o 
rugosa a consecuencia de la aplicación de un revestimiento superficial. La cabeza, donde 
se monta la prótesis dental tiene un acabado altamente pulido para reducir la 
acumulación de placa. 
3.2.2 Materiales 
El uso del titanio y sus aleaciones para aplicaciones biomédicas y dentales se ha 
incrementado en gran manera durante las últimas cinco décadas. Históricamente el 
titanio se ha utilizado en aplicaciones aeroespaciales, aeronáuticas y marítimas debido a 
su alta resistencia y rigidez, baja densidad y bajo peso correspondiente, su capacidad de 
soportar altas temperaturas y su resistencia a la corrosión (16). 
 Las nuevas tecnologías para el procesamiento de materiales, tales como 
maquinado por control numérico CNC y el maquinado por electro descarga EDM han 
permitido el uso de este material en aplicaciones biomédicas. A lo largo de su uso en la 
odontología el titanio y sus aleaciones han demostrado una excelente biocompatibilidad y 
propiedades mecánicas (1, 17). 
 Las aleaciones de titanio más comunes en estas aplicaciones se encuentran en el 
reemplazo artificial de articulaciones de cadera y rodilla, prótesis de válvulas cardiacas, en 
corazones artificiales entre otros. De igual modo ha tenido un gran uso en aplicaciones 
odontológicas como lo son los implantes dentales, coronas dentales, puentes y 
sobredentaduras. En donde el titanio cp ha sido el material preferente para implantes 
sumergidos en hueso. Se ha probado la manufactura de implantes en la aleación Ti-6Al-
4V por su mejora en las propiedades mecánicas respecto al Ti cp, sin embargo, su uso ha 
sido reconsiderado porque tienen un posible efecto tóxico derivado de la liberación de 
aluminio y vanadio (18). Por esta razón se han propuesto aleaciones libres de vanadio y 
aluminio basadas en la aleación que contienen neobidio, molibdeno o zirconio. 
 El titanio cp se encuentra con diferentes grados de pureza, del grado 1 al 4 y grado 
5 para la aleación Ti-6Al-4V. Estos se caracterizan por su contenido de O2, C y Fe (18, 19). 
Las principales propiedades físicas que hacen del titanio un material de excelente 
biocompatibilidad son (18) su bajo nivel de conductividad electrónica, alta resistencia a la 
corrosión, baja tendencia a la formación de iones en ambientes acuosos, punto 
isoeléctrico22 del TiO2 de 5-6 y que presenta estados termodinámicos estables a valores de 
pH fisiológicos (el pH del hueso es normalmente 5). Las propiedades mecánicas de 
diferentes grados de Ti cp se enlistan en la Tabla 5. 
 
 
22
 pH al que una sustancia anfótera (aquella que puede reaccionar ya sea como una base o como un ácido) 
tiene carga neta cero. 
Diseño y manufactura 
25 | P á g i n a 
 
Tabla 5. Propiedades mecánicas de los grados de titanio (18). 
 Grado ASTM 
Propiedad 1 2 3 4 5 
Esfuerzo de fluencia [MPa] 170 275 380 550 795 
Resistencia a la tracción mín [MPa] 240 345 450 550 860 
Elongación (%) 24 20 18 15 10 
Módulo de elasticidad [GPa] 103-107 103-107 103-107 103-107 114-120 
 De los cuatro grados de Ti cp el grado uno tiene la mayor pureza, menor resistencia 
y la mejor ductilidad a temperatura ambiente. El grado dos tiene un mínimo esfuerzo de 
cedencia de 250 MPa. Es comparable al acero inoxidable austenítico recocido. El titanio 
grado tres tiene un contenido máximo de Fe de 0.3 wt%, mientras que el grado cuatro lo 
tiene de 0.5, éste tiene la mayor resistencia de los cuatro grados de titanio cp. El grado 
cinco es el grado más extensamente usado en la manufactura de implantes médicos, pero 
su uso no es muy común en implantes dentales. El Ti cp grado 4 es el grado de Ti más 
resistente, sin embargo aún existe la necesidad de mejorar sus propiedades mecánicas sin 
comprometer su biocompatibilidad y seguridad. De aquí surge la propuesta de 
manufacturar implantes con titanio de grano ultra fino, que de acuerdo con estudios 
realizados (18) tiene una resistencia a la tracción máxima de 1240 MPa mientras mantiene 
una ductilidad del 11 %. 
 Existe una gran cantidad de información y estudios realizados para probar la 
biocompatibilidad, funcionalidad y estabilidad inerte de diferentes materiales a largo 
plazo. De acuerdo a la información presentada, el material para la manufactura de 
implantes dentales es el Ti cp grado 4, gracias a que es el más resistente de los cuatro 
grados de titanio. 
3.2.3 Tamaño 
Las dimensiones de longitud y diámetro de un implante dental son una decisión que 
depende del caso clínico. Las dimensiones comerciales en las que se manufacturan la 
mayoría de los implantes se encuentran en un rango de 7 a 16 mm de longitud y 2.7 a 5.5 
mm de diámetro. 
 También encontramos en la literatura (1) estudios realizados que relacionan las 
tasas de éxito o fracaso con el ancho del implante, cuya principal conclusión afirma que 
para la zona anterior de los maxilares un implante no debería ser más ancho que 5 mm, 
dependiendo del espaciodisponible, y no más ancho que 6 mm en la zona posterior. 
Diseño y manufactura 
26 | P á g i n a 
 
3.2.4 Sistema anti rotacional 
El objetivo del sistema antirotacional del implante es el de generar una unión mecánica 
entre el tornillo de fijación protésica y el cuerpo del implante. 
 El diseño de la conexión clásica sobre la cabeza del implante es un hexágono 
externo, cuyas dimensiones varían según el fabricante y el diámetro del implante. Un 
ajuste de alta precisión en las dimensiones del hexágono externo es fundamental para 
lograr la estabilidad de la conexión entre el cuerpo del implante y la prótesis. Las 
conexiones internas pueden ser de tipo hexágono interno y octágono. 
 El diseño del sistema antirrotacional dependerá del diseño del implante a la 
medida así como de la ubicación del mismo, ya que para un diámetro mayor es preferible 
usar una conexión a hexágono externo y para diámetros menores cualquier tipo de 
conexión (1). 
3.2.5 Elementos de sujeción 
El sistema de implante costa de tres piezas 1) implante, 2) soporte protésico y 3) tornillo 
de fijación protésica. 
 Los elementos que se pueden diferenciar en el diseño del implante son el cuerpo, 
el cuello y el tornillo de cierre (20). La función del tornillo de cierre es fijar la prótesis al 
implante. El tornillo se inserta en una rosca interna que tiene el implante. Este se aprieta 
y afloja por medio de una conexión externa o interna en el cuello del implante. 
 Por último, el pilar de colocación soporta a la prótesis y se atornilla por medio del 
tornillo de cierre al implante. El sistema funciona como se esquematiza en la Figura 8. 
Figura 8. Esquema funcional del sistema de implante con conexión externa. 
 
Diseño y manufactura 
27 | P á g i n a 
 
3.2.6 Forma del tornillo de inserción 
Existen diversos diseños del perfil de rosca que tienen como finalidad mejorar la 
transmisión de las fuerzas al hueso. De acuerdo con Mish (1) la distribución de las cargas 
en el perfil de la rosca del implante es heterogéneo, de tal manera que la máxima 
concentración de las cargas se produce en la parte exterior de la rosca y disminuye hacia 
la región interior de esta. La forma de la rosca afecta la distribución del estrés, siendo más 
favorables los perfiles redondeados que los perfiles afilados. 
 La transmisión de fuerzas en un implante osteointegrado ocurre directamente 
hacia el hueso que lo rodea. Si la transmisión de cargas es inadecuada puede dañarse el 
hueso o el implante produciéndose microfracturas en el hueso, una resorción indeseada 
de este o que el implante se fracture (21). 
 Como se ha descrito anteriormente una solución para minimizar la pérdida de 
hueso y favorecer la osteointegración suele ser incrementar el área de contacto hueso-
implante, esto se logra incrementando las dimensiones del implante, longitud y diámetro, 
o usando recubrimientos superficiales. Sin embargo, el efecto de la modificación en las 
dimensiones del implante suele afectar la fijación primaria del mismo y la posterior 
distribución de cargas (1). Una alternativa para incrementar el área de contacto sin 
incrementar las medidas de este es la configuración de la rosca del implante, con lo que se 
busca lograr una mejor fijación primaria del mismo. 
 Variables como la profundidad, ancho, ángulo y paso de la rosca son algunos de los 
patrones geométricos que determinan la funcionalidad de esta y afectan la estabilidad 
primaria y la transmisión biomecánica del implante (21, 22). La influencia del diseño de la 
rosca en la transmisión de cargas puede entenderse como a mayor número de hilos y 
mayor sea la profundidad de estos mayor será el área funcional del implante, esto es el 
área de contacto hueso-implante. Sin embargo, la profundidad y el perfil de la rosca 
también son factores que debemos mediar en el diseño ya que de acuerdo con S. Hansson 
y M. Werke (23) estos afectan la magnitud de los picos de tensión en el hueso y la 
capacidad del implante para resistir las cargas. 
 De acuerdo con una investigación del diseño óptimo de la profundidad y 
profundidad de la rosca en implantes cilíndricos (22) mediante un análisis de elemento 
finito, se simuló la aplicación de cargas axiales de 100 N. Se determinó que la profundidad 
de la rosca tiene más influencia en las tensiones que afectan al hueso que la que tiene el 
ancho del hilo. Asimismo se estimó una profundidad óptima de 0.44 mm para un 
implante cilíndrico roscado. En cuanto al paso de la rosca, para lograr óptimas 
propiedades biomecánicas se realizó un estudio similar. A partir de un diseño cilíndrico 
roscado (21) se varió la distancia del paso mientras se analizaba su efecto por medio de 
elemento finito. Se obtuvo como resultado que el esfuerzo mínimo que afectaba el hueso 
Diseño y manufactura 
28 | P á g i n a 
 
cortical se lograba con una distancia de 0.7 mm, mientras que el mínimo esfuerzo que 
afectaba el hueso esponjoso se encontró alrededor de un paso de 0.75 mm. 
3.2.7 Revestimientos superficiales 
La osteointegración del implante está íntimamente relacionada con la composición y la 
rugosidad superficial el cuerpo el implante (24) de manera que la geometría del implante 
y la topografía superficial son factores cruciales para el éxito de éste a corto y largo plazo. 
El cuerpo del implante suele cubrirse con un revestimiento poroso. Los dos materiales 
más utilizados son el óxido de titanio TiO2 y la hidroxiapatita. Ambos materiales se aplican 
mediante un espray de plasma sobre el cuerpo del implante. Sin embargo no en todos los 
casos clínicos es necesario el uso de un recubrimiento para la el aumento de la superficie 
o como terapia osteoinductiva. Esto dependerá más bien de la calidad del hueso que 
recibe el implante. 
 La superficie del espray plasma de titanio TPS aumenta la superficie de contacto y 
actúa de manera similar a una superficie tridimensional que puede estimular la 
osteogénesis (4). Las superficies porosas como la del TPS también aumentan la resistencia 
a las cargas de tracción de hueso-implante mediante una mejor fijación mecánica, resisten 
las fuerzas de cizallamiento y mejoran la transferencia de cargas. 
 Con el revestimiento de HAP al igual que con el TPS se logra una rugosidad similar y 
un aumento en la superficie funcional. La resistencia de la interfase HAP-hueso es mayor 
que las de la interfase TPS-hueso. Además, se ha observado una formación y maduración 
aceleradas en el hueso de la interfase. La tasa de corrosión del metal también se reduce 
(4). 
Las ventajas clínicas de un recubrimiento de TPS o de HAP se pueden resumir en: 
 Aumento de la superficie. 
 Aumento de la rugosidad para mayor estabilidad inicial. 
 Interfase hueso-implante más fuerte. 
Las desventajas de un recubrimiento son: 
 Se descaman o agrietan durante la inserción. 
 Aumentan la retención de placa si quedan expuestos. 
 Aumentan la cantidad de bacterias y/o foco de infección. 
 Complican el tratamiento de los implantes que fracasan. 
 Aumenta el costo del implante. 
 Los revestimientos no deben ser el único sistema de transferencia de carga al 
hueso. Este factor es especialmente importante cuando se produce una pérdida ósea, ya 
Diseño y manufactura 
29 | P á g i n a 
 
que es necesario eliminar el revestimiento para reparar el implante. Como consecuencia 
de esto el hecho de utilizar un revestimiento o no debe depender más de la densidad ósea 
que de cualquier otro factor. Los huesos D1 y D2 son los más resistentes y demuestran un 
mayor contacto óseo (1) por lo que en vez de utilizar un revestimiento para este tipo de 
huesos es mejor utilizar un diseño biomecánico y una longitud mínima de 10 a 11 mm. El 
hueso D3 es aproximadamente un 50% más débil que el hueso D2. Si el diseño del 
implante tiene una superficie reducida o aplica grandes cargas de cizallamiento es 
necesario revestir la superficie. El hueso D4 ha demostrado ser el que presenta más 
riesgo por lo queun revestimiento de HAP es recomendable. Para minimizar la pérdida 
ósea en la cresta de este hueso tan débil es recomendable utilizar un mayor número de 
implantes con un diámetro más grande. 
3.2.8 Rugosidad superficial 
Existen un gran número de reportes (25, 26) en los que se ha demostrado que tanto una 
mejor fijación primaria de implante como una mayor fijación a largo plazo pueden ser 
mejoradas con una mayor rugosidad comparado con superficies lisas en el cuerpo del 
implante, debido a que existe una mayor área de contacto en la interfase hueso-implante. 
 De acuerdo al tipo de hueso es posible seleccionar la rugosidad más conveniente. 
Una configuración topográfica lisa, entendiendo por lisa aquella cuya rugosidad es la 
obtenida por el proceso de maquinado, es recomendable para huesos D1 y D2, que son 
más duros y resistentes. Con esto (27) se logra evitar el riesgo de contaminación micro-
bacteriana y se reduce el riesgo de infecciones durante la remodelación ósea. Ya que si 
queda expuesta alguna parte del cuerpo del implante después de la colocación existe el 
riesgo de acumulación bacteriana y por lo tanto de infección e inclusive 23osteomielitis. 
 Para huesos de tipo D3 y D4, que son más débiles, es preferible dar una mayor 
rugosidad superficial para aumentar la fijación primaria, aunado a un recubrimiento de 
TPS o de HAP que fomente la remodelación ósea y una pronta cicatrización. La rugosidad 
debe ser conveniente, de tal manera que se garantice una fijación estable y se evite el 
riesgo de que se produzca una contaminación microbiológica. Una rugosidad moderada, 
de 1-2 µm puede limitar estos dos parámetros (24, 27). 
 El acabado superficial para el cuello del implante debe ser un acabado altamente 
pulido para evitar que las mucosas (encía) cubran el mismo durante el periodo de 
cicatrización, además de evitar la acumulación bacteriana. En la tabla Tabla 6 se resumen 
las cualidades superficiales que debe tener un implante de acuerdo al tipo de hueso. 
 
 
23
 Infección súbita de la médula ósea causada por una bacteria microbiana u hongos. 
Diseño y manufactura 
30 | P á g i n a 
 
Tabla 6. Acabado superficial del implante de acuerdo al tipo de hueso. 
Calidad ósea Rugosidad Recubrimiento 
D1, D2 Maquinado X 
D3 1-2 µm X 
D4 1-2 µm Hidroxiapatita 
3.2.9 Vida útil 
Una vez que el implante se ha integrado con el organismo su vida útil puede considerarse 
longeva, ya que las únicas posibles causas de la pérdida de este pueden ser la aplicación 
de fuerzas desmedidas que rompan los bordes del hueso de sostén o que fracturen el 
implante, como por ejemplo un golpe fuerte, o que haya una pobre higiene del paciente y 
se desarrolle una infección. 
 Sin embargo, también es posible realizar visitas al médico para que se le de 
mantenimiento al implante. Este consiste en remover la prótesis soportada y realizar una 
limpieza e inspección del estado del implante. Si no se presenta ningún problema con el 
implante, el mantenimiento e inspección pueden realizarse a intervalos de tiempo largos, 
como mínimo cada 5 años. 
3.2.10 Esterilización 
El proceso de esterilización del implante tiene como objetivo garantizar la seguridad 
sanitaria del dispositivo mediante la eliminación efectiva de los agentes transmisibles 
como lo son las esporas, bacterias, virus, hongos u otros. Para este tipo de dispositivos el 
proceso se lleva a cabo mediante la esterilización por rayos gamma. 
 Los rayos gamma se componen de ondas electromagnéticas de longitud de onda 
muy corta que penetran en los envases y productos expuestos a dicha fuente ocasionando 
pequeños cambios estructurales en la cadena de ADN de las bacterias o microorganismos, 
causándoles la muerte o dejándolas estériles, sin capacidad de replicarse. 
 El proceso de esterilización toma un par de horas para pasar los rayos gamma a 
través de los dispositivos médicos ya empacados con el fin de que el material sea 
completamente estéril dentro de su envase final. Este proceso suele utilizarse en la 
esterilización de instrumentos quirúrgicos, implantes, equipos de diagnóstico, catéteres y 
otros sistemas de infusión. El proceso no genera residuos ni causa radioactividad en los 
productos. 
Diseño y manufactura 
31 | P á g i n a 
 
3.2.11 Documentación 
Con cada implante se debe elaborar la ficha técnica del mismo. Asimismo se debe contar 
con el certificado de esterilización y la hoja técnica del metal utilizado para garantizar la 
seguridad del implante. 
3.3 Diseño conceptual 
Las especificaciones a considerar para el diseño de un implante dental conformado por 
elementos estándar de diseño que puedan ser modificados con el objetivo de adaptarse a 
diferentes medidas son: 
1. El sistema de implante consta de tres piezas que son implante, soporte protésico y 
tornillo de fijación protésica. 
2. La herramienta para la colocación del tornillo de fijación protésica debe ser de 
forma llave allen de 1.3 [mm]. 
3. Material de manufactura Ti cp ASTM grado 4. 
4. Tamaño. Elegible según los requerimientos del paciente. Que se pueda 
manufacturar con dimensiones entre 3.7.- 5 [mm] ancho y 7.5 - 15 [mm] longitud. 
5. Diseños 
 Cuerpo cilíndrico roscado con conexión externa. 
 Cuerpo cilíndrico roscado con conexión interna. 
 Cuerpo cónico roscado con conexión interna. 
6. Diseño autotaladrante en cuerpo cilíndrico roscado: muescas en el ápice con el fin 
de facilitar la inserción. 
7. Rugosidad superficial. Rugosidad obtenida del proceso de maquinado. 
8. Cuello del implante altamente pulido. 
9. Recubrimiento HAP en situaciones que así lo requiera. 
10. Esterilización por rayos gamma. 
Diseño y manufactura 
32 | P á g i n a 
 
3.3.1 Propuesta del diseño 
La necesidad de estandarizar los elementos de diseño del implante diseñado a la medida 
tiene como meta simplificar el diseño así como facilitar la manufactura de este. Los 
efectos de la estandarización pueden resumirse en: costos unitarios más bajos, mejora de 
la calidad e intercambiabilidad (28). 
 En la propuesta de diseño las dimensiones de largo y ancho del implante son 
modificables. Se desarrollará un diseño con conexión interna y un diseño con conexión 
externa para poder utilizar el más adecuado de acuerdo a la posición planificada del 
implante. El diseño de la conexión debe ser tal que sea útil para implantes de 3.7 mm 
hasta 5 mm de ancho, únicamente se modificará el largo y ancho de estos de acuerdo al 
tamaño de la pieza dental requerida. 
 El largo del implante no es un factor que interfiera con el diseño del cuello del 
implante, las dimensiones del tornillo de fijación o el tipo de conexión. 
 El tornillo de fijación protésica debe mantener dimensiones únicas para cualquier 
tamaño de implante. 
3.4 Diseño del detalle 
Se presentan a continuación los diseños desarrollados para cada sistema de implante, esto 
es sistema con conexión externa y sistema con conexión interna. 
Diseño sistema de implante con conexión externa 
Figura 9. Implante cilíndrico roscado con conexión externa. 
 
 
 
 
Diseño y manufactura 
33 | P á g i n a 
 
Figura 10. Soporte de fijación protésica. 
 
Figura 11. Tornillo de fijación protésica. 
 
Figura 12. Ensamble del sistema de implante conexión externa. 
 
 
Diseño del sistema de implante con conexión interna 
Figura 13. Implante cilíndrico roscado con conexión interna. 
 
 
 
 
 
 
 
 
Diseño y manufactura 
34 | P á g i n a 
 
Figura 14. Implante cónico roscado con conexión interna. 
 
Figura 15. Soporte protésico. 
 
Figura 16. Tornillo de fijación protésica. 
 
Figura 17. Ensamble del sistema de implante cilíndrico con conexión interna. 
 
 
 
 
 
 
 
 
 
 
Diseño y manufactura 
35 | P á g i n a 
 
Figura 18. Ensamble del sistema de implante cónico con conexión interna. 
 
 
Para lograr la adaptación del diseño propuesto a diferentes configuraciones

Continuar navegando