Logo Studenta

Elementos de Lógica Simbólica ( PDFDrive ) - Isamara Ojeda Aguilar

¡Este material tiene más páginas!

Vista previa del material en texto

Elementos 
de lógica 
simbólica 
T E L M A B . D E N U D L E R - Ó S C A R N U D L E R 
E D I T O R I A L 
KAPELUSZ 23403 
TELMA BARREIRO DE NUDLER - ÓSCAR NUDLER 
ELEMENTOS 
DE LÓGICA 
SIMBÓLICA 
E D I T O R I A L 
M O R E N O 3 7 2 B U E N O S A I R E S 
Todos los derechos reservados por (©, 1973) EDITORIAL KAPELUSZ S.A. - Buenos Aires. 
Hecho el depósito que establece la ley 11.723. 
Publicado en setiembre de 1973. 
LIBRO DE EDICIÓN ARGENTINA. Printed in Argentina. 
Í N D I C E 
1. El o b j e t o d e la l ó g i c a 
§ 1. ¿De qué se ocupa la lógica? 1 
§ 2. La lógica y lo "lógico" 3 
§ 3. ¿Qué es un razonamiento? 4 
§ 4. Razonamiento deductivo y no deductivo 6 
§ 5. ¿Qué es un razonamiento correcto? 7 
§ 6. Validez y verdad 11 
§ 7. El proceso de abstracción. Las formas lógicas 12 
Notas al capítulo 1 14 
2 . L ó g i c a p r o p o s i c i o n a l 
§ 1. Proposiciones atómicas y moleculares. Conectivas 15 
§ 2. Tablas de verdad 18 
§ 3. Funciones de verdad. Extensionalidad de las conectivas 22 
§ 4. Conectivas lógicas y lenguaje usual 24 
§ 5. Simbolización 30 
§ 6. Tautología, contradicción y contingencia. Consistencia e incon-
sistencia. Tautología y ley lógica 32 
§ 7. Leyes de la lógica proposicional 35 
§ 8. Validez de razonamientos y tablas de verdad. Condicional 
asociado 37 
§ 9. Implicación, deducibilidad y equivalencia 41 
§ 10. El método demostrativo 42 
Notas al capítulo 2 49 
3 . L ó g i c a d e f u n c i o n e s 
§ 1. Individuos y predicados 52 
§ 2. Función proposicional y cuantificación 55 
§ 3. Concepto de ley en lógica de funciones 57 
§ 4. Equivalencia y distribución de cuantificadores 59 
§ 5. Grado de un predicado. Los predicados poliádicos. La cuan-
tificación múltiple 61 
§ 6. Leyes del movimiento de cuantificadores 65 
§ 7. Simbolización en lógica de funciones 67 
§ 8. La demostración. Reglas de generalización y ejemplificación 70 
§ 9. Tratamiento tradicional de las proposiciones categóricas. Infe­
rencias inmediatas 78 
§ 10. Crítica moderna al cuadrado de oposición 81 
§ 1 1 . Teoría clásica del silogismo; análisis moderno 84 
Notas al capítulo 3 87 
4 . L ó g i c a d e c l a s e s 
§ 1. Clases y propiedades 89 
§ 2. Clase y pertenencia 90 
§ 3. Clase universal y clase nula 92 
§ 4. Operaciones con clases 93 
§ 5. Relaciones entre clases 97 
§ 6. Inclusión y pertenencia 98 
§ 7. Proposiciones categóricas; simbolización y diagramas de Venn 101 
§ 8. Resolución de silogismos categóricos 103 
§ 9. Leyes de la lógica de clases 109 
§ 10. Método demostrativo en lógica de clases 112 
§ 1 1 . Clases, proposiciones y álgebras de Boole 114 
Notas al capítulo 4 115 
5 . L ó g i c a d e r e l a c i o n e s 
§ 1. Predicados y relaciones 117 
§ 2. Referente y relato. Dominio, codominio y campo 117 
§ 3. Propiedades formales de las relaciones 119 
§ 4 . Análisis de algunos tipos de relaciones; equivalencia, orden, 
sene 123 
§ 5. Vinculación entre propiedades de las relaciones 125 
§ 6. Univocidad y multivocidad de las relaciones. Funciones . . . . 126 
§ 7. Álgebra de relaciones 128 
§ 8. Método demostrativo en lógica de relaciones 131 
Notas al capítulo 5 133 
índice de la carpeta de ejercicios 134 
NOTA PRELIMINAR 
El propósito fundamental que nos ha guiado al preparar este 
texto de Elementos de Lógica Simbólica fue presentar las nocio­
nes básicas que conforman el enfoque moderno de la lógica. 
Por ello tuvimos muy en cuenta no exceder el marco inicial 
f i jado, es decir, respetar el nivel que debe tener toda obra de 
carácter aproximativo. 
Nuestro objetivo inmediato fue entonces acercar gradualmente 
al lector al simbolismo y a las técnicas de esta disciplina a partir 
de los usos lingüísticos corrientes y de nociones intuitivas so­
bre la materia; por lo tanto, nos detuvimos particularmente en 
el problema de la simbolización de enunciados del lenguaje 
usual y desarrollamos ciertos conceptos fundamentales, como 
el de validez, sobre la base de nociones comunes y apl icando 
técnicas intuitivas como, por ejemplo, la de los diagramas. 
Asimismo, procuramos iniciar al estudiante en el aspecto ope­
rativo de la lógica, para lo cual incluimos un breve desarrollo 
del método demostrativo en su aplicación a los distintos cálcu­
los lógicos. 
Hemos tenido en cuenta, f inalmente, que una disciplina como 
la que nos ocupa requiere una amplia ejercitación que con­
tribuya a fijar en forma práctica las nociones teóricas expues­
tas en el texto. La CARPETA DE EJERCICIOS, que se pre­
senta como unidad independiente, está destinada a cubrir esas 
exigencias. 
Los autores 
1 EL OBJETO DE LA LÓGICA 
§ 1. ¿De qué se ocupa la lógica? 
Se ha dicho muchas veces, y a menudo tal afirmación aparece en las 
primeras páginas de los libros de tipo introductorio, que resulta difícil 
explicar en qué consiste el objeto de investigación de una determinada 
disciplina científica o filosófica a alguien que no se halle familiarizado 
con ella, pues una visión clara de lo que cada rama del conocimiento es 
sólo puede obtenerse estudiándola, enfrentándose realmente con sus dife-
rentes problemas. 
En efecto, nadie puede pretender saber qué es la lógica, o qué es la 
psicología, o qué es la ética, por el solo hecho de haber estudiado concien-
zudamente el capítulo inicial de una introducción a estas disciplinas donde 
se pretende responder a tal interrogante. 
Esta dificultad se hace aún más evidente cuando intentamos caracte-
rizar el objeto teórico de una rama del conocimiento en una sola proposi-
ción inicial: una definición. En este caso suele ocurrir que la definición 
misma presupone el uso de un lenguaje que, aunque aparentemente coin-
cida con el usual y utilice términos que son por todos conocidos, posee 
en realidad una significación mucho más precisa, propia de la disciplina en 
cuestión y que, por lo tanto, no puede comprenderse adecuadamente fuera 
del marco teórico que se pretende caracterizar. Por lo general en toda defi-
nición de este tipo aparecen algunos términos "clave" que tienen esas carac-
terísticas, cuya elucidación remite a otros que también requieren aclara-
ción, estableciéndose una cadena que va adquiriendo su sentido preciso 
solamente en la medida en que se penetra más y más en el estudio de la 
disciplina en cuestión. 
Supongamos, por ejemplo, que nuestra tarea fuera definir la ética, y 
que lo hiciéramos diciendo que es aquella rama de la filosofía que se ocupa 
del problema moral. Nos encontramos acá con un término clave que no 
puede entenderse adecuadamente fuera del contexto de la investigación 
ética (puesto que la investigación ética misma supone un análisis de este 
concepto): 'moral'. Lo mismo ocurre si intentáramos, v. gr., caracterizar 
la psicología como la ciencia que estudia la conducta. Porque, ¿qué es, 
exactamente, la conducta? ¿Entrarán en su definición sólo los fenómenos 
psíquicos externamente observables o también los que pueden descubrirse 
exclusivamente a través de la introspección? El intento de definición del 
1 
término 'conducta' lleva así al centro de la polémica entre distintas escue-
las de la psicología contemporánea. 
De la misma manera nosotros podemos intentar dar una definición 
inicial de la lógica diciendo que es la ciencia que se ocupa de establecer 
criterios que permiten determinar la validez o invalidez de los razonamien-
tos. Pero sucede que el concepto central de esta definición -validez de un 
razonamiento- no puede ser entendido adecuadamente sin un estudio dete-
nido de nuestra disciplina, pues, como se verá más adelante, el problema 
de la validez de los razonamientos remite a su vez al de su forma o estruc-
tura y este concepto sólo puede explicarse satisfactoriamente desarrollando 
los diferentes capítulos de la lógica (entre otras cosas porque diferentes 
capítulos proponen análisis diversos de las formas lógicas). 
Otras de las razones que tornan embarazoso -y hasta inconveniente-
el tratar de dar una definición inicial es que en ella debemos presentar 
a la cienciacomo una cosa hecha, acabada, cuyo objeto teórico no varía, ni 
es controvertido por los científicos, todo lo cual no se ajusta a los hechos. 
Sabemos que toda ciencia crece, se transforma, evoluciona a través del 
tiempo y que, aun en un momento determinado, su dominio de investiga-
ción puede variar según el enfoque teórico que se adopte. En lo que con-
cierne a nuestra disciplina, por ejemplo, existen distintas posturas que 
conciben de modo diverso el objeto de su estudio. Y, en rigor, desde cier-
ta perspectiva no resultaría aceptable la definición propuesta precedente-
mente. ( 1 ) 
¿Por qué, pues, insistir en la pretensión de ofrecer en un primer capí-
tulo un panorama global de la ciencia que hemos de estudiar en lugar de 
enfrentar al lector directamente con sus problemas? 
La razón fundamental para introducir un primer capítulo de esa índole 
es que el lector necesita poseer una visión del ámbito teórico en que deberá 
moverse, del tipo de cuestiones que serán sometidas a su consideración y, 
sobre todo, necesita entrar en posesión de algunas ideas que oficien de 
guías o hilos conductores para hilvanar coherentemente los problemas y 
las soluciones que se le irán presentando a través de su estudio de la 
ciencia. 
A la manera de un mapa rudimentario que orienta los pasos del explo-
rador y que luego será perfeccionado por él mismo gracias a su conoci-
miento práctico y personal del terreno, trataremos, pues, en lo que sigue, 
de ofrecer al lector una idea inicial acerca de la naturaleza de la ciencia 
que se propone abordar, partiendo, en un primer momento, del lenguaje 
usual, e introduciéndolo paulatinamente en un dominio más técnico, más 
preciso, y teóricamente más fecundo. 
2 
§ 2 . La lógica y lo "lógico 1 
El empleo del término 'lógico' es bastante frecuente en el lenguaje 
usual. 
El análisis de expresiones como: 
1. Es lógico que te hayan castigado 
2. Fue la culminación lógica de ese proceso 
3. Es lógico que al dejar sin sustento un cuerpo éste caiga a tierra 
4. Este hombre ha dado una respuesta lógica 
5. El discurso de ese orador se caracterizó por su incoherencia lógica 
6. El fiscal refutó los argumentos de la defensa con un rigor lógico admirable 
indican que en su uso cotidiano el término es de significación bastante vaga 
y tiende a relacionarse con un dominio heterogéneo de ideas; según el 
contexto se identifica lo lógico con lo que es previsible o necesario, con lo 
que obedece a causas conocidas, con lo justo, con lo que posee rigor, orden, 
etc. Y, en general, todo aquello que se presenta como absurdo, insólito, 
fuera de lugar, en el plano de la razón y el discurso o en el de los hechos, 
se considera "ilógico". 
¿Existe alguna vinculación entre esta significación vaga de la palabra 
en su uso cotidiano y el término lógica' como nombre de una ciencia? Un 
análisis más pormenorizado nos permitirá responder este interrogante. 
En primer lugar advertimos que una cierta dimensión de su significado 
pretende aplicar el atributo 'lógico' al plano de los hechos, como ocurre en 
los ejemplos 1, 2 y 3 arriba presentados. Decir que un hecho es lógico 
puede querer significar o bien que es previsible, natural, que obedece a 
causas conocidas (como en el ejemplo 2 y 3) o bien que se adecúa a las 
normas y expectativas sociales (como en 1 y, eventualmente, también en 2). 
Digamos desde ya que este tipo de indagaciones cae fuera del objeto de la 
lógica. No es en absoluto de competencia de esta ciencia determinar si los 
hechos se ajustan o no a regularidades, son más o menos razonables, pre-
visibles o "lógicos". La lógica no tiene nada que decir acerca de los hechos 
porque ella no se ocupa de describir y explicar fenómenos, no es una ciencia 
fáctica como la física, la biología, la historia o la sociología. Así, pues, este 
significado del término en su uso vulgar no nos aproxima al objeto de 
nuestra disciplina. 
Analicemos ahora los tres ejemplos restantes. Allí el término no se 
aplica al plano de los hechos, sino al del lenguaje, de los conocimientos, de 
las afirmaciones, de los argumentos. Pero acá debemos establecer una dife-
rencia; en efecto, en esta área el término puede usarse o bien para predicar 
que una afirmación es sensata, que se ajusta a la naturaleza de los hechos 
o a las expectativas acerca de lo que es razonable afirmar (lógico como 
opuesto a patentemente falso, disparatado, tonto) o bien para indicar cierta 
forma de coherencia interna de las afirmaciones entre sí (lógico como 
opuesto a contradictorio, inconsistente, incoherente). 
El enunciado 4 puede interpretarse como un ejemplo del primer tipo 
de uso, en tanto que los ejemplos 5 y 6 son casos del segundo. 
3 
En términos generales podemos decir que la cuestión acerca de si los 
conocimientos son de hecho acertados o erróneos, verdaderos o falsos, cae 
fuera del dominio de la lógica. No es tarea de esta ciencia juzgar la verdad 
de las afirmaciones aisladas que se formulan acerca de la realidad, su ade-
cuación o inadecuación a los hechos. 
Lo que sí cae dentro de su objeto son las relaciones entre los juicios 
mismos, las vinculaciones internas entre las partes del discurso. Para ilus-
trar esto será interesante volver a nuestros ejemplos 5 y 6. En ellos la 
incoherencia o el rigor lógico se predica como algo interno de ciertas for-
mas de expresión del pensamiento; puede ser que el orador del juicio 5 
haya pronunciado muchas proposiciones verdaderas a lo largo de su dis-
curso; no es precisamente la falsedad de sus juicios lo que se le imputa. 
Lo que se le critica, en cambio, es la falta de una conexión apropiada entre 
sus afirmaciones, cierta incompatibilidad entre ellas, es decir, defectos in-
ternos de su exposición que no provienen de su inadecuación a los hechos, 
sino de inapropiadas vinculaciones entre sus partes. Algo semejante ocurre 
con el ejemplo 6. Lo que se le reconoce al fiscal aludido es la claridad y 
coherencia con que refutó los argumentos de su adversario; se alaba la 
forma ajustada, precisa, en que ensambló sus propios juicios, todo lo cual 
no presupone afirmar que él sostuviera la posición más justa ni, en rigor, 
reconocer que su manera tan perfecta de argumentar lo haya conducido 
necesariamente a una conclusión verdadera. Incluso alguien podría llegar 
a agregar a este respecto: 'Sí, yo sabía que lo que sostenía el fiscal no era 
verdadero, pero presentó sus argumentos con tanta solidez que resultaba 
difícil refutarlo'. 
Es precisamente esta coherencia o incoherencia interna de los argu-
mentos, esta corrección o incorrección en las formas de razonar, esta suerte 
de coordinación adecuada del pensamiento consigo mismo y no su adecua-
ción a la realidad, no la verdad de las afirmaciones empíricas que entran 
en juego, lo que le interesa a la lógica. 
De esta primera caracterización del objeto de la lóL· s·\ virgen, sin 
embargo, muchas cuestiones que será necesario aclarar. En primer lugar, 
¿puede haber coherencia interna en un argumento independientemente de 
la verdad de sus afirmaciones?; razonar correctamente, ¿no conduce nece-
sariamente a la verdad? Este tipo de cuestiones nos llevan a su vez al 
problema: ¿qué es, en definitiva, un razonamiento correcto? Todo lo cual 
presupone conocer la respuesta a una pregunta previa, muy simple: ¿qué 
es, en sentido estricto, un razonamiento? 
Nuestra tarea consistirá, pues, en lo que sigue en tratar de responder 
a estas cuestiones en orden de complejidad creciente. 
§ 3- ¿Qué es un razonamiento? 
El concepto de razonamiento se vincula comúnmente al de pensamien-
to, pero no se identifica con él. En efecto, si bien entendemos que razonar 
es pensar, también comprendemos que no siempre que pensamos razona-
4 
mos. Si alguien deja vagar libremente su imaginación, rememorando pai-
sajes o situaciones vividas, entregado al placer estético o a la evocación 
afectiva a través de sus recuerdos, podemos decir que se halla absorto en 
sus pensamientos, pero nunca diremos que se encuentra razonando.El con-
cepto de razonamiento se asocia, en cambio, con un pensamiento de tipo 
netamente cognitivo, que se manifiesta a través de ciertas afirmaciones 
y no a través de imágenes de índole perceptiva, vagas intuiciones o asocia-
ciones de carácter emotivo. 
Alguien razona cuando reflexiona, por ejemplo, del siguiente modo: 
'La entrevista era para las diez; ya son las diez y media y Pérez aún no 
llegó. Pero él es una persona responsable y extremadamente puntual. Sin 
duda, debe haberle ocurrido algo' o 'Compraré estas obras del escritor X; 
dado que todas las obras suyas que leí me gustaron, seguramente éstas 
también me gustarán'. 
Debemos reconocer, sin embargo, que pocas veces pensamos del modo 
metódico y disciplinado que muestran los ejemplos, haciendo explícitos 
todos nuestros supuestos. A menos que el estudio de un tema en especial 
nos obligue a seguir rigurosamente los pasos de una inf erencia ( 2 ) -como ocu-
rre, v. gr., cuado estudiamos la demostración de un teorema-, nuestro pen-
samiento es, por lo general, algo errante e indisciplinado y procede un poco 
elípticamente, llevándonos a ciertas conclusiones por caminos que a veces 
nosotros mismos ignoramos. 
La situación cambia cuando nos vemos obligados a justificar o funda-
mentar nuestras creencias. Entonces debemos reconstruir y expresar me-
diante el lenguaje la cadena de conocimientos que se hallaba implícita y 
desordenada en nuestra mente. Todo el que disputa o polemiza, todo el 
que debe sustentar una tesis, como v. gr., el abogado, el juez, el expositor 
científico o filosófico, el estadista, etc., se ve obligado a expresar sus razo-
namientos, ordenar los supuestos, marcando las conclusiones y los funda-
mentos, etc. 
Será, pues, necesario distinguir dos niveles: el que corresponde al 
proceso psíquico del razonar tal como él se desarrolla de hecho en la mente 
humana y el que corresponde a su producto objetivo: el razonamiento 
expresado a través del lenguaje. 
El primero no es objeto de investigación lógica, ya que los mecanismos 
mentales del pensar son fenómenos cuyo estudio compete a una ciencia 
fáctica: la psicología. Lo que le interesa a la lógica son los razonamientos 
en sí mismos, como productos, independientemente de su génesis psico-
lógica y tal como ellos quedan formulados a través del lenguaje. Así, por 
ejemplo, en el caso de los razonamientos presentados arriba, será irrele-
vante para el lógico si alguien los formuló realmente alguna vez, qué moti-
vaciones pueden haberlo movido a ello, etc. Lo único que le interesa al 
lógico es si esas formas de argumentar son correctas o no lo son. 
Ahora bien, ¿cuál es la característica definitoria de un razonamiento, 
que lo diferencia de otro tipo de expresiones del lenguaje? En primer lugar, 
digamos que una única afirmación, un juicio aislado, no constituye por sí 
5 
solo un razonamiento. Para que haya razonamiento debe haber un con-
junto de juicios o proposiciones (dos o más) y estas proposiciones deben 
estar vinculadas de una manera tal que una de ellas -la conclusión- se 
afirme sobre la base de la o las otras -la o las premisas- Para que haya 
razonamiento debe haber el propósito de fundar unas afirmaciones en otras, 
de extraer unos conocimientos de otros. Este propósito queda cristalizado 
en el lenguaje a través de determinadas expresiones que se anteponen a 
la conclusión (como 'por lo tanto', 'luego', 'por consiguiente', 'en conse-
cuencia', etc.) u otras que anteceden a las premisas (como 'dado que', 
'puesto que', 'ya que', etc.). En el primer ejemplo dado arriba aparece la 
expresión 'sin duda' precediendo a la conclusión (que debe interpretarse 
como 'teniendo en cuenta lo expuesto se sigue sin lugar a dudas q u e . . . ' ) ; 
en el segundo ejemplo se antepone 'dado que' a la premisa y 'seguramente' 
a la conclusión (giro que interpretamos como 'dado lo anterior se puede 
afirmar con seguridad q u e . . . ' ) . 
Ahora bien, es sabido que cuando alguien emite una afirmación está 
expuesto a equivocarse, ya que un juicio puede ser verdadero si corres-
ponde o se adecúa realmente al hecho descripto (como cuando decimos, por 
ejemplo, 'El sol es una estrella') o falso, si no corresponde o se adecúa a él 
(como en el caso, v. gr., de 'La ballena es un pez'). Del mismo modo es 
posible también equivocarse al argumentar; cuando alguien formula un 
razonamiento, expone un argumento de modo tal de extraer determinadas 
conclusiones a partir de ciertas proposiciones iniciales, puede hacerlo me-
jor o peor, como vimos en los ejemplos 5 y 6 del parágrafo anterior. Si 
acertar al formular un juicio es hacerlo corresponder con los hechos, ¿en 
qué consiste el acierto al formular un razonamiento? ¿En qué casos un 
razonamiento es correcto y cuándo no lo es? 
Para responder a esta cuestión será necesario previamente efectuar 
una distinción entre distintos tipos de razonamientos, porque el problema 
de la corrección o incorrección tiene distinta significación según de qué 
clase de razonamientos se trate. 
§ 4 . Razonamiento deduct ivo y 
no deduct ivo 
Podemos distinguir dos grandes grupos de razonamientos: los deducti-
vos y los no deductivos. 
En general los razonamientos deductivos son aquellos en que se pre-
tende que la conclusión se desprende de las premisas con necesidad, en 
virtud de ciertas características lógicas, puramente formales de las mismas. 
En cambio en el caso de los razonamientos que no son deductivos el fun-
damento que las premisas dan a la conclusión no se presenta como defini-
tivo y concluyente; la conclusión, aunque sustentada o hecha probable por 
las premisas, no está implicada por éstas. Un caso importante del razona-
miento no deductivo es el llamado razonamiento inductivo o, simplemente, 
inducción. La inducción se caracteriza porque en ella, a partir de la afirma-
6 
ción de que varios elementos o miembros de una clase dada poseen deter-
minada propiedad, se concluye que todos los miembros de dicha clase tienen 
esa misma propiedad. 
Un ejemplo de razonamiento inductivo sería el que se practica en la 
investigación acerca de las propiedades terapéuticas de una droga. Des-
pués de haber confirmado en un importante número de individuos afecta-
dos por una misma dolencia que la droga resulta eficaz, se generaliza y se 
supone que resultará eficaz para todos los miembros de la clase de indivi-
duos afectados por esa enfermedad. 
Este tipo de razonamiento en que se arriba a una generalización es 
extremadamente frecuente en la vida cotidiana pero, en rigor, no presenta 
necesidad lógica, porque del hecho de que en un cierto número de casos 
se haya verificado una determinada circunstancia no puede inferirse con 
carácter necesario que en el resto de los casos se seguirá verificando; puede 
surgir alguna contingencia hasta ese momento no considerada, la verdad 
de las premisas puede deberse en mayor o menor medida a las condiciones 
especiales en que se desarrollaron los experimentos u observaciones, etc. 
Naturalmente, cuanto mayor sea el número de casos considerados en las 
premisas (y más variadas sean las circunstancias en que éstos se reclu-
ten) parece aumentar la probabilidad de que la conclusión sea verdadera, 
pero nunca se llegará a una certeza definitiva (a menos que el número de 
casos considerados en las premisas sea igual al número total de miembros 
de la clase en cuestión, que es el caso de la llamada inducción completa). 
En el razonamiento inductivo hay, pues, grados de probabilidad, la conclu-
sión se ve sustentada en mayor o menor medida por las premisas. 
En el razonamiento deductivo, en cambio, esto no ocurre. O bien la 
conclusión se desprende lógicamente de las premisas o bien no se despren-
de de ellas. No hay grados de error ni grados de acierto. Y esto puede 
determinarse, contrariamente a lo que ocurre en el razonamiento inductivo, 
teniendo en cuenta exclusivamente sus características formales o estruc-
turales, con independencia de su contenido informativo. 
De aquí en adelante todoel desarrollo del presente libro girará en torno 
del razonamiento deductivo. De modo que cuando nos planteemos el pro-
blema de la corrección de los razonamientos, hemos de referirnos siempre 
al razonamiento deductivo que es, en sentido estricto, el objeto propio de 
la lógica simbólica. 
Hecha esta aclaración podemos, pues, retomar el interrogante que nos 
formuláramos en el parágrafo anterior. 
§ 5, ¿Qué es un razonamiento 
correcto? 
En primer lugar debemos introducir una aclaración terminológica. Di-
gamos que así como la "virtud" de un juicio se llama verdad, la "virtud" 
de un razonamiento se llama corrección o validez. Los razonamientos 
7 
no son ni verdaderos ni falsos, es éste un atributo que no les corresponde; 
ellos son correctos o incorrectos (válidos o inválidos) según cumplan o no 
con determinados requisitos. 
¿Cuáles son esos requisitos? En un primer momento podríamos pensar 
que el razonamiento correcto es aquel que nos permite arribar a un cono-
cimiento cierto, a juicios o afirmaciones que concuerden o se ajusten a los 
hechos, y que un razonamiento incorrecto es el que nos conduce a un error. 
Así, por ejemplo, si nos dieran a elegir entre los razonamientos si-
guientes: 
1. Todos los insectos son aves y todas las aves son vertebrados; por consi-
guiente, todos los insectos son vertebrados 
2. Si la Argentina es un país sudamericano, entonces no es un país europeo. 
Pero la Argentina no es un país europeo. Luego, es un país sudamericano 
y nos dijeran que uno de ellos es válido y el otro no lo es, podríamos sen-
tirnos inclinados a escoger como inválido al primero, que nos ha conducido 
a una falsedad, y como válido al segundo, que nos llevó a una verdad. Sin 
embargo no es así, sino todo lo contrario; 1 es un razonamiento válido y 2 es 
inválido. 
Esto puede resultar un tanto paradójico y llevar al lector a la apresu-
rada impresión de que nada hay tan ilógico como la lógica, puesto que ella 
nos obliga a aceptar la validez de un razonamiento en el que se concluye 
una afirmación tan disparatada como aquella de que los insectos son verte-
brados y nos obliga a rechazar como inválido un razonamiento que nos 
permite llegar a la irreprochable conclusión de que la Argentina es un país 
sudamericano. 
Este desconcierto se origina en la errónea identificación inicial de dos 
conceptos diferentes: validez y verdad. Pero esta identificación debe de-
jarse de lado ya que, como quedó dicho, la validez se predica de los razo-
namientos -no de juicios o proposiciones-, en tanto que la verdad se predica 
de juicios -no de razonamientos- y designan propiedades diferentes. 
Afirmar que un razonamiento es correcto o válido no equivale a decir 
que todas sus proposiciones componentes son verdaderas, ni siquiera que su 
conclusión lo es. 
Pero si la validez de un razonamiento no se identifica ni se reduce a 
la verdad de sus juicios componentes, ¿en qué consiste?, ¿y cómo se la 
reconoce? 
Hemos dicho que el razonamiento es un conjunto de proposiciones, una 
de las cuales presuntamente se desprende o infiere de las anteriores. Esta 
definición nos sugiere la idea de que un razonamiento es algo así como un 
encadenamiento o interrelación entre ciertos elementos (proposiciones), 
uno de los cuales (la conclusión) aparece como último eslabón o elemento 
final a cuyo sostén contribuyen todos los demás (premisas). 
Ahora bien, lo que interesa para que el razonamiento sea correcto es 
la forma en que están vinculadas entre sí sus partes; lo que importa es que 
la interrelación de las premisas forme una estructura suficientemente sólida 
como para que la conclusión se apoye en ella en forma total. 
8 
Tomemos como ejemplo la siguiente forma de razonamiento: 
(I) Todo A es B 
Todo B es C 
Todo A es C(3) 
Las dos premisas se hallan relacionadas entre sí de manera tal que la 
conclusión se desprende de ellas necesariamente; en otras palabras, es im-
posible aceptar las premisas y no aceptar la conclusión. En efecto: si la cla-
se de los individuos A se halla incluida en la de los B, y ésta a su vez en la 
de los C, no existe ninguna posibilidad de hallar un A que no sea C. Esto 
puede verse claramente en un gráfico donde las clases A, B y C se repre-
senten por círculos concéntricos de radios diferentes: 
Sea A: B: C: 
Todo A es B 
Todo B es C 
Todo A es C (La conclusión quedó representada.) 
No existe ninguna forma de diagramación posible que permita repre-
sentar las premisas sin que quede representada al mismo tiempo la con-
clusión. A esto llamamos una forma correcta de razonar, porque dadas las 
premisas, la conclusión se sigue necesariamente; la vinculación es firme, 
no presenta grietas o intersticios, el eslabón final está definitivamente 
sostenido por los otros. 
Veamos ahora otro ejemplo: 
(II) Todo A es B 
Todo A es C 
Todo B es C 
¿Es esta forma de razonar igualmente correcta? ¿Es cierto que si una 
clase A está incluida en otras dos clases (B y C) simultáneamente, B esta-
rá incluida necesariamente en C? Esto es algo fortuito, no lógicamente 
9 
necesario, puede ocurrir o no ocurrir. Ilustramos ambas posibilidades me-
diante dos gráficos diferentes. 
Sea A: B: C: 
Caso confirmatorio 
Sea A: B: C: 
Caso disconfirmatorio 
En este caso es posible hallar un diagrama que represente las premisas 
y no represente al mismo tiempo la conclusión. Esto indica que la conclu-
sión no se desprende necesariamente de las premisas; dadas las premisas 
no es necesario, sino contingente, fortuito, accidental, que la conclusión se 
dé o no se dé; la vinculación, el encadenamiento entre las premisas no es 
suficiente para sustentar la conclusión, la estructura no es perfecta. Por 
lo tanto, esta forma de razonar no es correcta. 
Ahora bien, el lector puede advertir que para analizar el modo en que 
las partes de un razonamiento se vinculan entre sí (lo que nos permite 
decidir, finalmente, si es válido o no lo es) hemos recurrido a cierta esque-
matización; hablamos de A, B y C en lugar de aves, insectos o vertebrados, 
etc. ¿Es esto caprichoso o responde a una necesidad? 
Lo cierto es que para analizar la manera en que las proposiciones están 
vinculadas entre sí es conveniente despojarlas de todo aquello que no es 
esencial para la cuestión, que no hace a la estructura de la relación que 
entre ellas se establece, pues la presencia de tales elementos sólo sirve 
para oscurecer la relación, no permite ver claro en ella. Imaginemos, por 
ejemplo, el caso de un arquitecto que tratara de establecer el grado de 
estabilidad, la solidez de un edificio. Para ello deberá dejar de lado sin 
duda los detalles que hacen a la decoración de la casa, el tipo de reves-
timiento empleado, etc., porque estos datos carecen de importancia para 
la resolución de su problema. Lo que debe hacer el arquitecto es concen-
trar su atención en aquellos aspectos que hacen a la estructura del edificio. 
Algo análogo ocurre cuando se trata de establecer la validez o invalidez 
10 
de un razonamiento. En el caso de nuestro ejemplo I, v. gr., se muestra el 
esqueleto, la estructura de un razonamiento, que es lo que interesa para 
determinar su validez; si en lugar de formular el razonamiento de esa 
manera, esquemáticamente, refiriéndonos a clases de elementos cuales-
quiera A, B y C, hubiéramos hecho referencia a insectos, aves y vertebra-
dos -como ocurrió en el razonamiento 1- o a otros conjuntos particulares 
de individuos, nuestra investigación se hubiera visto perturbada por con-
sideraciones de otra índole, que habrían entorpecido sin duda el análisis. 
Por otra parte, tal esquematización no es arbitraria, pues lo que vale para 
clases de individuos cualesquiera A, B y C vale, a fortiori, para la clase 
de los insectos, las aves y los vertebrados -aunque, obviamente, no ocurra 
lo mismo a la inversa-; de modo tal que si la estructura resultó válida, 
esto es, si la vinculación entre las premisas resultó de naturaleza tal que 
la conclusión necesariamente se halla sostenida por ellas,la validez no 
podrá verse alterada por reemplazar 'A' por la clase de los insectos, 'B' por 
la de las aves, etc. 
En síntesis, decimos que un razonamiento es válido cuando su forma 
lógica lo es, independientemente del contenido informativo de los juicios 
que lo componen. Y decimos que una forma o estructura de razonamiento 
es válida si se cumple que ningún razonamiento que posee esa estructura 
tiene todas sus premisas verdaderas y su conclusión falsa. 
Así, pues, dado que el problema de la validez de un razonamiento se 
reduce al de su forma o estructura, la lógica, en tanto teoría de la inferen-
cia válida, es una ciencia formal. 
§ 6- Val idez y verdad 
Lo que acabamos de ver explica el aparente absurdo planteado al prin-
cipio del parágrafo anterior a propósito del razonamiento 1; éste es un 
razonamiento válido porque su forma o estructura -que es idéntica a la 
forma (I) analizada en el mismo parágrafo- lo es, a pesar de conducirnos 
a una falsedad. 
Pero, ¿cómo es posible, insistimos, que un razonamiento válido con-
duzca a error? Lo que ocurre es que, como quedó dicho, la validez del 
razonamiento depende de su estructura y ésta es válida porque la conclu-
sión se desprende necesariamente de las premisas; si llegamos a una fal-
sedad no ha sido por "culpa" de la forma de razonamiento, sino a causa del 
contenido de las premisas. Como podemos observar, el hecho de haber 
escogido como clase A la de los insectos y como clase B la de las aves, 
hace que la primera premisa sea falsa y de allí se deriva la falsedad de 
la conclusión. 
El lector podrá preguntarse aquí, legítimamente, para qué sirve razo-
nar correctamente (esto es, a través de estructuras o formas válidas) si 
de todas maneras esto no nos protege contra el error. Después de todo 
-se dirá- lo que realmente interesa es que nuestro conocimiento sea ver-
11 
dadero, se ajuste a la realidad. ¿Por qué ha de ser estimable la validez 
de una forma de razonamiento si ella no se responsabiliza por la verdad 
de la conclusión; es decir, si no nos garantiza la obtención de un auténtico 
conocimiento? Y, por ende, ¿qué valor tiene una disciplina cuyo objeto es 
estudiar, precisamente, la validez del razonamiento? 
En verdad, tal imputación contra la lógica no puede ser pasada por alto; 
mas, afortunadamente, poseemos una respuesta apropiada para su defensa; 
en efecto, la estructura válida se hace responsable de la verdad de la con-
clusión, y aún más, la garantiza totalmente, siempre y cuando las premisas 
de las que se parta sean verdaderas. 
Si las premisas son verdaderas, y la estructura es correcta o válida, 
la conclusión del razonamiento ha de ser siempre, necesariamente, verda-
dera como se desprende de la definición de forma válida. Y éste es el mérito 
-nada despreciable- que encierra la validez: permite preservar la ver-
dad del conocimiento. En este sentido una forma válida de razonamiento 
sería algo así como una máquina perfecta, que no fallara jamás: si se la 
nutre con materia prima (premisas) de buena calidad (verdaderas) el 
producto obtenido (conclusión) ha de ser siempre bueno (verdadera); 
pero ninguna máquina, cualquiera sea el grado de su perfección, puede 
garantizar la bondad del producto si se la alimenta con materia prima defi-
ciente; en nuestro caso, ninguna forma de razonamiento, aunque sea válida, 
puede garantizar que llegaremos a la verdad si partimos del error. Si 
alguien parte, como en el caso del razonamiento 1, de la creencia de que 
los insectos son aves, no debemos sorprendernos de que llegue a la con-
clusión de que son vertebrados, pero ello no se debe a que haya razonado 
mal, sino a que sus creencias iniciales eran falsas. 
Esto explica también el ejemplo del fiscal que planteamos en el pará-
grafo 2. Puede ser que él haya dado a sus razonamientos una forma co-
rrecta -y, por lo tanto, imposible de criticar- y concluya, finalmente, un 
juicio falso; pero si esto fuera realmente así, quien se ocupara de la defensa 
debería buscar a través de cuál o cuáles de las premisas empleadas se ha 
filtrado la falsedad. 
§ 7. El proceso de abstracción. 
Las formas lógicas 
De lo expuesto en los parágrafos anteriores se desprende que en todos 
los casos el análisis lógico de los razonamientos -es decir, el análisis de los 
razonamientos desde el punto de vista de su validez- supone un proceso de 
abstracción, esto es, de formulación de su forma o estructura. 
Este proceso de abstracción aplicado a un razonamiento consiste en eli-
minar de él todo lo que hace al contenido informativo de las proposiciones 
que lo componen (colocando en su lugar ciertos símbolos que permiten 
indicar la categoría lógica de las expresiones suprimidas) y mantener en 
cambio aquellos elementos que son esenciales para el armazón lógico del 
argumento. 
12 
Sean, por ejemplo, los dos siguientes razonamientos: 
1. Todo caballo es veloz 
Pegaso es un caballo 
Pegaso es veloz 
2. Todo niño es activo 
Pedrito es un niño 
Pedrito es activo 
Al practicar el proceso de abstracción sobre ambos razonamientos eli-
minando los términos lógicamente no esenciales, advertimos que, a pesar 
de su diverso contenido informativo, su estructura lógica es la misma: 
Todo F es G 
x es F 
x es G 
donde las letras 'F' y 'G' indican dos atributos distintos y la letra 'x' repre-
senta un individuo cualquiera. 
En casos como éstos parece bastante sencillo hallar la estructura lógica 
de los argumentos. Así, por ejemplo, es claro que la presencia del término 
'Pegaso' (o 'Pedrito') no hace a la forma lógica; puede sustituirse por otro 
nombre de individuo sin que se modifique la estructura. En cambio el tér-
mino 'todo' no puede alterarse significativamente sin alterar la estructura. 
En efecto, si lo sustituimos, v. gr., por 'algún' obtenemos otra forma lógica: 
Algún F es G 
x es F 
x es G 
Una muestra concluyente de que esta forma no es lógicamente igual a 
la anterior lo constituye el hecho de que en este caso la inferencia es invá-
lida, mientras que en el primero es válida; en efecto, al decir 'algún F es G' 
no queda excluida la posibilidad de que haya algún F que no sea G (posi-
bilidad que sí queda excluida en la afirmación 'todo F es G'). Por lo 
tanto el individuo x que aparece en la segunda premisa puede ser F sin ser 
G. La conclusión no se sigue, pues, necesariamente de las premisas. 
Sin embargo, la determinación de cuáles elementos son esenciales para 
el esqueleto lógico de un razonamiento no siempre es tan obvia, no es algo 
que pueda realizarse mecánicamente ni dejarse librado a la intuición; en 
rigor, sólo puede llevarse a cabo con propiedad a la luz del análisis que los 
distintos capítulos de la lógica proponen para el estudio de las inferencias. 
Consideramos, v. gr., el siguiente razonamiento: 
3. Si todos se oponen, Pérez retirará la moción 
Todos se oponen 
Pérez retirará la moción 
13 
En este caso la presencia del término 'todos' no es esencial para el 
armazón lógico de la inferencia, pues podemos realizar un análisis en los 
siguientes términos: 
Si entonces 
_P 
Q 
donde 'p' y 'q' representan respectivamente las proposiciones 'todos se 
oponen' y 'Pérez retirará la moción'. Un análisis de este tipo, que tome 
globalmente las proposiciones en juego, es suficiente en este caso (aunque 
no lo sería en el caso de los ejemplos 1 y 2). Si alguien afirma que, el que 
ocurra un cierto evento es condición suficiente para que se produzca otro 
y reconoce a la vez que se ha producido el primero, debe aceptar que 
también ocurrirá el segundo. Podemos, pues, establecer la validez de la 
inferencia sin necesidad de penetrar en el estudio de los términos compo­
nentes de las proposiciones. 
Vemos, pues, que la indagación de las formas o estructuras lógicas no 
es independiente de la teoría lógica de la inferencia válida; cada capítulo 
de la lógica que presenta su aporte a la teoría de la inferencia correcta 
ofrece también, al mismo tiempo, ciertos criterios y determinado lenguaje 
parala formulación de las formas de los razonamientos. 
Al estudio de estos distintos capítulos con su particular enfoque y len­
guaje nos dedicaremos de aquí en adelante. 
NOTAS AL CAPITULO 1 
1 Nos interesa mencionar, en especial, el enfoque formalista, cuyo representante 
más típico es el lógico y filósofo Rudolf Carnap (1891-1971). Según este autor 
la tarea del lógico debe aplicarse, fundamentalmente, a la construcción de len­
guajes artificiales, donde se elimine la ambigüedad y vaguedad características 
del lenguaje natural y se hagan explícitas las reglas para su uso; así un sistema 
de lógica "no es una teoría, es decir, un sistema de afirmaciones acerca de 
determinados objetos, sino una lengua, es decir, un sistema de signos con las 
reglas para su empleo". Carnap, R., Introduction to Symbolic Logic, Dover 
Publications, N. Y., cap. A, parágrafo 1. 
2 Aun cuando, en rigor, podría establecerse una diferencia de significado entre 
uno y otro término, usaremos a lo largo del texto 'inferencia* como sinónimo 
de 'razonamiento'. 
3 Utilizaremos la línea horizontal como símbolo de inferencia, en lugar de ex­
presiones como 'por lo tanto', 'por consiguiente', 'luego', etc. Esta línea sepa­
rará siempre la premisa (o el conjunto de premisas) de la conclusión. Así, en 
el ejemplo que aparece en el texto, 'todo A es B' y 'todo B es C representan 
las premisas del razonamiento y 'todo A es C, su conclusión. También utiliza­
remos el signo '•'•' en el mismo sentido. 
14 
2 LÓGICA PROPOSICIONAL 
§ 1 . Proposiciones atómicas y 
moleculares. Conect ivas 
En el presente capítulo nos dedicaremos a estudiar el tipo de análisis 
de las formas lógicas y de las inferencias válidas que realiza el llamado 
cálculo proposicional. Para ello debemos comenzar por caracterizar el con-
cepto de proposición. 
Las proposiciones son aquellas expresiones que afirman o niegan algo 
y de las que, por lo tanto, tiene sentido predicar, que poseen un valor veri-
tativo, esto es, que son verdaderas o falsas. 
Así: 
La Luna es satélite de la Tierra 
Los arácnidos no son insectos 
Sócrates nació en Macedonia 
son proposiciones, pues ellas afirman (o niegan) algo y tienen, por ende, 
un valor de verdad: son verdaderas las dos primeras y falsa la última. 
En cambio no constituyen proposiciones expresiones como: 
¡Retírate inmediatamente! 
¿Existe la justicia? 
¡Ay! 
pues ellas no afirman (ni niegan) nada, no son ni verdaderas ni falsas. Su 
función no es, como en el caso de las fórmulas anteriores, informativa, sino 
de otro tipo; así, v. gr., en el primer caso la función es claramente directiva 
y en el último netamente expresiva. 
En una primera aproximación puede decirse, pues, que las proposi-
ciones corresponden a lo que los gramáticos llaman oraciones enunciativas 
o declarativas y no a las oraciones interrogativas, exclamativas o impe-
rativas. Sin embargo, no es lícito identificar totalmente oración declara-
tiva con proposición. La diferencia existente entre ambas radica en que 
la primera es una fórmula material (oral u escrita) de una determi-
nada lengua (castellano, francés, etc.) que consta de ciertas palabras dis-
puestas de un determinado modo. Las proposiciones, en cambio, corres-
ponden al significado de estas oraciones. Así entendido resulta que a dos 
o más oraciones distintas puede corresponder la misma proposición si ellas 
tienen el mismo significado y, por ejemplo, pertenecen a distintos idiomas 
15 
(v. gr., 'Juan es un buen alumno', 'John is a good pupil', 'Jean est un bon 
eleve') o contienen sinónimos ('Lo hizo con mucha rapidez', 'Lo hizo muy 
rápidamente'). 
Las proposiciones pueden clasificarse de diversas maneras, pero a los 
efectos que interesan al cálculo proposicional hemos de dividirlas en dos 
grandes categorías: las compuestas (o moleculares) y las simples (o ató-
micas). Una proposición simple (o atómica) es aquella que no contiene 
ninguna otra proposición como parte constituyente, como, por ejemplo: 
Llueve 
Hay seres inteligentes en Marte 
El hombre es un animal político 
Una proposición compuesta (o molecular) es, por el contrario, aquella 
que contiene dentro suyo otras proposiciones, como ocurre en los siguientes 
casos: 
Llueve y hace frío 
Si viene Juan, entonces Pedro se va 
Una proposición como 'no llueve' la consideramos, a pesar de su apa-
rente simplicidad, como molecular, pues podemos aislar dentro de ella una 
aún más simple: 'llueve'. 
El cálculo proposicional limita su estudio de las formas lógicas a las 
proposiciones moleculares; analiza su estructura hasta hallar sus proposi-
ciones componentes últimas, es decir, las atómicas que la forman, que no 
pueden a su vez ser descompuestas en nuevas proposiciones, y al llegar a 
este punto se detiene. Por esta razón el lenguaje de la lógica proposicional 
se limita, como veremos en seguida, a dos tipos de símbolos: los que repre-
sentan proposiciones, y los que representan aquellas partículas destinadas 
a unir o afectar proposiciones. 
Así, por ejemplo, la lógica proposicional realiza el análisis de las pro-
posiciones moleculares que acabamos de ver del siguiente modo: 
Llueve y hace frío: (prop. atóm. 1) y 
(prop. atóm. 2) 
Si viene Juan, en-
tonces Pedro se va: Si (prop. atóm. 1) entonces (prop. atóm. 2 ) 
Para indicar el lugar en que aparecen proposiciones atómicas dentro 
de la molecular hemos recurrido a los puntos suspensivos; pero los puntos 
suspensivos presentan el inconveniente de ser ambiguos, porque pueden 
indicar indistintamente proposiciones atómicas diferentes o iguales entre 
sí. En su lugar utilizaremos ciertas letras, tales como 'p' 'q', 'r' 's', etc., 
que llamaremos variables proposicionales. En general una variable es un 
símbolo que representa una entidad cualquiera dentro de determinado do-
minio; en este caso el dominio de las variables son proposiciones, es decir 
que el símbolo 'p' (al igual que 'q', 'r', 's', etc.) sirve para señalar la pre-
sencia de una proposición cualquiera. La elección de la variable con que 
representamos una proposición es, en principio, libre, pero es preciso res-
16 
petar la restricción de que a proposiciones distintas deben hacerce corres­
ponder variables distintas. Así, por ejemplo, podríamos representar la 
proposición 'Llueve y hace frío' 'como: 'p y q', 'q y p', 'q y r', etc., pero 
no como 'p y p' o similar. 
Las distintas proposiciones atómicas que aparecen dentro de una pro­
posición molecular se hallan unidas entre sí por ciertos nexos que deno­
minaremos conectivas proposicionales. En las proposiciones que acabamos 
de ver esas partículas son, respectivamente, 'y' y 'si entonces'. Otras co­
nectivas proposicionales son, v. gr., 'o', 'aunque', 'porque', etc. La lógica 
proposicional limita su análisis a las proposiciones moleculares en que apa­
recen conectivas de cierto tipo -conectivas extensionales (véase parágrafo 
3 ) - las que define y simboliza de un modo especial. En el cuadro que si­
gue presentamos una nómina de las conectivas que se usan en el cálculo 
con su símbolo propio y la expresión paralela en el lenguaje usual. 
I. SÍMBOLO 
LÓGICO 
II. LOCUCIÓN EN 
LENGUAJE USUAL 
III. ILUSTRACIÓN EN 
LENGUAJE USUAL 
IV. SIMBO­
LIZACIÓN 
DE III 
Negación — N o . . . No llueve - P 
Conjunción • . . .y . . . Llueve y truena P·Q 
Disyunción 
(inclusiva) V . . . o . . . 
Estaba triste o preo­
cupado (o ambas co­
sas) 
p v q 
Disyunción 
(exclusiva) w . . . 0 . . . 
Iremos al cine o al 
teatro (pero no a 
ambos lados) 
p w q 
Condicional S i . . . entonces . . . Si l lueve, entonces habrá cosecha P D q 
Bicondicional ≡ . . . si y sólo s i . . . Habrá cosecha si y sólo si llueve p≡q 
Negación 
conjunta N i . . . n i . . . Ni trabaja ni estudia p q 
Incompatibilidad | No es cierto (a la vez) que . . . y . . . 
No es cierto que Juan 
sea secretario y so­
brino del juez 
P | q 
Todas estas conectivas -con excepción de la primera- son binarias, esto 
es, permiten unir entre sí dos proposiciones. Con respecto al 'no'ella afecta 
siempre a una proposición, es una conectiva monádica. Aun cuando su 
función no es precisamente conectar proposiciones, como ocurre con las 
otras que acabamos de ver, sino afectar, modificar, una sola proposición, se 
la llama 'conectiva' por extensión. 
A diferencia de 'p', 'q', 'r', etc., que por representar proposiciones cua­
lesquiera pueden asumir uno u otro de los dos valores de verdad (verda-
17 
dero o falso), cada una de las conectivas del cálculo proposicional tiene 
un único sentido posible que queda fijado, como veremos más adelante, en 
las tablas de verdad; ellas no son, pues, variables, sino constantes; y puesto 
que su función dentro de las proposiciones hace a la estructura lógica de 
las mismas, decimos que son constantes lógicas. 
La aplicación de una o varias de estas conectivas a una o varias pro-
posiciones da origen a nuevas proposiciones que consideraremos siempre 
moleculares (aun cuando se trate del caso más simple de una conectiva 
monádica afectando a una proposición atómica, como 'no hace frío'). 
Así, si aplicamos la conjunción a dos proposiciones atómicas que 
afirmen: 
Descartes fue un gran filósofo 
Descartes fue un gran matemático 
obtendremos una nueva proposición, de tipo molecular: 
Descartes fue un gran filósofo y un gran matemático 
cuya forma lógica, expresada en el simbolismo de la lógica proposicional, 
es: 'p · q\ 
§ 2 . Tablas de verdad 
Una proposición molecular puede descomponerse, pues, en proposicio-
nes atómicas y conectivas proposicionales. 
Ahora bien, sabemos que toda proposición posee, por definición, un va-
lor veritativo: es verdadera (V) o falsa (F). ¿Dependerá el valor verita-
tivo de una proposición molecular del valor de verdad de las atómicas que 
la componen? 
Tomemos el caso de la proposición molecular más simple posible, la 
negación de una atómica, por ejemplo: 
1. No llueve (— p ) 
Es claro que el valor de verdad de '— p' depende del de 'p', pues si 
'p' es verdadera (es decir, si llueve) '— p' es falsa (es falso que no llueve) 
y si 'p' es falsa (esto es, si no llueve) '— p' es verdadera (es verdadero que 
no llueve). 
Analicemos ahora la conjunción: 
2. Estaba ebrio y colérico ( p · q ) 
Esta proposición resultará falsa en todos los casos excepto en uno: 
cuando ambas atómicas son verdaderas. 
A su vez la disyunción: 
3. Estaba ebrio o colérico ( p V q ) 
será verdadera en todos los casos excepto en aquel en que ambas atómicas 
fueran falsas. 
18 
Los ejemplos 2 y 3 que acabamos de ver nos muestran que si bien el 
valor de verdad de esas proposiciones moleculares depende del de sus 
atómicas componentes, varía también de acuerdo con la conectiva que 
vincula entre sí a éstas; no es lo mismo, ciertamente, afirmar que se dan 
dos hechos a la vez que sostener que se produce uno u otro. Y lo mismo 
ocurre con el resto de las conectivas proposicionales: cada una vincula a 
las proposiciones atómicas de manera diversa; cada una, aplicada a las mis­
mas proposiciones atómicas, arrojará, pues, resultados veritativos que le 
son característicos. 
En las siguientes tablas, que llamaremos tablas de verdad, se muestran 
cuáles son los resultados que las diferentes conectivas arrojan para las mis­
mas combinaciones de valores de verdad: 
T A B L A S DE V E R D A D 
NEGACIÓN 
P - P 
V F 
F V 
CONJUNCIÓN 
P q P • q 
V V V 
F V F 
V F F 
F F F 
DISYUNCIÓN INCLUSIVA 
p q P V q 
V V V 
F V V 
V F V 
F F F 
DISYUNCIÓN EXCLUSIVA 
P q p w q 
V V F 
F V V 
V F V 
F F F 
CONDICIONAL 
p q P D q 
V V V 
F V V 
V F F 
F F V 
BICONDICIONAL 
P q P ≡ q 
V V V 
F V F 
V F F 
F F V 
NEGACIÓN CONJUNTA 
P q p q 
V V F 
F V F 
V F F 
F F V 
INCOMPATIBILIDAD 
P q P 1 q 
V V F 
F V V 
V F V 
F F V 
19 
El sentido de estas tablas es el siguiente: puesto que cp' y 'q' son varia­
bles proposicionales, ignoramos cuál será el valor de verdad de las propo­
siciones que ellas estén llamadas a sustituir: pueden representar tanto una 
proposición verdadera cuanto una falsa. Así, pues, para determinar cuál 
podría ser el valor de verdad de una proposición molecular que respon­
diera a una forma tal como 'p · q\ cp v q\ etc., es necesario contemplar 
todos los casos posibles de combinaciones entre las atómicas que la com­
ponen. Estos casos son enumerados en su totalidad en las columnas que 
corresponden a las proposiciones atómicas. Podemos observar que en el 
caso de la negación la tabla consta sólo de dos filas, en tanto que en los 
otros casos presenta cuatro filas. Esto se debe a que al entrar en juego una 
sola proposición (v. gr., 'p') por tratarse de una conectiva monádica, las 
posibilidades son sólo dos: o bien la proposición es verdadera, o bien es 
falsa. En cambio, en el caso de las conectivas binarias, al tratarse de dos 
variables ('p' y cq}) el número de combinaciones aumenta; en efecto: puede 
ocurrir que ambas proposiciones sean verdaderas (fila 1), ambas falsas 
(fila 4) o una de ellas verdadera y la otra falsa (filas 2 y 3). En general, 
el número de filas de una tabla de verdad responde a la fórmula 2 n donde 
la base representa al número de valores de verdad y el exponente el 
número de variables distintas que intervienen en la fórmula. Si en lugar 
de dos variables hubiera en juego, por ejemplo, tres, el número de combi­
naciones posibles de la tabla sería ocho (2 3 ) : 
p q r 
V V V 
F V V 
V F V 
F F V 
V V F 
F V F 
V F F 
F F F 
A su vez la columna de cada tabla que hemos destacado con un recua­
dro indica cuál es el valor de verdad que le corresponde a la proposición 
molecular en cada fila, dada la asignación de valores contemplada para las 
proposiciones atómicas en esa misma fila. Por ejemplo, la conjunción 
(p · q) resulta verdadera si ambas atómicas (p, q) son verdaderas (fila 1) 
y falsas en los demás casos (filas 2, 3 y 4). La disyunción inclusiva resulta 
falsa si ambas atómicas lo son (fila 4) y verdadera en todos los otros casos 
(filas 1, 2 y 3), y así sucesivamente. 
En una fórmula pueden aparecer varias conectivas del mismo tipo o de 
tipo diferente. En estos casos se requiere el uso de paréntesis para eliminar 
la ambigüedad. Sea, v. gr., la siguiente expresión: ep D q D r \ Ella es am­
bigua, pues puede interpretarse como un condicional cuyo antecedente ( 1 ) 
fuera 'p' y cuyo consecuente fuera 'q Z) r\ o un condicional cuyo antece-
20 
dente fuera cp D q' y cuyo consecuente fuera V. Esta ambigüedad queda 
eliminada, en cambio, en las fórmulas fpD(qDr) ; y '(p D q) D r' donde 
se adoptan, respectivamente, cada uno de los significados anteriores. Del 
mismo modo es ambigua una fórmula como 'p · q v r* que podemos inter­
pretar como una conjunción uno de cuyos miembros es una disyunción: 
'p-(qvr)' o una disyunción uno de cuyos miembros es una conjun­
ción: ' (p · q) v r\ En el caso de la conectiva '—' ella puede aparecer en una 
fórmula juntamente con otra conectiva y sin paréntesis; en esas circuns­
tancias interpretaremos que la negación afecta solamente a la primera pro­
posición atómica que aparece a su derecha; por ejemplo en la fórmula 
q · r' la negación se aplica a cq9 solamente. Si se desea dar al 'no' un 
alcance mayor debe recurrirse al uso de paréntesis (ver parágrafo 4). 
Cuando en una fórmula aparecen más de dos conectivas binarias es nece­
sario recurrir a más de un par de paréntesis, en cuyo caso es conveniente 
utilizar para mayor claridad distintos signos de agrupación (corchetes, lla­
ves) como en la fórmula: ' { [ ( p · q ) D r] ≡≡ (p v q)} v r\ Para hallar la ta­
bla de verdad resultante en este tipo de expresiones se comienza por re­
solver primero las más internas (que se hallan dentro de los signos de 
agrupación más internos) y luego se va avanzando en un sentido que po­
dríamos llamar centrífugo. En estos casos se irán obteniendo, pues, resulta­
dos parciales hasta obtener el resultado final. En los siguientes ejemplos 
se han desplegado en sendas columnas los sucesivos pasos en que se divide 
el ejercicio; el resultado final se ha destacadoen recuadro. 
1. ( p · q ) D r 
p Q r P · q (P · q ) D 
r 
V V V V V 
F V V F V 
V F V F V 
F F V F V 
V V F V F 
F V F F V 
V F F F V 
F F F F V 
2. - [ ( p v q ) ≡ - p ] 
p q P V q - P ( p V q ) ≡ - p — [ ( p v q ) ≡ - p ] 
V V V F F V 
F V V V V F 
V F V F F V 
F F F V F V 
21 
Pueden diagramarse las tablas de una manera más económica colocan­
do los resultados obtenidos directamente debajo de cada conectiva, sin 
desplegar las fórmulas, como se ilustra a continuación: 
4 1 3 2 
- [(P V q) ≡ - p] 
V V V V F F V 
F F V V V V F 
V V V F F F V 
V F F F F V F 
Los números indican el orden en que han sido halladas las tablas: como 
arriba, la tabla destacada en recuadro corresponde al resultado final. 
Como puede observarse en estos ejemplos, en el caso de la negación 
ella se resuelve primero -independientemente de las otras conectivas- cuan-
do afecta proposiciones atómicas; si por el contrario afecta una proposición 
molecular, debe hallarse en primer término el resultado de esta última y 
luego aplicarle la negación. 
§ 3- Funciones de verdad . 
Extensionalidad de las conect ivas 
Hemos dicho que para conocer el valor veritativo de proposiciones mo-
leculares en que intervienen conectivas como las que estamos estudiando 
es necesario conocer el valor de verdad de sus componentes. El estudio de 
las tablas de verdad nos indica que este conocimiento es no sólo necesario, 
sino también suficiente para ese propósito. 
En efecto, dada, por ejemplo, la proposición: 
1. Juan duerme y Pedro canta 
basta con saber si es cierto o no que Juan duerme y si es cierto o no que 
Pedro canta para conocer su valor veritativo. 
No ocurre lo mismo con todas las afirmaciones. Analicemos, v. gr., la 
proposición: 
2. Juan duerme porque Pedro canta 
Para determinar si esta proposición es o no verdadera es necesario 
saber si es verdad que Juan duerme y lo es también que Pedro canta, pero 
este conocimiento no es suficiente, porque la proposición no se limita a 
afirmar conjuntamente ambos hechos (como sería el caso de la conjunción), 
sino que indica entre ambos una conexión causal que debe verificarse adi-
cionalmente. Así, por ejemplo, sería necesario saber si el canto de Pedro 
resulta extremadamente aburrido o extremadamente sedativo para Juan 
como para provocarle sueño, etc. 
22 
Si observamos ahora la proposición: 
3. Creo que Juan duerme y Pedro canta 
notaremos que el conocimiento del valor veritativo de las atómicas 'Juan 
duerme' y 'Pedro canta' no resulta ni suficiente ni necesario para conocer 
el valor de verdad de la totalidad. 
De esto resulta que de los tres ejemplos analizados únicamente en el 
primero es posible construir una tabla de verdad completa, porque sólo 
en ese caso podemos determinar unívocamente el valor veritativo de la 
proposición molecular resultante a partir del de sus atómicas componentes. 
Así, sea: 'p': Juan duerme; 'q': Pedro canta. 
Caso 1. Juan duerme y Pedro canta 
p q p · q 
V V V 
F V F 
V F F 
F F F 
Caso 2. Juan duerme porque Pedro canta 
P q p porque q 
V V ? 
F V F 
V F F 
F F F 
Caso 3. Creo que Juan duerme y Pedro canta 
P q creo que p · q 
V V ? 
F V ? 
V F ? 
F F ? 
La circunstancia de que el valor de verdad de una proposición mole­
cular esté determinado - y determinado unívocamente- por el de sus com­
ponentes (es decir que el conocimiento del valor de verdad de éstas sea 
necesario y suficiente para determinar el de aquélla), se expresa diciendo 
que dicha proposición molecular es una función de verdad -o función veri­
tativa- de sus componentes. 
El que una proposición molecular sea o no una función de verdad 
depende de las conectivas que vinculan entre sí sus proposiciones compo­
nentes. Podemos observar, por ejemplo, que en las proposiones 1, 2 y 3 
que acabamos de analizar, las atómicas son idénticas y lo único que varía 
es la conectiva. 
23 
Las conectivas cuyo uso determina la formación de proposiciones mo-
leculares que son funciones de verdad son llamadas functores de verdad, 
o conectivas extensionales; por oposición podemos denominar no extensio-
nales a aquellas que, por agregar implícitamente exigencias o condiciones 
de verdad adicionales o distintas a las que resultan de la mera combinación 
de los valores veritativos de las proposiciones atómicas, determinan pro-
posiciones moleculares que no son funciones de verdad. Una característica 
definitoria de la extensionalidad de una conectiva es que su significado 
queda determinado en forma total a través de una tabla de verdad. 
La lógica proposicional que estamos estudiando se ocupa sólo de fun-
ciones de verdad y todas las conectivas presentadas en el parágrafo 1 son, 
como se desprende de lo expuesto, extensionales. 
§ 4 . Conect ivas lógicas y 
lenguaje usual 
En el parágrafo 2 hemos fijado unívocamente, a través de sus tablas 
de verdad, el significado de las conectivas extensionales que utilizaremos 
en el cálculo proposicional. 
En alguna medida estas conectivas tienen correspondencia con deter-
minadas locuciones del lenguaje usual, como lo señalamos al presentar su 
nómina; debemos destacar, sin embargo, que no se identifican plenamente 
con ellas. ( 2 ) 
Comencemos, por ejemplo, por considerar el caso de la conectiva 
'—', que hemos interpretado hasta aquí como el 'no' del lenguaje usual. 
Tomamos hasta el momento como paradigma de proposición de la forma 
p' expresiones tales como: 
1. No llueve 
2. No hace frío 
Pero el lenguaje usual suele emplear otras muchas formas para la nega-
ción. En primer lugar, ésta no aparecerá siempre precediendo la oración; en 
rigor éste es un caso más bien excepcional que se presenta en las oraciones 
llamadas "impersonales" como 1 y 2 o en aquellas en que el sujeto grama-
tical ha sido indicado con anterioridad o se desprende del mero uso del 
verbo, como, por ejemplo: 'No iré', pero más comúnmente el 'no' se pre-
senta en medio de la oración: 
3. Juan no vino 
4. Hasta ahora el peso no se ha estabilizado 
En todos estos casos, e independientemente del lugar que ocupe el 'no' 
en la oración del lenguaje usual, la conectiva '—' se colocará a la izquierda 
de la variable proposicional respectiva y expresará adecuadamente la 
negación. 
24 
Por otra parte, en el idioma castellano pueden usarse con el propósito 
de negar una proposición, expresiones que no se reducen al adverbio 'no, 
solo. Así, podemos decir: 
5. No es cierto que las elecciones hayan sido fraudulentas 
6. No se ha dado el caso de que ambos candidatos fusionaran sus partidos 
En el cálculo proposicional estos ejemplos se simbolizan del mismo 
modo que 3 y 4, es decir: '— p'. 
Puede ocurrir, no obstante, que la negación afecte a una proposición 
compuesta, como en: 
7 No es cierto que Juan estaba enfermo y Pedro lo reemplazó en el trabajo 
En este caso la negación no afecta a cada una de las proposiciones ató­
micas aisladas, sino a la conjunción de las dos. Se requiere, entonces, el 
uso de paréntesis para agrupar la conjunción y negarla en su totalidad: 
— ( P · q) 
En efecto, lo que se niega acá es que ambos hechos sean ciertos a la vez, 
es decir, o bien es verdadero 'p', pero falso 'q', o bien es verdadero 'q', pero 
falso 'p', o bien son falsos ambos; como puede comprobarse, la fórmula tie­
ne la misma tabla de verdad que la disyunción de estas tres posibilidades: 
4 (P · - q) v ( - p · q) v ( - p · - q)". 
Reflexionemos ahora un poco acerca de la disyunción. En los parágra­
fos 1 y 2 presentamos símbolos y tablas de verdad para dos tipos diferen­
tes de disyunción. Estos dos tipos de disyunción existen en el lenguaje 
cotidiano. En efecto, la palabra 'o' de nuestro idioma puede entenderse en 
dos sentidos diferentes. Sean, por ejemplo, los siguientes enunciados: 
8. Se prohibe a los pasajeros asomarse o sacar los brazos por la ventanilla 
9. Está permitido a los empleados llegar cinco minutos después o retirarse 
cinco minutos antes del horario reglamentario 
En el primer caso es claro que la disposición prohibe a lospasajeros 
asomarse, sacar los brazos por la ventanilla y también efectuar ambos mo­
vimientos a la vez (está prohibida una cosa, la otra y ambas); en cambio 
en el segundo caso se trata de una opción; si el empleado llega más tarde 
no podrá retirarse antes y si se retira antes será a condición de que haya 
llegado puntualmente (está permitida una cosa u otra, pero no ambas); 
las dos franquicias son pues, recíprocamente excluyentes. El primer sig­
nificado del 'o' corresponde a la disyunción que hemos llamado inclusiva; 
el segundo a la exclusiva. Suele llamarse también débil al primer tipo de 
disyunción y fuerte al segundo. 
El signo de la disyunción inclusiva, que reproduce la letra V de im­
prenta, recuerda el término latino 'vel" que significa, precisamente, 'o' en 
sentido débil; en tanto que existe otra palabra latina: 'aut" para indicar el 
sentido exclusivo de la disyunción. En castellano no se ha conservado, sin 
embargo, esa distinción; como ya se dijo el término 'o, es ambiguo. Esta 
25 
ambigüedad torna difícil decidir muchas veces frente a qué tipo de dis-
yunción nos hallamos. 
Aun cuando, aparentemente, la más usual sería la disyunción exclusi-
va, un análisis más detenido nos indica que, por el contrario, lo más co-
mún es usar el 'o' con sentido inclusivo. 
Consideremos, por ejemplo, los siguientes casos: 
10. Para que ese hombre tan sereno haya reaccionado de un modo violento 
debe haber estado bajo los efectos del alcohol o dominado por un intenso 
estado emocional 
En este caso se quiere expresar con la disyunción que una de las dos 
causas señaladas debe explicar el hecho, pero no se excluye la posibilidad 
de que hayan actuado conjuntamente ambas. En otras palabras, la afir-
mación no sería falsa si el hombre en cuestión hubiese estado bajo el im-
pacto de un choque emocional y, por añadidura, ebrio. 
11. Retenga usted el envío en su domicilio. Mi secretaria, o yo personalmente, 
iremos a retirarlo 
Con este anuncio se quiere advertir que al menos uno de los nombrados 
pasará a buscar el envío, pero si acuden ambos, no por eso la promesa 
queda sin cumplir. 
Encontrar casos del 'o' exclusivo es más difícil; en verdad, para que 
se dé este caso debe existir la intención manifiesta (muchas veces sólo 
discernible claramente en el contexto) de presentar ambas posibilidades 
como mutuamente excluyentes. Éste sería el caso, v. gr., de un médico 
que prescribiera a su paciente la ingestión de una dosis diaria de cierto 
medicamento indicándole que podrá tomarlo después del almuerzo o de la 
cena (pero, obviamente, no después de ambas comidas, lo cual se despren-
de del uso contextual del 'o'). 
Por regla general interpretaremos, pues, de aquí en adelante, toda 
disyunción que aparezca como inclusiva, a menos que se indique expresa-
mente lo contrario. 
Veamos ahora qué ocurre con la conjunción. Un enunciado molecular 
de este tipo afirma, según hemos visto, que ambos miembros se verifican. 
En este sentido el símbolo lógico ' ·' se comporta de modo análogo al 'y' 
del lenguaje usual. Pero no siempre esta analogía se cumple. En efecto, el 
'y' no cumple en todos los casos funciones de mera conjunción. 
Consideremos, por ejemplo, el caso de un niño que se resistía tenaz-
mente a dejarse aplicar cierta vacuna argumentando, para justificar su 
resistencia, el caso fatal de otro niño que había recibido la vacuna y había 
muerto. Este argumento logró convencer a sus padres, hasta que éstos des-
cubrieron que el niño vacunado había muerto en realidad en un accidente 
de tránsito, después de lo cual no sólo vacunaron a su hijo, sino que ade-
más lo castigaron por haber mentido. El hecho de considerar que el niño 
había mentido, es decir, que la afirmación: 
12. El niño recibió la vacuna y murió 
26 
era falsa, indica con claridad que en este caso el 'y' no tiene el sentido de 
una mera conjunción, sino que viene a expresar más bien una conexión 
causal y de ninguna manera puede simbolizarse con el ' ·', porque sus con-
diciones de verdad son diferentes; en rigor, en este contexto la conectiva 
'y' no puede analizarse al modo extensional. 
Existen otros varios usos de esta conectiva que no pueden forzarse a 
la significación propuesta para la conjunción lógica. En ocasiones ella, sin 
indicar precisamente una relación causal, señala sin embargo cierta secuen-
cia temporal, como en la proposición: 
13. Pronunció su discurso más brillante y murió 
En este caso e l 4 · ' que opera conmutativamente (ya que ep · q' y 'q · p' 
son fórmulas equivalentes) no expresaría adecuadamente la relación, pues 
evidentemente esta expresión no es igual a: 'Murió y pronunció su discurso 
más brillante'. 
También puede usarse para expresar cierta forma de condicionamiento 
de un suceso con respecto al otro, v. gr.: 
14. Prométeme que nunca me olvidarás y me iré 
que más bien debería traducirse como una proposición condicional ('Si me 
prometes que nunca me olvidarás, entonces me iré'). 
Todo esto indica que no se puede simbolizar el 'y' mecánicamente 
mediante la conectiva ' ·'. Es necesario reflexionar acerca de cuáles son las 
condiciones de verdad exigidas por la proposición molecular que se ha for-
mado con la ayuda de esta partícula para saber si estamos o no autorizados 
a considerarla una conjunción. 
Así como hay casos de aparición del 'y' que no pueden reducirse a la 
conectiva de la conjunción hay, por otra parte, ciertos términos del len-
guaje cotidiano diferentes de aquél que sí pueden traducirse a esta conec-
tiva; esto ocurre, v. gr., con la palabra 'pero'. 
Supongamos, por ejemplo, el caso de una mañana de invierno que 
amaneciera lluviosa y con una temperatura superior a lo previsible. Si en 
estas circunstancias quisiéramos comunicar a alguien el estado del tiempo, 
probablemente diríamos: 
15. Llueve, pero no hace frío 
En este caso podemos simbolizar el 'pero' mediante la conectiva ' · ' puesto 
que la información objetiva que el interlocutor recibe con respecto al estado 
del tiempo es que llueve y no hace frío, y esta información será verdadera 
si, y sólo si, ambas circunstancias se verifican, condición característica de 
la función veritativa que denominamos conjunción. 
Algo análogo a lo que sucede con el 'pero' ocurre también con expre-
siones como 'aunque', 'sino', 'no sólo, sino también', 'sin embargo', e incluso 
con signos de puntuación como la coma o el punto y coma, que sirven para 
afirmar conjuntamente dos o más proposiciones. 
27 
Analicemos ahora la conectiva que hemos denominado condicional. 
De todas las conectivas lógicas es ésta la que más difícil resulta justificar 
por una analogía con el lenguaje usual. En rigor, si realizamos una aproxi-
mación intuitiva a esta función de verdad hallamos claramente compren-
sibles sólo dos de los casos de su tabla de verdad. 
Consideremos, v. gr., la proposición: 
16. Si Juan viene, Pedro se va 
Este enunciado no afirma separadamente cada uno de sus miembros, 
no asegura que Juan vendrá ni que Pedro se irá, sino que determina cierto 
nexo entre antecedente y consecuente: afirma que, de producirse el primer 
hecho, se producirá también el segundo, establece que el primer hecho es 
condición suficiente para el segundo (si se produce p se producirá q) y que 
el segundo es condición necesaria para el primero (sólo si sucede q puede 
haber sucedido p). Queda, pues, bien claro que esta proposición molecular 
resultará falsa si se verifica el primer suceso y no se verifica el segundo. 
Podemos afirmar asimismo que la proposición es verdadera si se producen 
ambos hechos. Quedarían así justificadas las filas 1 y 3 de la tabla de 
verdad de la conectiva ' D L o que resulta bastante insólito es que consi-
deremos la proposición molecular como verdadera en el caso de que no se 
cumpla el antecedente (filas 2 y 4 de la tabla). En rigor, como señala 
Quine, ( 3 ) en el lenguaje usual si el primer hecho no se verifica es como si 
no hubiéramos hecho la afirmación: nadie dirá que ella era verdadera o 
falsa;sólo adquiere vigencia una proposición condicional si se produce la 
circunstancia señalada en el antecedente. Éste es uno de los rasgos que 
aleja la conectiva 'D' del 'si-entonces' del lenguaje usual. 
Otra circunstancia peculiar del condicional utilizado por la lógica es 
que en él no se requiere la existencia de vinculación alguna entre el ante-
cedente y el consecuente para que la molecular sea verdadera; sólo se 
exige que no sea verdadero el primero y falso el segundo. Así, afirmaciones 
como: 
17. Si la Tierra es un planeta, John Locke es un filósofo inglés 
18. Si la Tierra es una estrella, John Locke es un filósofo inglés 
19. Si la Tierra es una estrella, John Locke es un filósofo francés 
resultan verdaderas para el análisis lógico sólo porque no se da en ellas 
el caso de que el antecedente sea verdadero y el consecuente falso. Sin 
embargo, semejantes proposiciones no serían consideradas verdaderas 
(aunque tampoco falsas, sino más bien sin sentido) en el lenguaje cotidiano. 
Aunque este distanciamiento de la lengua corriente parece particularmente 
grave en el caso del condicional, él es, por cierto, característico de todas 
las conectivas lógicas, en la medida en que éstas son puramente extensio-
nales (véase nota 1). 
Así, pues, a pesar de que el condicional cuya tabla estudiamos recoge 
buena parte del sentido del condicional usual, no corresponde exactamente 
a él, de modo que para distinguirlo se le da el nombre de condicional 
material. 
28 
Las razones por las cuales se ha escogido aquella tabla para el condi­
cional material no son, sin embargo, arbitrarias. En primer lugar, aun 
cuando su analogía con el lenguaje usual no es total, podemos asegurar 
que recoge lo que tiene de común el 'si-entonces' en casi todos sus usos 
posibles ( 4 ) en el sentido de que la proposición molecular será declarada 
falsa si siendo verdadero el antecedente es falso el consecuente. En se­
gundo lugar, esa tabla veritativa se ajusta perfectamente a las necesidades 
del análisis lógico en la medida en que el condicional es la conectiva desti­
nada a traducir en el lenguaje proposicional la relación de implicación ca­
racterística de la inferencia válida. Volveremos sobre esto más adelante 
(véanse parágrafos 8 y 9). 
Convenimos, pues, en que la forma 'p D q' nos servirá para simbolizar 
aquellas expresiones del lenguaje usual donde se afirma que cp' es condi­
ción suficiente de 'q' y 'q' es condición necesaria de 'p' (tal como ocurre 
en el enunciado 9). 
Por otra parte existen, además del 'si-entonces', otras locuciones de la 
lengua cotidiana que cumplen estos requisitos. 
Sea, por ejemplo, la proposición: 
20. Sólo si es empleado de la casa puede usar el ascensor principal 
A primera vista advertimos que estamos ante una proposición de ese 
tipo; la conectiva 'D' será apropiada para simbolizar la expresión "sólo si"; 
sin embargo, debemos estar alertas al realizar el proceso de abstracción. 
En efecto, quizá nos sentimos inclinados a suponer que la proposición ató­
mica que aparece en primer término: 'Es empleado de la casa' (p), obra 
en la molecular como antecedente, mientras que la segunda: 'Puede usar 
el ascensor principal' (q), obra como consecuente, con lo cual la molecular 
se simbolizaría: 'pDq'. Sin embargo no es así, sino a la inversa. En 
efecto, lo que el juicio enuncia es que el hecho de ser empleado de la casa 
('p') es requisito (es decir, condición necesaria) para poder usar el ascen­
sor ('q'), pero no dice que sea condición suficiente -pues tal norma puede 
ser una dentro de una serie mayor de requisitos adicionales, como por ejem­
plo, un determinado horario, etc.-. Puesto que la cláusula que fija la con­
dición necesaria es el consecuente, la forma de aquella proposición será: 
'q D p' (es decir: 'Si usa el ascensor principal, entonces es un empleado 
de la casa'). 
Otras expresiones lingüísticas que pueden indicar la relación condicio­
nal son 'siempre' -en sentido no temporal-, 'en caso de que', etc. ('Iré, 
siempre que tú estés allí'; 'En caso de incendio debe romperse el vidrio', 
etcétera). 
Analicemos ahora la conectiva que denominamos bicondicional. Co­
mo su nombre lo indica, ésta expresa un condicional doble, es decir, un 
condicional que se cumple en ambas direcciones: 'p D q' y (q D p'. Como 
puede verificarse, la conjunción de estos dos condicionales presenta la mis­
ma tabla de verdad que el bicondicional 'p ≡ q\ 
29 
De lo dicho se infiere que una proposición molecular de forma bicondi-
cional expresa que cada uno de sus miembros es condición necesaria y sufi-
ciente del otro. 
En nuestro idioma, el giro que más adecuadamente se corresponde con 
este significado es, como quedó dicho, el 'si y sólo si'. Pero hay también 
otras fórmulas que sirven para expresar un condicional recíproco, tal como 
la siguiente: 
21. Si un hombre es puro, alcanza el Nirvana, y si alcanza el Nirvana, enton-
ces es puro 
§ 5. Simbolización 
Hemos indicado en el parágrafo anterior algunos recursos que permi-
ten expresar en el simbolismo de la lógica proposicional enunciados mo-
leculares sumamente sencillos. Pero en el lenguaje cotidiano suelen apare-
cer proposiciones mucho más complejas, como ésta: 
1. Si todos los alumnos cumplen con sus obligaciones y logran aprobar el exa-
men, el director de la escuela los recompensará con una semana de descanso; 
pero si algún alumno resultara reprobado, la dirección no adoptará esa 
medida 
En este enunciado aparecen varias conectivas y proposiciones atómicas 
diferentes. Por ser todas las conectivas del tipo extensional será posible 
hallar una fórmula en lógica proposicional que represente adecuadamente 
su estructura lógica. 
Pero, ¿cómo proceder para ello? A pesar de que no existe ninguna 
fórmula mecánica para abstraer las formas de los enunciados, hay una 
regla que conviene respetar en todos los casos: la traducción debe reali-
zarse de afuera hacia adentro (en dirección centrípeta), esto es hallando 
en primer lugar la estructura que corresponde a la proposición molecular 
más amplia para ir analizándola luego en estructuras más y más simples 
hasta llegar a las atómicas componentes, elementos últimos del análisis que 
nos ocupa, cuidando de agrupar luego adecuadamente las proposiciones 
mediante paréntesis. 
Según esta técnica debemos proceder con la proposición 1 del siguiente 
modo: hallamos en primer lugar dos grandes proposiciones moleculares 
unidas entre sí por la palabra 'pero\ La proposición molecular en su es-
tructura más amplia es, pues, una conjunción (decimos entonces que el 
operador o conectiva principal es el de la conjunción). 
Podemos ordenar entonces la proposición de la siguiente manera: 
Si todos los alumnos cumplen con sus obliga-
ciones, y logran aprobar el examen, el director 
de la escuela los recompensará con una sema-
na de descanso 
pero 
( • ) 
si algún alumno resultara reprobado, 
la dirección no adoptará esa medida 
30 
Debemos ahora analizar cada uno de los miembros de la conjunción, y 
este análisis puede realizarse con independencia recíproca. Consideremos el 
primer miembro, dejando por ahora sin analizar el segundo. Él expresa, en 
su totalidad, un condicional: 
Si 
todos los alumnos cum­
plen con sus obligacio­
nes y logran aprobar el 
examen 
entonces 
(=>) 
el director los recom­
pensará con una sema­
na de descanso 
pero 
( • ) 
si algún alumno resul­
tara reprobado, la di­
rección no adoptará 
esa medida 
A su vez, dentro del antecedente del condicional podemos descubrir 
partes, pues se trata de una conjunción. 
Si 
todos los alumnos cum­
plen con sus obl iga­
ciones 
y ( • ) 
logran aprobar el exa­
men 
entonces 
O ) 
el director los recom­
pensará con una sema­
na de descanso 
pero 
( • ) 
si algún alumno resul­
tara reprobado, la di­
rección no adoptará 
esa medida 
Completado el análisis del primer miembro de la conjunción podemos 
pasar ahora al del segundo miembro. Esta proposición tiene la forma con­
dicional: 
Si 
todos los alumnos

Otros materiales

Materiales relacionados