Logo Studenta

U1

¡Este material tiene más páginas!

Vista previa del material en texto

........................................................................... 4 
 ................................................................................... 4 
 ........................................................................................ 4 
 ........................................................................................... 5 
ℝ ........................................................................ 6 
 ............................................................................ 9 
 .................................. 21 
 ..................................... 28 
 .................................................................................... 29 
 .............................. 29 
 ............................................................................................ 35 
 .............................................................................................. 38 
 ........................................................................................... 44 
 ................................... 46 
 ............................................................... 47 
 ........................... 47 
 .......................................................................... 48 
 ........................................................................................ 51 
 ............................. 57 
 .............................................................................................. 64 
 ................................................................................................... 68 
 ......................................................................................................................... 72 
 ................................................................................................................... 78 
 ....................................................... 84 
 
 ........................................................................................................................................... 93 
 ... 94 
 ................................................................................................. 94 
 ............................................................................................................ 94 
 .................................................................................. 95 
Tabla 1. Intervalos ......................................................................................................................................... 9 
 
Figura 1. conjunto A=[0,1] .......................................................................................................................... 10 
Figura 2. Conjunto B=(0,1) .......................................................................................................................... 11 
Figura 3. Cotas superiores de A .................................................................................................................. 13 
Figura 4. Cotas superiores de B ................................................................................................................... 13 
Figura 5. Intervalos ..................................................................................................................................... 14 
Figura 6. Supremos ..................................................................................................................................... 18 
Figura 7. Propiedad de los supremos .......................................................................................................... 19 
Figura 8. Conjunto A= NxN .......................................................................................................................... 53 
Figura 9. B – A ............................................................................................................................................. 59 
Figura 10. Norma infinito ............................................................................................................................ 80 
Figura 11. Distancia supremo ..................................................................................................................... 80 
Figura 12.Funciones continuas en un intervalo cerrado ............................................................................. 81 
Figura 13. bola de métricas ......................................................................................................................... 85 
Figura 14. bola métrica en funciones continuas ......................................................................................... 86 
Figura 15. Bola abierta como conjunto abierto .......................................................................................... 87 
Figura 16. Puntos métricos en dos puntos distintos ................................................................................... 88 
Figura 17. bolas métricas ............................................................................................................................ 88 
Figura 18. Bola cerrada ............................................................................................................................... 91 
 
ℝ
ℝ
 
 
 
 
ℝ
 
ℝ
ℝ
ℝ
∈ ℝ ∈ ℝ
∈ ℝ ∈ ℝ
∈ ℝ ∈ ℝ
 
ℚ = {
𝑝
𝑞 | 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0, y 
𝑝
𝑞 es irreducible }.
 
ε
ε
ε
ε
ε ε
√2
 
∈ ℝ ∈ ℝ
∈ ℝ ∈ ℝ
∈ ℝ ∈ ℝ
∈ ℝ ∈ ℝ
Tabla 1. Intervalos
 
 
Figura 1. conjunto A=[0,1]
Ω
 Ω
Ω
 Ω
Ω
 Ω
Ω Ω
 Ω
Ω Ω
 
 
 
 
 
 
 
∈ ⇔
 
Figura 2. Conjunto B=(0,1)
 
 Ω
Ω
 
 Ω
Ω Ω
Ω
α Ω
α Ω
Ω α
α Ω
α Ω
Ω Ω
 
∈ ℝ
 
Figura 3. Cotas superiores de A
 
 
∈ ℝ
 
Figura 4. Cotas superiores de B
 
 
 
 
Figura 5. Intervalos
Ω
α Ω
α Ω
Ω α
α Ω
Ω α
Ω
β Ω
β Ω
 
Ω β
β Ω
β Ω
Ω Ω
Ω
β Ω
β Ω
Ω β
β Ω
Ω β
𝛼 =⏞
1
𝑠𝑢𝑝𝐴 y 𝜇 =⏞
2
𝑠𝑢𝑝𝐴
α μ
α
μ
α ≤ 𝜇.
μ
α
𝜇 ≤ α
 
α ≤ 𝜇 ≤ α .
α μ
 
Ω
α ∈ ℝ α Ω
ℚ
α ∈ ℚ
α
∈ ℚ
 
√2
ε ∈
ε
 
Figura 6. Supremos
 
ε ∈
ε
 
Figura 7. Propiedad de los supremos
ε ∈
ε ε ε
ℓ𝓆𝒹
∈ ∈
α β ∈ α β
 
α β
ζ ζ ζ α β
α β ζ ε
∈ ∈
α ε β ε
α β ε
ζ
α β ε ζ ⇒ α β ζ ε.
α β ζ ζ α
β ζ α β ℓ𝓆𝒹
ℓ𝓆𝒹
 
ℕ
ℕ
α ℕ
𝑛 ≤⏞
a
 α .
ε
α ⇒ α
α
ℕ ℓ𝓆𝒹
 
ℓ𝓆𝒹
 
 ℓ𝓆𝒹
∈ ℕ
ℕ
 ℓ𝓆𝒹
⇒
⇒ 1 + 𝑁𝑥 <⏞
1
 𝑁𝑦
 
⇔
<⏞
2
<⏞
1
<⏞
2
⇒
𝑥 <
𝑀
𝑁
< 𝑦.
ℓ𝓆𝒹
 
√2
√2 =
𝑝
𝑞
2 =
𝑝2
𝑞2
 ⇒ 2𝑞2 =⏞
1
𝑝2 .
 
⇒
∈ ℝ
∈
∈
 
2 − 𝑥2
2𝑥 + 1
> 0 .
∈ ℕ
1
𝑁
<
2 − 𝑥2
2𝑥 + 1
 ⇒ 
1
𝑁
(2𝑥 + 1) < 2 − 𝑥2 .
(𝑥 +
1
𝑁
)
2
= 𝑥2 +
2𝑥
𝑁
+
1
𝑁2
= 𝑥2 +
1
𝑁
(2𝑥 +
1
𝑁
) ≤ 𝑥2 +
1
𝑁
(2𝑥 + 1) < 𝑥2 + 2 − 𝑥2 = 2
𝑥2 − 2
2𝑥
> 0 .
1
𝑁
<
𝑥2 − 2
2𝑥
 ⇒ 
2𝑥
𝑁
< 𝑥2 − 2 ,
 
(𝑥 −
1
𝑁
)
2
= 𝑥2 −
2𝑥
𝑁
+
1
𝑁2
> 𝑥2 −
2𝑥
𝑁
> 𝑥2 − (𝑥2 − 2) = 2 .
ℓ𝓆𝒹
√2
√𝑎
√𝑎
𝑛
√2, √3, √5, √6, √7, √8, √10,
√6
3
, √20
3
, √25
4
, √50
4
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A1.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A1.docx
 
 
 
∅ ∅
∪
∩ ∅
∈ ∈
 ℝ
∈ ∈
∪ ℝ
∩ ∅
∈ ∈
 
 ℚ ∩ ℚ ∩ ℚ
∅ ∅ ∈ ∈
∪ ∩ ℚ ∪ ∩ ℚ ∪ ∩ ℚ ℚ
∩ ∩ ℚ ∩ ∩ ℚ ∩ ∩ ℚ ∅
∈ ∈
ℚ
 ℚ ∈ ℚ ℚ
∅ ∈ ∉
ℚ
∅
∪ ∪ ℚ
∩ ∩ ∅
∈ ∈ ∉
ℚ
√2
 
ℝ
ξ ∈ ℝ ∈ ∈ ξ
ℚ
ℝ ∈
∈
ξ ∈ ℝ
ξ ∈ ξ
ξ ξ ∈
 
∈
∈ ξ ξ
Ω
Ω ∈ ℝ ∈ Ω
∈ ℝ ∈ Ω ℝ
Ω Ω
 
ℝ
 ∪ ∪ ℝ
 ∩ ∩ ∅
 ∀ ∀
ξ
∀ ∀ ξ
 
ξ Ω
ξ Ω
ξ Ω
Ω
ξ
ξ ξ ξ
ξ
ξ
ξ ξ ξ
ξ ξ
Ω Ω ξ Ω ℓ𝓆𝒹
ℕ
ℕ
 
ℝ
⊇ ⊇ ⊇ ⊇ ⊇ ⊇
ℕ ⊇
 
lim
𝑛→∞
(I𝑛) = lim
𝑛→∞
(𝑏𝑛 − 𝑎𝑛) = lim
𝑛→∞
[1 +
1
𝑛
− (1 −
1
𝑛
)] = lim
𝑛→∞
(
2
𝑛
) = 0 .
∀ ∈ℕ ⊇
lim
𝑛→∞
(I𝑛) = 0 
 
⋂ [1 −
1
𝑛
, 1 +
1
𝑛
] = [0, 2] ∩ [1 −
1
2
, 1 +
1
2
]
∞
𝑛=1
∩ [1 −
1
3
, 1 +
1
3
] ∩ [1 −
1
4
, 1 +
1
4
]
∩ [1 −
1
5
, 1 +
1
5
] …
1 ∈ [1 −
1
𝑛
, 1 +
1
𝑛
] 𝑛 ∈ ℕ
ℝ ξ ∈
ℝ
𝜉 ∈ ⋂ I𝑛
∞
𝑛=1
⊇ ∈ ℕ
 
lim
𝑛→∞
𝑎𝑛 = 𝑎𝑦 lim
𝑛→∞
𝑏𝑛 = 𝑏 .
lim
𝑛→∞
(𝑏𝑛 − 𝑎𝑛) = 𝑎 − 𝑏 = 0 .
∈ ∈ ℕ
𝑎 ∈ ⋂ I𝑛
∞
𝑛=1
 .
∈ ℕ
⇒ lim
𝑛→∞
𝑎𝑛 ≤ 𝑥 ≤ lim
𝑛→∞
𝑏𝑛 ⇒
 ℓ𝓆𝒹
 
{𝑎𝑛} 
{𝑎𝑛𝑘}
∀ ∈ ℕ 𝑎𝑛𝑘 ∈ {𝑎𝑛}
∀ ∈ ℕ
{𝑎𝑛𝑘} = {𝑎𝑛1 , 𝑎𝑛2 , 𝑎𝑛3 , 𝑎𝑛4 , … }
𝑎𝑛𝑘
∈ ℝ
{𝑎𝑛𝑘} {𝑎𝑛𝑘}
lim
𝑘→∞
𝑎𝑛𝑘 = 𝑝
∈ ℝ
 
∀ ∈ ℕ ∈
{𝑎𝑛𝑘} ∈ ℝ
𝑎𝑛1
⇒ 𝑎𝑛1 ∈ {𝑎𝑛}, 𝑎𝑛1 ∈ 𝐼1 ⊆ 𝐼0 (𝐼1) = 𝑀
𝑎𝑛2 𝑎𝑛2
⇒ 𝑎𝑛2 ∈ {𝑎𝑛}, 𝑎𝑛2 ∈ 𝐼2 ⊆ 𝐼1 (𝐼2) =
𝑀
2
𝑎𝑛𝑘 𝑎𝑛𝑘
⇒ 𝑎𝑛𝑘 ∈ {𝑎𝑛}, 𝑎𝑛𝑘 ∈ 𝐼𝑘 ⊆ 𝐼𝑘−1 (𝐼𝑘) =
𝑀
2𝑘−1
 
{𝑎𝑛𝑘} {𝑎𝑛}
{𝐼𝑘}
⊇
lim
𝑘→∞
(𝐼𝑘) = lim
𝑘→∞
𝑀
2𝑘−1
= 0
ξ ∈ ℝ
ξ ∈ ⋂ 𝐼𝑘
∞
𝑘=1
 .
ξ {𝑎𝑛𝑘}
{𝑎𝑛}
lim
𝑘→∞
𝑎𝑛𝑘 = ξ ε ∈ ℕ
|𝑎𝑛𝑘 − ξ| < 𝜀
𝑎𝑛𝑘 ∈ 𝐼𝑘 ξ ∈ 𝐼𝑘
|𝑎𝑛𝑘 − ξ| <⏞
1
(𝐼𝑘) =
𝑀
2𝑘−1
 .
ε
ε ε
𝑀
2𝑁−1
< 𝜀 .
|𝑎𝑛𝑁 − ξ| <
𝑀
2𝑁−1
< 𝜀 .
 
⊆ 𝑎𝑛𝑘 ∈ 𝐼𝑘 𝑎𝑛𝑁 ∈ 𝐼𝑁 ξ ∈ 𝐼𝑘 ∩ 𝐼𝑁
|𝑎𝑛𝑘 − ξ| ≤ |𝑎𝑛𝑁 − ξ| < 𝜀 ⇒ |𝑎𝑛𝑘 − ξ| < 𝜀, ∀𝜀 > 0 ∀𝑘 > 𝑁. 
ξ ℓ𝓆𝒹
ε
ε ε ε ∈ ℝ ε
∈ ℝ
∈
ε ∈
∩ ε
ε ∈
ε
 
∈
∩ ∅ 𝐼𝑘 ⊆ 𝐼𝑘−1 (𝐼𝑘) =
𝑀
2𝑘−1
 ,
ξ ∈ ℝ
ξ ∈ ⋂ 𝐼𝑘
∞
𝑘=1
 .
ξ ε
ε ε
𝑀
2𝑁−1
< 𝜀
(𝐼𝑁) =
𝑀
2𝑁−1
< 𝜀 ⇒ ⊂ ε ξ
ξ
ξ ξ ℓ𝓆𝒹
 
ε
ε ε
ε
 
∈ ℝ
ε
|𝑎𝑛 – 𝑎𝑚| <⏞
1
 
𝜀
2
. 
{𝑎𝑛𝑘}
|𝑎𝑛𝑘 − 𝑝| <⏞
2 𝜀
2
 .
𝑎𝑛𝑘
𝑎𝑛𝑘 = 𝑎𝑚
|𝑎𝑛 – 𝑎𝑚| <⏞
1
 
𝜀
2
|𝑎𝑚 − 𝑝| = |𝑎𝑛𝑘 − 𝑝| <⏞
2
𝜀
2
 ,
 
|𝑎𝑛 − 𝑎𝑚 + 𝑎𝑚 − 𝑝| ≤ |𝑎𝑛 – 𝑎𝑚| + |𝑎𝑚 − 𝑝| <
𝜀
2
+
𝜀
2
|𝑎𝑛 – 𝑝| < 𝜀 .
lim
𝑛→∞
𝑎𝑛 = 𝑝 ∈ ℝ ℓ𝓆𝒹
ℝ
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A2.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A2.docx
 
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A3.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A3.docx
 
→
∈
 
→
→
→
→
⊂
⊆
⋂ ∅ ∪ ∪
 
⊆
ℕ
ℕ ⊂
ℝ ℕ →ℕ
ℕ ⊆ ℕ
 
ℕ ℵ
ℕ
ℤ ℕ
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 
𝑓(𝑛) = {
2𝑛, 𝑛 > 0
−(2𝑛 + 1), 𝑛 ≤ 0
ℤ ℕ
ℤ ℕ
ℕ ℕ
 
 
Figura 8. Conjunto A= NxN
(𝑎+𝑏)(𝑎+𝑏+1)
2
+ (𝑏 + 1) ∈ ℕ.
ℕ ℕ → ℕ
𝑓(𝑎, 𝑏) =
(𝑎 + 𝑏)(𝑎 + 𝑏 + 1)
2
+ (𝑏 + 1).
ℕ ℕ ℕ
 
ℤ ℤ ℤ
ℕ→ℤ ℕ ℕ → ℤ ℤ
ℕ ℕ ℤ ℤ
ℤ ℤ ℕ
ℤ
∈ ℕ
∈
∈
 
ℕ
⇒ ⇒
ℓ𝓆𝒹
ℕ ℕ
ℕ ℕ
ℤ ℤ
∪ ∈ ℤ ℤ
→ℚ
ℚ
ℚ
 
∈ ℝ
ℕ → ∈
∈
⇒
 
⇒
⇒
∈
ℓ𝓆𝒹
∪
∪ ∪ ∪ ∪ ∪ ∪
⋃ 𝐴
𝐴∈𝐹
𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑛}
 
⋃ 𝐴𝑘
𝑛
𝑘=1
= 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … ∪ 𝐴𝑛
𝐹 = {𝐴1, 𝐴2, 𝐴3, 𝐴4 … , }
⋃ 𝐴𝑛 =
∞
𝑛=1
𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4 ∪ …
∩
⋂ 𝐴
𝐴∈𝐹
𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑛}
⋂ 𝐴𝑘
𝑛
𝑘=1
= 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ … ∩ 𝐴𝑛
𝐹 = {𝐴1, 𝐴2, 𝐴3, 𝐴4 … , }
⋂ 𝐴𝑛 =
∞
𝑛=1
𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4 ∩ …
 
∈ ∉
 
Figura 9. B – A 
∅
𝐵 − ⋃ 𝐴
𝐴∈𝐹
= ⋂(𝐵 − 𝐴)
𝐴∈𝐹
𝐵 − ⋂ 𝐴
𝐴∈𝐹
= ⋃(𝐵 − 𝐴)
𝐴∈𝐹
𝐵 − ⋃ 𝐴
𝐴∈𝐹
⊆ ⋂(𝐵 − 𝐴)
𝐴∈𝐹
𝐵 − ⋃ 𝐴
𝐴∈𝐹
⊇ ⋂(𝐵 − 𝐴)
𝐴∈𝐹
 
𝐵 − ⋃ 𝐴𝐴∈𝐹 ⊆ ⋂ (𝐵 − 𝐴)𝐴∈𝐹
 𝑥 ∈ 𝐵 − ⋃ 𝐴
𝐴∈𝐹
 ⇒ 𝑥 ∈ 𝐵 𝑥 ∉ ⋃ 𝐴
𝐴∈𝐹
 ⇒ ∀𝐴 ∈ 𝐹, 𝑥 ∉ 𝐴 𝑥 ∈ 𝐵 
⇒ 𝑥 ∈ (𝐵 − 𝐴) ∀𝐴 ∈ 𝐹 ⇒ 𝑥 ∈ ⋂(𝐵 − 𝐴) .
𝐴∈𝐹
 𝑥 ∈ ⋂(𝐵 − 𝐴)
𝐴∈𝐹
⇒ ∀𝐴 ∈ 𝐹 𝑥 ∈ (𝐵 − 𝐴) 
⇒ 𝑥 ∈ 𝐵 𝑥 ∉ 𝐴 ∀𝐴 ∈ 𝐹 ⇒ 𝑥 ∈ 𝐵 𝑥 ∉ ⋃ 𝐴
𝐴∈𝐹
 ⇒ 𝑥 ∈ 𝐵 − ⋃ 𝐴
𝐴∈𝐹
ℓ𝓆𝒹
∩ ∅
 
𝐹 = {𝐴1, 𝐴2, 𝐴3 … } 𝐴𝑛 𝐴𝑖 ∩ 𝐴𝑗 = ∅
𝐴𝑛
𝐴1 = {𝑎11, 𝑎21, 𝑎31, … 𝐴2 = {𝑎12, 𝑎22, 𝑎32, …
𝐴𝑛 = {𝑎1𝑛, 𝑎2𝑛, 𝑎3𝑛, …
𝑥 ∈ ⋃ 𝐴𝑛
∞
𝑛=1
 .
𝐴𝑛
𝑥 = 𝑎𝑚𝑛
⋃ 𝐴𝑛
∞
𝑛=1
ℕ ℕ ⋃ 𝐴𝑛
∞
𝑛=1
 ℓ𝓆𝒹
𝐹 = {𝐴1, 𝐴2, 𝐴3 … } 𝐻 =
{𝐵1, 𝐵2, 𝐵3 … } 𝐵1 = 𝐴1
𝐵𝑛 = 𝐴𝑛 − ⋃ 𝐴𝑘
𝑛−1
𝑘=1
𝐻
⋃ 𝐴𝑛 =
∞
𝑛=1
⋃ 𝐵𝑛
∞
𝑛=1
 
𝐻 𝐵𝑛
𝐵1, 𝐵2, 𝐵3 … 𝐵𝑛−1 𝐻
⋃ 𝐴𝑛 ⊆
∞
𝑛=1
⋃ 𝐵𝑛
∞
𝑛=1
⋃ 𝐴𝑛 ⊇
∞
𝑛=1
⋃ 𝐵𝑛
∞
𝑛=1
𝑥 ∈ ⋃ 𝐴𝑛
∞
𝑛=1
𝑥 ∈ 𝐴𝑚 𝑥 ∈ 𝐴𝑛
𝑥 𝐴𝑘
𝑥 ∉ ⋃ 𝐴𝑘
𝑛−1
𝑘=1
 ⇒ 𝑥 ∈ 𝐵𝑛 = 𝐴𝑛 − ⋃ 𝐴𝑘
𝑛−1
𝑘=1
 ⇒ 𝑥 ∈ ⋃ 𝐵𝑛
∞
𝑛=1
 ⇒ ⋃ 𝐴𝑛 ⊆
∞
𝑛=1
⋃ 𝐵𝑛
∞
𝑛=1
𝑥 ∈ ⋃ 𝐵𝑛
∞
𝑛=1
 ⇒ 𝑥 ∈ 𝐵𝑚 𝑚 ⇒ 𝑥 ∈ 𝐴𝑚 𝑚 
⇒ 𝑥 ∈ ⋃ 𝐴𝑛
∞
𝑛=1
 ⇒ ⋃ 𝐵𝑛
∞
𝑛=1
⊆ ⋃ 𝐴𝑛
∞
𝑛=1
ℓ𝓆𝒹
 
𝐴1 = {
1
1
,
2
1
,
3
1
,
4
1
, … } , 𝐴2 = {
1
2
,
2
2
,
3
2
,
4
2
, … } , 𝐴3 = {
1
3
,
2
3
,
3
3
,
4
3
, … }
𝐴𝑛 = {
1
𝑛
,
2
𝑛
,
3
𝑛
,
4
𝑛
, … }
{𝑟 ∈ ℚ|𝑟 > 0} = ⋃ 𝐴𝑛
∞
𝑛=1
 .
 
∅
∀ ∈ ∈
∀ ∈
∀ ∈
∈ ∀ ∈
∀ ∈ ∈
∀ ∈ ∀ ∈ ∈
∀ ∈ ∀ ∈
∈ ∀ ∈
∀ ∈ ∀ ∈
∀ ∈ ∀ ∈
 
ℝ ℝ
ℝ 0̅ = (0, 0, 0, … , 0) ℝ
�̅� = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) ∈ ℝ −�̅� = (−𝑣1, − 𝑣2, − 𝑣3, … , −𝑣𝑛)
ℝ
(
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0
)
𝑀𝑛𝑚 = (
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚
) −𝑀𝑛𝑚 = (
−𝑎11 ⋯ −𝑎1𝑚
⋮ ⋱ ⋮
−𝑎𝑛1 ⋯ −𝑎𝑛𝑚
)
 
𝐶𝑓 = {𝑓: [𝑎, 𝑏] → ℝ|𝑓 [𝑎, 𝑏]} 
𝐼𝑓 = {𝑓: [𝑎, 𝑏] → ℝ|𝑓 [𝑎, 𝑏]}
∀ ∈ α ∈ ℝ
∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏
𝑎
𝑏
𝑎
= ∫ 𝑓(𝑥) + 𝑔(𝑥)𝑑𝑥 = ∫ 𝑔(𝑥) + 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔(𝑥)𝑑𝑥
𝑏
𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥 
𝑏
𝑎
𝑏
𝑎
𝑏
𝑎
∫ 𝛼𝑓(𝑥)𝑑𝑥 
𝑏
𝑎
= 𝛼 ∫ 𝑓(𝑥)𝑑𝑥 .
𝑏
𝑎
 
ℝ
∈
⊆ ∅
⊆ ∅
 ⇔ {
∀𝑣, 𝑢 ∈ 𝑆, 𝑎 ∈ 𝐾
𝑖) 𝑢 + 𝑣 ∈ 𝑆
𝑖𝑖) 𝑎𝑢 ∈ 𝑆
ℝ
 
∈ ∈
⊂ ∈
⊂ ∈
⊂
𝐿(𝑅) = {∑ 𝑎𝑖𝑣𝑖
𝑛
𝑖=1 |𝑎𝑖 ∈ 𝐾}
ℝ
 
φ →
∀ ∈ φ φ ⇔
∀ ∈ φ φ
∀ ∈ ∀ ∈ φ φ
∀ ∈ φ φ φ
φ(𝑢, 𝑣) = 〈𝑢, 𝑣〉 φ(𝑢, 𝑣) = 𝑢 ∙ 𝑣 
ℝ ℝ
〈�̅�, �̅�〉 = 2 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1
�̅� = (𝑥1, … , 𝑥𝑛), �̅� = (𝑦1, … , 𝑦𝑛)
�̅�, ≠ 0̅
 
〈�̅�, �̅�〉 = 2 ∑ 𝑥𝑖𝑥𝑖
𝑛
𝑖=1
= 2 (𝑥1𝑥1 + ⋯ + 𝑥𝑘𝑥𝑘⏟
0̌
+ ⋯ + 𝑥𝑛𝑥𝑛) = 2𝑥1𝑥1 + ⋯ + 2 𝑥𝑘𝑥𝑘⏟
0̌
+ ⋯ + 2𝑥𝑛𝑥𝑛
> 0 .
�̅� = 0̅
ℝ
〈�̅�, �̅�〉 = 2 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1
= 2(𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛) = 2(𝑦1𝑥1 + ⋯ + 𝑦𝑛𝑥𝑛) = 2 ∑ 𝑦𝑖𝑥𝑖 = 〈 �̅�, �̅�〉
𝑛
𝑖=1
∈ ℝ
𝑎�̅� = 𝑎(𝑥1, … , 𝑥𝑛) = (𝑎𝑥1, … , 𝑎𝑥𝑛)
〈𝑎�̅�, �̅�〉 = 2 ∑(𝑎𝑥𝑖)𝑦𝑖
𝑛
𝑖=1
= 𝑎2 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1
= 𝑎〈�̅�, �̅�〉
�̅� + �̅� = (𝑥1, … , 𝑥𝑛) + (𝑦1, … , 𝑦𝑛) = (𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛)
〈�̅� + �̅�, 𝑧̅〉 = 2 ∑(𝑥𝑖 + 𝑦𝑖)𝑧𝑖
𝑛
𝑖=1
= 2 ∑ 𝑥𝑖𝑧𝑖 + 𝑦𝑖𝑧𝑖
𝑛
𝑖=1
= 2 ∑ 𝑥𝑖𝑧𝑖 + 2 ∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1
𝑛
𝑖=1
= 〈�̅�, 𝑧̅〉 + 〈�̅�, 𝑧̅〉
ℝ ℝ φ
〈�̅�, �̅�〉 = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1
 
ℝ
〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏
𝑎
∈
〈𝑓, 𝑓〉 = ∫ 𝑓(𝑥)𝑓(𝑥)𝑑𝑥
𝑏
𝑎
= ∫[𝑓(𝑥)]2𝑑𝑥
𝑏
𝑎
> 0 .
∈
〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏
𝑎
= ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
𝑏
𝑎
= 〈𝑔, 𝑓〉
〈𝑎𝑓, 𝑔〉 = ∫ 𝑎𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑎 ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏
𝑎
= 𝑎〈𝑓, 𝑔〉
𝑏
𝑎
 
〈𝑓 + 𝑔, ℎ〉 = ∫(𝑓(𝑥) + 𝑔(𝑥))ℎ(𝑥)𝑑𝑥
𝑏
𝑎
= ∫ 𝑓(𝑥)ℎ(𝑥) + 𝑔(𝑥)ℎ(𝑥)𝑑𝑥
𝑏
𝑎
= ∫ 𝑓(𝑥)ℎ(𝑥)𝑑𝑥
𝑏
𝑎
+ ∫ 𝑔(𝑥)ℎ(𝑥)𝑑𝑥
𝑏
𝑎
= 〈𝑓, ℎ〉 + 〈𝑔, ℎ〉
ℝ
ρ → ℝ
ρ
ρ
∀ ∈ ∈ ρ ρ
∀ ∈ ρ ρ ρ
𝜌(𝑢) = ‖𝑢‖
ρ
 
ℝ
‖𝑓‖∞ = 𝑚𝑎𝑥 {|𝑓(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} 
ξ
|𝑓(ξ)| = 𝑚𝑎 𝑥{|𝑓(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} = ‖𝑓‖∞
‖𝑓‖∞ > 0 ∀𝑓 𝑓(𝑥) ≠ 0 𝑥 ∈ [𝑎, 𝑏]
‖𝑓‖∞ = 0 𝑓(𝑥) = 0 ∀𝑥 ∈ [𝑎, 𝑏]
∈ ℝ ‖𝑎�̅�‖∞ = 𝑚𝑎 𝑥{|𝑎𝑓(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} = |𝑎𝑓(ξ)| = |𝑎||𝑓(ξ)| =
|𝑎|‖𝑓‖∞
ξ γ ∈
|𝑓(ξ)| = 𝑚𝑎 𝑥{|𝑓(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} = ‖𝑓‖∞ |𝑔(γ)| = 𝑚𝑎 𝑥{|𝑔(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} =
‖𝑔‖∞
ζ
∈
|𝑓(ζ) + 𝑔(𝜁)| = 𝑚𝑎𝑥{|𝑓(𝑥) + 𝑔(𝑥)| | 𝑥 ∈ [𝑎, 𝑏]} = ‖𝑓 + 𝑔‖∞
ξ γ
ξ γ ⇒ ξ γ
 
ξ γ
ζ
ζ ζ ξ γ
‖𝑓 + 𝑔‖∞ = ‖𝑓‖∞ + ‖𝑔‖∞ .
ℝ �̅� = (𝒙𝒏, … , 𝒙𝒏)
‖�̅�‖1 = ∑|𝑥𝑖|
𝑛
𝑖=1
= |𝑥1| + ⋯ + |𝑥𝑛|
‖�̅�‖∞ = 𝑚𝑎𝑥{|𝑥𝑖| | 𝑖 = 1, … 𝑛}
{|𝑥𝑖| | 𝑖 = 1, … 𝑛}
 
‖�̅�‖𝑝 = (∑|𝑥𝑖|
𝑝
𝑛
𝑖=1
)
1
𝑝
1
𝑝
+
1
𝑞
= 1 �̅� =
(𝑥1, … , 𝑥𝑛), �̅� = (𝑦1, … , 𝑦𝑛)
∑|𝑥𝑖𝑦𝑖|
𝑛
𝑖=1
≤ (∑|𝑥𝑖|
𝑝
𝑛
𝑖=1
)
1
𝑝
(∑|𝑦𝑖|
𝑞
𝑛
𝑖=1
)
1
𝑞
(∑|𝑥𝑖 + 𝑦𝑖|
𝑛
𝑖=1
)
1
𝑝
≤ (∑|𝑥𝑖|
𝑝
𝑛
𝑖=1
)
1
𝑝
 + (∑|𝑦𝑖|
𝑝
𝑛
𝑖=1
)
1
𝑝
𝑢 = ∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1
∈ ∀
 
‖𝑢‖+ = ∑|𝑎𝑖|
𝑛
𝑖=1
‖𝑢‖∞ = max {|𝑎𝑖| |𝑖 = 1, … 𝑛}
√𝑥2 + 𝑦2 
φ(𝑢, 𝑣) = 𝑢 ∙ 𝑣
𝑢 ∙ 𝑣
‖𝑢‖𝑖 = √𝑢 ∙ 𝑢
‖𝑢‖𝑖 = 0 ‖𝑢‖𝑖
2
= |𝑢 ∙ 𝑢|
|𝑢 ∙ 𝑣| ≤ ‖𝑢‖𝑖‖𝑣‖𝑖
‖𝑢 + 𝑣‖𝑖
2
= 2(‖𝑢‖𝑖
2
+ ‖𝑣‖𝑖
2
)
 
ρ ρ
ρ
𝜌(𝑢) = ‖𝑢‖𝑖 ⇔ 𝜌
2(𝑢 + 𝑣) = 2(𝜌2(𝑢) + 𝜌2(𝑣)) 
ℝ ‖�̅�‖𝑝
ρ ρ
ρ ρ
∈
ρ ρ ρ
ρ ρ
ρ ρ
 
→ ℝ
∈
⇔
 
𝑑𝐷(𝑢, 𝑣) = {
1, 𝑢 ≠ 𝑣0, 𝑢 = 𝑣
ℝ
𝑑𝑝(�̅�, �̅�) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝
𝑛
𝑖=1
)
1
𝑝
= ‖�̅� − �̅�‖𝑝
𝑑1(�̅�, �̅�) = ∑|𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1
= ‖�̅� − �̅�‖1
𝑑2(�̅�, �̅�) = (∑|𝑥𝑖 − 𝑦𝑖|
2
𝑛
𝑖=1
)
1
2
= ‖�̅� − �̅�‖2
𝑑∞(�̅�, �̅�) = 𝑚𝑎𝑥{|𝑥𝑖 − 𝑦𝑖| | 𝑖 = 1, … 𝑛} = ‖�̅�‖∞
 
 
Figura 10. Norma infinito
𝑈 = 𝐴𝑓 = {𝑓: [𝑎, 𝑏] → ℝ | |𝑓(𝑥)| ≤ 𝑀 𝑀 > 0}
𝑑∞(𝑓, 𝑔) = sup{|𝑓(𝑥) − 𝑔(𝑥) | 𝑥 ∈ [𝑎, 𝑏]} = ‖𝑓(𝑥) − 𝑔(𝑥)‖∞
 
Figura 11. Distancia supremo
 
𝑑𝐴(𝑓, 𝑔) = ∫|𝑓(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥
 
Figura 12.Funciones continuas en un intervalo cerrado
|𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 ⇒ ∫ |𝑓(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥 ≥ 0
|𝑓(𝑥) − 𝑔(𝑥)| = 0 ⇔ 𝑓(𝑥) = 𝑔(𝑥) ∫ |𝑓(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥 = 0 ⇔ 𝑓(𝑥) =
𝑔(𝑥)
|𝑓(𝑥) − 𝑔(𝑥)| = |𝑔(𝑥) − 𝑓(𝑥)| ⇒ ∫ |𝑓(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥 = ∫ |𝑔(𝑥) − 𝑓(𝑥)|
𝑏
𝑎
𝑑𝑥
|𝑓(𝑥) − 𝑔(𝑥)| ≤ |𝑓(𝑥) − ℎ(𝑥)| + |ℎ(𝑥) − 𝑔(𝑥)|
𝑑𝐴(𝑓, 𝑔) = ∫|𝑓(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥 ≤ ∫|𝑓(𝑥) − ℎ(𝑥)| + |ℎ(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥
= ∫|𝑓(𝑥) − ℎ(𝑥)|
𝑏
𝑎
𝑑𝑥 + ∫|ℎ(𝑥) − 𝑔(𝑥)|
𝑏
𝑎
𝑑𝑥 = 𝑑𝐴(𝑓, ℎ) + 𝑑𝐴(ℎ, 𝑔)
 
𝑺𝑨 =
{{𝒂𝒏} | {𝒂𝒏} }
𝑑({𝑎𝑛}, {𝑏𝑛}) = 𝑠𝑢𝑝{|𝑎𝑛 − 𝑏𝑛| |𝑛 ∈ ℕ} = ‖𝑎𝑛 − 𝑏𝑛‖∞
𝑆𝐶 = {{𝑎𝑛} | {𝑎𝑛} }
𝑆𝑝 = {{𝑎𝑛}| ∑ |𝑎𝑛|
𝑝∞
𝑛=1 < ∞}
𝑑𝑝({𝑎𝑛}, {𝑏𝑛}) = (∑|𝑎𝑛 − 𝑏𝑛|
𝑝
∞
𝑛=1
)
1
𝑝
= ‖𝑎𝑛 − 𝑏𝑛‖𝑝
‖ ‖
𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖
 
𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖ = ‖𝑢 − 𝑤 + 𝑤 − 𝑣‖ ≤ ‖𝑢 − 𝑤‖ + ‖𝑤 − 𝑣‖ = 𝑑(𝑢, 𝑤) + 𝑑(𝑤, 𝑣)
∈
∈ ∈
∈ ∩ ∅
ℝ 𝐴 = {(𝑥, 𝑦) | 0 < 𝑥 < 1 0 < 𝑦 < 1} ℝ
𝑑((0,0), 𝐴) = 𝛼 𝛼 = 0 𝛼 > 0
𝛼 < 1 (𝛼/3, 𝛼/3) ∈ 𝐴 α ≤ 𝑑((0,0), (𝛼/3, 𝛼/3) = √2
𝛼
3
3 ≤ √2 𝑑((0,0), 𝐴) = 0
 
ℝ 𝐵 = {(𝑥, 𝑦)| 1 < 𝑥 < 2, 0 < 𝑦 <
1} 𝑑(𝐴, 𝐵) = 𝛼 > 0 𝛼 < 1
(1 −
𝛼
2
, 1 −
𝛼
2
) ∈ 𝐴 𝑦 (1 +
𝛼
2
, 1 −
𝛼
2
) ∈ 𝐵 𝛼 ≤ 𝑑 ((1 −
𝛼
2
, 1 −
𝛼
2
) , (1 +
𝛼
2
, 1 −
𝛼
2
)) =
𝛼
2
𝑑(𝐴, 𝐵) = 0
𝐴 ∩ 𝐵 = ∅
𝑢0 ∈ 𝑈 𝑉 ⊂ 𝑈
𝑢0 𝑉 𝑢0 ∈ 𝑉, 𝑑(𝑢0, 𝑢0) = 0 𝑑(𝑢0, 𝑉) = 0
𝑢0 ∉ 𝑉 𝑢0 ≠ 𝑣, ∀𝑣 ∈ 𝑉 𝑑(𝑢0, 𝑣) = 1 𝑑(𝑢0, 𝑉) =
1
ℝ
𝑣0 ∈ 𝑈 𝑟 ∈ ℝ, 𝑟 > 0
𝑟 𝑢0
𝐵𝑟(𝑣0) = {𝑢 ∈ 𝑈 | 𝑑(𝑣0, 𝑢) < 𝑟}
𝐵𝑟
o(𝑣0) = 𝐵𝑟(𝑣0) − {𝑣0} = {𝑢 ∈ 𝑈 | 0 < 𝑑(𝑣0, 𝑢) < 𝑟}
 
𝑟 𝑢0
𝐵𝑟̅̅ ̅(𝑣0) = {𝑢 ∈ 𝑈 | 𝑑(𝑣0, 𝑢) ≤ 𝑟}
ℝ
𝐵𝑟((a, b)) = {(x, y)|√𝑥2 + 𝑦2 < 𝑟}
{(𝑥, 𝑦)| 𝑚𝑎𝑥{|𝑥|, |𝑦|} < 1}
 
Figura 13. bola de métricas
 
𝐵𝑟(𝑓0) = {𝑓 ∈ 𝐶𝑓 | sup {|𝑓0(𝑥) − 𝑓(𝑥)| < 𝑟, ∀𝑥 ∈ [𝑎, 𝑏]}}
 
Figura 14. bola métrica en funciones continuas
𝐵𝑟(𝑢0) = {
{𝑢0}, 𝑟 ≤ 1
𝑈, 𝑟 > 1
∈
𝑝 𝑉 ⇔ ∃𝑟 > 0 𝐵𝑟(𝑝) ⊂ 𝑉
 
∈
𝐵𝑟(𝑢0)
𝑣 ∈ 𝐵𝑟(𝑢0) 𝛿 = 𝑟 − 𝑑(𝑢0, 𝑣) > 0 𝐵𝛿(𝑣) ⊂ 𝐵𝑟(𝑢0)
 
Figura 15. Bola abierta como conjunto abierto
𝑤 𝐵𝛿(𝑣) 𝑑(𝑣, 𝑤) < 𝛿
𝑑(𝑢0, 𝑤) ≤ 𝑑(𝑢0, 𝑣) + 𝑑(𝑣, 𝑤)
𝑑(𝑢0, 𝑤) ≤ 𝑑(𝑢0, 𝑣) + 𝑑(𝑣, 𝑤) < 𝑑(𝑢0, 𝑣) + 𝛿 = 𝑑(𝑢0, 𝑣) + 𝑟 − 𝑑(𝑢0, 𝑣) = 𝑟
𝑤 ∈ 𝐵𝑟(𝑢0)
 
 
Figura 16. Puntos métricos en dos puntos distintos
∈
( )∩ ( ) = ∅
∈ ∩
δ δ ⊂ ∩
 
Figura 17. bolas métricas
⊂ ℝ
 
𝒯
∅ ∈ 𝒯
𝛼 ∈ 𝐼, 𝐴𝛼 ∈ 𝒯 ⇒ ⋃ 𝐴𝛼
𝛼∈𝐼
∈ 𝒯
𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝒯 ⇒ ⋂ 𝐴𝑖
𝑛
𝑖=1
∈ 𝒯
𝒯 𝒯
⊂
𝑉 𝑣 ∈ V 𝑟𝑣 > 0
𝐵𝑟𝑣(𝑣) ⊂ V
⋃ 𝐵𝑟𝑣(𝑣) ⊂ V
𝑣∈𝑉
 .
 
𝑣 ∈ 𝑉 V ⊂ ⋃ 𝐵𝑟𝑣(𝑣)𝑣∈𝑉
V = ⋃ 𝐵𝑟𝑣(𝑣).
𝑣∈𝑉
V
V
V 𝑉
V
⊂
⊂
⊂
⇔
 
𝐵𝑟̅̅ ̅(𝑣0) = {𝑢 ∈ 𝑈 | 𝑑(𝑣0, 𝑢) ≤ 𝑟}
(𝐵𝑟̅̅ ̅(𝑣0))
𝑐
= {𝑢 ∈ 𝑈 | 𝑑(𝑣0, 𝑢) > 𝑟}
𝑠 =
𝑑(𝑢, 𝐵𝑟̅̅ ̅̅ (𝑣0))
2
𝑢 ∈
(𝐵𝑟̅̅ ̅(𝑣0))
𝑐
𝐵𝑠(𝑢) ⊂ (𝐵𝑟̅̅ ̅(𝑣0))
𝑐
 
Figura 18. Bola cerrada
⊂
∈
𝑝 𝑉 ⇔ ∀𝑟 > 0, 𝐵𝑟(𝑝) ∩ 𝑉 ≠ ∅ 𝐵𝑟(𝑝) ∩ 𝑉
𝑐 ≠ ∅
 
∈
�̅� = 𝑉 ∪ 𝜕𝑉
∈
𝑞 𝑉 ⇔ ∀𝑟 > 0, 𝐵𝑟
𝑜(𝑞) ∩ 𝑉 ≠ ∅
∈
⇔ 𝑉 = �̅�
⇔ 𝑉′ ⊂ 𝑉
⇔ 𝜕𝑉 ⊂ 𝑉
ℝ
 
𝒯 𝒯
ℝ
𝑑 𝑑′
𝑑 𝑑′ ⟺ ∀𝑢 ∈ 𝑈 ∀𝑟 > 0, 𝛿 > 0 𝛿′ > 0
𝐵𝑑𝛿(𝑢) ⊂ 𝐵𝑑′𝑟(𝑢) 𝐵𝑑′𝛿′(𝑢) ⊂ 𝐵𝑑𝑟(𝑢)
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A4.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A4.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1A4.docx
 
 
 
 
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1Evidencia.docx
file:///C:/Users/Denys/Documents/UNAdM/UnadToño/MarcoPerez/MAMT1/U1/DESCARGABLE/MAMT1U1Evidencia.docx
 
 
 
 
 
 
 
 
 
http://www.youtube.com/playlist?annotation_id=annotation_473177&feature=iv&list=PL91053E26803C7E65&src_vid=Vqkgz5kf5IM
http://www.youtube.com/playlist?annotation_id=annotation_473177&feature=iv&list=PL91053E26803C7E65&src_vid=Vqkgz5kf5IM
http://www.dmae.upct.es/~juan/videosfund/ev.htm

Continuar navegando